Evaluación de un surfactante de origen natural como dispersante en derrames de hidrocarburos en mares

dc.contributor.advisorRomero Hernández, Antoniospa
dc.contributor.advisorPérez Cordero, Alexanderspa
dc.contributor.authorHerazo Navajas, Duvanis Enriquespa
dc.date.accessioned2021-01-27T13:59:50Zspa
dc.date.available2021-01-27T13:59:50Zspa
dc.date.issued2020-06-20spa
dc.description.abstractAmong the different control agents for oil spill containment in the sea, natural dispersants are presented as a sustainable alternative to conventional chemical dispersants. This study analyzes the efficiency of a vegetable oil-based surfactant, used to disperse petroleum hidrocarbons present in salt wáter bodies. Because of this, its emulsification capacity was determined by means of the emulsification index E24, which found maximum values for crude oil emulsions of 19.1° and 29.8° API, at concentrations of 10 % and 5 % of oil-based surfactant, respectively. These concentrations were used to find the dispersion efficiency and the effect on the degradation of total petroleum hydrocarbons(TPH). On other note, dispersion efficiency was evaluated with two types of commercial hydrocarbons in Colombia: 19.1° API Castilla Blend crude oil and 29.8° API South Blend crude oil, through the implementation of the swirling flask test (SFT). The data showed an average dispersion effectiveness of 22.83% for Castilla Blend and 49.98% for South Blend crude oil, respectively. The effect on TPH degradation was achieved through a field test with a volume of 250 mL of Castilla Blend hydrocarbon (18.8º API) over 25 gallons of natural seawater, which resulted in an 88 % reduction in the average TPH levels for three treatments. These results reveal the potential of oil-based surfactant to be an ecological and economic solution in the control of oil spill containments.spa
dc.description.abstractEntre los diferentes agentes de control de derrames de hidrocarburos en mares, los dispersantes naturales se presentan como una alternativa sostenible frente a los convencionales dispersantes químicos. Este estudio analiza la eficiencia de una mezcla surfactante a partir de aceites vegetales, usada con el fin de dispersar hidrocarburos del petróleo presentes en cuerpos de agua salada. Para dicho propósito, se determinó su capacidad de emulsificación mediante el índice de emulsificación E24, encontrando valores máximos de emulsiones para crudos de 19.1° y 29.8° API, a concentraciones de 10 % y 5 % del surfactante natural, respectivamente. Estas concentraciones se utilizaron para encontrar la eficiencia de dispersión y el efecto sobre la degradación de HTP. Por otra parte, la eficiencia de dispersión se evaluó con dos tipos de hidrocarburos comerciales en Colombia: crudo Castilla Blend de 19.1° API y crudo South Blend 29.8° API, a través de la implementación de la prueba de matraz giratorio (SFT). Los datos mostraron un promedio de efectividad de dispersión del 22.83 % para el Castilla Blend y un 49.98 % para el crudo South Blend, respectivamente. Su efecto en degradación de HTP se realizó mediante una prueba de campo agregando un volumen de 250 mL de hidrocarburo Castilla Blend (18.8º API) sobre 25 galones de agua de mar natural, con lo que se obtuvo una reducción en los niveles promedios de HTP para tres tratamientos en un 88 %. Estos resultados revelan el potencial de la mezcla surfactante natural para ser una solución ecológica y económica en el control de derrames de hidrocarburos.spa
dc.description.additionalLínea de Investigación: Biotecnología ambientalspa
dc.description.degreelevelMaestríaspa
dc.description.sponsorshipBiogense S.A.Sspa
dc.format.extent89spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationHerazo, D, (2020). Tesis; Evaluación de un surfactante de origen natural como dispersante en derrames de hidrocarburos en mares. Universidad Nacional de Colombia. MedellÍn. Colombiaspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78937
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentEscuela de biocienciasspa
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Biotecnologíaspa
dc.relation.referencesAdebusoye, S., Ilori, M., Amund, O., Teniola, O., & Olatope, S. (2007). Microbial degradation of petroleum hydrocarbons in a polluted tropical stream. World Journal of Microbiology and Biotechnology, 23(8), 1149-1159.spa
dc.relation.referencesAguirre, L., & García, U. (2014). Biodegradación de petróleo por bacterias: algunos casos de estudio en el Golfo de México. ResearchGate, 641-652.spa
dc.relation.referencesAl-Majed, A., Adebayo, A., & Hossain, M. (2012). A sustainable approach to controlling oil spills.J Environ Manage, 113, 213-227.spa
dc.relation.referencesAlmeida, A., Costa , J., Carvalho, C., & Sousa , D. (2012). Evaluation of acute toxicity of a natural compound (+)- limonene epoxide and its anxiolytic-like action. Braien research, 56-62.spa
dc.relation.referencesAmodu, O., Ojumu, T., & Obed, S. (2013). Bioavailability of High Molecular Weight Polycyclic Aromatic Hydrocarbons Using Renewable Resources. Tech Open Sciences, 171-194.spa
dc.relation.referencesAnifowose, B., Lawler, D., van der Horst, D., & Chapman, L. (2012). Attacks on oil transport pipelines in Nigeria: a quantitative exploration and possible explanation of observed patterns. Applied Geography, 32(2), 636–651.spa
dc.relation.referencesAPHA-AWWA-WEF. (2012). Standard Methods for the Examination of Water and Wasterwater, 22th Ediotion, 5-38 a 5-43, método 5520D. APHA-AWWA-WEF.spa
dc.relation.referencesApril, T., Foght, J., & Currah, R. (2000). Hidrocarbon degrading filamentous fungi isolated from flare pit soils in northen and western Canada. Canadian Journal of Microbiology, 46(1), 38-49.spa
dc.relation.referencesAsimiea, O., & Sam-Wobo, S. (2011). The impact of hydrocarbon waste from brassoil terminal on the Phytoplancton and Periphyton communities of lower Brass River, Niger Delta, Nigeria.spa
dc.relation.referencesJournal of Emerging Trends in Engineering and Applied Sciences, 2(5), 729-733.spa
dc.relation.referencesAthas, J., Jun, K., McCafferty, C., Owoseni, O., John, V., & Raghavan, S. (2014). An effective dispersant for oil spills based on food-grade amphiphiles. Langmuir, 30(31), 9285-9294.spa
dc.relation.referencesAtlas, R., & Bartha, R. (2002). Ecología microbiana y microbiología ambiental. Ed. Addison Wesley.spa
dc.relation.referencesAtlas, R., & Bragg, J. (2009). Bioremediation of marine oil spills: when and when not-the Exxon Valdez experience. Microbial Biotechnology, 2(2), 213-221.spa
dc.relation.referencesAurand , D., Coelho, G., & Steen , A. (2001). Ten Years of Research by the U.S. Oil Industry to Evaluate the Ecological Issues of Dispersant Use: An Overview of the Past Decade. International Oil Spill Conference Proceedings , 429-434.spa
dc.relation.referencesBalakrishnan, S., Varughese, S., & Deshpande, A. (2006). Micellar characterisation of saponin from Sapindus mukorossi. Tenside Surfactants Detergents, 43(5), 262-268.spa
dc.relation.referencesBalandrin, M., Klocke, J., Wurtele, E., & Bollinger, W. (1985). Natural plant chemicals: sources of industrial and medicinal materials. Science, 1154-1160.spa
dc.relation.referencesBarcelo, D., & Bennett, J. (2016). Human health and environmental risks of unconventional shale gas hydrofracking. Sci. Total Environ, 544(15), 1139-1140.spa
dc.relation.referencesBecerra Gutiérrez, L., & Horna Acevedo, M. (2016). Aislamiento de microorganismos productores de biosurfactantes y lipasas a partir de efluentes residuales de camales y suelos contaminados con hidrocarburos. Scientia Agropecuaria, 23 - 31.spa
dc.relation.referencesBermúdez, L., & Rodríguez, L. (2013). Investigación en la gestión empresarial. Bogotá, D.C.: Ecoe Ediciones.spa
dc.relation.referencesBiswal, N. R., & Paria, S. (2014). Interfacial and wetting behavior of natural synthetic mixed surfactant systems. RSC Advances, 4(18), 9182-9188.spa
dc.relation.referencesBlondina, G. J., Singer, M., Lee, I., Ouano, M., Hodgins, M., Tjeerdema, R., y otros. (1999). Influence of salinity on petroleum accommodation by dispersants. Spill Science & Technology Bulletin, 5(2), 127-134.spa
dc.relation.referencesBly, M. (2011). Deepwater Horizon Accident Investigation Report. DIANE Publishing.spa
dc.relation.referencesBrandvik, P., Daling, P., Leirvik, F., & Krause, D. (2019). Interfacial tension between oil and seawater as a function of dispersant dosage. Marine Pollution Bulletin, 109-114.spa
dc.relation.referencesBrooijmans, R., Pastink, M., & Siezen, R. (2009). Hidrocarbon degrading bacteria: the oil spill clean up crew. Microbial Biotechnology, 2(6), 587-594.spa
dc.relation.referencesBrowm, C., & Fieldhouse, B. (2011). Enviroment Canada'S Methods For Assessing oil Spill Treating Agents. Elsevier.spa
dc.relation.referencesBrusseau, M. (1988). The impact of physical, chemical and biological factor son biodegradation. En R. Serra, Proceedings of the International Conference on Biotechnology for Soil Remediation: Scientific Basics and Practical Applications (págs. 81-98). 81-98: C.I.P.A. S.R.L.spa
dc.relation.referencesC.I. , B. (1937). The method of probits. Science, 38-39.spa
dc.relation.referencesCazarin, G., Augusto, L., & Melo, R. (2007). Doenças hematológicas e situações de risco ambiental: a importância do registro para a vigilância epidemiológica. Revista Brasileira de Epidemiologia, 10(3), 380-390.spa
dc.relation.referencesCerniglia, C., Gibson, D., & Van Baalen, C. (1980). Oxidation of naphthalene by cyanobacteria and microalgae. Journal of General Microbiology, 116(2), 495-500.spa
dc.relation.referencesChaineau, C., Rougeux, G., Yéprémian, C., & Oudot, J. (2005). Effects of nutrient concentration on the biodegradation of crude oil and associated microbial populations in the soil. Soil Biology and Biochemistry, 37(8), 1490-1497.spa
dc.relation.referencesChandra, S., Sharma, R., Singh, K., & Sharma, A. (2013). Application of bioremediation technology in the environment contaminated with petroleum hydrocarbon. Annals of Microbiology, 63(2), 417-431.spa
dc.relation.referencesChoi, S., Kwon, K., Sohn, J., & Kim, S. (2002). Evaluation of fertilizer additions to stimulate oil biodegradation in sand seashore mesocosmos. Journal of Microbiology and Biotechnology, 12(3), 431-436.spa
dc.relation.referencesClayton, J. R., Tsang, S. F., Frank, V., Marsden, P., & Harrington, J. (1992). Chemical dispersant agents: evaluation of three laboratory procedures for estimating performance. San Diego, Estados Unidos: Science Application International Corporation.spa
dc.relation.referencesColwell, R., Walker, J., & Cooney, J. (1977). Ecological aspects of microbial degradation of petroleum in the marine environment. Critical Reviews in Microbiology, 5(4), 423-445.spa
dc.relation.referencesCONAMA. (2011). Conselho Nacional do Meio Ambiente Brasil. Resolução n_430. CONAMA.spa
dc.relation.referencesCooney, J., Silver, S., & Beck, E. (1985). Factors influencing hydrocarbon degradation in three freshwater lakes. Microbial Ecology, 11(2), 127-137.spa
dc.relation.referencesCosta, A., Romão, L., Araújo, B., Lucas, S., Maciel, S., Wisniewski, A., y otros. (2012). Environmental strategies to remove volatile aromatic fractions (BTEX) from petroleum industry wastewater using biomass. Bioresource Technology, 105, 31-39.spa
dc.relation.referencesCoutinho, R., & Gomes, C. (2007). Técnicas para remediação de aquíferos contaminados por vazamentos de derivados de petróleo em postos de combustíveis. São Paulo, SP: XVII Simpósio Brasileiro de Recursos Hídricos.spa
dc.relation.referencesCruse, R. (1962). Structural Geometry in the Selection of Retardants and Dispersants for Use in Water Evaporation Suppression. Transport Processes, 219-233.spa
dc.relation.referencesDaling, P. S., Mackay, D., Mackay, N., & Brandvik, P. (1990). Droplet size distributions in chemical dispersion of oil-spills: towards a mathematical model. Oil and Chemical Pollution, 7(3), 173-198.spa
dc.relation.referencesDas, N., & Chandran, P. (2011). Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int, 1-13.spa
dc.relation.referencesDel´Arco, J., & de Franca, F. (2001). Influence of oil contamination levels on hydrocarbon biodegradation in sandy sediment. Environmental Pollution, 112(3), 515-519.spa
dc.relation.referencesDemopoulos, A., & Strom, D. G. (2012). Benthic Community Structure and Composition in Sediment from the Northern Gulf of Mexico Shoreline,Texas to Florida. U.S. Geological Survey (USGS).spa
dc.relation.referencesDepartamento Nacional de Planeación. (2019). Guía de distribución de los recursos del sistema general de regalías entre fondos y beneficiarios. Bogotá, D.C.: DNP.spa
dc.relation.referencesDhar, J., Bajpai, V., Setty, B., & Kamboj, V. (1989). Morphological changes in human spermatozoa as examined under scanning electron microscope after in vitro exposure to saponins isolated from sapindus mukorossi. Contraception, 39(5), 563-568.spa
dc.relation.referencesDíaz, M. P., Boy, K. G., Gigson, J. W., & Burges, J. G. (2002). Biodegradation of crude oil across a wide range of salinities by an extremely halotolerant bacterial consortium MPD-M, immobilized onto polypropylene fibers. Biotechnology and Bioengineering, 79(2), 145- 153.spa
dc.relation.referencesDoran, P. (1998). Principios de ingeniería de los bioprocesos. Editorial Acribia.spa
dc.relation.referencesDu, M., Huang, S., Zhang, J., Wang, J., Hu, L., & Jiang, J. (2015). Toxicolological test of saponins from Sapindus mukorossi Gaerth. Open Journal of Forestry, 5(7), 749-753.spa
dc.relation.referencesEcopetrol. (2014). Exportaciones de Crudo. Obtenido de Ecopetrol: https://www.ecopetrol.com.co/wps/portal/es/ecopetrol-web/productos-y- servicios/comercio-internacional/exportaciones/exportaciones-de- crudo/!ut/p/z0/04_Sj9CPykssy0xPLMnMz0vMAfIjo8ziLQIMHd09DQy9DQJDDQ0cjQzNP J3CHIMCvE30C7IdFQHDKlKO/spa
dc.relation.referencesEl-Tarabily, K. (2002). Total microbial activity and microbial composition of a mangrove sediment are reduced by oil pollution at a site in the Arabian Gulf Can. J. Microbiol., 48(2), 176-182.spa
dc.relation.referencesEnvironmental Protection Agency. (1994). Subpart J-Use of dispersants and other chemicals. Obtenido de EPA: https://www.epa.gov/emergency-response/40-code-federal- regulations-cfr-300900-920spa
dc.relation.referencesEnvironmental Protection Agency. (2012). Mid-Atlantic Risk Assessment: Risk-based Concentration. EPA (Environmental Protection Agency), United States. Obtenido de EPA: http://www.epa.gov/ reg3hwmd/risk/human/rb- concentration_table/Generic_Tables/index.htmspa
dc.relation.referencesEtkin, D. S. (1998). Factors in the dispersant use decision-making process: historical overview and look to the future. Canadá: Enviroment Canadá: Proceedings of the 21st Arctic and Marine Oilspill ProgramTechnical Seminar.spa
dc.relation.referencesExame. (2011). Mancha de óleo teve redução de 12 Km2 para 2 Km2. Obtenido de Exame: https://exame.abril.com.br/mundo/mancha-de-oleo-teve-reducao-de-12-km2-para-2- km2-2/spa
dc.relation.referencesFalatko, D. M. (1991). Effects of biologically reduced surfactants on the mobility and biodegradation of petroleum hydrocarbons. [Thesis]. Blackburg, VA: Virginia Polythecnic Institute and State University.spa
dc.relation.referencesFellenberg, G. (1980). Introdução aos problemas da poluição ambiental. São Paulo, SP: EPU.spa
dc.relation.referencesFilipsson, F., Åseda, B., & Karlsson. (1998). Limonene. Obtenido de World Health Organization: https://www.who.int/ipcs/publications/cicad/en/cicad05.pdf?ua=1spa
dc.relation.referencesFingas, M., Bier, I., Bobra, M., & Callaghan, S. (1991). Studies on the physical and chemical behavior of oil and dispersant mixtures. En International Oil Spill Conference (págs. 419- 426). Washington, D. C.: American Petroleum Institutw.spa
dc.relation.referencesFingas, M., Huang, E., Fieldhouse, B., Wang, L., & Mullin, J. (1996). The effect of energy, settling time and shaking time on the swirling flask dispersant apparatus. Spill Science & Technology Bulletin, 3(4), 193-194.spa
dc.relation.referencesGhagi, R., Satpute, S., Chopade, B., & Banpurkar, A. (2011). Study of functional properties of Sapindus mukorossi as a potential bio-surfactant. indian Journal of Science & Technology, 4(5).spa
dc.relation.referencesGiraldo J, D. (2014). Actividad emulsificante y de remoción de metales pesados del ramnolípido producido por Pseudomonas aeruginosa PB 25. Revista de la Sociedad Química del Perú.spa
dc.relation.referencesGong, Y., Zhao, X., Cai, Z., O'Reilly, S., Hao, X., & Zhao, D. (2014). A review of oil, dispersed oil and sediment interactions in the aquatic environment: influence on the fate, transport and remediation of oil spills. Mar Pollut Bull, 79(1-2), 16-33.spa
dc.relation.referencesGoswami, P., & Singh, H. D. (1991). Different modes of hydrocarbon uptake by two Pseudomonas species. Biotechnol Bioeng, 37(1), 1-11.spa
dc.relation.referencesGuillard, R. (1975). Culture ofphytoplankton for feeding marineinvertebrates, culture of marine invertebrateanimals. New York: Plenum Pres.spa
dc.relation.referencesHagerty, C. L., & Ramseur, J. L. (2010). Deepwater horizon oil spill. Selected issues for Congress. DIANE Publishing.spa
dc.relation.referencesHerrera, P. (2019). Eficacia disolvente y citotoxicidad del aceite de cáscara de limón (Citrus limon). Revista Estimatologica Herediana.spa
dc.relation.referencesHolliger, C., Gaspard, S., Glod, G., Heijman, C., Schumacher, W., Schwarzenbach, R., y otros. (1997). Contaminated environments in the subsurface and bioremediation: organic contaminants. FEMS Microbiology Review, 20(3-4), 517-523.spa
dc.relation.referencesHolmberg, K. (2001). Natural surfactants. Current Opinion in Colloid & Interface Science, 6(2), 148-159.spa
dc.relation.referencesInternational Petroleum Industry Environmental Conservation Association. (2001). Dipersantes y su papel en la respuesta a derrames de hidrocraburos. Londres: SERIE INFORME DE IPIECA.spa
dc.relation.referencesIPIECA-IOGP. (2015). Response strategy development using net environmental benefit analysis (NEBA). IPIECAIOGP Good Practice Guide Series, Oil Spill Response Joint Industry Project (OSR-JIP). IOGP Report 527. IOGP.spa
dc.relation.referencesIttner Bliss, C. (1934). THE METHOD OF PROBITS. Science, 38.spa
dc.relation.referencesJanbandhu, A., & Fulekar, M. (2011). Biodegradation of phenanthrene using adapted microbial consortium isolated from petrochemical contaminated environment. Journal of Hazardous Materials, 187(1-3), 333-340.spa
dc.relation.referencesJernelöv, A. (2010). The threats from oil spills: Now, then, and in the future. Ambio, 39(5-6), 353- 366.spa
dc.relation.referencesJiao, J., & Burguess, D. J. (2003). Rheology and stability of water-in oil in-water multiple emulsions containing Span 83 y Tween 80. AAPS pharm Scientists., 5(1), 1-12.spa
dc.relation.referencesJin, i., Wang, H., Jing, Y., & Liu, M. (2019). An efficient and environmental-friendly dispersant based on the synergy of amphiphilic surfactants for oil spill remediation. Chemosphere, 241 - 247.spa
dc.relation.referencesJun Li, L., & Hong, P. (2018). Water accelerated transformation of d-limonene induced by ultraviolet irradiation and air exposure. ELSEVIER, 434-441.spa
dc.relation.referencesKarimi, E., Jaafar, H., & Ahmad, S. (2011). Phytochemical analysis and antimicrobial activities of methanolic extracts of leaf stem and root from different varieties of Labisia pumila Benth. Molecules, 16(6), 4438-4450.spa
dc.relation.referencesKim, S., Choi, D., Sim, D., & Oh, Y. (2005). Evaluation of bioremediation effectiveness on crude oil- contaminated sand. Chemosphere, 59(6), 845-852.spa
dc.relation.referencesKujawinski, E., Kido, M., Valentine, D., Boysen, A., Longnecker, K., & Redmond, M. (2011). Fate of dispersants associated with the deepwater horizon oil spill. Environ Sci Technol, 45(4), 1298-1306.spa
dc.relation.referencesLandis, M., Kamal, A., Kovalcik, K., Croghan, C., Norris, G., & Bergdale, A. (2016). The impact of commercially treated oil and gas produced water discharges on bromide concentrations and modeled brominated trihalomethane disinfection byproducts at two downstream municipal drinking water plants in the upper Allegheny River, Pennsylvania. Sci. Total Environ, 542-Part A(15), 505-520.spa
dc.relation.referencesLebrero, R., Estrada, J., Muñoz, R., & Quijano, G. (2012). Toluene mass transfer characterization in a biotrickling filter. Biochemical Engineering Journal, 60, 44-49.spa
dc.relation.referencesLin, Q., & Mendelssohn, I. A. (2012). Impacts and recovery of the Deepwater Horizon oil spill on vegetation structure and function of coastal salt marshes in the Northern Gulf of Mexico. Environ. Sci. Technol, 46(7) , 3737–3743.spa
dc.relation.referencesLiu, Z., & Callies, U. (2019). Implications of using chemical dispersants to combat oil spills in the German Bight – Depiction by means of a Bayesian network. Environmental Pollution, 609- 620.spa
dc.relation.referencesMa´anit, A. (2011). Oil spill exposes Shell's ticking timebomb. Obtenido de The Guardian: http://www.guardian.co.uk/commentisfree/2011/aug/17/oil-spill-shell-timebombspa
dc.relation.referencesMachado, L. A. (2000). Aveia: forragem e cobertura do solo. Dorado: Embrapa. Agropecuária Oeste.spa
dc.relation.referencesMahmound, A., Aziza, Y., Abdeltif, A., & Rachida, M. (2008). Biosurfactant production by Bacillus strain injected in the petroleum reservoir. Journal of Industrial Microbiology Biotechnolgy, 35, 1303-1306.spa
dc.relation.referencesMarques, A., Moraes, R., & Maurat, M. (2009). Poluição Marinha, second. Rio de Janeiro: Ed. Interciência.spa
dc.relation.referencesMartínez, E., Ramírez, F., & Acosta, L. (2016). Emulsificación de petróleo crudo para su trasporte por oleoductos. Ingeniería. Investigación y Tecnología, 17(3), 395-403.spa
dc.relation.referencesMidori, A., & Coello, D. (2020). D-LIMONENO UN MONOTERPENO SUSTANCIAL PARA LA VIDA Y SU VINCULACIÓN CON EL CANNABIS Midori. Ciencia 2020, 117- 119.spa
dc.relation.referencesMitchell, F., & Holdway, D. (2000). The acute and chronic toxicity of the dispersants Corexit 9527 and 9500, water accommodated fraction (WAF) of crude oil, and dispersant enhanced WAF (DEWAF) to Hydra viridissima (green hydra). Water Research, 34(1), 343-348.spa
dc.relation.referencesMitra, S., & Dungan, S. (1997). Micellar properties of Quillaja saponin. 1. effects of temperature, salt and pH on solution properties. J. Agric. Food Chem., 45, 1587-1595.spa
dc.relation.referencesMolgaard, P., Chihaka, A., Lemmich, E., Furu, P., Windberg, C., Ingerslev, F., y otros. (2000). Biodegradability of the molluscicidal saponins of Phytolacca dodecandra. Regulatory Toxicology and Pharmacology, 32(3), 248-255.spa
dc.relation.referencesMoustafa, K. (2016). Oil, Earth mass and gravitational force. Sci. Total Environ, 548–549(1) , 479- 482.spa
dc.relation.referencesMulligan, C., & Gibbs, B. (1993). Factors influencing the economics of biosurfactants. En N. Kosaric, Biosurfactants, Production, Properties, Applications (págs. 329-371). New York: Marcel Deker.spa
dc.relation.referencesMuthusamy, K., Gopalakrishnan, S., Ravi, T., & Sivachidambaram, P. (2008). Biosurfactans: properties, commercial production and application. Current Science, 94(6), 736-747.spa
dc.relation.referencesNCP Product Schedule Manager. (Julio de 2020). U.S. Environmental Protection Agency. Obtenido de NCP Product Schedule (Products Available for Use on Oil Spills): https://www.epa.gov/emergency-response/ncp-product-schedule-products-available- use-oil-spillsspa
dc.relation.referencesNichols, W. (2001). The U.S. Environmental Protection Agency: National Oil and Hazardous Substances Pollution Contingency Plan, Subpart J Product Schedule, (40 CFR 300.900), OSC, 1479. EPA.spa
dc.relation.referencesNitschke, M., & Valadares, S. (2007). Biosurfactants in food industry. Trends in Food Science & Technology, 18(5), 252-259.spa
dc.relation.referencesOESP. (2013). O Estado de São Paulo. Diário, São Paulo.spa
dc.relation.referencesOjeda, M., Hernández, M., Domínguez, D., Pulido, A., & Hernández, G. (2008). Efecto del tipo de surfactantes en la restauración de Suelos Contaminados con Hidrocarburos de Petróleo. Obtenido de Universidad Juárez Autónoma de Tabasco: http://www.archivos.ujat.mx/dip/divulgacion%20y%20video%20cinetifico%202008/DAIA/ EOjedaM.pdfspa
dc.relation.referencesOmar, S., Büdecker, U., & Rehm, H. (1990). Degradation of oily sludge from a flotation unit by free and immobilized microorganisms. Appl. Environ. Microbiol, 34(2), 259-263.spa
dc.relation.referencesOstroumov, S. A. (2003). Studying effects of some surfactants and detergent some filter-feeding bivalves. Hydrobiologia, 50(1-3), 341-344.spa
dc.relation.referencesOudot, J., Merlin, F., & Pinvidic, P. (1998). Weathering rates of oil components in a bioremediation experiment in estuarine sediments. Marine Environmental Research, 45(2), 113- 125.spa
dc.relation.referencesOverholt, W., Marks, K., Romero, I., Hollander, D., Snell, T., & Kostka, J. (2015). Hydrocarbon- degrading bacteria exhibit a species-specific response to dispersed oil while moderating ecotoxicity. Appl Environ Microbiol., 82(2), 518-527.spa
dc.relation.referencesPeriódico El Colombiano. (2015). Gobierno atiende emergencia por derrame de petróleo en Cauca y Norte de Santander. Obtenido de El Colombiano: http://www.elcolombiano.com/colombia/gobierno-atiende-emergencia-por-derrame- de- petroleo-en-cauca-y-norte-de-santander-BX2550254spa
dc.relation.referencesPhan, C., Bakar, N., & Hamzah, A. (2013). A comparative study on biosurfactant activity of crude- oil degrading bacteria and its correlation to total petroleum hydrocarbon degradation. Bioremediation Journal, 17(4) , 240-251.spa
dc.relation.referencesPirôllo, M., Mariano, A., Lovaglio, R., Costa, S., Walter, V., Hausmann, R., y otros. (2008). Biosurfactant synthesis by Pseudomonas aeruginosa LBI isolated from a hydrocarbon- contaminated site. J Appl Microbiol, 105(5), 1484-1490.spa
dc.relation.referencesPlohl, K., Leskovšek, H., & Bricelj, M. (2002). Biological degradation of motor oil in water. Acta Chimica Slovenica, 49(2), 279-289.spa
dc.relation.referencesPradhan, A., & Bhattacharyya, A. (2017). Quest for an eco-friendly alternative surfactant: Surface and foam characteristics of natural surfactants. Journal of Cleaner Production, 150, 127- 134.spa
dc.relation.referencesRahman, K., Rahman, T., Kourkoutas, Y., Petsas, I., Marchant, R., & Banat, I. (2003). Enhanced bioremediation of n-alkane in petroleum sludge using bacterial consortium amended with rhamnolipid and micronutrients. Bioresource Technology, 90(2), 159-168.spa
dc.relation.referencesRahman, P., & Gakpe, E. (2008). Production, characterisation and applications of biosurfactants- review. Biotechnology, 7(2), 360-370.spa
dc.relation.referencesRaiger, L., & López, N. (2009). Los biosurfactantes y la industria petrolera. Química Viva, 8(3), 146-161.spa
dc.relation.referencesRamseur, J. (2010). Deepwater Horizon Oil Spill: The Fate of the Oil. Congressional Research Service, Library of Congress.spa
dc.relation.referencesRemtavares. (2010). La biorremediación puede ser útil para la degradación de algunos contaminantes. Obtenido de Madrid+d: https://www.madrimasd.org/blogs/remtavares/2010/03/22/131435spa
dc.relation.referencesRico-Martínez, R., Snell, T., & Shearer, T. (2013). Synergistic toxicity of Macondo crude oil and dispersant Corexit 9500A(®) to the Brachionus plicatilis species complex (Rotifera). Environ Pollut, 173, 5-10.spa
dc.relation.referencesRiojas, H., Gortáres, P., Mondaca, I., & Balderas, J. (2011). Aplicación de Tween 80 y D – Limoneno en la biorremediación de suelo contaminado por hidrocarburos. CONCYTEG, 571–584.spa
dc.relation.referencesRiojas, H., Gortáres, P., Mondaca, I., & Balderas, J. (2011). Sinergia en surfactantes para la remediación de suelos contaminados con hidrocarburos. Real Sociedad Española de Química, 243-249.spa
dc.relation.referencesRojas, A., N, G., Roldán, C., & Martínez, Z.-M. (2007). A field trial for an ex-situ bioremediation of a drilling mud-polluted site. Chemosphere, 1595–1600.spa
dc.relation.referencesRoy, D., Kommalapati, R., Mandava, S., Valsaraj, K., & Constant, W. (1997). Soil washing potential of a natural surfactant. Environ. Sci. Technol., 31(3), 670-675.spa
dc.relation.referencesSalati, S., Papa, G., & Adani, F. (2011). Perspective on the use of humic acids from biomass as natural surfactants for industrial applications. Biotechnology Advances, 29(6), 913-922.spa
dc.relation.referencesSihag, S., Pathak, H., & Jaroli, D. (2014). Factors affecting the rate of biodegradation of polyaromatic hydrocarbons. International Journal of Pure & Applied Bioscience, 2(3), 185- 202.spa
dc.relation.referencesSingh, B., & Sharma, R. (2015). Plant terpenes: defense responses, phylogenetic analysis, regulation and clinical applications. 3 Biotech, 129-152.spa
dc.relation.referencesSingh, R., Gupta, N., Singh, S., Singh, A., Suman, R., & Annie, K. (2002). Toxicity of Ionic and Nonionic Surfactants to Six Macrobes Found in Agra, India. Bulletin of Environmental Contamination and Toxicology, 69(2), 265-270.spa
dc.relation.referencesTanti, B., & Buragohain, K. (2013). Biodegradation of petroleum Tar by Pseudomonas Spp. from oil field of Assam, India. Bioremediation Journal, 17(2), 107-112.spa
dc.relation.referencesTechnical Group for Marine Pollution Preparedness and Response. (2016). Europeam Maritime Safety Agency. Obtenido de EMSA: http://www.emsa.europa.eu/emsa-documents/latest/item/2671-overview-of-national-dispersant-testing-and-approval- policies-in-the-eu.htmlspa
dc.relation.referencesTorres, D. (2003). El papel de los microorganismos en la biodegradación de compuestos tóxicos. Ecosistemas, 12(2), 1-5.spa
dc.relation.referencesTorres, L., Yadav, O., & Khan, E. (2016). A review on risk assessment techniques for hydraulic fracturing water and produced water management implemented in onshore unconventional oil and gas production. Sci. Total Environ, 539(1), 478–493.spa
dc.relation.referencesVarjani, S. (2014). Hydrocarbon Degrading and Biosurfactants (Bioemulsifiers) Producing Bacteria from Petroleum Oil Wells. Gandhinagar, India: Kadi Sarva Vishwavidyalaya.spa
dc.relation.referencesVarjani, S. J. (2017). Microbial degradation of petroleum hydrocarbons. Bioresource Technology, 223, 277-286.spa
dc.relation.referencesVarjani, S., & Upasani, V. (2013). Comparative studies on bacterial consortia for hydrocarbon degradation. Int. J. Innovative Res. Sci. Eng. Technol, 2(10) , 5377-5383.spa
dc.relation.referencesVelasco, J., & Volke, T. (2003). El composteo: una alternativa tecnológica para la biorremediación de suelos en México. Gaceta Ecológica, (66), 41-53.spa
dc.relation.referencesVillamar, F. (2004). Determinación de la toxicidad en dispersantes del petróleo mediante bioensayos para calular el LC50. Acta Oceanográfica del Pacífico, 147-154.spa
dc.relation.referencesWang, A., Li, Y., Yang, X., Bao, M., & Cheng, H. (2017). The enhanced stability and biodegradation of dispersed crude oil droplets by Xanthan Gum as an additive of chemical dispersant Mar. Mar Pollut Bull., 118(1-2), 275-280.spa
dc.relation.referencesWeiss, J., & Mushiolik, G. (2007). Factors affecting the droplet size of water-in-oil (w/o) and the oil globule size in water –in-oil-in-water emulsions (w/o/w). Journal of Dispersion Sciencie and Technology, 28(5), 703-717.spa
dc.relation.referencesWells, P. G., Anderson, J. W., & Mackay, D. (1984). Uniform methods for exposure regimes in aquatic toxicology experiments with chemically dispersed oils. En T. E. Allen, Oil Spill Chemical Dispersants: Research, Experience and Recommendations (págs. 23-37).spa
dc.relation.referencesFiladelfia, Estados Unidos: American Society for Testing and Materials.spa
dc.relation.referencesWilkes, H., Buckel, W., Golding, B., & Rabus, R. (2016). Metabolism of hydrocarbons in n-alkane utilizing anaerobic bacteria. J Mol Microbiol Biotechnol, 26(1-3), 138-151.spa
dc.relation.referencesWorld Health Organization. (2006). Guidelines for Drinking-water Quality: Incorporating First Addendum. In: Recommendations, third ed., vol. 1. Switzerland: WHO Library Cataloguing-in-Publication Data, WHO Press.spa
dc.relation.referencesYakimov, M., Timmis, K., & Golyshin, P. (2007). Obligated oil-degrading marine bacteria. Current Opinion in Biotechnology, 18(3), 257-266.spa
dc.relation.referencesYeung, C., Law, B., Milligan, T., Lee, K., Whyte, L., & Greer, C. (2011). Analysis of bacterial diversity and metals in produced water, seawater and sediments from an offshore oil and gas production platform. Mar Pollut Bull, 62(10), 2095-2105.spa
dc.relation.referencesYoussef, N., Simpson, D., & Duncan, K. (2007). In situ biosurfactant production by Bacillus strains injected into a limestone petroleum reservoirs. Applied and Environmental Microbiology, 73(4) , 1239-1247.spa
dc.relation.referencesZeinstra-Helfrich, M., Koops, W., & Murk, A. (2015). The NET effect of dispersants — a critical review of testing and modelling of surface oil dispersion. Marine Pollution Bulletin, 100(1).spa
dc.relation.referencesZhou, W., Wang, X., Chen, C., & Zhu, L. (2013). Enhanced soil washing of phenanthrene by a plant-derived natural biosurfactant, Sapindus saponin. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 425, 122-128.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc660 - Ingeniería químicaspa
dc.subject.proposalnatural surfactanteng
dc.subject.proposalsurfactante naturalspa
dc.subject.proposaldispersantseng
dc.subject.proposaldispersantesspa
dc.subject.proposalemulsioneng
dc.subject.proposalemulsiónspa
dc.subject.proposalDerrame de petróleospa
dc.subject.proposaloil spilleng
dc.subject.proposalHydrocarbon spilleng
dc.subject.proposalDerrame de hidrocarburosspa
dc.titleEvaluación de un surfactante de origen natural como dispersante en derrames de hidrocarburos en maresspa
dc.title.alternativeEvaluation of a surfactant of natural origin as dispersant in oil spills in seaspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1131105729.2020.pdf
Tamaño:
1.92 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Biotecnología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: