Exploración in silico de estrategias de electro-fermentación en el diseño racional de bioprocesos
dc.contributor.advisor | SUAREZ-MENDEZ, CAMILO | |
dc.contributor.author | Vásquez Restrepo, Andrés | |
dc.contributor.cvlac | https://scienti.colciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000122302 | spa |
dc.contributor.orcid | Vasquez-Restrepo, Andres [0000-0001-9627-1005] | spa |
dc.contributor.orcid | Suárez Méndez, Camilo[0000-0002-5345-9662] | spa |
dc.contributor.researchgroup | Bioprocesos y Flujos Reactivos | spa |
dc.date.accessioned | 2023-02-10T16:33:23Z | |
dc.date.available | 2023-02-10T16:33:23Z | |
dc.date.issued | 2022 | |
dc.description | ilustraciones, diagramas | spa |
dc.description.abstract | La electro-fermentación es una estrategia emergente para optimizar los bioprocesos al regular el balance redox intracelular y redireccionar los flujos metabólicos. En el presente trabajo se evaluó in silico la electro-fermentación desde el marco del diseño racional de bioprocesos para determinar su efecto en el aprovechamiento de la energía biológicamente disponible y los rendimientos del proceso. Para lo cual, se desarrolló una metodología que permitió estimar sus costos energéticos asociados y evaluar su capacidad de redireccionamiento metabólico. Se definieron un conjunto de semirreacciones que permitieron utilizar los principios de la electroquímica para establecer los requerimientos energéticos del proceso, junto con su modelo de caja negra. Se encontró que la energía libre de Gibbs de reacción depende del voltaje aplicado y el potencial de reducción de la molécula aceptora interna de electrones. Además, se planteó un modelo metabólico que incluyó el transporte extracelular de electrones y permitió evidenciar los diferentes cambios metabólicos al cambiar el balance redox a través de la interacción con el electrodo. Finalmente, se evaluaron diferentes casos de estudio para evidenciar el desempeño de la metodología desarrollada, en donde se logró solucionar déficits de ATP y electrones a expensas de una pequeña desviación de carbonos hacia subproductos debido a la generación de un desbalance redox en el metabolismo celular. La presente metodología representa un primer intento de una estimación in silico de los requerimientos de corriente eléctrica y voltaje asociados a una electro-fermentación a partir de fundamentos teóricos. (Texto tomado de la fuente) | spa |
dc.description.abstract | Electro-fermentation is a novel strategy for optimizing bioprocesses in which the intracellular redox balance is regulated to redirect the carbon metabolic flux towards a desired product. In this work, an in-silico evaluation of the electro-fermentation has been made within the frame of a methodology referred to as Rational Design of Bioprocesses to evaluate its effects on microbial bioenergetics and process performance. Here, a new methodology is proposed for estimating the associated Gibbs energy costs, the development of a black-box model and the evaluation of its capacity to redirect metabolic fluxes. A set of semi reactions are used to describe the interactions between the electrode and the microbe, where the Gibbs energy involved in the electro-fermentation process is associated to the electrode’s poised voltage and the standard reduction potential of the internal electron acceptor. Besides, a new metabolic model is developed incorporating a set of reactions for the extracellular electron transfer mechanism. It has been proven that metabolic changes occur by an unbalanced NADH pool generated by the interaction of the microbe with a poised electrode. Finally, both thermodynamic and metabolic models are used in different study cases to evaluate the performance of the complete developed framework for electro-fermentations, where it has been proven that it can be used to solve ATP deficits in metabolic networks. To my knowledge, it is the first attempt of an in-silico based theorical framework to describe the energy, current and voltage associated with electro-fermentations. | eng |
dc.description.curriculararea | Área Curricular de Bioctecnología | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magister en Ciencias - Biotecnología | spa |
dc.description.researcharea | Diseño Racional de Bioprocesos | spa |
dc.format.extent | 210 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/83418 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Medellín, Colombia | spa |
dc.publisher.program | Medellín - Ciencias - Maestría en Ciencias - Biotecnología | spa |
dc.relation.indexed | RedCol | spa |
dc.relation.indexed | LaReferencia | spa |
dc.relation.references | L. Pedraza, “Análisis metabólico y termodinámico in silico para la biosíntesis de ácido 3-indolacético (AIA) a partir de glicerol en Azospirillum brasilense,” Universidad Nacional de Colombia, 2019. | spa |
dc.relation.references | D. Puerta, “Diseño in silico de una red metabólica, a partir de cultivos microbianos mixtos, para un microorganismo chasís capaz de producir ácido propiónico a partir de glicerol crudo: aproximación desde la termodinámica y la ingeniería metabólica,” Universidad Nacional de Colombia, 2019 | spa |
dc.relation.references | L. Avendaño, “Diseño in silico de una plataforma biosintética que permita la valoración del gas de síntesis mediante su conversión en etileno, implementando herramientas de ingeniería metabólica,” Universidad Nacional de Colombia, 2019. | spa |
dc.relation.references | R. Moscoviz, J. Toledo-Alarcón, E. Trably, and N. Bernet, “Electro-Fermentation: How To Drive Fermentation Using Electrochemical Systems,” Trends Biotechnol., vol. 34, no. 11, pp. 856–865, 2016, doi: 10.1016/j.tibtech.2016.04.009. | spa |
dc.relation.references | U. von Stockar, The Role of Thermodynamics in Biochemical Engineering. 2013. | spa |
dc.relation.references | U. Von Stockar and L. A. M. Van Der Wielen, “Thermodynamics in biochemical engineering,” J. Biotechnol., vol. 59, no. 1–2, pp. 25–37, Dec. 1997, doi: 10.1016/S0168-1656(97)00167-3. | spa |
dc.relation.references | M. C. Flickinger, J. J. Heijnen, and R. Kleerebezem, “Bioenergetics of Microbial Growth,” in Encyclopedia of Industrial Biotechnology, Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. | spa |
dc.relation.references | U. Von Stockar, “Biothermodynamics of live cells: A tool for biotechnology and biochemical engineering,” J. Non-Equilibrium Thermodyn., vol. 35, no. 4, pp. 415–475, Dec. 2010, doi: 10.1515/JNETDY.2010.024/MACHINEREADABLECITATION/RIS. | spa |
dc.relation.references | H. F. Cueto-Rojas, A. J. A. van Maris, S. A. Wahl, and J. J. Heijnen, “Thermodynamics-based design of microbial cell factories for anaerobic product formation,” Trends in Biotechnology, vol. 33, no. 9. Elsevier Ltd, pp. 534–546, Sep. 01, 2015, doi: 10.1016/j.tibtech.2015.06.010. | spa |
dc.relation.references | B. Kim, W. J. Kim, D. I. Kim, and S. Y. Lee, “Applications of genome-scale metabolic network model in metabolic engineering,” J. Ind. Microbiol. Biotechnol., vol. 42, no. 3, pp. 339–348, Jan. 2015, doi: 10.1007/s10295-014-1554-9. | spa |
dc.relation.references | M. R. Long, W. K. Ong, and J. L. Reed, “Computational methods in metabolic engineering for strain design,” Current Opinion in Biotechnology, vol. 34. Elsevier Ltd, pp. 135–141, Aug. 01, 2015, doi: 10.1016/j.copbio.2014.12.019. | spa |
dc.relation.references | Z. A. King, C. J. Lloyd, A. M. Feist, and B. O. Palsson, “Next-generation genome-scale models for metabolic engineering,” Current Opinion in Biotechnology, vol. 35. Elsevier Ltd, pp. 23–29, Dec. 01, 2015, doi: 10.1016/j.copbio.2014.12.016. | spa |
dc.relation.references | C. A. Suarez-Mendez, M. Hanemaaijer, A. ten Pierick, J. C. Wolters, J. J. Heijnen, and S. A. Wahl, “Interaction of storage carbohydrates and other cyclic fluxes with central metabolism: A quantitative approach by non-stationary 13C metabolic flux analysis,” Metab. Eng. Commun., vol. 3, pp. 52–63, Dec. 2016, doi: 10.1016/j.meteno.2016.01.001. | spa |
dc.relation.references | J. Jordà et al., “Glucose-methanol co-utilization in Pichia pastoris studied by metabolomics and instationary 13C flux analysis,” BMC Syst. Biol., vol. 7, Feb. 2013, doi: 10.1186/1752-0509-7-17. | spa |
dc.relation.references | W. J. Kim, H. U. Kim, and S. Y. Lee, “Current state and applications of microbial genome-scale metabolic models,” Curr. Opin. Syst. Biol., vol. 2, pp. 10–18, 2017, doi: 10.1016/j.coisb.2017.03.001. | spa |
dc.relation.references | H. U. Kim, T. Y. Kim, and S. Y. Lee, “Metabolic flux analysis and metabolic engineering of microorganisms,” Mol. Biosyst., vol. 4, no. 2, pp. 113–120, 2008, doi: 10.1039/b712395g. | spa |
dc.relation.references | K. Rabaey et al., “Microbial ecology meets electrochemistry: electricity-driven and driving communities,” ISME J., vol. 1, pp. 9–18, 2007, doi: 10.1038/ismej.2007.4. | spa |
dc.relation.references | K. Rabaey, “Bioelectrochemical Systems: From Extracellular Electron Transfer to Biotechnological Application,” Water Intell. Online, vol. 8, p. undefined-undefined, Dec. 2009, doi: 10.2166/9781780401621. | spa |
dc.relation.references | B. Korth and F. Harnisch, “Spotlight on the energy harvest of electroactive microorganisms: The impact of the applied anode potential,” Front. Microbiol., vol. 10, no. JUN, Jun. 2019, doi: 10.3389/fmicb.2019.01352 | spa |
dc.relation.references | A. Sydow, T. Krieg, F. Mayer, J. Schrader, and D. Holtmann, “Electroactive bacteria—molecular mechanisms and genetic tools,” Appl. Microbiol. Biotechnol, vol. 98, no. 20, pp. 8481–8495, 2014, doi: 10.1007/s00253-014-6005-z. | spa |
dc.relation.references | M. Firer-Sherwood, G. S. Pulcu, and S. J. Elliott, “Electrochemical interrogations of the Mtr cytochromes from Shewanella: opening a poten- tial window,” J Biol Inorg Chem, vol. 13, pp. 849–854, 2008. | spa |
dc.relation.references | A. Sydow, T. Krieg, F. Mayer, J. Schrader, and D. Holtmann, “Electroactive bacteria—molecular mechanisms and genetic tools,” Appl. Microbiol. Biotechnol., vol. 98, no. 20, pp. 8481–8495, 2014, doi: 10.1007/s00253-014-6005-z. | spa |
dc.relation.references | C. Bücking, M. Schicklberger, and J. Gescher, “The Biochemistry of Dissimilatory Ferric Iron and Manganese Reduction in Shewanella oneidensis,” in Microbial Metal Respiration, A. Kappler and J. Gescher, Eds. Verlag Berlin Heidelberg: Springer. | spa |
dc.relation.references | K. Rabaey, L. Angenent, U. Schröder, and J. Keller, Bioelectrochemical systems: from extracellular electrons transfer to biotechnological application. London: IWA Publishing, 2010. | spa |
dc.relation.references | F. Harnisch, L. F. M. Rosa, F. Kracke, B. Virdis, and J. O. Krömer, “Electrifying white biotechnology: Engineering and economic potential of electricity-driven bio-production,” ChemSusChem, vol. 8, no. 5, pp. 758–766, 2015, doi: 10.1002/cssc.201402736. | spa |
dc.relation.references | M. Aghababaie, M. Farhadian, A. Jeihanipour, and D. Biria, “Effective factors on the performance of microbial fuel cells in wastewater treatment–a review,” Environ. Technol. Rev., vol. 4, no. 1, pp. 71–89, 2015, doi: 10.1080/09593330.2015.1077896. | spa |
dc.relation.references | C. I. Torres, A. K. Marcus, H.-S. Lee, P. Parameswaran, R. Krajmalnik-Brown, and B. E. Rittmann, “A kinetic perspective on extracellular electron transfer by anode-respiring bacteria,” FEMS Microbiol. Rev., vol. 34, no. 1, pp. 3–17, Jan. 2010, doi: 10.1111/j.1574-6976.2009.00191.x. | spa |
dc.relation.references | P. Arbter, W. Sabra, T. Utesch, Y. Hong, and A. Zeng, “Metabolomic and kinetic investigations on the electricity‐aided production of butanol by Clostridium pasteurianum strains,” Eng. Life Sci., p. elsc.202000035, Dec. 2020, doi: 10.1002/elsc.202000035. | spa |
dc.relation.references | . Schroder, “Microbial Fuel Cells and Microbial Electrochemistry: Into the Next Century!,” ChemSusChem, vol. 5, pp. 959–961, 2012, doi: 10.1002/cssc.201200319. | spa |
dc.relation.references | D. R. Lovley, “Microbial fuel cells: novel microbial physiologies and engineering approaches,” Curr. Opin. Biotechnol, vol. 17, pp. 327–332, 2006. | spa |
dc.relation.references | Y. Zhang and I. Angelidaki, “Microbial electrolysis cells turning to be versatile technology: recent advances and future challenges,” Water Res, vol. 56, pp. 11–25, 2014. | spa |
dc.relation.references | K. Rabaey and R. A. Rozendal, “Microbial electrosynthesis– revisiting the electrical route for microbial production,” Nat. Rev. Microbiol, vol. 8, pp. 706–716, 2010. | spa |
dc.relation.references | O. Choi, T. Kim, H. M. Woo, and Y. Um, “Electricity-driven metabolic shift through direct electron uptake by electroactive heterotroph Clostridium pasteurianum,” Sci. Rep., vol. 4, no. 1, p. 6961, May 2015, doi: 10.1038/srep06961. | spa |
dc.relation.references | O. Choi, Y. Um, and B. I. Sang, “Butyrate production enhancement by Clostridium tyrobutyricum using electron mediators and a cathodic electron donor,” Biotechnol. Bioeng., vol. 109, no. 10, pp. 2494–2502, Oct. 2012, doi: 10.1002/bit.24520. | spa |
dc.relation.references | J. M. Flynn, D. E. Ross, K. A. Hunt, D. R. Bond, and J. A. Gralnick, “Enabling unbalanced fermentations by using engineered electrode- interfaced bacteria,” MBio, vol. 1, no. 5, Nov. 2010, doi: 10.1128/mBio.00190-10. | spa |
dc.relation.references | “Basic overview of the working principle of a potentiostat/galvanostat (PGSTAT)-Electrochemical cell setup.” | spa |
dc.relation.references | R. Emde and B. Schink, “Enhanced Propionate Formation by Propionibacterium freudenreichii subsp. freudenreichii in a Three-Electrode Amperometric Culture System Downloaded from,” 1990. Accessed: Jan. 31, 2021. [Online]. Available: http://aem.asm.org/. | spa |
dc.relation.references | C. G. Liu, C. Xue, Y. H. Lin, and F. W. Bai, “Redox potential control and applications in microaerobic and anaerobic fermentations,” Biotechnology Advances, vol. 31, no. 2. Elsevier, pp. 257–265, Mar. 01, 2013, doi: 10.1016/j.biotechadv.2012.11.005. | spa |
dc.relation.references | R. Emde and B. Schink, “Enhanced propionate formation by Propionibacterium freudenreichii subsp. freudenreichii in a three-electrode amperometric culture system,” Appl. Environ. Microbiol, vol. 56, pp. 2771–2776, 1990. | spa |
dc.relation.references | R. Moscoviz, J. Toledo-Alarcón, E. Trably, and N. Bernet, “Electro-Fermentation: How To Drive Fermentation Using Electrochemical Systems,” Trends Biotechnol, vol. 34, no. 11, pp. 856–865, doi: 10.1016/j.tibtech.2016.04.009. | spa |
dc.relation.references | B. Korth and F. Harnisch, “Modeling microbial electrosynthesis,” in Advances in Biochemical Engineering/Biotechnology, vol. 167, Springer Science and Business Media Deutschland GmbH, 2019, pp. 273–325. | spa |
dc.relation.references | H. Rismani-Yazdi, A. D. Christy, S. M. Carver, Z. Yu, B. A. Dehority, and O. H. Tuovinen, “Effect of external resistance on bacterial diversity and metabolism in cellulose-fed microbial fuel cells,” Bioresour. Technol., vol. 102, no. 1, pp. 278–283, 2011, doi: 10.1016/j.biortech.2010.05.012. | spa |
dc.relation.references | F. Kracke and J. O. Krömer, “Identifying target processes for microbial electrosynthesis by elementary mode analysis,” 2014, doi: 10.1186/s12859-014-0410-2. | spa |
dc.relation.references | F. Kracke, B. Lai, S. Yu, and J. O. Krömer, “Balancing cellular redox metabolism in microbial electrosynthesis and electro fermentation – A chance for metabolic engineering,” Metabolic Engineering, vol. 45. Academic Press Inc., pp. 109–120, Jan. 01, 2018, doi: 10.1016/j.ymben.2017.12.003. | spa |
dc.relation.references | T. D. Harrington et al., “The mechanism of neutral red-mediated microbial electrosynthesis in Escherichia coli: menaquinone reduction,” 2015, doi: 10.1016/j.biortech.2015.06.037. | spa |
dc.relation.references | Y. Anraku, “BACTERIAL ELECTRON TRANSPORT CHAINS,” https://doi.org/10.1146/annurev.bi.57.070188.000533, vol. 57, pp. 101–132, Nov. 2003, doi: 10.1146/ANNUREV.BI.57.070188.000533. | spa |
dc.relation.references | L. Heirendt et al., “Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v.3.0,” Nat. Protoc. 2019 143, vol. 14, no. 3, pp. 639–702, Feb. 2019, doi: 10.1038/s41596-018-0098-2. | spa |
dc.relation.references | Z. A. King, A. Dräger, A. Ebrahim, N. Sonnenschein, N. E. Lewis, and B. O. Palsson, “Escher: A Web Application for Building, Sharing, and Embedding Data-Rich Visualizations of Biological Pathways,” PLOS Comput. Biol., vol. 11, no. 8, p. e1004321, Aug. 2015, doi: 10.1371/JOURNAL.PCBI.1004321. | spa |
dc.relation.references | P. Raybaut, “Spyder-documentation.” 2009, [Online]. Available: pythonhosted. org. | spa |
dc.relation.references | O. Choi, T. Kim, H. M. Woo, and Y. Um, “Electricity-driven metabolic shift through direct electron uptake by electroactive heterotroph Clostridium pasteurianum,” Sci. Rep., vol. 4, no. 1, pp. 1–10, Nov. 2014, doi: 10.1038/srep06961. | spa |
dc.relation.references | I. Vassilev, G. Gießelmann, S. K. Schwechheimer, C. Wittmann, B. Virdis, and J. O. Krömer, “Anodic electro-fermentation: Anaerobic production of L-Lysine by recombinant Corynebacterium glutamicum,” Biotechnol. Bioeng., vol. 115, no. 6, pp. 1499–1508, 2018, doi: 10.1002/bit.26562. | spa |
dc.relation.references | C. G. Liu, C. Xue, Y. H. Lin, and F. W. Bai, “Redox potential control and applications in microaerobic and anaerobic fermentations,” Biotechnol. Adv., vol. 31, no. 2, pp. 257–265, 2013, doi: 10.1016/j.biotechadv.2012.11.005. | spa |
dc.relation.references | B. Schuppert, B. Schink, and W. Trösch, “Batch and continuous production of propionic acid from whey permeate by Propionibacterium acidi-propionici in a three-electrode amperometric culture system,” Appl. Microbiol. Biotechnol., vol. 37, no. 5, pp. 549–553, Aug. 1992, doi: 10.1007/BF00240723. | spa |
dc.relation.references | A. M. Feist et al., “A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information,” Mol. Syst. Biol., vol. 3, no. 1, p. 121, Jan. 2007, doi: 10.1038/MSB4100155. | spa |
dc.relation.references | M. Zhou, J. Chen, S. Freguia, K. Rabaey, and J. Keller, “Carbon and electron fluxes during the electricity driven 1,3-propanediol biosynthesis from glycerol,” Environ. Sci. Technol., vol. 47, no. 19, pp. 11199–11205, Oct. 2013, doi: 10.1021/ES402132R/SUPPL_FILE/ES402132R_SI_001.PDF. | spa |
dc.relation.references | C. Kim et al., “Anodic electro-fermentation of 3-hydroxypropionic acid from glycerol by recombinant Klebsiella pneumoniae L17 in a bioelectrochemical system,” Biotechnol. Biofuels, vol. 10, no. 1, p. 199, Aug. 2017, doi: 10.1186/s13068-017-0886-x. | spa |
dc.relation.references | A. M. Feist et al., “A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information,” Mol. Syst. Biol., vol. 3, 2007, doi: 10.1038/MSB4100155. | spa |
dc.relation.references | A. Özcan, Y. Şahin, A. Savaş Koparal, and M. A. Oturan, “Carbon sponge as a new cathode material for the electro-Fenton process: Comparison with carbon felt cathode and application to degradation of synthetic dye basic blue 3 in aqueous medium,” J. Electroanal. Chem., vol. 616, no. 1–2, pp. 71–78, May 2008, doi: 10.1016/J.JELECHEM.2008.01.002. | spa |
dc.relation.references | S. Wang, Y. Zhu, Y. Yang, J. Li, and M. R. Hoffmann, “Electrochemical cell lysis of gram-positive and gram-negative bacteria: DNA extraction from environmental water samples,” Electrochim. Acta, vol. 338, Apr. 2020, doi: 10.1016/J.ELECTACTA.2020.135864. | spa |
dc.relation.references | T. Zhang, R. O. Louro, J. O. Krömer, F. Kracke, and I. Vassilev, “Microbial electron transport and energy conservation-the foundation for optimizing bioelectrochemical systems Microbial electron transport in bioelectrochemical systems,” Front. Microbiol. | www.frontiersin.org, vol. 1, 2015, doi: 10.3389/fmicb.2015.00575. | spa |
dc.relation.references | K. Sturm-Richter et al., “Unbalanced fermentation of glycerol in Escherichia coli via heterologous production of an electron transport chain and electrode interaction in microbial electrochemical cells,” Bioresour. Technol., vol. 186, pp. 89–96, Jun. 2015, doi: 10.1016/j.biortech.2015.02.116. | spa |
dc.relation.references | J. P. O’Brien and N. S. Malvankar, “A Simple and Low-Cost Procedure for Growing Geobacter sulfurreducens Cell Cultures and Biofilms in Bioelectrochemical Systems,” Curr. Protoc. Microbiol., vol. 43, no. 1, p. A.4K.1-A.4K.27, Nov. 2016, doi: 10.1002/CPMC.20. | spa |
dc.relation.references | C. Koch, B. Korth, and F. Harnisch, “Microbial ecology-based engineering of Microbial Electrochemical Technologies,” Microb. Biotechnol., vol. 11, no. 1, pp. 22–38, Jan. 2018, doi: 10.1111/1751-7915.12802. | spa |
dc.relation.references | M. Kanehisa, Y. Sato, and M. Kawashima, “KEGG mapping tools for uncovering hidden features in biological data,” Protein Sci., vol. 31, no. 1, pp. 47–53, Jan. 2022, doi: 10.1002/PRO.4172. | spa |
dc.relation.references | J. M. Flynn, D. E. Ross, K. A. Hunt, D. R. Bond, and J. A. Gralnick, “Enabling unbalanced fermentations by using engineered electrode- interfaced bacteria,” MBio, vol. 1, no. 5, Nov. 2010, doi: 10.1128/mBio.00190-10. | spa |
dc.relation.references | J. M. Monk et al., “Genome-scale metabolic reconstructions of multiple Escherichia coli strains highlight strain-specific adaptations to nutritional environments,” Proc. Natl. Acad. Sci. U. S. A., vol. 110, no. 50, pp. 20338–20343, Dec. 2013, doi: 10.1073/PNAS.1307797110/-/DCSUPPLEMENTAL. | spa |
dc.relation.references | F. C. Neidhardt, “Chemical Composition of Escherichia Coli,” Escherichia coli Salmonella typhimurium - Cell. Mol. Biol., p. 2822, 1987, [Online]. Available: https://www.journals.uchicago.edu/doi/abs/10.1086/416059. | spa |
dc.relation.references | J. Pramanik and J. D. Keasling, “Stoichiometric model of Escherichia coli metabolism: Incorporation of growth-rate dependent biomass composition and mechanistic energy requirements,” Biotechnol. Bioeng., vol. 56, no. 4, pp. 398–421, 1997, doi: 10.1002/(SICI)1097-0290(19971120)56:4<398::AID-BIT6>3.0.CO;2-J. | spa |
dc.relation.references | J. A. Roels, “Application of Macroscopic Principles To Microbial Metabolism,” Ann. N. Y. Acad. Sci., vol. 369, no. 1, pp. 113–134, 1981, doi: 10.1111/j.1749-6632.1981.tb14182.x. | spa |
dc.relation.references | F. Kracke, B. Virdis, P. V. Bernhardt, K. Rabaey, and J. O. Krömer, “Redox dependent metabolic shift in Clostridium autoethanogenum by extracellular electron supply,” Biotechnol. Biofuels, vol. 9, no. 1, pp. 1–12, 2016, doi: 10.1186/s13068-016-0663-2. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 570 - Biología::572 - Bioquímica | spa |
dc.subject.lemb | Biotechnology | eng |
dc.subject.lemb | Electrochemistry | eng |
dc.subject.lemb | Electroquímica | spa |
dc.subject.lemb | Biotecnología | spa |
dc.subject.lemb | Biochemistry | eng |
dc.subject.lemb | Bioquímica | spa |
dc.subject.proposal | Omics | spa |
dc.subject.proposal | In silico | spa |
dc.subject.proposal | Ingeniería metabólica | spa |
dc.subject.proposal | Diseño Racional de Bioprocesos | spa |
dc.subject.proposal | Biotermodinámica | spa |
dc.subject.proposal | Metabolic Engineering | eng |
dc.subject.proposal | Rational Design of Bioprocesses | eng |
dc.subject.proposal | Biothermodynamics | eng |
dc.title | Exploración in silico de estrategias de electro-fermentación en el diseño racional de bioprocesos | spa |
dc.title.translated | In-silico exploration of Electro-fermentation strategies in the Rational Design of Bioprocesses | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1017236136_2022.pdf
- Tamaño:
- 2.04 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Biotecnología
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: