Dynamics of confined liquid crystals
dc.contributor.advisor | Hernández Ortiz, Juan Pablo | spa |
dc.contributor.author | Villada Gil, Stiven | spa |
dc.date.accessioned | 2021-03-01T19:39:35Z | spa |
dc.date.available | 2021-03-01T19:39:35Z | spa |
dc.date.issued | 2020-09-07 | spa |
dc.description.abstract | Thermotropic nematic liquid crystals in contact with surfaces at the nanoscale were studied by means of beyond equilibrium thermodynamics and computational simulations. In particular, nanoparticles of different geometries suspended in nematic liquid crystals were studied. For this purpose, biaxial systems, thermal fluctuations, confi nement effects and hydrodynamic fields were taken into account. The purpose was to elucidate the physical mechanisms of by which liquid crystals organize when they are in contact with surfaces, construct phase diagrams, and analyze how fluctuations affect the stability of the isotropic phase as well as the uniaxial and biaxial nematic; also we focused on describing the formation and evolution of the topological defects that are generated around nanoparticles and on the understanding of the role of hydrodynamics in the self-assembly of colloids in nematics. | spa |
dc.description.abstract | Los cristales líquidos nemáticos termotrópicos en contacto con super cies en la nanoescala fueron estudiados partiendo de termodinámica más allá del equilibrio y usando simulaciones computacionales. En particular, se estudiaron nano-partículas de diferentes geometrías suspendidas en cristales líquidos nemáticos. Para tal fi n, se tuvieron en cuenta tópicos tan diversos como: sistemas biaxiales, fluctuaciones térmicas, efectos de confi namiento y campos hidrodinámicos. El propósito fue elucidar los mecanismos físicos de organización de cristales líquidos en contacto con super cies, construir diagramas de fases y analizar como las fluctuaciones afectan la estabilidad de la fase isotrópica, la nemática uniaxial y la nemática biaxial; así como describir la formación y evolución de los defectos topológicos generados alrededor de las nano-partículas y entender el rol de la hidrodinámica en el auto-ensamblaje de tales coloides nemáticos. | spa |
dc.description.degreelevel | Doctorado | spa |
dc.format.extent | 96 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/79330 | |
dc.language.iso | eng | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.publisher.department | Departamento de Materiales y Minerales | spa |
dc.publisher.program | Medellín - Minas - Doctorado en Ingeniería - Ciencia y Tecnología de Materiales | spa |
dc.relation.references | M. Cestari. Atomistic modelling of liquid crystal materials properties: a theoretical and computatonal methodology. Doctoral dissertation, Scuola di Dottorato in Scienze Molecolari. Universit a Degli Studi di Padova, Padua, 2008. | spa |
dc.relation.references | H. J. Coles. Laser and electric field induced birefringence studies on the cyanobiphenyl homologues. Mol. Cryst. Liq. Cryst., 49(3):67{74, 1978. | spa |
dc.relation.references | E.F. Gramsbergen, L. Longa, and W.H. de Jeu. Landau theory of the nematic-isotropic phase transition. Phys. Rep., 4(4):195{257, 1986. | spa |
dc.relation.references | Chih-Cheng Cheng, C. Alex Chang, and J. Andrew Yeh. Variable focus dielectric liquid droplet lens. Optics Express, 14(9):4101, May 2006. | spa |
dc.relation.references | Bilal R. Kaafarani. Discotic liquid crystals for opto-electronic applications. Chemistry of Materials, 23(3):378{396, February 2011. | spa |
dc.relation.references | Michi Nakata, Dong Chen, Renfan Shao, Eva Korblova, Joseph E. Maclennan, David . Walba, and Noel A. Clark. Electro-optic response of the anticlinic, antiferroelectric liquid-crystal phase of a biaxial bent-core molecule with tilt angle near 45. Physical Review E, 85(3), March 2012. | spa |
dc.relation.references | Tsung-Hsien Lin, Yannian Li, Chun-Ta Wang, Hung-Chang Jau, Chun-Wei Chen, Cheng-Chung Li, Hari Krishna Bisoyi, Timothy J. Bunning, and Quan Li. Red, green and blue reflections enabled in an optically tunable self-organized 3d cubic nanostructured thin fi lm. Advanced Materials, 25(36):5050{5054, August 2013. | spa |
dc.relation.references | I. Musevic. Nematic colloids, topology and photonics. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371(1988):20120266, April 2013. | spa |
dc.relation.references | Fei Zhai, Yiyu Feng, Kang Zhou, LingWang, Zhigang Zheng, and Wei Feng. Graphenebased chiral liquid crystal materials for optical applications. Journal of Materials Chemistry C, 7(8):2146{2171, 2019. | spa |
dc.relation.references | Haiyan Peng, Lei Yu, Guannan Chen, Zhigang Xue, Yonggui Liao, Jintao Zhu, Xiaolin Xie, Ivan I. Smalyukh, and Yen Wei. Liquid crystalline nanocolloids for the storage of electro-optic responsive images. ACS Applied Materials & Interfaces, 11(8):8612-8624, February 2019. | spa |
dc.relation.references | P T Ireland and T V Jones. Liquid crystal measurements of heat transfer and surface shear stress. Measurement Science and Technology, 11(7):969{986, June 2000. | spa |
dc.relation.references | M. F. Moreira, I. C. S. Carvalho, W. Cao, C. Bailey, B. Taheri, and P. Palffy-Muhoray. Cholesteric liquid-crystal laser as an optic ber-based temperature sensor. Appl. Phys. Lett., 85(14):2691, October 2004. | spa |
dc.relation.references | G. E. Nevskaya, S. P. Palto, and M. G. Tomilin. Liquid-crystal-based microlasers. J. Opt. Technol+, 77(8):473, August 2010. | spa |
dc.relation.references | M. Skarabot, M. Ravnik, D. Babic, N. Osterman, I. Poberaj, S. Zumer, I. Musevic, A. Nych, U. Ognysta, and V. Nazarenko. Laser trapping of low refractive index colloids in a nematic liquid crystal. Physical Review E, 73(2), February 2006. | spa |
dc.relation.references | Chih-Hsin Chen and Kun-Lin Yang. Detection and quantifi cation of DNA adsorbed on solid surfaces by using liquid crystals. Langmuir, 26(3):1427{30, February 2010. | spa |
dc.relation.references | I. H. Lin, D. S. Miller, P. J. Bertics, C. J. Murphy, J. J. de Pablo, and N. L. Abbott. Endotoxin-induced structural transformations in liquid crystalline droplets. Science, 332(6035):1297{300, 2011. | spa |
dc.relation.references | Andrew D Price and Daniel K Schwartz. DNA hybridization-induced reorientation of liquid crystal anchoring at the nematic liquid crystal/aqueous interface. J. Am. Chem. Soc., 130(26):8188{94, July 2008. | spa |
dc.relation.references | S. Sivakumar, K. L. Wark, J. K. Gupta, N. L. Abbott, and F. Caruso. Liquid Crystal Emulsions as the Basis of Biological Sensors for the Optical Detection of Bacteria and Viruses. Adv. Funct. Mater., 19(14):2260{2265, 2009. | spa |
dc.relation.references | Monirosadat Sadati, Aslin Izmitli Apik, Julio C. Armas-Pérez, José A. Martínez- González, Juan P. Hernández-Ortiz, Nicholas L. Abbott, and Juan J. de Pablo. Liquid Crystal Enabled Early Stage Detection of Beta Amyloid Formation on Lipid Monolayers. Adv. Funct. Mater., 25(38):6050{6060, 2015. | spa |
dc.relation.references | P. Rajak, L. K. Nath, and B. Bhuyan. Liquid crystals: An approach in drug delivery. Indian Journal of Pharmaceutical Sciences, 81(1), 2019. | spa |
dc.relation.references | Andrew Otte, Bong-Kwan Soh, Gwangheum Yoon, and Kinam Park. Liquid crystalline drug delivery vehicles for oral and IV/subcutaneous administration of poorly soluble (and soluble) drugs. International Journal of Pharmaceutics, 539(1-2):175{183, March 2018. | spa |
dc.relation.references | Omid C. Farokhzad and Robert Langer. Impact of nanotechnology on drug delivery. ACS Nano, 3(1):16{20, January 2009. | spa |
dc.relation.references | Lin Jia, Amin Cao, Daniel L evy, Bing Xu, Pierre-Antoine Albouy, Xiangjun Xing, Mark J. Bowick, and Min-Hui Li. Smectic polymer vesicles. Soft Matter, 5(18):3446, September 2009. | spa |
dc.relation.references | C Loudet, P Barois, P Auroy, P Keller, H Richard, and P Poulin. Colloidal Structures from Bulk Demixing in Liquid Crystals. Langmuir, 20(26):11336{11347, 2004. | spa |
dc.relation.references | Jean-Christophe Loudet, Philippe Barois, and Philippe Poulin. Colloidal ordering from phase separation in a liquid- crystalline continuous phase. Nature, 407(6804):611{613, October 2000. | spa |
dc.relation.references | I. Musevic. Two-dimensional nematic colloidal crystals self-assembled by topological defects. Science, 313(5789):954{958, aug 2006. | spa |
dc.relation.references | I. I. Smalyukh, S. Chernyshuk, B. I. Lev, A. B. Nych, U. Ognysta, V. G. Nazarenko, and O. D. Lavrentovich. Ordered droplet structures at the liquid crystal surface and elastic-capillary colloidal interactions. Physical Review Letters, 93(11), September 2004. | spa |
dc.relation.references | J. P. F. Lagerwall and G. Scalia. A new era for liquid crystal research: Applications of liquid crystals in soft matter nano-, bio- and microtechnology. Curr. Appl. Phys., 12(6):1387-1412, nov 2012. | spa |
dc.relation.references | Christophe Blanc, Delphine Coursault, and Emmanuelle Lacaze. Ordering nano- and microparticles assemblies with liquid crystals. Liquid Crystals Reviews, 1(2):83{109, December 2013. | spa |
dc.relation.references | Julio C. Armas-Pérez, Alejandro Londono-Hurtado, Orlando Guzmán, Juan P. Hernández-Ortiz, and Juan J. de Pablo. Theoretically informed Monte Carlo simulation of liquid crystals by sampling of alignment-tensor fi elds. J. Chem. Phys., 143(4):044107, 2015. | spa |
dc.relation.references | Julio C. Armas-Pérez, Juan P. Hernández-Ortiz, and Juan J. de Pablo. Liquid crystal free energy relaxation by a theoretically informed Monte Carlo method using a finite element quadrature approach. J. Chem. Phys., 143(24):243157, 2015. | spa |
dc.relation.references | P. G. de Gennes and J. Prost. The Physics of Liquid Crystals. Clarendon Press, Oxford, 2nd edition, 1993. | spa |
dc.relation.references | Masao Doi. Molecular dynamics and rheological properties of concentrated solutions of rodlike polymers in isotropic and liquid crystalline phases. Journal of Polymer Science: Polymer Physics Edition, 19(2):229{243, 1981. | spa |
dc.relation.references | H. Stark and T. C. Lubensky. Poisson-bracket approach to the dynamics of nematic liquid crystals. Physical Review E, 67(6):061709, jun 2003. | spa |
dc.relation.references | F. Reinitzer. Beitr age zur kenntnis des cholesterins. Monatsch Chemie, 9:421-441, 1888. | spa |
dc.relation.references | O. Lehman. Uber fliessende krystalle. Physikal Chem., 4:462{472, 1889. | spa |
dc.relation.references | Antony N. Beris and Hans Christian Ottinger. Bracket formulation of nonequilibrium thermodynamics for systems interacting with the environment. J. Non-Newtonian Fluid Mech., 152(1-3):2{11, 2008. | spa |
dc.relation.references | I. Lelidis and G. Durand. Electric- field-induced isotropic-nematic phase transition. Phys. Rev. E, 48(5):3822{3824, 1993. | spa |
dc.relation.references | Brian T. Gettefil nger, José Antonio Moreno-Razo, Gary M. Koenig Jr, Juan P. Hernández-Ortiz, Nicholas L. Abbott, and Juan J. de Pablo. Flow induced deformation of defects around nanoparticles and nanodroplets suspended in liquid crystals. Soft Matter, 6(5):896, 2010. | spa |
dc.relation.references | Xiaofeng Yang, M. Gregory Forest, William Mullins, and Qi Wang. 2-D lid-driven cavity flow of nematic polymers: an unsteady sea of defects. Soft Matter, 6(6):1138, March 2010. | spa |
dc.relation.references | Tamas Kosa, Ludmila Sukhomlinova, Linli Su, Bahman Taheri, Timothy J. White, and Timothy J. Bunning. Light-induced liquid crystallinity. Nature, 485(7398):347-9, 2012. | spa |
dc.relation.references | J. M. Brake, M. K. Daschner, Y. Y. Luk, and N. L. Abbott. Biomolecular interactions at phospholipid-decorated surfaces of liquid crystals. Science, 302(5653):2094-7, December 2003. | spa |
dc.relation.references | Jugal K. Gupta, Jacob S. Zimmerman, Juan J. de Pablo, Frank Caruso, and Nicholas L. Abbott. Characterization of adsorbate-induced ordering transitions of liquid crystals within monodisperse droplets. Langmuir, 25(16):9016{24, 2009. | spa |
dc.relation.references | G. Friedel. Les états mésomorphes de la matiere. Ann. Phys, 18:273, 1922. | spa |
dc.relation.references | T. C. Lubensky. Molecular Description of Nematic Liquid Crystals. Physical Review A, 2(6):2497{2514, 1970. | spa |
dc.relation.references | A. Saupe. Elastic and flow properties of biaxial nematics. The Journal of Chemical Physics, 75(10):5118, 1981. | spa |
dc.relation.references | F.C. Frank. I. Liquid crystals. On the theory of liquid crystals. Discussions of the Faraday Society, 25:19, 1958. | spa |
dc.relation.references | P. Poulin and David a. Weitz. Inverted and multiple nematic emulsions. Physical Review E, 57(1):626{637, 1998. | spa |
dc.relation.references | Yuedong Gu and Nicholas L Abbott. Observation of Saturn-ring defects around solid microspheres in nematic liquid crystals. Physical Review Letters, 85(22):4719{4722, 2000. | spa |
dc.relation.references | P. Poulin. Novel colloidal interactions in anisotropic fluids. Science, 275(5307):1770-1773, March 1997. | spa |
dc.relation.references | V. G. Nazarenko, A. B. Nych, and B. I. Lev. Crystal structure in nematic emulsion. Phys. Rev. Lett., 87:075504, Jul 2001. | spa |
dc.relation.references | P.G. de Gennes. Short-range order effects in the isotropic phase of nematics and cholesterics. Mol. Cryst. Liquid Cryst., 12:193{214, 1971. | spa |
dc.relation.references | D.W. Allender, M.A. Lee, and N. Ha z. Landau theory of biaxial and uniaxial nematic Liquid Crystals. Mol. Cryst. Liquid Cryst., 124:45-52, 1984. | spa |
dc.relation.references | Stiven Villada-Gil, Viviana Palacio-Betancur, Julio C Armas-Pérez, Juan J de Pablo, and Juan P Hernández-Ortiz. Fluctuations and phase transitions of uniaxial and biaxial liquid crystals using a theoretically informed monte carlo and a landau free energy density. Journal of Physics: Condensed Matter, 31(17):175101, March 2019. | spa |
dc.relation.references | C.W. Oseen. The theory of liquid crystals. Transactions of the Faraday Society, 29(140):883, 1933. | spa |
dc.relation.references | Hiroyuki Mori, Eugene C. Gartland, Jack R. Kelly, and Philip J. Bos. Multidimensional Director Modeling Using the Q Tensor Representation in a Liquid Crystal Cell and Its Application to the pi Cell with Patterned Electrodes. Japanese Journal of Applied Physics, 38:135-146, 1999. | spa |
dc.relation.references | Michael J. Stephen and Joseph P. Straley. Physics of liquid crystals. Reviews of Modern Physics, 46(4):617{704, 1974. | spa |
dc.relation.references | M. Papoular and A. Rapini. Surface waves in nematic liquid crystals. Solid State Communications, 7(22):1639-1641, November 1969. | spa |
dc.relation.references | J.-B Fournier and Paolo Galatola. Modeling planar degenerate wetting and anchoring in nematic liquid crystals. Europhysics Letters (EPL), 72(3):403{409, November 2005. | spa |
dc.relation.references | AN Beris and BJ Edwards. Thermodynamics of flowing systems: with internal microstructure. Oxford Science Publications, Oxford, 1994. | spa |
dc.relation.references | Siegfried Hess. Irreversible thermodynamics of nonequilibrium alignment phenomena in molecular liquids and in liquid crystals. Zeitschrift f ur Naturforschung A, 30(10):1224-1232, jan 1975. | spa |
dc.relation.references | Nobu Kuzuu and Masao Doi. Constitutive equation for nematic liquid crystals under weak velocity gradient derived from a molecular kinetic equation. Journal of the Physical Society of Japan, 52(10):3486{3494, oct 1983. | spa |
dc.relation.references | Peter D. Olmsted and Paul Goldbart. Theory of the nonequilibrium phase transition for nematic liquid crystals under shear ow. Physical Review A, 41(8):4578{4581, apr 1990. | spa |
dc.relation.references | Harald Pleiner, Mario Liu, and Helmut R. Brand. Convective nonlinearities for the orientational tensor order parameter in polymeric systems. Rheologica Acta, 41(4):375-382, jan 2002. | spa |
dc.relation.references | F. M. Leslie. Some cinstitutive equations for anisotropic fluids. The Quarterly Journal of Mechanics and Applied Mathematics, 19(3):357-370, 1966. | spa |
dc.relation.references | J. L. Ericksen. Anisotropic fluids. Archive for Rational Mechanics and Analysis, 4(1):231-237, jan 1959. | spa |
dc.relation.references | O. Parodi. Stress tensor for a nematic liquid crystal. Journal de Physique, 31(7):581-584, 1970. | spa |
dc.relation.references | Julio C. Armas-Pérez, Juan P. Hernández-Ortiz, and Juan J. de Pablo. Liquid crystal free energy relaxation by a theoretically informed Monte Carlo method using a finite element quadrature approach. J. Chem. Phys., 143(24):243157, 2015. | spa |
dc.relation.references | Julio C. Armas-Pérez, Alejandro Londono-Hurtado, Orlando Guzmán, Juan P. Hernández-Ortiz, and Juan J. de Pablo. Theoretically informed Monte Carlo simulation of liquid crystals by sampling of alignment-tensor fields. J. Chem. Phys., 143(4):044107, 2015. | spa |
dc.relation.references | A. Sonnet, A. Kilian, and S. Hess. Alignment tensor versus director: Description of defects in nematic liquid crystals. Phys. Rev. E, 52:718-722, Jul 1995. | spa |
dc.relation.references | G. Rienacker, M. Kroger, and S. Hess. Chaotic and regular shear-induced orientational dynamics of nematic liquid crystals. Physica A: Statistical Mechanics and its Applications, 315(3-4):537{568, 2002. | spa |
dc.relation.references | Sandia National Laboratories. Cubit version 14.1, 2014. | spa |
dc.relation.references | B. S. Kirk, J. W. Peterson, R. H. Stogner, and G. F. Carey. libMesh: A C++ Library for Parallel Adaptive Mesh Re nement/Coarsening Simulations. Engineering with Computers, 22(3{4):237{254, 2006. | spa |
dc.relation.references | Norman Hairston. Optical patterning. Nature, 382(6593):666{666, August 1996. | spa |
dc.relation.references | George W. Gray and Stephen M. Kelly. Liquid crystals for twisted nematic display devices. J. Mater. Chem., 9(9):2037{2050, January 1999. | spa |
dc.relation.references | C C M uller-Goymann. Physicochemical characterization of colloidal drug delivery systems such as reverse micelles, vesicles, liquid crystals and nanoparticles for topical administration. Eur. J. Pharm. Biopharm., 58(2):343{56, September 2004. | spa |
dc.relation.references | Shan-Yang Lin, Chia-Jen Ho, and Mei-Jane Li. Precision and reproducibility of temperature response of a thermo-responsive membrane embedded by binary liquid crystals for drug delivery. J. Controlled Release, 73(2-3):293{301, June 2001. | spa |
dc.relation.references | D. A. Winterbottom, R. Narayanaswamy, and I. M. Raimundo. Cholesteric liquid crystals for detection of organic vapours. Sens. Actuators, B, 90(1-3):52{57, April 2003. | spa |
dc.relation.references | Yang Han, Katherine Pacheco, Cees W. M. Bastiaansen, Dirk J. Broer, and Rint P. Sijbesma. Optical monitoring of gases with cholesteric liquid crystals. J. Am. Chem. Soc., 132(9):2961-2967, 2010. | spa |
dc.relation.references | M. Hebert, R. Kant, and P. G. de Gennes. Dynamics and thermodynamics of arti ficial muscles based on nematic gels. J. Phys. I, (7):909{919, 1997. | spa |
dc.relation.references | S. Sergeyev, W. Pisula, and Y. H. Geerts. Discotic liquid crystals: a new generation of organic semiconductors. Chem. Soc. Rev., 36(12):1902{29, December 2007. | spa |
dc.relation.references | W. Pisula, M. Zorn, J. Y. Chang, K. M ullen, and R. Zentel. Liquid crystalline ordering and charge transport in semiconducting materials. Macromol. Rapid Commun., 30(14):1179-202, July 2009. | spa |
dc.relation.references | Takeaki Araki, Marco Buscaglia, Tommaso Bellini, and Hajime Tanaka. Memory and topological frustration in nematic liquid crystals con ned in porous materials. Nat. Mater., 10(4):303{309, 2011. | spa |
dc.relation.references | D. Demus, J.W. Goodby, G.W. Gray, H.W. Spiess, and V. Vill. Handbook of Liquid Crystals: Fundamentals, Volume 1. Wiley-VCH, Weinheim, Germany, 1998. | spa |
dc.relation.references | Alfred Saupe. On Molecular Structure and Physical Properties of Thermotropic Liquid Crystals. Molecular Crystals, 7(1):59{74, June 1969. | spa |
dc.relation.references | J P Hernández-Ortiz, B T Gettelfi nger, J A Moreno-Razo, and J J de Pablo. Modeling flows of confi ned nematic liquid crystals. J. Chem. Phys., 134(13):134905, 2011. | spa |
dc.relation.references | B.S. John and F.A. Escobedo. Phase behavior of colloidal hard tetragonal parallelepipeds (cuboids): a monte carlo simulation study. J. Phys. Chem. B, 109(48):23008-23015, dec 2005. | spa |
dc.relation.references | Jun ichi Fukuda, Holger Stark, Makoto Yoneya, and Hiroshi Yokoyama. Dynamics of a nematic liquid crystal around a spherical particle. J. Phys.: Condens. Matter, 16(19):S1957-S1968, apr 2004. | spa |
dc.relation.references | O. Guzmán, N. L. Abbott, and J. J. de Pablo. Quenched disorder in a liquid-crystal biosensor: Adsorbed nanoparticles at con ning walls. J. Chem. Phys., 122(18):184711, may 2005. | spa |
dc.relation.references | Rajesh K. Goyal and Morton M. Denn. Orientational multiplicity and transitions in liquid crystalline droplets. Phys. Rev. E, 75(2):021704, feb 2007. | spa |
dc.relation.references | Miha Ravnik and Slobodan Zumer. Landau-de gennes modelling of nematic liquid crystal colloids. Liq. Cryst., 36(10-11):1201-1214, oct 2009. | spa |
dc.relation.references | Francisco R. Hung. Quadrupolar particles in a nematic liquid crystal: Effects of particle size and shape. Phys. Rev. E, 79(2):021705, feb 2009. | spa |
dc.relation.references | V. Tomar, T. F. Roberts, N. L. Abbott, J. P. Hernández-Ortiz, and J. J. de Pablo. Liquid crystal mediated interactions between nanoparticles in a nematic phase. Langmuir, 28(14):6124{6131, 2012. | spa |
dc.relation.references | V. Tomar, S. I. Hernandez, N. L. Abbott, J. P. Hernández-Ortiz, and J. J. de Pablo. Morphological transitions in liquid crystal nanodroplets. Soft Matter, 8:8679{8689, 2012. | spa |
dc.relation.references | Alejandro Londono-Hurtado, Julio C. Armas-Pérez, Juan P. Hernandez-Ortiz, and Juan J. de Pablo. Homeotropic nano-particle assembly on degenerate planar nematic interfaces: fi lms and droplets. Soft Matter, 11:5067{5076, 2015. | spa |
dc.relation.references | J. A. Moreno-Razo, E. J. Sambriski, G. M. Koenig, E. Díaz-Herrera, N. L. Abbott, and J. J. de Pablo. Effects of anchoring strength on the difusivity of nanoparticles in model liquid-crystalline fluids. Soft Matter, 7(15):6828, 2011. | spa |
dc.relation.references | J. A. Moreno-Razo, E. J. Sambriski, N. L. Abbott, J. P. Hernández-Ortiz, and J. J. de Pablo. Liquid-crystal-mediated self-assembly at nanodroplet interfaces. Nature, 485(7396):86{89, may 2012. | spa |
dc.relation.references | S. I. Hernández, J. A. Moreno-Razo, A. Ramírez-Hernandez, E. Díaz-Herrera, J. P. Hernández-Ortiz, and J. J. de Pablo. Liquid crystal nanodroplets, and the balance between bulk and interfacial interactions. Soft Matter, 8(5):1443{1450, 2012. | spa |
dc.relation.references | Prabir K. Mukherjee and Josep Ll. Tamarit. Tricritical behavior of the nematic to smectic-a phase transition in the binary mixture of liquid crystal. J. Chem. Phys., 138(10):104906, mar 2013. | spa |
dc.relation.references | Abhijeet A. Joshi, Jonathan K. Whitmer, Orlando Guzmán, Nicholas L. Abbott, and Juan J. de Pablo. Measuring liquid crystal elastic constants with free energy perturbations. Soft Matter, 10(6):882{893, 2014. | spa |
dc.relation.references | Tillmann Stieger, Martin Schoen, and Marco G. Mazza. Effects of flow on topological defects in a nematic liquid crystal near a colloid. J. Chem. Phys., 140(5):054905, feb 2014. | spa |
dc.relation.references | Michele Invernizzi, Omar Valsson, and Michele Parrinello. Coarse graining from variationally enhanced sampling applied to the ginzburg{landau model. P. Natl. Acad. Sci. USA, 114(13):201618455, mar 2017. | spa |
dc.relation.references | Richard Alben. Phase transitions in a fluid of biaxial particles. Phys. Rev. Lett., 30(17):778{781, 1973. | spa |
dc.relation.references | M. J. Freiser. Ordered states of a nematic liquid. Phys. Rev. Lett., 24(2):1041-1043, 1970. | spa |
dc.relation.references | Bela Mulder. Isotropic-symmetry-breaking bifurcations in a class of liquid-crystal models. Phys. Rev. A, 39(1):360{370, jan 1989. | spa |
dc.relation.references | M.P. Taylor and J. Herzfeld. Nematic and smectic order in a fluid of biaxial hard particles. Phys. Rev. A, 44(6):3742{3751, sep 1991. | spa |
dc.relation.references | Stavros D. Peroukidis and Alexandros G. Vanakaras. Phase diagram of hard board-like colloids from computer simulations. Soft Matter, 9(31):7419, 2013. | spa |
dc.relation.references | B.R. Acharya, A. Primak, and S. Kumar. Biaxial nematic phase in bent-core thermotropic mesogens. Phys. Rev. Lett., 92(14), apr 2004. | spa |
dc.relation.references | L. A. Madsen, T. J. Dingemans, M. Nakata, and E. T. Samulski. Thermotropic biaxial nematic liquid crystals. Phys. Rev. Lett., 92(14), apr 2004. | spa |
dc.relation.references | A. G. Vanakaras, S. C. Mcgrother, G. Jackson, and D. J. Photinos. Hydrogenbonding and phase biaxiality in nematic rod-plate mixtures. Mol. Cryst. Liq. Cryst., 323(1):199-209, dec 1998. | spa |
dc.relation.references | A. G. Vanakaras, A. F. Terzis, and D. J. Photinos. On the molecular requirements for the stabilisation of thermotropic biaxial ordering in rod-plate nematics. Mol. Cryst. Liq. Cryst., 362(1):67{78, jun 2001. | spa |
dc.relation.references | E. F. Henriques and S. R. Salinas. Biaxial nematic phase in the maier-saupe model for a mixture of discs and cylinders. Eur. Phys. J. E, 35(2), feb 2012. | spa |
dc.relation.references | E. van den Pol, A. V. Petukhov, D. M. E. Thies-Weesie, D. V. Byelov, and G. J. Vroege. Experimental realization of biaxial liquid crystal phases in colloidal dispersions of boardlike particles. Phys. Rev. Let., 103(25), dec 2009. | spa |
dc.relation.references | E. van den Pol, D.M.E. Thies{Weesie, A.V. Petukhov, D.V. Byelov, and G.J. Vroege. Uniaxial and biaxial liquid crystal phases in colloidal dispersions of board-like particles. Liquid Crystals, 37(6-7):641{651, jul 2010. | spa |
dc.relation.references | S. Belli, A. Patti, M. Dijkstra, and R. van Roij. Polydispersity stabilizes biaxial nematic liquid crystals. Phys. Rev. Let., 107(14), sep 2011. | spa |
dc.relation.references | S. Dussi, N. Tasios, T. Drwenski, R. van Roij, and M. Dijkstra. Hard competition: Stabilizing the elusive biaxial nematic phase in suspensions of colloidal particles with extreme lengths. Phys. Rev. Let., 120(17), apr 2018. | spa |
dc.relation.references | A. Patti and A. Cuetos. Monte carlo simulation of binary mixtures of hard colloidal cuboids. Molecular Simulation, 44(6):516{522, nov 2018. | spa |
dc.relation.references | H. Mundoor, S. Park, B. Senyuk, H.H. Wensink, and I.I. Smalyukh. Hybrid molecularcolloidal liquid crystals. Science, 360(6390):768-771, may 2018. | spa |
dc.relation.references | A. Cuetos, M. Dennison, A. Masters, and A. Patti. Phase behaviour of hard board-like particles. Soft Matter, 13(27):4720{4732, 2017. | spa |
dc.relation.references | G R Luckhurst and Timothy J Sluckin. Biaxial Nematic Liquid Crystals. Theory, Simulation and Experiment. Wiley, Chichester, UK., 2015. | spa |
dc.relation.references | Ji Hoon Lee, Tong Kun Lim, Won Taeck Kim, and Jung Il Jin. Dynamics of electrooptical switching processes in surface stabilized biaxial nematic phase found in bentcore liquid crystal. J. Appl. Phys., 101(3):034105, 2007 | spa |
dc.relation.references | Roberto Berardi, Luca Muccioli, and Claudio Zannoni. Field response and switching times in biaxial nematics. J. Chem. Phys., 128(2):024905, 2008. | spa |
dc.relation.references | Yang Yang, Guangdong Chen, Srinivas Thanneeru, Jie He, Kun Liu, and Zhihong Nie. Synthesis and assembly of colloidal cuboids with tunable shape biaxiality. Nature Communications, 9(1), oct 2018. | spa |
dc.relation.references | Jan Thoen, George Cordoyiannis, and Christ Glorieux. Investigations of phase transitions in liquid crystals by means of adiabatic scanning calorimetry. Liq. Cryst., 36(6-7):669{684, 2009. | spa |
dc.relation.references | Germano S. Iannacchione and Daniele Finotello. Speci c heat dependence on orientational order at cylindrically confi ned liquid crystal phase transitions. Phys. Rev. E, 50:4780{4795, Dec 1994. | spa |
dc.relation.references | B. Van Roie, J. Leys, K. Denolf, C. Glorieux, G. Pitsi, and J. Thoen. Weakly first-order character of the nematic-isotropic phase transition in liquid crystals. Phys. Rev. E, 72:041702, 2005. | spa |
dc.relation.references | M. A. Anisimov, V. M. Zaprudskii, V. M. Mamnitskii, and E. L. Sorkin. Tricritical behavior of nematic crystals near the transition to an isotropic liquid. JETP, 30:491, October 1979. | spa |
dc.relation.references | Roger Chang. Pretransition and critical phenomena in the nematic phase of mbba. Solid State Commun., 14(5):403 { 406, 1974. | spa |
dc.relation.references | Nababrata Ghoshal, Sabana Shabnam, Sudeshna Dasgupta, and Soumen Kumar Roy. Monte Carlo investigation of critical properties of the Landau point of a biaxial liquid-crystal system. Phys. Rev. E, 93(5):052701, may 2016. | spa |
dc.relation.references | P. A. Lebwohl and G. Lasher. Nematic-liquid-crystal order - a monte carlo calculation. Phys. Rev. A, 6:426{429, Jul 1972. | spa |
dc.relation.references | O. Guzman, E. B. Kim, S. Grollau, N. L. Abbott, and J. J. de Pablo. Defect structure around two colloids in a liquid crystal. Phys. Rev. Lett., 91:235507, Dec 2003. | spa |
dc.relation.references | P. Kaiser, W. Wiese, and S. Hess. Stability and Instability of an Uniaxial Alignment Against Biaxial Distortions in the Isotropic and Nematic Phases of Liquid Crystals. J. Non-Equilib. Thermodyn., 17(2):153{170, 1992. | spa |
dc.relation.references | A. K. Bhattacharjee, Gautam I. Menon, and R. Adhikari. Numerical method of lines for the relaxational dynamics of nematic liquid crystals. Phys. Rev. E, 78:026707, Aug 2008. | spa |
dc.relation.references | T. W. Stinson and J. D. Litster. Pretransitional phenomena in the isotropic phase of a nematic liquid crystal. Phys. Rev. Lett., 25:503-506, Aug 1970. | spa |
dc.relation.references | Michael E. Fisher and Arthur E. Ferdinand. Interfacial, boundary, and size effects at critical points. Phys. Rev. Lett., 19:169{172, Jul 1967. | spa |
dc.relation.references | M.J. Bradshaw, E.P. Raynes, J.D. Bunning, and T.E. Faber. The frank constants of some nematic liquid crystals. J. Phys., 46(9):1513{1520, 1985. | spa |
dc.relation.references | S.W. Morris, P. Pal y-muhoray, and D. A. Balzarini. Measurements of the bend and splay elastic constants of octyl-cyanobiphenyl. Mol. Cryst. Liq. Cryst., 139(3-4):263-280, sep 1986. | spa |
dc.relation.references | A. Bogi and S. Faetti. Elastic, dielectric and optical constants of 4'-pentyl-4-cyanobiphenyl. Liq. Cryst., 28(5):729{739, may 2001. | spa |
dc.relation.references | A. V. Zakharov, M. N. Tsvetkova, and V. G. Korsakov. Elastic properties of liquid crystals. Phys. Solid State, 44(9):1795{1801, sep 2002. | spa |
dc.relation.references | P. Sathyanarayana, B. K. Sadashiva, and Surajit Dhara. Splay-bend elasticity and rotational viscosity of liquid crystal mixtures of rod-like and bent-core molecules. Soft Matter, 7(18):8556, 2011. | spa |
dc.relation.references | C. Rosenblatt. Temperature dependence of the anchoring strength coefficient at a nematic liquid crystal-wall interface. J. Phys., 45(6):1087-1091, 1984. | spa |
dc.relation.references | H. Yokoyama, S. Kobayashi, and H. Kamei. Temperature dependence of the anchoring strength at a nematic liquid crystal-evaporated SiO interface. J. Appl. Phys., 61(9):4501{4518, may 1987. | spa |
dc.relation.references | Dai-Shik Seo, Yasufumi Iimura, and Shunsuke Kobayashi. Temperature dependence of the polar anchoring strength of weakly rubbed polyimide fi lms for the nematic liquid crystal (5cb). Appl. Phys. Lett., 61(2):234{236, jul 1992. | spa |
dc.relation.references | V. A. Gunyakov, A. M. Parshin, and V. F. Shabanov. Temperature dependence of the effective anchoring energy for a nematic-ferroelectric interface. Eur. Phys. J. E, 20(4):467{473, aug 2006. | spa |
dc.relation.references | M.A. Xenos. An euler-lagrange approach for studying blood flow in an aneurysmal geometry. Proc. R. Soc. A, 473(2199), 2017. | spa |
dc.relation.references | Sungrim Seirin-Lee. Role of domain in pattern formation. Develop. Growth Differ., 59(5):396{404, 2017. | spa |
dc.relation.references | G.R. Lazaro, I. Pagonabarraga, and A. Hernandez-Machado. Phase- field theories for mathematical modeling of biological membranes. Chem. Phys. Lipids, 185:46 60, 2015. | spa |
dc.relation.references | P. Constantin. An eulerian-lagrangian approach to the navier stokes equations. Commun. Math. Phys., 216(3):663{686, Feb 2001. | spa |
dc.relation.references | S. Friedlander and D. Serre, editors. Handbook of Mathematical Fluid Dynamics, volume 2 of Handbook of Mathematical Fluid Dynamics. North-Holland, 2003. | spa |
dc.relation.references | J. M. Ball. Minimizers and the euler-lagrange equations. In Philippe G. Ciarlet and Maurice Roseau, editors, Trends and Applications of Pure Mathematics to Mechanics, pages 1{4, Berlin, Heidelberg, 1984. Springer Berlin Heidelberg. | spa |
dc.relation.references | H. Hardy. Euler-lagrange elasticity with dynamics. Journal of Applied Mathematics and Physics, 2:1183{1189, 2014. | spa |
dc.relation.references | Igor Musevic and Miha Skarabot. Self-assembly of nematic colloids. Soft Matter, 4(2):195{199, 2008. | spa |
dc.relation.references | O. Mondain-Monval, J.C. Dedieu, T. Gulik-Krzywicki, and P. Poulin. Weak surface energy in nematic dispersions: Saturn ring defects and quadrupolar interactions. The European Physical Journal B - Condensed Matter and Complex Systems, 12(2):167{ 170, 1999. | spa |
dc.relation.references | Gary M. Koenig, Juan J. de Pablo, and Nicholas L. Abbott. Characterization of the reversible interaction of pairs of nanoparticles dispersed in nematic liquid crystals. Langmuir, 25(23):13318{13321, December 2009. | spa |
dc.relation.references | Francisco R. Hung, Orlando Guzm an, Brian T. Gettel nger, Nicholas L. Abbott, and Juan J. de Pablo. Anisotropic nanoparticles immersed in a nematic liquid crystal: Defect structures and potentials of mean force. Physical Review E, 74(1):011711, July 2006. | spa |
dc.relation.references | Kenji Takahashi, Masatoshi Ichikawa, and Yasuyuki Kimura. Force between colloidal particles in a nematic liquid crystal studied by optical tweezers. Physical Review E, 77(2):020703, February 2008. | spa |
dc.relation.references | YiweiWang, Pingwen Zhang, and Je Z. Y. Chen. Topological defects in an unconfi ned nematic fluid induced by single and double spherical colloidal particles. Physical Review E, 96(4):042702, October 2017. | spa |
dc.relation.references | Setarehalsadat Changizrezaei and Colin Denniston. Heterogeneous colloidal particles immersed in a liquid crystal. Physical Review E, 95(5):052703, May 2017. | spa |
dc.relation.references | Makoto Yada, Jun Yamamoto, and Hiroshi Yokoyama. Direct observation of anisotropic interparticle forces in nematic colloids with optical tweezers. Physical Review Letters, 92(18):185501, May 2004. | spa |
dc.relation.references | Xiao Li, Julio C. Armas-Perez, Juan P. Hernandez-Ortiz, Christopher G. Arges, Xiaoying Liu, Jose A. Martinez-Gonzaalez, Leonidas E. Ocola, Camille Bishop, Helou Xie, Juan J. de Pablo, and Paul F. Nealey. Directed self-assembly of colloidal particles onto nematic liquid crystalline defects engineered by chemically patterned surfaces. ACS Nano, 11(6):6492{6501, June 2017. | spa |
dc.relation.references | Alejandro Londono-Hurtado, Julio C. Armas-Perez, Juan P. Hernandez-Ortiz, and Juan J. de Pablo. Homeotropic nano-particle assembly on degenerate planar nematic interfaces: lms and droplets. Soft Matter, 11(25):5067{5076, 2015. | spa |
dc.relation.references | C. M. No el, G. Bossis, A.-M. Chaze, F. Giulieri, and S. Lacis. Measurement of elastic forces between iron colloidal particles in a nematic liquid crystal. Physical Review Letters, 96(21):217801, June 2006. | spa |
dc.relation.references | Igor Musevic. Nematic liquid-crystal colloids. Materials, 11(1):24, December 2018. | spa |
dc.relation.references | Sharon C Glotzer and Michael J Solomon. Anisotropy of building blocks and their assembly into complex structures. Nature Materials, 6(7):557{562, 2007. | spa |
dc.relation.references | Stefano Sacanna and David J. Pine. Shape-anisotropic colloids: Building blocks for complex assemblies. Current Opinion in Colloid and Interface Science, 16(2):96{105, 2011. | spa |
dc.relation.references | Hanumantha Rao Vutukuri, Arnout Imhof, and Alfons Van Blaaderen. Fabrication of polyhedral particles from spherical colloids and their self-assembly into rotator phases. Angewandte Chemie - International Edition, 53(50):13830{13834, 2014. | spa |
dc.relation.references | Kyung Jin Lee, Jaewon Yoon, and Joerg Lahann. Recent advances with anisotropic particles. Current Opinion in Colloid and Interface Science, 16(3):195{202, 2011. | spa |
dc.relation.references | Stefano Sacanna, Mark Korpics, Kelvin Rodriguez, Laura Col on-Melendez, Seung-Hyun Kim, David J. Pine, and Gi-Ra Yi. Shaping colloids for self-assembly. Nature Communications, 4:1688, April 2013. | spa |
dc.relation.references | Hsin-Lun Wu, Chun-Hong Kuo, and Michael H. Huang. Seed-mediated synthesis of gold nanocrystals with systematic shape evolution from cubic to trisoctahedral and rhombic dodecahedral structures. Langmuir, 26(14):12307{12313, 2010. PMID: 20557088. | spa |
dc.relation.references | Miharu Eguchi, Daisuke Mitsui, Hsin-Lun Wu, Ryota Sato, and Toshiharu Teranishi. Simple reductant concentration-dependent shape control of polyhedral gold nanoparticles and their plasmonic properties. Langmuir, 28(24):9021{9026, 2012. PMID: 22404172. | spa |
dc.relation.references | Anke Kuijk, Alfons van Blaaderen, and Arnout Imhof. Synthesis of monodisperse, rodlike silica colloids with tunable aspect ratio. Journal of the American Chemical Society, 133(8):2346{2349, 2011. PMID: 21250633. | spa |
dc.relation.references | Eric C. Greyson, Jeremy E. Barton, and Teri W. Odom. Tetrahedral zinc blende tin sul de nano- and microcrystals. Small, 2(3):368{371, 2006. | spa |
dc.relation.references | Joel Henzie, Michael Gr unwald, Asaph Widmer-Cooper, Phillip L. Geissler, and Peidong Yang. Self-assembly of uniform polyhedral silver nanocrystals into densest packings and exotic superlattices. Nature Materials, 11(2):131{137, 2011. | spa |
dc.relation.references | N. Zhao and L. Qi. Low-temperature synthesis of star-shaped pbs nanocrystals in aqueous solutions of mixed cationic/anionic surfactants. Advanced Materials, 18(3):359{362, 2006. | spa |
dc.relation.references | Teng Huang, Qiang Zhao, Junyan Xiao, and Limin Qi. Controllable self-assembly of pbs nanostars into ordered structures: Close-packed arrays and patterned arrays. ACS Nano, 4(8):4707{4716, 2010. | spa |
dc.relation.references | Marcus C. Newton and Paul A. Warburton. Zno tetrapod nanocrystals. Materials Today, 10(5):50{54, 2007. | spa |
dc.relation.references | Rosaria Brescia, Karol Miszta, Dirk Dorfs, Liberato Manna, and Giovanni Bertoni. Birth and growth of octapod-shaped colloidal nanocrystals studied by electron tomography. The Journal of Physical Chemistry C, 115(41):20128{20133, 2011. | spa |
dc.relation.references | K Miszta, J de Graaf, G Bertoni, D Dorfs, R Brescia, S Marras, L Ceseracciu, R Cingolani, R van Roij, M Dijkstra, and L Manna. Hierarchical self-assembly of suspended branched colloidal nanocrystals into superlattice structures. Nature Materials, 10(11):872{876, 2011. | spa |
dc.relation.references | Ward van der Stam, Anjan P. Gantapara, Quinten A. Akkerman, Giuseppe Soligno, Johannes D. Meeldijk, Ren e van Roij, Marjolein Dijkstra, and Celso de Mello Donega. Self-assembly of colloidal hexagonal bipyramid- and bifrustum-shaped ZnS nanocrystals into two-dimensional superstructures. Nano Letters, 14(2):1032{1037, January 2014. | spa |
dc.relation.references | Laura Rossi, Vishal Soni, Douglas J. Ashton, David J. Pine, Albert P. Philipse, Paul M. Chaikin, Marjolein Dijkstra, Stefano Sacanna, and William T. M. Irvine. Shapesensitive crystallization in colloidal superball fluids. Proceedings of the National Academy of Sciences, 112(17):5286{5290, April 2015. | spa |
dc.relation.references | Yugang Zhang, Fang Lu, Daniel van der Lelie, and Oleg Gang. Continuous phase transformation in nanocube assemblies. Phys. Rev. Lett., 107:135701, September 2011. | spa |
dc.relation.references | Y. Jiao, F. H. Stillinger, and S. Torquato. Optimal packings of superballs. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 79(4):1{12, 2009. | spa |
dc.relation.references | Pablo F. Damasceno, Michael Engel, and Sharon C. Glotzer. Crystalline assemblies and densest packings of a family of truncated tetrahedra and the role of directional entropic forces. ACS Nano, 6(1):609{614, 2012. | spa |
dc.relation.references | Robert D. Batten, Frank H. Stillinger, and Salvatore Torquato. Phase behavior of colloidal superballs: Shape interpolation from spheres to cubes. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 81(6):1{13, 2010 | spa |
dc.relation.references | Ran Ni, Anjan Prasad Gantapara, Joost de Graaf, Rene van Roij, and Marjolein Dijkstra. Phase diagram of colloidal hard superballs: from cubes via spheres to octahedra. Soft Matter, 8(34):8826, 2012. | spa |
dc.relation.references | Marjolein Dijkstra. Entropy-Driven Phase Transitions in Colloids: From spheres to anisotropic particles. Advances in Chemical Physics, 156:35{71, 2014. | spa |
dc.relation.references | Chrisy Xiyu Du, Greg van Anders, Richmond S. Newman, and Sharon C. Glotzer. Shape-driven solid{solid transitions in colloids. Proceedings of the National Academy of Sciences, 114(20):E3892{E3899, May 2017. | spa |
dc.relation.references | D Zerrouki, J Baudry, D Pine, P Chaikin, and J Bibette. Chiral colloidal clusters. Nature, 455(7211):380{2, 2008. | spa |
dc.relation.references | Janne-Mieke Meijer, Antara Pal, Samia Ouhajji, Henk N. W. Lekkerkerker, Albert P. Philipse, and Andrei V. Petukhov. Observation of solid{solid transitions in 3d crystals of colloidal superballs. Nature Communications, 8:14352, February 2017. | spa |
dc.relation.references | Tadao Sugimoto, Mohammad M. Khan, and Atsushi Muramatsu. Preparation of monodisperse peanut-type -fe2o3 particles from condensed ferric hydroxide gel. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 70(2):167{169, March 1993. | spa |
dc.relation.references | Laura Rossi, Stefano Sacanna, William T. M. Irvine, Paul M. Chaikin, David J. Pine, and Albert P. Philipse. Cubic crystals from cubic colloids. Soft Matter, 7(9):4139{4142, 2011. | spa |
dc.relation.references | P. de Gennes and J. Prost. The Physics of Liquid Crystals. Oxford University Press, Oxford, 1995. | spa |
dc.relation.references | Viviana Palacio-Betancur, Julio C. Armas-Perez, Stiven Villada-Gil, Nicholas L. Abbott, Juan P. Hernandez-Ortiz, and Juan J. de Pablo. Cuboidal liquid crystal phases under multiaxial geometrical frustration. Soft Matter, 16(4):870{880, 2020. | spa |
dc.relation.references | B. S. Kirk, J. W. Peterson, R. H. Stogner, and G. F. Carey. libMesh: A C++ Library for Parallel Adaptive Mesh Re nement/Coarsening Simulations. Engineering with Computers, 22(3{4):237{254, 2006. https://doi.org/10.1007/s00366-006-0049-3. | spa |
dc.relation.references | Daniel A. Beller, Mohamed Amine Gharbi, and Iris Liu. Shape-controlled orientation and assembly of colloids with sharp edges in nematic liquid crystals. Soft Matter, 11:1078{1086, 2015. | spa |
dc.relation.references | Devika Venkuzhy Sudhakaran, Ravi Kumar Pujala, and Surajit Dhara. Orientation dependent interaction and self-assembly of cubic magnetic colloids in a nematic liquid crystal. Advanced Optical Materials, page 1901585, January 2020. | spa |
dc.relation.references | Chad A. Mirkin, Robert L. Letsinger, Robert C. Mucic, and James J. Storho. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature, 382(6592):607{609, aug 1996. | spa |
dc.relation.references | Zhe Gong, Theodore Hueckel, Gi-Ra Yi, and Stefano Sacanna. Patchy particles made by colloidal fusion. Nature, 550(7675):234{238, September 2017. | spa |
dc.relation.references | Zhuoqiang Jia, Stefano Sacanna, and Stephanie S. Lee. Dielectrophoretic assembly of dimpled colloids into open packing structures. Soft Matter, 13(34):5724{5730, 2017. | spa |
dc.relation.references | Jae-Hyun Kim, Hye Jeong Hwang, Joon Suk Oh, Stefano Sacanna, and Gi-Ra Yi. Monodisperse magnetic silica hexapods. Journal of the American Chemical Society, 140(29):9230{9235, June 2018. | spa |
dc.relation.references | Arthur V Straube, Josep M Pages, Antonio Ortiz-Ambriz, Pietro Tierno, Jordi Ignes- Mullol, and Francesc Sagues. Assembly and transport of nematic colloidal swarms above photo-patterned defects and surfaces. New Journal of Physics, 20(7):075006, July 2018. | spa |
dc.relation.references | Bryce S. Murray, Robert A. Pelcovits, and Charles Rosenblatt. Creating arbitrary arrays of two-dimensional topological defects. Physical Review E, 90(5):052501, November 2014. | spa |
dc.relation.references | A. Nych, U. Ognysta, M. Skarabot, M. Ravnik, S. Zumer, and I. Musevic. Assembly and control of 3d nematic dipolar colloidal crystals. Nature Communications, 4(1):1489, February 2013 | spa |
dc.relation.references | Xiangbing Zeng, Feng Liu, Alan G. Fowler, Goran Ungar, Liliana Cseh, Georg H. Mehl, and J. Emyr Macdonald. 3d ordered gold strings by coating nanoparticles with mesogens. Advanced Materials, 21(17):1746{1750, May 2009. | spa |
dc.relation.references | Bohdan Senyuk, Jure Aplinc, Miha Ravnik, and Ivan I. Smalyukh. High-order elastic multipoles as colloidal atoms. Nature Communications, 10(1), April 2019. | spa |
dc.relation.references | Yimin Luo, Daniel A. Beller, Giuseppe Boniello, Francesca Serra, and Kathleen J. Stebe. Tunable colloid trajectories in nematic liquid crystals near wavy walls. Nature Communications, 9(1), September 2018. | spa |
dc.relation.references | Anupam Sengupta, Uros Tkalec, Miha Ravnik, Julia M. Yeomans, Christian Bahr, and Stephan Herminghaus. Liquid crystal micro fluidics for tunable flow shaping. Physical Review Letters, 110(4), January 2013. | spa |
dc.relation.references | Anupam Sengupta, Stephan Herminghaus, and Christian Bahr. Liquid crystal micro fluidics: surface, elastic and viscous interactions at microscales. Liquid Crystals Reviews, 2(2):73{110, July 2014 | spa |
dc.relation.references | T.G. Anderson, E. Mema, L. Kondic, and L.J. Cummings. Transitions in poiseuille flow of nematic liquid crystal. International Journal of Non-Linear Mechanics, 75:15{21, October 2015. | spa |
dc.relation.references | T. Dadalyan, K. Petrosyan, R. Alaverdyan, and R. Hakobyan. Light-induced hydrodynamic reorientation of hybrid aligned nematic liquid crystals caused by direct volume expansion. Liquid Crystals, 46(5):694{699, sep 2018. | spa |
dc.relation.references | Ziga Kos and Miha Ravnik. Field generated nematic micro ows via back flow mechanism. Scienti c Reports, 10(1), jan 2020. | spa |
dc.relation.references | Jeffrey L. Billeter and Robert A. Pelcovits. Defect confi gurations and dynamical behavior in a gay-berne nematic emulsion. Physical Review E, 62(1):711{717, July 2000. | spa |
dc.relation.references | Makoto Yoneya, Jun-Ichi Fukuda, Hiroshi Yokoyama, and Holger Stark. Effect of a hydrodynamic flow on the orientation pro les of a nematic liquid crystal around a spherical particle. Molecular Crystals and Liquid Crystals, 435(1):75735{85745, June 2005. | spa |
dc.relation.references | Takeaki Araki and Hajime Tanaka. Surface-sensitive particle selection by driving particles in a nematic solvent. Journal of Physics: Condensed Matter, 18(15):193{203, March 2006. | spa |
dc.relation.references | C. Zhou, P. Yue, and J. J. Feng. The rise of newtonian drops in a nematic liquid crystal. Journal of Fluid Mechanics, 593:385{404, November 2007. | spa |
dc.relation.references | Siddharth Khullar, Chunfeng Zhou, and James J. Feng. Dynamic evolution of topological defects around drops and bubbles rising in a nematic liquid crystal. Physical Review Letters, 99(23):237802, December 2007. | spa |
dc.relation.references | H. Stark and D. Ventzki. Non-linear stokes drag of spherical particles in a nematic solvent. Europhysics Letters, 57(1):60{66, January 2002. | spa |
dc.relation.references | Denisse Reyes-Arango, Jacqueline Quintana-H., Julio C. Armas-Perez, and Humberto Hijar. Defects around nanocolloids in nematic solvents simulated by multi-particle collision dynamics. Physica A: Statistical Mechanics and its Applications, page 123862, dec 2019. | spa |
dc.relation.references | Ye Zhou, Bohdan Senyuk, Rui Zhang, Ivan I. Smalyukh, and Juan J. de Pablo. Degenerate conic anchoring and colloidal elastic dipole-hexadecapole transformations. Nature Communications, 10(1), mar 2019. | spa |
dc.relation.references | Anupam Sengupta, Christian Bahr, and Stephan Herminghaus. Topological micro fluidics for flexible micro-cargo concepts. Soft Matter, 9(30):7251, 2013. | spa |
dc.relation.references | Fanghua Lin and Changyou Wang. Recent developments of analysis for hydrodynamic flow of nematic liquid crystals. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 372(2029):20130361, November 2014. | spa |
dc.relation.references | Shubhadeep Mandal and Marco G. Mazza. Multiparticle collision dynamics for tensorial nematodynamics. Physical Review E, 99(6), June 2019. | spa |
dc.relation.references | Sourav Mondal, Apala Majumdar, and Ian M. Griths. Nematohydrodynamics for colloidal self-assembly and transport phenomena. Journal of Colloid and Interface Science, 528:431{442, October 2018. | spa |
dc.relation.references | Benjamin S. Kirk, John W. Peterson, Roy H. Stogner, and Graham F. Carey. libMesh: a C++ library for parallel adaptive mesh re finement/coarsening simulations. Engineering with Computers, 22(3-4):237{254, November 2006. | spa |
dc.relation.references | James W. Demmel, John R. Gilbert, and Xiaoye S. Li. An asynchronous parallel supernodal algorithm for sparse gaussian elimination. SIAM Journal on Matrix Analysis and Applications, 20(4):915{952, January 1999. | spa |
dc.relation.references | James W. Demmel, Stanley C. Eisenstat, John R. Gilbert, Xiaoye S. Li, and Joseph W. H. Liu. A supernodal approach to sparse partial pivoting. SIAM Journal on Matrix Analysis and Applications, 20(3):720{755, January 1999. | spa |
dc.relation.references | Xiaoye S. Li and Meiyue Shao. A supernodal approach to incomplete LU factorization with partial pivoting. ACM Transactions on Mathematical Software, 37(4):1-20, February 2011. | spa |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.spa | Acceso abierto | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 530 - Física | spa |
dc.subject.ddc | 600 - Tecnología (Ciencias aplicadas) | spa |
dc.subject.proposal | Cristales líquidos nemáticos | spa |
dc.subject.proposal | Mematic liquid crystals | eng |
dc.subject.proposal | Fluidos complejos | spa |
dc.subject.proposal | Complex fluids | eng |
dc.subject.proposal | Defectos topológicos | spa |
dc.subject.proposal | Topological defects | eng |
dc.subject.proposal | Método de los elementos finitos | spa |
dc.subject.proposal | Finite element method | eng |
dc.subject.proposal | Método Monte Carlo | spa |
dc.subject.proposal | Monte Carlo method | eng |
dc.title | Dynamics of confined liquid crystals | spa |
dc.title.alternative | Dinámica de cristales líquidos confinados | spa |
dc.type | Trabajo de grado - Doctorado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 81040922020.pdf
- Tamaño:
- 16.39 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Doctorado en Ingeniería - Ciencia y Tecnología de Materiales
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 3.87 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: