Estimación robusta de la matriz de covarianza, para la selección óptima de portafolios de inversión

dc.contributorMedina Hurtado, Santiagospa
dc.contributorLaniado Rodas, Henryspa
dc.contributor.authorGutiérrez Sepúlveda, Danielaspa
dc.date.accessioned2019-07-03T02:05:03Zspa
dc.date.available2019-07-03T02:05:03Zspa
dc.date.issued2018-08-28spa
dc.description.abstractLos portafolios de inversión se encuentran constantemente expuestos a riesgos sistemáticos y no sistemáticos, generando rentabilidades variantes y sensibles a valores atípicos, es por ello que, con la estimación robusta del riesgo, se busca minimizar el impacto de inestabilidad que generan los datos atipicos en portafolios de gran dimensión. Se propone un método robusto de estimación de la matriz de covarianza basado en la teoría de encogimiento de la misma y en la teoría del recorte de la media de los rendimientos de las acciones que conforman el portafolio, por otro lado, se estudia la implementación de los métodos de estimación robusta de la matriz de covarianza: recorte chi-cuadrado en la distancia de Mahalanobis y Determininante Mínimo de la Matriz de Covarianza (MCD) en la selección de portafolios de gran dimensión y bajo la metodología de Rolling horizon. Adicionalmente, se compara el desempeño financiero de los tres métodos diferentes de estimación de la matriz de covarianza, en términos de la ratio de sharpe, del índice de turnover y varianza de los portafolios. También se presenta el análisis de sensibilidad del método robusto propuesto y se compara con el análisis de sensibilidad relacionado con las diferentes estimaciones clásicas de la matriz de covarianza. Se muestra la notoria estabilidad de la varianza de los rendimientos de las acciones ante la presencia de datos atípicos, cuando se utiliza el método de estimación de la matriz de covarianza propuestospa
dc.description.abstractAbstract: Investment portfolios are constantly exposed to systematic and non-systematic risks, generating variable returns that are sensitive to atypical values. For this reason, with the robust estimation of risk, the aim is to minimize the impact of instability generated by atypical data in portfolios of great dimension We propose a robust method of estimating the covariance matrix based on the theory of shrinkage of the same and the theory of the cut of the average of the yiel ds of the actions that make up the portfolio, on the other hand, we study the implementation of the methods of robust estimation of the covariance matrix: chi-square cut in the distance of Mahalanobis and Minimum Determinant of the covariance matrix (DCM) in the selection of large portfolios and under the rolling horizon methodology. Additionally, we compare the financial performance of the three different methods of estimating the covariance matrix, in terms of the sharpe ratio, the turnover index and variance of the portfolios. The sensitivity analysis of the proposed robust method is also presented and compared with the sensitivity analysis related to the classical estimation of the covariance matrix. The notorious stability of the variance of the yields of the actions is shown in the presence of atypical data, when the estimation method of the proposed covariance matrix is used.spa
dc.description.degreelevelMaestríaspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.eprintshttp://bdigital.unal.edu.co/67441/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/66415
dc.language.isospaspa
dc.relation.ispartofUniversidad Nacional de Colombia Sede Medellín Facultad de Minas Escuela de Ingeniería de la Organización Ingeniería Administrativaspa
dc.relation.ispartofIngeniería Administrativaspa
dc.relation.referencesGutiérrez Sepúlveda, Daniela (2018) Estimación robusta de la matriz de covarianza, para la selección óptima de portafolios de inversión. Maestría thesis, Universidad Nacional de Colombia - Sede Medellín.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc62 Ingeniería y operaciones afines / Engineeringspa
dc.subject.proposalMatriz de covarianza robustaspa
dc.subject.proposalMedia recortadaspa
dc.subject.proposalEncogimiento de la covarianzaspa
dc.subject.proposalRolling horizonspa
dc.subject.proposalDeterminante mínimo de la matriz de covarianza – MCDspa
dc.subject.proposalDistancia de Mahalanobisspa
dc.subject.proposalRobust covariance matrixspa
dc.subject.proposalTrimmeanspa
dc.subject.proposalMatrix covariance shringespa
dc.subject.proposalRolling horizontspa
dc.subject.proposalMinimum covariance determinat -MCDspa
dc.subject.proposalMahalanobis distance.spa
dc.titleEstimación robusta de la matriz de covarianza, para la selección óptima de portafolios de inversiónspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1128475973.2018.pdf
Tamaño:
11.68 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Administrativa