Evaluación cuantitativa de la producción de sedimentos por aportes de laderas al río Magdalena en el tramo Honda-Barrancabermeja y su conectividad sedimentológica
dc.contributor.advisor | Posada Garcia, Lilian | |
dc.contributor.advisor | Ochoa, Juan Felipe | |
dc.contributor.author | Diaz Urueña, Wilson Arbey | |
dc.contributor.orcid | Posada García, Lilian [0000-0002-5504-2203] | |
dc.contributor.orcid | Ochoa, Juan Felipe [0009-0009-5595-3371] | |
dc.coverage.temporal | Magdalena (Rio, Colombia) | |
dc.date.accessioned | 2025-08-29T13:24:40Z | |
dc.date.available | 2025-08-29T13:24:40Z | |
dc.date.issued | 2025-08-28 | |
dc.description | Ilustraciones, gráficos, mapas | spa |
dc.description.abstract | Para cuantificar la producción de sedimentos en laderas en el tramo Honda – Barrancabermeja se analizaron 57 cuencas hidrográficas, integrando herramientas de modelación espacial como InVEST, la Ecuación Universal de Pérdida de Suelo Revisada (RUSLE) e Índice de Conectividad (IC). El estudio combinó datos de sensores remotos y análisis hidrometeorológicos para estimar la producción de sedimentos e identificar espacialmente zonas críticas de aporte. Entre las cuencas analizadas, el río Negro presentó el mayor aporte de sedimentos con aproximadamente 6424.43 Kton/año. Se identificó también el importante papel de los cinco embalses (La Miel. Guatapé, San Lorenzo, Las Playas y Punchina) presentes en la zona como sumideros de sedimentos, con eficiencias de atrapamiento que varían entre 54.42% y 93.04 %, reteniendo aproximadamente 1773.63 Kton/año en conjunto. El análisis incluyó la erosión de banca como componente adicional, estimándose una contribución de 930.22 Kton/año correspondiente al 5.1% de la contribución relativa del área de estudio, revelando la importancia de considerar los procesos internos del cauce como fuente relevante de sedimentos. El balance de masa mostró coherencia entre los aportes modelados y los datos observados de las series de transporte, con un margen de error del 6.83 %, atribuible principalmente a procesos no modelados como acumulación en zonas de baja energía, sedimentación temporal en barras y dinámica interna del lecho. A manera regional, el área de estudio presenta un índice de conectividad predominantemente bajo, con un valor modal distribuido en los pixeles de -5.43. Esto indica que, aunque existe importante generación potencial de sedimentos, su transferencia hacia el cauce está fuertemente modulada por la estructura del paisaje. (Tomado de la fuente) | spa |
dc.description.abstract | Sediment production on hillslopes along the Honda–Barrancabermeja corridor was quantified for 57 drainage basins by integrating advanced spatial-modelling tools—InVEST, the Revised Universal Soil Loss Equation (RUSLE) and a Sediment Connectivity Index (IC). Remote-sensing products were merged with hydrometeorological analyses to derive sediment yields and to map critical source zones. Among the basins assessed, the Negro River contributed the largest load, approximately 6424.43 Kton/year. The five reservoirs in the reach (La Miel, Guatapé, San Lorenzo, Las Playas and Punchiná) act as major sediment sinks, with trapping efficiencies ranging from 54.42% to 93.04% and a combined retention of roughly 1773.63 Kton/year. Bank erosion, incorporated as an additional term, was estimated at 930.22 Kton/year (aprox 5.1% of the total input), highlighting the significance of in-channel processes as sediment sources. A sediment-mass balance revealed close agreement between modelled inputs and observed transport series, with a 6.83% discrepancy primarily linked to unmodelled phenomena such as deposition in low-energy reaches, temporary bar storage and bed-form dynamics. Regionally, the study area exhibits predominantly low sediment connectivity (modal IC value –5.43 per pixel), indicating that, although potential sediment generation is substantial, its transfer to the channel network is strongly controlled by landscape structure. | eng |
dc.description.curriculararea | Medio Ambiente.Sede Medellín | |
dc.description.degreelevel | Maestría | |
dc.description.degreename | Magíster en Ingeniería - Recursos Hidráulicos | |
dc.description.researcharea | Producción y Transporte de Sedimentos | |
dc.format.extent | 81 páginas | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88507 | |
dc.language.iso | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | |
dc.publisher.faculty | Facultad de Minas | |
dc.publisher.place | Medellín, Colombia | |
dc.publisher.program | Medellín - Minas - Maestría en Ingeniería - Recursos Hidráulicos | |
dc.relation.indexed | LaReferencia | |
dc.relation.references | Allen, R. G.; Jensen, M. E.; Wright, J. L. & Burman, R. D.: , 1989; Operational estimates of reference evapotranspiration; Agronomy journal; 81 (4): 650-662. | |
dc.relation.references | Almagro, M.; López, J.; Querejeta, J. I. & Martínez-Mena, M.: , 2019; Soil structural stability controls the degree of soil erosion response to vegetation removal in mediterranean shrubland ecosystems; Journal of Soil and Water Conservation; 74 (1): 15--24; doi:10.2489/jswc.74.1.15. | |
dc.relation.references | Angarita, H.; Wickel, A. J.; Sieber, J.; Chavarro, J.; Maldonado-Ocampo, J. A.; Herrera-R, G. A.; Delgado, J. & Purkey, D.: , 2018; Basin-scale impacts of hydropower development on the mompós depression wetlands, colombia; Hydrology and Earth System Sciences; 22 (5): 2839--2865. | |
dc.relation.references | Anjinho, P. d. S.; Barbosa, M. A. G. A. & Mauad, F. F.: , 2022; Evaluation of invest’s water ecosystem service models in a brazilian subtropical basin; Water; 14 (10): 1559; doi:10.3390/w14101559. | |
dc.relation.references | Arnold, J. G.; Srinivasan, R.; Muttiah, R. S. & Williams, J. R.: , 1998; Large area hydrologic modeling and assessment part i: model development 1; JAWRA Journal of the American Water Resources Association; 34 (1): 73--89. | |
dc.relation.references | Baartman, J. E.; Masselink, R.; Keesstra, S. D. & Temme, A. J.: , 2013; Linking landscape morphological complexity and sediment connectivity; Earth Surface Processes and Landforms; 38 (12): 1457--1471. | |
dc.relation.references | Borrelli, P.; Robinson, D. A.; Fleischer, L. R.; Lugato, E.; Ballabio, C.; Alewell, C.; Meusburger, K.; Modugno, S.; Schütt, B.; Ferro, V. et al.: , 2020; Land use and climate change impacts on global soil erosion by water (2015-2070); Proceedings of the National Academy of Sciences; 117: 21994--22001. | |
dc.relation.references | Borselli, L.; Cassi, P. & Torri, D.: , 2008; Prolegomena to sediment and flow connectivity in the landscape: A gis and field numerical assessment; Catena; 75 (3): 268--277. | |
dc.relation.references | Boyce, R. C.: , 1975; With sediment-delivery ratios; ARS-S.; 40 (40-49): 61. | |
dc.relation.references | Bracken, L. J. & Croke, J.: , 2007; The concept of hydrological connectivity and its contribution to understanding runoff-dominated geomorphic systems; Hydrological Processes: An International Journal; 21 (13): 1749--1763. | |
dc.relation.references | Brierley, G.; Fryirs, K. & Jain, V.: , 2006; Landscape connectivity: the geographic basis of geomorphic applications; Area; 38 (2): 165--174. | |
dc.relation.references | Cavalli, M.; Trevisani, S.; Comiti, F. & Marchi, L.: , 2013; Geomorphometric assessment of spatial sediment connectivity in small alpine catchments; Geomorphology; 188: 31--41. | |
dc.relation.references | Corporación Autónoma Regional del Río Magdalena (CORMAGDALENA): , 2019; Informe anual de caudales y eventos extremos en el río magdalena; Informe técnico; CORMAGDALENA. | |
dc.relation.references | De Baets, S.; Poesen, J.; Knapen, A.; Barberá, G. G. & Navarro, J. A.: , 2007; Root characteristics of representative mediterranean plant species and their erosion-reducing potential during concentrated runoff; Plant and Soil; 294: 169--183. | |
dc.relation.references | De Castro Korgi, R.: , 2010; El Universo LaTeX; Universidad Nacional de Colombia, Bogota DC; 2a edición; ISBN 958701060-4. | |
dc.relation.references | Dendy, F.: , 1974; Sediment trap efficiency of small reservoirs; Transactions of the ASAE; 17 (5): 898--0901. | |
dc.relation.references | Deng, X.; Wu, F. & Li, Z.: , 2019; Impact of land use on sediment export in the qiantang river basin, china; Science of the Total Environment; 655: 1329--1342; doi:10.1016/j.scitotenv.2018.10.462. | |
dc.relation.references | Desmet, P. J. & Govers, G.: , 1996; A gis procedure for automatically calculating the usle ls factor on topographically complex landscape units; Journal of soil and water conservation; 51 (5): 427--433. | |
dc.relation.references | Dutta, S. & Sen, D.: , 2018; Application of swat model for predicting soil erosion and sediment yield; Sustainable Water Resources Management; 4: 447--468. | |
dc.relation.references | Díaz Urueña, W. A.; Ochoa, J. F.; Perpiñán Guerra, A. A. & Posada García, L.: , 2024; Análisis cuantitativo de la producción de sedimentos por aportes de laderas al embalse hidroituango; en Memorias del IV Congreso Internacional de Sedimentos y Erosión (CISE); CISE, Turrialba, Costa Rica | |
dc.relation.references | Fryirs, K.: , 2013; (dis) connectivity in catchment sediment cascades: a fresh look at the sediment delivery problem; Earth Surface Processes and Landforms; 38 (1): 30--46. | |
dc.relation.references | Fryirs, K. A.; Brierley, G. J.; Preston, N. J. & Kasai, M.: , 2007a; Buffers, barriers and blankets: The (dis) connectivity of catchment-scale sediment cascades; Catena; 70 (1): 49--67. | |
dc.relation.references | Fryirs, K. A.; Brierley, G. J.; Preston, N. J. & Spencer, J.: , 2007b; Catchment-scale (dis) connectivity in sediment flux in the upper hunter catchment, new south wales, australia; Geomorphology; 84 (3-4): 297--316. | |
dc.relation.references | Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D. & Moore, R.: , 2017; Google earth engine: Planetary-scale geospatial analysis for everyone; Remote Sensing of Environment; 202: 18--27. | |
dc.relation.references | Guo, Z.; Yan, Z. & Paerhati, M.: , 2023a; Assessment of soil erosion and its driving factors in the huaihe region using the invest-sdr model; Geocarto International; 38 (1): 2213208; doi:10.1080/10106049.2023.2213208. | |
dc.relation.references | Guo, Z.; Yan, Z.; PaErHaTi, M.; He, R.; Yang, H.; Wang, R. & Ci, H.: , 2023b; Assessment of soil erosion and its driving factors in the huaihe region using the invest-sdr model; Geocarto International; 38 (1): 2213208. | |
dc.relation.references | Hamel, P. & Bryant, B. P.: , 2015; Uncertainty assessment in ecosystem service analyses: Seven challenges and practical responses; Science of the Total Environment; 538: 384--395; doi:10.1016/j.scitotenv.2015.08.061. | |
dc.relation.references | Hamel, P.; Chaplin-Kramer, R.; Sim, S. & Mueller, C.: , 2015; A new approach to modeling the sediment retention service (invest 3.0): Case study of the cape fear catchment, north carolina, usa; Science of the Total Environment; 524: 166--177. | |
dc.relation.references | Hamel, P.; Falinski, K.; Sharp, R.; Auerbach, D. A.; Sanchez-Canales, M. & Dennedy-Frank, P. J.: , 2017; Sediment delivery modeling in practice: Comparing the effects of watershed characteristics and data resolution across hydroclimatic regions; Science of the Total Environment; 580: 1381--1388. | |
dc.relation.references | Hooke, R. L.: , 2003; Fluvial sediment budgets in the north coast range of california; Geomorphology; 56 (1-2): 139--156. | |
dc.relation.references | IDEAM: , 2021; Reporte anual de deforestación en colombia; Informe técnico; Instituto de Hidrología, Meteorología y Estudios Ambientales. | |
dc.relation.references | Instituto de Hidrología, M. y. E. A. I.: , 2013a; Estudio nacional del agua; Informe técnico; IDEAM. | |
dc.relation.references | Instituto de Hidrología, M. y. E. A. I.: , 2013b; Efectos de la regulación hidroeléctrica sobre el transporte de sedimentos en el río magdalena; Informe técnico; IDEAM; Bogotá, D.C., Colombia. | |
dc.relation.references | Instituto de Investigaciones Marinas y Costeras (INVEMAR): , 2021; Evaluación de procesos sedimentológicos y vulnerabilidad hidrológica en la cuenca baja del río magdalena; Informe técnico; INVEMAR; Santa Marta, Colombia; URL http://www.invemar. org.co/. | |
dc.relation.references | Japan Aerospace Exploration Agency (JAXA) – Earth Observation Research Center: , 2015; ALOS PALSAR Global Digital Surface Model “ALOS World 3D” (AW3D30), 12.5m resolution; https://www.eorc.jaxa.jp/ALOS/en/aw3d30/index.htm | |
dc.relation.references | Juan Felipe Ochoa, Lilian Posada García, L. F. C.: , 2024; Relación entre el enso y el transporte de sedimentos en la cuenca magdalena-cauca entre 1981-2023; en XXV SEMINARIO NACIONAL DE HIDRÁULICA E HIDROLOGÍA, tomo 25 de Actas de la Conferencia (Editado por y Susan Green, D. B.); SCI, Santa Fé de Bogotá, COL; págs. 416--429. | |
dc.relation.references | Juan Felipe Ochoa, L. P. G.: , 2024; Aplicación de metodos analiticos para el calculo de la geometria estable en el río magdalena; en XXV SEMINARIO NACIONAL DE HIDRÁULICA E HIDROLOGÍA, tomo 25 de Actas de la Conferencia (Editado por y Susan Green, D. B.); SCI, Santa Fé de Bogotá, COL; págs. 54--66. | |
dc.relation.references | Kane, B. & Julien, P. Y.: , 2007; Specific degradation of watersheds; International Journal of Sediment Research; 22 (2): 114--119. | |
dc.relation.references | Lu, H.; Moran, C. J. & Prosser, I. P.: , 2006; Modelling sediment delivery ratio over the murray darling basin; Environmental Modelling & Software; 21: 1297--1308. | |
dc.relation.references | López-Vicente, M.; Poesen, J.; Navas, A. & Gaspar, L.: , 2017; Predicting soil erosion and sediment yield in a mesoscale mountainous catchment; Science of the Total Environment; 579: 1536--1549. | |
dc.relation.references | Maner, S. B.: , 1958; Factors affecting sediment delivery rates in the red hills physiographic area; Eos, Transactions American Geophysical Union; 39 (4): 669--675. | |
dc.relation.references | Martínez, A.; Vargas, G. & Restrepo, J.: , 2022; Recent acceleration of erosion rates in the colombian andes; Earth Surface Processes and Landforms; 47 (3): 789--802. | |
dc.relation.references | Ministerio de Ambiente y Desarrollo Sostenible de Colombia: , 2018; Plan de Ordenación y Manejo de la Cuenca Alta del Río Magdalena; Gobierno de Colombia, Bogotá, D.C. | |
dc.relation.references | Mutchler, C. K. & Bowie, A.: , 1976; Effect of land use on sediment delivery ratios; en Proceedings of the Third Federal Inter-Agency Sedimentation Conference, tomo 111; US Water Resour. Counc Washington, DC; pág. 112. | |
dc.relation.references | Nguyen, T. T. & Chen, J.: , 2018; A spatial sediment delivery ratio model based on catchment geomorphic features; Journal of Hydrology; 561: 933--943. | |
dc.relation.references | Organización de los Estados Americanos (OEA): , 1991; Sensores remotos y su aplicación en la gestión de recursos naturales; Informe técnico; Organización de los Estados Americanos; Washington, D.C.; informe técnico. | |
dc.relation.references | Pacheco, F.; Molina, A. & Vanacker, V.: , 2021; Application of rusle in tropical andean basins: Case study of catatumbo river; Journal of Environmental Management; 280: 111689. | |
dc.relation.references | Pacheco, H. A.; Cevallos, R. X. & Vinces, C. J.: , 2019; Cálculo del factor C de la rusle en la cuenca del río carache (trujillo, venezuela) usando imágenes del satélite miranda vrss-1; Revista Espacios; 40 (3): 6; URL https://www.revistaespacios.com/ a19v40n03/19400306.html. | |
dc.relation.references | Penna, D.; Tromp-van Meerveld, H. J.; Gobbi, A.; Borga, M. & Dalla Fontana, G.: , 2011; The influence of soil moisture on threshold runoff generation processes in an alpine headwater catchment; Hydrology and Earth System Sciences; 15 (3): 689--702; doi:10.5194/hess-15-689-2011; URL https://doi.org/10.5194/hess-15-689-2011. | |
dc.relation.references | Pérez, J.: , 2001; Estimación del factor de erosividad de la lluvia en colombia, trabajo dirigido de grado; Ingeniería Civil, Universidad Nacional de Colombia, Medellín. | |
dc.relation.references | Poesen, J.; Nachtergaele, J.; Verstraeten, G. & Valentin, C.: , 2003; Gully erosion and environmental change: importance and research needs; Catena; 50 (2-4): 91--133. | |
dc.relation.references | Poveda, G.; Mesa, O. J. & Waylen, P. R.: , 2006; La zona de convergencia intertropical (zcit) y su influencia en el régimen hidrológico de colombia; Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales; 30 (115): 221--244. | |
dc.relation.references | Renard, K. G.; Foster, G. R.; Weesies, G. A.; McCool, D. K. & Yoder, D. C.: , 1997; Predicting soil erosion by water: a guide to conservation planning with the revised universal soil loss equation (rusle); Agriculture Handbook; 703: 1--404. | |
dc.relation.references | Renfro, G. W.: , 1975; Use of erosion equations and sediment-delivery ratios for predicting sediment yield; ARS-S.; 40: 33. | |
dc.relation.references | Rengifo, I.-Y.; Muñoz-Gomez, F.-A. & Toro-Trochez, O.-A.: , 2022; Modelo usle para estimar la erosión hídrica en siete municipios de la zona andina colombiana; Biotecnología en el sector agropecuario y agroindustrial; 20 (2): 29--44. | |
dc.relation.references | Restrepo, J. & Escobar, H.: , 2018; Human impacts on sediment yields in the magdalena river basin; Journal of South American Earth Sciences; 82: 1--14. | |
dc.relation.references | Restrepo, J. D. & Escobar, H.: , 2016; Impactos de los fenómenos de la niña en la hidrología de la cuenca del río magdalena; Journal of South American Earth Sciences; 72: 1--12. | |
dc.relation.references | Restrepo, J. D. & Kettner, A. J.: , 2020; Sediment load trends in the magdalena river basin (1980-2010): Anthropogenic and climate-induced causes; Geomorphology; 302: 76--91. | |
dc.relation.references | Restrepo, J. D. & Syvitski, J. P.: , 2006; Assessing the effect of natural controls and land use change on sediment yield in a major andean river: the magdalena drainage basin, colombia; Ambio: a Journal of the Human Environment; 35 (2): 65--74. | |
dc.relation.references | Restrepo, J. D.; Kettner, A. J. & Syvitski, J. P.: , 2015; Recent deforestation causes rapid increase in river sediment load in the colombian andes; Anthropocene; 10: 13--28. | |
dc.relation.references | Roehl, J.: , 1962; Sediment source areas, and delivery ratios influencing morphological factors; Int. Assoc. Hydro. Sci.; 59: 202--213. | |
dc.relation.references | Santos, C. A.; García, M. H.; Restrepo, J. D. & Álvarez, J. F.: , 2018; Morphodynamic evolution of the magdalena river: Meander migration rates and sediment flux interactions; Geomorphology; 321: 1--15; doi:10.1016/j.geomorph.2018.08.007. | |
dc.relation.references | Schowengerdt, R. A.: , 2006; Remote Sensing: Models and Methods for Image Processing; Elsevier; 3a edición; ISBN 978-0-12- 369407-2; disponible también en versión digital. | |
dc.relation.references | Vanoni, V.: , 1975; 1975, sedimentation engineering: American society of civil engineers; Manuals and Reports on Engineering Practice; 1 (54): 745. | |
dc.relation.references | Vigiak, O.; Borselli, L.; Newham, L.; McInnes, J. & Roberts, A.: , 2012; Comparison of conceptual landscape metrics to define hillslope-scale sediment delivery ratio; Geomorphology; 138 (1): 74--88. | |
dc.relation.references | Walling, D. E.: , 1983; The sediment delivery problem; tomo 65; Journal of Hydrology. | |
dc.relation.references | Wilkinson, S. N.; Prosser, I. P.; Rustomji, P. & Read, A. M.: , 2009; Modelling and testing spatially distributed sediment budgets to relate erosion processes to sediment yields; Environmental Modelling & Software; 24 (4): 489--501. | |
dc.relation.references | Williams, J.: , 1977; Sediment delivery ratios determined with sediment and runoff models.; Int. Assoc. Hydrol. Sci. Publ.; 122: 168--179. | |
dc.relation.references | Williams, J. R. & Berndt, H. D.: , 1977; Sediment yield prediction based on watershed hydrology; Transactions of the ASAE; 20: 1100--1104. | |
dc.relation.references | Wischmeier, W. H. & Smith, D. D.: , 1978; Predicting rainfall erosion losses: a guide to conservation planning; US Department of Agriculture. | |
dc.relation.references | Wohl, E.: , 2017; Connectivity in rivers; Progress in Physical Geography; 41 (3): 345--362. | |
dc.relation.references | Xu, Z.; Zhang, S.; Hu, X. & Zhou, Y.: , 2024; Construction of a monthly dynamic sediment delivery ratio model at the hillslope scale: a case study from a hilly loess region; Frontiers in Environmental Science; 12: 1341868. | |
dc.relation.references | Zhang, S.; Yu, X.; Li, Y. & Zhang, X.: , 2019; Effects of runoff-infiltration processes on sediment delivery ratio in different land use types; Journal of Hydrology; 578: 124020; doi:10.1016/j.jhydrol.2019.124020; URL https://doi.org/10.1016/j.jhydrol.2019.124020. | |
dc.relation.references | Zhao, G.; Mu, X.; Wen, Z.; Wang, F. & Gao, P.: , 2020; Soil erosion, conservation, and eco-environment changes in the loess plateau of china; Land Degradation & Development; 24: 499--510. | |
dc.relation.references | Zhou, M.; Deng, J.; Lin, Y.; Belete, M.; Wang, K.; Comber, A.; Huang, L. & Gan, M.: , 2019; Identifying the effects of land use change on sediment export: Integrating sediment source and sediment delivery in the qiantang river basin, china; Science of the total environment; 686: 38--49. | |
dc.relation.references | Zárate, E.; Restrepo, J.; Ortiz, J. & Otero, L.: , 2021; Efectos naturales y antrópicos en la producción de sedimentos de la cuenca del río magdalena; Revista de Ingeniería; 49: 45--62. | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Atribución-NoComercial-CompartirIgual 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
dc.subject.lemb | Sedimentación - Magdalena (Rio, Colombia) | |
dc.subject.lemb | Taludes (Geografía física) - Magdalena (Rio, Colombia) | |
dc.subject.lemb | Sedimentación - Sensores remotos - Magdalena (Rio, Colombia) | |
dc.subject.lemb | Servicios hidrometeorológicos - Magdalena (Rio, Colombia) | |
dc.subject.proposal | Producción de sedimentos | spa |
dc.subject.proposal | Índice conectividad | spa |
dc.subject.proposal | InVEST | spa |
dc.subject.proposal | Relación entrega sedimento | spa |
dc.subject.proposal | Sensores remotos | spa |
dc.subject.proposal | Sediment production | eng |
dc.subject.proposal | Connectivity index | eng |
dc.subject.proposal | InVEST | eng |
dc.subject.proposal | Sediment delivery ratio | eng |
dc.subject.proposal | Remote sensing | eng |
dc.title | Evaluación cuantitativa de la producción de sedimentos por aportes de laderas al río Magdalena en el tramo Honda-Barrancabermeja y su conectividad sedimentológica | spa |
dc.title.translated | Quantitative evaluation of sediment production by slope contributions to the Magdalena River in the Honda Barrancabermeja section and its sedimentological connectivity | eng |
dc.type | Trabajo de grado - Maestría | |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dcterms.audience.professionaldevelopment | Estudiantes | |
dcterms.audience.professionaldevelopment | Investigadores | |
dcterms.audience.professionaldevelopment | Maestros | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Tesis de Maestría en Ingeniería - Recursos Hidráulicos
- Tamaño:
- 37.93 MB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: