Exploración in silico de estrategias de electro-fermentación en el diseño racional de bioprocesos

dc.contributor.advisorSUAREZ-MENDEZ, CAMILO
dc.contributor.authorVásquez Restrepo, Andrés
dc.contributor.cvlachttps://scienti.colciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000122302spa
dc.contributor.orcidVasquez-Restrepo, Andres [0000-0001-9627-1005]spa
dc.contributor.orcidSuárez Méndez, Camilo[0000-0002-5345-9662]spa
dc.contributor.researchgroupBioprocesos y Flujos Reactivosspa
dc.date.accessioned2023-02-10T16:33:23Z
dc.date.available2023-02-10T16:33:23Z
dc.date.issued2022
dc.descriptionilustraciones, diagramasspa
dc.description.abstractLa electro-fermentación es una estrategia emergente para optimizar los bioprocesos al regular el balance redox intracelular y redireccionar los flujos metabólicos. En el presente trabajo se evaluó in silico la electro-fermentación desde el marco del diseño racional de bioprocesos para determinar su efecto en el aprovechamiento de la energía biológicamente disponible y los rendimientos del proceso. Para lo cual, se desarrolló una metodología que permitió estimar sus costos energéticos asociados y evaluar su capacidad de redireccionamiento metabólico. Se definieron un conjunto de semirreacciones que permitieron utilizar los principios de la electroquímica para establecer los requerimientos energéticos del proceso, junto con su modelo de caja negra. Se encontró que la energía libre de Gibbs de reacción depende del voltaje aplicado y el potencial de reducción de la molécula aceptora interna de electrones. Además, se planteó un modelo metabólico que incluyó el transporte extracelular de electrones y permitió evidenciar los diferentes cambios metabólicos al cambiar el balance redox a través de la interacción con el electrodo. Finalmente, se evaluaron diferentes casos de estudio para evidenciar el desempeño de la metodología desarrollada, en donde se logró solucionar déficits de ATP y electrones a expensas de una pequeña desviación de carbonos hacia subproductos debido a la generación de un desbalance redox en el metabolismo celular. La presente metodología representa un primer intento de una estimación in silico de los requerimientos de corriente eléctrica y voltaje asociados a una electro-fermentación a partir de fundamentos teóricos. (Texto tomado de la fuente)spa
dc.description.abstractElectro-fermentation is a novel strategy for optimizing bioprocesses in which the intracellular redox balance is regulated to redirect the carbon metabolic flux towards a desired product. In this work, an in-silico evaluation of the electro-fermentation has been made within the frame of a methodology referred to as Rational Design of Bioprocesses to evaluate its effects on microbial bioenergetics and process performance. Here, a new methodology is proposed for estimating the associated Gibbs energy costs, the development of a black-box model and the evaluation of its capacity to redirect metabolic fluxes. A set of semi reactions are used to describe the interactions between the electrode and the microbe, where the Gibbs energy involved in the electro-fermentation process is associated to the electrode’s poised voltage and the standard reduction potential of the internal electron acceptor. Besides, a new metabolic model is developed incorporating a set of reactions for the extracellular electron transfer mechanism. It has been proven that metabolic changes occur by an unbalanced NADH pool generated by the interaction of the microbe with a poised electrode. Finally, both thermodynamic and metabolic models are used in different study cases to evaluate the performance of the complete developed framework for electro-fermentations, where it has been proven that it can be used to solve ATP deficits in metabolic networks. To my knowledge, it is the first attempt of an in-silico based theorical framework to describe the energy, current and voltage associated with electro-fermentations.eng
dc.description.curricularareaÁrea Curricular de Bioctecnologíaspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ciencias - Biotecnologíaspa
dc.description.researchareaDiseño Racional de Bioprocesosspa
dc.format.extent210 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83418
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Biotecnologíaspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesL. Pedraza, “Análisis metabólico y termodinámico in silico para la biosíntesis de ácido 3-indolacético (AIA) a partir de glicerol en Azospirillum brasilense,” Universidad Nacional de Colombia, 2019.spa
dc.relation.referencesD. Puerta, “Diseño in silico de una red metabólica, a partir de cultivos microbianos mixtos, para un microorganismo chasís capaz de producir ácido propiónico a partir de glicerol crudo: aproximación desde la termodinámica y la ingeniería metabólica,” Universidad Nacional de Colombia, 2019spa
dc.relation.referencesL. Avendaño, “Diseño in silico de una plataforma biosintética que permita la valoración del gas de síntesis mediante su conversión en etileno, implementando herramientas de ingeniería metabólica,” Universidad Nacional de Colombia, 2019.spa
dc.relation.referencesR. Moscoviz, J. Toledo-Alarcón, E. Trably, and N. Bernet, “Electro-Fermentation: How To Drive Fermentation Using Electrochemical Systems,” Trends Biotechnol., vol. 34, no. 11, pp. 856–865, 2016, doi: 10.1016/j.tibtech.2016.04.009.spa
dc.relation.referencesU. von Stockar, The Role of Thermodynamics in Biochemical Engineering. 2013.spa
dc.relation.referencesU. Von Stockar and L. A. M. Van Der Wielen, “Thermodynamics in biochemical engineering,” J. Biotechnol., vol. 59, no. 1–2, pp. 25–37, Dec. 1997, doi: 10.1016/S0168-1656(97)00167-3.spa
dc.relation.referencesM. C. Flickinger, J. J. Heijnen, and R. Kleerebezem, “Bioenergetics of Microbial Growth,” in Encyclopedia of Industrial Biotechnology, Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010.spa
dc.relation.referencesU. Von Stockar, “Biothermodynamics of live cells: A tool for biotechnology and biochemical engineering,” J. Non-Equilibrium Thermodyn., vol. 35, no. 4, pp. 415–475, Dec. 2010, doi: 10.1515/JNETDY.2010.024/MACHINEREADABLECITATION/RIS.spa
dc.relation.referencesH. F. Cueto-Rojas, A. J. A. van Maris, S. A. Wahl, and J. J. Heijnen, “Thermodynamics-based design of microbial cell factories for anaerobic product formation,” Trends in Biotechnology, vol. 33, no. 9. Elsevier Ltd, pp. 534–546, Sep. 01, 2015, doi: 10.1016/j.tibtech.2015.06.010.spa
dc.relation.referencesB. Kim, W. J. Kim, D. I. Kim, and S. Y. Lee, “Applications of genome-scale metabolic network model in metabolic engineering,” J. Ind. Microbiol. Biotechnol., vol. 42, no. 3, pp. 339–348, Jan. 2015, doi: 10.1007/s10295-014-1554-9.spa
dc.relation.referencesM. R. Long, W. K. Ong, and J. L. Reed, “Computational methods in metabolic engineering for strain design,” Current Opinion in Biotechnology, vol. 34. Elsevier Ltd, pp. 135–141, Aug. 01, 2015, doi: 10.1016/j.copbio.2014.12.019.spa
dc.relation.referencesZ. A. King, C. J. Lloyd, A. M. Feist, and B. O. Palsson, “Next-generation genome-scale models for metabolic engineering,” Current Opinion in Biotechnology, vol. 35. Elsevier Ltd, pp. 23–29, Dec. 01, 2015, doi: 10.1016/j.copbio.2014.12.016.spa
dc.relation.referencesC. A. Suarez-Mendez, M. Hanemaaijer, A. ten Pierick, J. C. Wolters, J. J. Heijnen, and S. A. Wahl, “Interaction of storage carbohydrates and other cyclic fluxes with central metabolism: A quantitative approach by non-stationary 13C metabolic flux analysis,” Metab. Eng. Commun., vol. 3, pp. 52–63, Dec. 2016, doi: 10.1016/j.meteno.2016.01.001.spa
dc.relation.referencesJ. Jordà et al., “Glucose-methanol co-utilization in Pichia pastoris studied by metabolomics and instationary 13C flux analysis,” BMC Syst. Biol., vol. 7, Feb. 2013, doi: 10.1186/1752-0509-7-17.spa
dc.relation.referencesW. J. Kim, H. U. Kim, and S. Y. Lee, “Current state and applications of microbial genome-scale metabolic models,” Curr. Opin. Syst. Biol., vol. 2, pp. 10–18, 2017, doi: 10.1016/j.coisb.2017.03.001.spa
dc.relation.referencesH. U. Kim, T. Y. Kim, and S. Y. Lee, “Metabolic flux analysis and metabolic engineering of microorganisms,” Mol. Biosyst., vol. 4, no. 2, pp. 113–120, 2008, doi: 10.1039/b712395g.spa
dc.relation.referencesK. Rabaey et al., “Microbial ecology meets electrochemistry: electricity-driven and driving communities,” ISME J., vol. 1, pp. 9–18, 2007, doi: 10.1038/ismej.2007.4.spa
dc.relation.referencesK. Rabaey, “Bioelectrochemical Systems: From Extracellular Electron Transfer to Biotechnological Application,” Water Intell. Online, vol. 8, p. undefined-undefined, Dec. 2009, doi: 10.2166/9781780401621.spa
dc.relation.referencesB. Korth and F. Harnisch, “Spotlight on the energy harvest of electroactive microorganisms: The impact of the applied anode potential,” Front. Microbiol., vol. 10, no. JUN, Jun. 2019, doi: 10.3389/fmicb.2019.01352spa
dc.relation.referencesA. Sydow, T. Krieg, F. Mayer, J. Schrader, and D. Holtmann, “Electroactive bacteria—molecular mechanisms and genetic tools,” Appl. Microbiol. Biotechnol, vol. 98, no. 20, pp. 8481–8495, 2014, doi: 10.1007/s00253-014-6005-z.spa
dc.relation.referencesM. Firer-Sherwood, G. S. Pulcu, and S. J. Elliott, “Electrochemical interrogations of the Mtr cytochromes from Shewanella: opening a poten- tial window,” J Biol Inorg Chem, vol. 13, pp. 849–854, 2008.spa
dc.relation.referencesA. Sydow, T. Krieg, F. Mayer, J. Schrader, and D. Holtmann, “Electroactive bacteria—molecular mechanisms and genetic tools,” Appl. Microbiol. Biotechnol., vol. 98, no. 20, pp. 8481–8495, 2014, doi: 10.1007/s00253-014-6005-z.spa
dc.relation.referencesC. Bücking, M. Schicklberger, and J. Gescher, “The Biochemistry of Dissimilatory Ferric Iron and Manganese Reduction in Shewanella oneidensis,” in Microbial Metal Respiration, A. Kappler and J. Gescher, Eds. Verlag Berlin Heidelberg: Springer.spa
dc.relation.referencesK. Rabaey, L. Angenent, U. Schröder, and J. Keller, Bioelectrochemical systems: from extracellular electrons transfer to biotechnological application. London: IWA Publishing, 2010.spa
dc.relation.referencesF. Harnisch, L. F. M. Rosa, F. Kracke, B. Virdis, and J. O. Krömer, “Electrifying white biotechnology: Engineering and economic potential of electricity-driven bio-production,” ChemSusChem, vol. 8, no. 5, pp. 758–766, 2015, doi: 10.1002/cssc.201402736.spa
dc.relation.referencesM. Aghababaie, M. Farhadian, A. Jeihanipour, and D. Biria, “Effective factors on the performance of microbial fuel cells in wastewater treatment–a review,” Environ. Technol. Rev., vol. 4, no. 1, pp. 71–89, 2015, doi: 10.1080/09593330.2015.1077896.spa
dc.relation.referencesC. I. Torres, A. K. Marcus, H.-S. Lee, P. Parameswaran, R. Krajmalnik-Brown, and B. E. Rittmann, “A kinetic perspective on extracellular electron transfer by anode-respiring bacteria,” FEMS Microbiol. Rev., vol. 34, no. 1, pp. 3–17, Jan. 2010, doi: 10.1111/j.1574-6976.2009.00191.x.spa
dc.relation.referencesP. Arbter, W. Sabra, T. Utesch, Y. Hong, and A. Zeng, “Metabolomic and kinetic investigations on the electricity‐aided production of butanol by Clostridium pasteurianum strains,” Eng. Life Sci., p. elsc.202000035, Dec. 2020, doi: 10.1002/elsc.202000035.spa
dc.relation.references. Schroder, “Microbial Fuel Cells and Microbial Electrochemistry: Into the Next Century!,” ChemSusChem, vol. 5, pp. 959–961, 2012, doi: 10.1002/cssc.201200319.spa
dc.relation.referencesD. R. Lovley, “Microbial fuel cells: novel microbial physiologies and engineering approaches,” Curr. Opin. Biotechnol, vol. 17, pp. 327–332, 2006.spa
dc.relation.referencesY. Zhang and I. Angelidaki, “Microbial electrolysis cells turning to be versatile technology: recent advances and future challenges,” Water Res, vol. 56, pp. 11–25, 2014.spa
dc.relation.referencesK. Rabaey and R. A. Rozendal, “Microbial electrosynthesis– revisiting the electrical route for microbial production,” Nat. Rev. Microbiol, vol. 8, pp. 706–716, 2010.spa
dc.relation.referencesO. Choi, T. Kim, H. M. Woo, and Y. Um, “Electricity-driven metabolic shift through direct electron uptake by electroactive heterotroph Clostridium pasteurianum,” Sci. Rep., vol. 4, no. 1, p. 6961, May 2015, doi: 10.1038/srep06961.spa
dc.relation.referencesO. Choi, Y. Um, and B. I. Sang, “Butyrate production enhancement by Clostridium tyrobutyricum using electron mediators and a cathodic electron donor,” Biotechnol. Bioeng., vol. 109, no. 10, pp. 2494–2502, Oct. 2012, doi: 10.1002/bit.24520.spa
dc.relation.referencesJ. M. Flynn, D. E. Ross, K. A. Hunt, D. R. Bond, and J. A. Gralnick, “Enabling unbalanced fermentations by using engineered electrode- interfaced bacteria,” MBio, vol. 1, no. 5, Nov. 2010, doi: 10.1128/mBio.00190-10.spa
dc.relation.references“Basic overview of the working principle of a potentiostat/galvanostat (PGSTAT)-Electrochemical cell setup.”spa
dc.relation.referencesR. Emde and B. Schink, “Enhanced Propionate Formation by Propionibacterium freudenreichii subsp. freudenreichii in a Three-Electrode Amperometric Culture System Downloaded from,” 1990. Accessed: Jan. 31, 2021. [Online]. Available: http://aem.asm.org/.spa
dc.relation.referencesC. G. Liu, C. Xue, Y. H. Lin, and F. W. Bai, “Redox potential control and applications in microaerobic and anaerobic fermentations,” Biotechnology Advances, vol. 31, no. 2. Elsevier, pp. 257–265, Mar. 01, 2013, doi: 10.1016/j.biotechadv.2012.11.005.spa
dc.relation.referencesR. Emde and B. Schink, “Enhanced propionate formation by Propionibacterium freudenreichii subsp. freudenreichii in a three-electrode amperometric culture system,” Appl. Environ. Microbiol, vol. 56, pp. 2771–2776, 1990.spa
dc.relation.referencesR. Moscoviz, J. Toledo-Alarcón, E. Trably, and N. Bernet, “Electro-Fermentation: How To Drive Fermentation Using Electrochemical Systems,” Trends Biotechnol, vol. 34, no. 11, pp. 856–865, doi: 10.1016/j.tibtech.2016.04.009.spa
dc.relation.referencesB. Korth and F. Harnisch, “Modeling microbial electrosynthesis,” in Advances in Biochemical Engineering/Biotechnology, vol. 167, Springer Science and Business Media Deutschland GmbH, 2019, pp. 273–325.spa
dc.relation.referencesH. Rismani-Yazdi, A. D. Christy, S. M. Carver, Z. Yu, B. A. Dehority, and O. H. Tuovinen, “Effect of external resistance on bacterial diversity and metabolism in cellulose-fed microbial fuel cells,” Bioresour. Technol., vol. 102, no. 1, pp. 278–283, 2011, doi: 10.1016/j.biortech.2010.05.012.spa
dc.relation.referencesF. Kracke and J. O. Krömer, “Identifying target processes for microbial electrosynthesis by elementary mode analysis,” 2014, doi: 10.1186/s12859-014-0410-2.spa
dc.relation.referencesF. Kracke, B. Lai, S. Yu, and J. O. Krömer, “Balancing cellular redox metabolism in microbial electrosynthesis and electro fermentation – A chance for metabolic engineering,” Metabolic Engineering, vol. 45. Academic Press Inc., pp. 109–120, Jan. 01, 2018, doi: 10.1016/j.ymben.2017.12.003.spa
dc.relation.referencesT. D. Harrington et al., “The mechanism of neutral red-mediated microbial electrosynthesis in Escherichia coli: menaquinone reduction,” 2015, doi: 10.1016/j.biortech.2015.06.037.spa
dc.relation.referencesY. Anraku, “BACTERIAL ELECTRON TRANSPORT CHAINS,” https://doi.org/10.1146/annurev.bi.57.070188.000533, vol. 57, pp. 101–132, Nov. 2003, doi: 10.1146/ANNUREV.BI.57.070188.000533.spa
dc.relation.referencesL. Heirendt et al., “Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v.3.0,” Nat. Protoc. 2019 143, vol. 14, no. 3, pp. 639–702, Feb. 2019, doi: 10.1038/s41596-018-0098-2.spa
dc.relation.referencesZ. A. King, A. Dräger, A. Ebrahim, N. Sonnenschein, N. E. Lewis, and B. O. Palsson, “Escher: A Web Application for Building, Sharing, and Embedding Data-Rich Visualizations of Biological Pathways,” PLOS Comput. Biol., vol. 11, no. 8, p. e1004321, Aug. 2015, doi: 10.1371/JOURNAL.PCBI.1004321.spa
dc.relation.referencesP. Raybaut, “Spyder-documentation.” 2009, [Online]. Available: pythonhosted. org.spa
dc.relation.referencesO. Choi, T. Kim, H. M. Woo, and Y. Um, “Electricity-driven metabolic shift through direct electron uptake by electroactive heterotroph Clostridium pasteurianum,” Sci. Rep., vol. 4, no. 1, pp. 1–10, Nov. 2014, doi: 10.1038/srep06961.spa
dc.relation.referencesI. Vassilev, G. Gießelmann, S. K. Schwechheimer, C. Wittmann, B. Virdis, and J. O. Krömer, “Anodic electro-fermentation: Anaerobic production of L-Lysine by recombinant Corynebacterium glutamicum,” Biotechnol. Bioeng., vol. 115, no. 6, pp. 1499–1508, 2018, doi: 10.1002/bit.26562.spa
dc.relation.referencesC. G. Liu, C. Xue, Y. H. Lin, and F. W. Bai, “Redox potential control and applications in microaerobic and anaerobic fermentations,” Biotechnol. Adv., vol. 31, no. 2, pp. 257–265, 2013, doi: 10.1016/j.biotechadv.2012.11.005.spa
dc.relation.referencesB. Schuppert, B. Schink, and W. Trösch, “Batch and continuous production of propionic acid from whey permeate by Propionibacterium acidi-propionici in a three-electrode amperometric culture system,” Appl. Microbiol. Biotechnol., vol. 37, no. 5, pp. 549–553, Aug. 1992, doi: 10.1007/BF00240723.spa
dc.relation.referencesA. M. Feist et al., “A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information,” Mol. Syst. Biol., vol. 3, no. 1, p. 121, Jan. 2007, doi: 10.1038/MSB4100155.spa
dc.relation.referencesM. Zhou, J. Chen, S. Freguia, K. Rabaey, and J. Keller, “Carbon and electron fluxes during the electricity driven 1,3-propanediol biosynthesis from glycerol,” Environ. Sci. Technol., vol. 47, no. 19, pp. 11199–11205, Oct. 2013, doi: 10.1021/ES402132R/SUPPL_FILE/ES402132R_SI_001.PDF.spa
dc.relation.referencesC. Kim et al., “Anodic electro-fermentation of 3-hydroxypropionic acid from glycerol by recombinant Klebsiella pneumoniae L17 in a bioelectrochemical system,” Biotechnol. Biofuels, vol. 10, no. 1, p. 199, Aug. 2017, doi: 10.1186/s13068-017-0886-x.spa
dc.relation.referencesA. M. Feist et al., “A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information,” Mol. Syst. Biol., vol. 3, 2007, doi: 10.1038/MSB4100155.spa
dc.relation.referencesA. Özcan, Y. Şahin, A. Savaş Koparal, and M. A. Oturan, “Carbon sponge as a new cathode material for the electro-Fenton process: Comparison with carbon felt cathode and application to degradation of synthetic dye basic blue 3 in aqueous medium,” J. Electroanal. Chem., vol. 616, no. 1–2, pp. 71–78, May 2008, doi: 10.1016/J.JELECHEM.2008.01.002.spa
dc.relation.referencesS. Wang, Y. Zhu, Y. Yang, J. Li, and M. R. Hoffmann, “Electrochemical cell lysis of gram-positive and gram-negative bacteria: DNA extraction from environmental water samples,” Electrochim. Acta, vol. 338, Apr. 2020, doi: 10.1016/J.ELECTACTA.2020.135864.spa
dc.relation.referencesT. Zhang, R. O. Louro, J. O. Krömer, F. Kracke, and I. Vassilev, “Microbial electron transport and energy conservation-the foundation for optimizing bioelectrochemical systems Microbial electron transport in bioelectrochemical systems,” Front. Microbiol. | www.frontiersin.org, vol. 1, 2015, doi: 10.3389/fmicb.2015.00575.spa
dc.relation.referencesK. Sturm-Richter et al., “Unbalanced fermentation of glycerol in Escherichia coli via heterologous production of an electron transport chain and electrode interaction in microbial electrochemical cells,” Bioresour. Technol., vol. 186, pp. 89–96, Jun. 2015, doi: 10.1016/j.biortech.2015.02.116.spa
dc.relation.referencesJ. P. O’Brien and N. S. Malvankar, “A Simple and Low-Cost Procedure for Growing Geobacter sulfurreducens Cell Cultures and Biofilms in Bioelectrochemical Systems,” Curr. Protoc. Microbiol., vol. 43, no. 1, p. A.4K.1-A.4K.27, Nov. 2016, doi: 10.1002/CPMC.20.spa
dc.relation.referencesC. Koch, B. Korth, and F. Harnisch, “Microbial ecology-based engineering of Microbial Electrochemical Technologies,” Microb. Biotechnol., vol. 11, no. 1, pp. 22–38, Jan. 2018, doi: 10.1111/1751-7915.12802.spa
dc.relation.referencesM. Kanehisa, Y. Sato, and M. Kawashima, “KEGG mapping tools for uncovering hidden features in biological data,” Protein Sci., vol. 31, no. 1, pp. 47–53, Jan. 2022, doi: 10.1002/PRO.4172.spa
dc.relation.referencesJ. M. Flynn, D. E. Ross, K. A. Hunt, D. R. Bond, and J. A. Gralnick, “Enabling unbalanced fermentations by using engineered electrode- interfaced bacteria,” MBio, vol. 1, no. 5, Nov. 2010, doi: 10.1128/mBio.00190-10.spa
dc.relation.referencesJ. M. Monk et al., “Genome-scale metabolic reconstructions of multiple Escherichia coli strains highlight strain-specific adaptations to nutritional environments,” Proc. Natl. Acad. Sci. U. S. A., vol. 110, no. 50, pp. 20338–20343, Dec. 2013, doi: 10.1073/PNAS.1307797110/-/DCSUPPLEMENTAL.spa
dc.relation.referencesF. C. Neidhardt, “Chemical Composition of Escherichia Coli,” Escherichia coli Salmonella typhimurium - Cell. Mol. Biol., p. 2822, 1987, [Online]. Available: https://www.journals.uchicago.edu/doi/abs/10.1086/416059.spa
dc.relation.referencesJ. Pramanik and J. D. Keasling, “Stoichiometric model of Escherichia coli metabolism: Incorporation of growth-rate dependent biomass composition and mechanistic energy requirements,” Biotechnol. Bioeng., vol. 56, no. 4, pp. 398–421, 1997, doi: 10.1002/(SICI)1097-0290(19971120)56:4<398::AID-BIT6>3.0.CO;2-J.spa
dc.relation.referencesJ. A. Roels, “Application of Macroscopic Principles To Microbial Metabolism,” Ann. N. Y. Acad. Sci., vol. 369, no. 1, pp. 113–134, 1981, doi: 10.1111/j.1749-6632.1981.tb14182.x.spa
dc.relation.referencesF. Kracke, B. Virdis, P. V. Bernhardt, K. Rabaey, and J. O. Krömer, “Redox dependent metabolic shift in Clostridium autoethanogenum by extracellular electron supply,” Biotechnol. Biofuels, vol. 9, no. 1, pp. 1–12, 2016, doi: 10.1186/s13068-016-0663-2.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc570 - Biología::572 - Bioquímicaspa
dc.subject.lembBiotechnologyeng
dc.subject.lembElectrochemistryeng
dc.subject.lembElectroquímicaspa
dc.subject.lembBiotecnologíaspa
dc.subject.lembBiochemistryeng
dc.subject.lembBioquímicaspa
dc.subject.proposalOmicsspa
dc.subject.proposalIn silicospa
dc.subject.proposalIngeniería metabólicaspa
dc.subject.proposalDiseño Racional de Bioprocesosspa
dc.subject.proposalBiotermodinámicaspa
dc.subject.proposalMetabolic Engineeringeng
dc.subject.proposalRational Design of Bioprocesseseng
dc.subject.proposalBiothermodynamicseng
dc.titleExploración in silico de estrategias de electro-fermentación en el diseño racional de bioprocesosspa
dc.title.translatedIn-silico exploration of Electro-fermentation strategies in the Rational Design of Bioprocesseseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1017236136_2022.pdf
Tamaño:
2.04 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Biotecnología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: