Evaluación de un surfactante de origen natural como dispersante en derrames de hidrocarburos en mares
| dc.contributor.advisor | Romero Hernández, Antonio | spa |
| dc.contributor.advisor | Pérez Cordero, Alexander | spa |
| dc.contributor.author | Herazo Navajas, Duvanis Enrique | spa |
| dc.date.accessioned | 2021-01-27T13:59:50Z | spa |
| dc.date.available | 2021-01-27T13:59:50Z | spa |
| dc.date.issued | 2020-06-20 | spa |
| dc.description.abstract | Among the different control agents for oil spill containment in the sea, natural dispersants are presented as a sustainable alternative to conventional chemical dispersants. This study analyzes the efficiency of a vegetable oil-based surfactant, used to disperse petroleum hidrocarbons present in salt wáter bodies. Because of this, its emulsification capacity was determined by means of the emulsification index E24, which found maximum values for crude oil emulsions of 19.1° and 29.8° API, at concentrations of 10 % and 5 % of oil-based surfactant, respectively. These concentrations were used to find the dispersion efficiency and the effect on the degradation of total petroleum hydrocarbons(TPH). On other note, dispersion efficiency was evaluated with two types of commercial hydrocarbons in Colombia: 19.1° API Castilla Blend crude oil and 29.8° API South Blend crude oil, through the implementation of the swirling flask test (SFT). The data showed an average dispersion effectiveness of 22.83% for Castilla Blend and 49.98% for South Blend crude oil, respectively. The effect on TPH degradation was achieved through a field test with a volume of 250 mL of Castilla Blend hydrocarbon (18.8º API) over 25 gallons of natural seawater, which resulted in an 88 % reduction in the average TPH levels for three treatments. These results reveal the potential of oil-based surfactant to be an ecological and economic solution in the control of oil spill containments. | spa |
| dc.description.abstract | Entre los diferentes agentes de control de derrames de hidrocarburos en mares, los dispersantes naturales se presentan como una alternativa sostenible frente a los convencionales dispersantes químicos. Este estudio analiza la eficiencia de una mezcla surfactante a partir de aceites vegetales, usada con el fin de dispersar hidrocarburos del petróleo presentes en cuerpos de agua salada. Para dicho propósito, se determinó su capacidad de emulsificación mediante el índice de emulsificación E24, encontrando valores máximos de emulsiones para crudos de 19.1° y 29.8° API, a concentraciones de 10 % y 5 % del surfactante natural, respectivamente. Estas concentraciones se utilizaron para encontrar la eficiencia de dispersión y el efecto sobre la degradación de HTP. Por otra parte, la eficiencia de dispersión se evaluó con dos tipos de hidrocarburos comerciales en Colombia: crudo Castilla Blend de 19.1° API y crudo South Blend 29.8° API, a través de la implementación de la prueba de matraz giratorio (SFT). Los datos mostraron un promedio de efectividad de dispersión del 22.83 % para el Castilla Blend y un 49.98 % para el crudo South Blend, respectivamente. Su efecto en degradación de HTP se realizó mediante una prueba de campo agregando un volumen de 250 mL de hidrocarburo Castilla Blend (18.8º API) sobre 25 galones de agua de mar natural, con lo que se obtuvo una reducción en los niveles promedios de HTP para tres tratamientos en un 88 %. Estos resultados revelan el potencial de la mezcla surfactante natural para ser una solución ecológica y económica en el control de derrames de hidrocarburos. | spa |
| dc.description.additional | Línea de Investigación: Biotecnología ambiental | spa |
| dc.description.degreelevel | Maestría | spa |
| dc.description.sponsorship | Biogense S.A.S | spa |
| dc.format.extent | 89 | spa |
| dc.format.mimetype | application/pdf | spa |
| dc.identifier.citation | Herazo, D, (2020). Tesis; Evaluación de un surfactante de origen natural como dispersante en derrames de hidrocarburos en mares. Universidad Nacional de Colombia. MedellÍn. Colombia | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/78937 | |
| dc.language.iso | spa | spa |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
| dc.publisher.department | Escuela de biociencias | spa |
| dc.publisher.program | Medellín - Ciencias - Maestría en Ciencias - Biotecnología | spa |
| dc.relation.references | Adebusoye, S., Ilori, M., Amund, O., Teniola, O., & Olatope, S. (2007). Microbial degradation of petroleum hydrocarbons in a polluted tropical stream. World Journal of Microbiology and Biotechnology, 23(8), 1149-1159. | spa |
| dc.relation.references | Aguirre, L., & García, U. (2014). Biodegradación de petróleo por bacterias: algunos casos de estudio en el Golfo de México. ResearchGate, 641-652. | spa |
| dc.relation.references | Al-Majed, A., Adebayo, A., & Hossain, M. (2012). A sustainable approach to controlling oil spills.J Environ Manage, 113, 213-227. | spa |
| dc.relation.references | Almeida, A., Costa , J., Carvalho, C., & Sousa , D. (2012). Evaluation of acute toxicity of a natural compound (+)- limonene epoxide and its anxiolytic-like action. Braien research, 56-62. | spa |
| dc.relation.references | Amodu, O., Ojumu, T., & Obed, S. (2013). Bioavailability of High Molecular Weight Polycyclic Aromatic Hydrocarbons Using Renewable Resources. Tech Open Sciences, 171-194. | spa |
| dc.relation.references | Anifowose, B., Lawler, D., van der Horst, D., & Chapman, L. (2012). Attacks on oil transport pipelines in Nigeria: a quantitative exploration and possible explanation of observed patterns. Applied Geography, 32(2), 636–651. | spa |
| dc.relation.references | APHA-AWWA-WEF. (2012). Standard Methods for the Examination of Water and Wasterwater, 22th Ediotion, 5-38 a 5-43, método 5520D. APHA-AWWA-WEF. | spa |
| dc.relation.references | April, T., Foght, J., & Currah, R. (2000). Hidrocarbon degrading filamentous fungi isolated from flare pit soils in northen and western Canada. Canadian Journal of Microbiology, 46(1), 38-49. | spa |
| dc.relation.references | Asimiea, O., & Sam-Wobo, S. (2011). The impact of hydrocarbon waste from brassoil terminal on the Phytoplancton and Periphyton communities of lower Brass River, Niger Delta, Nigeria. | spa |
| dc.relation.references | Journal of Emerging Trends in Engineering and Applied Sciences, 2(5), 729-733. | spa |
| dc.relation.references | Athas, J., Jun, K., McCafferty, C., Owoseni, O., John, V., & Raghavan, S. (2014). An effective dispersant for oil spills based on food-grade amphiphiles. Langmuir, 30(31), 9285-9294. | spa |
| dc.relation.references | Atlas, R., & Bartha, R. (2002). Ecología microbiana y microbiología ambiental. Ed. Addison Wesley. | spa |
| dc.relation.references | Atlas, R., & Bragg, J. (2009). Bioremediation of marine oil spills: when and when not-the Exxon Valdez experience. Microbial Biotechnology, 2(2), 213-221. | spa |
| dc.relation.references | Aurand , D., Coelho, G., & Steen , A. (2001). Ten Years of Research by the U.S. Oil Industry to Evaluate the Ecological Issues of Dispersant Use: An Overview of the Past Decade. International Oil Spill Conference Proceedings , 429-434. | spa |
| dc.relation.references | Balakrishnan, S., Varughese, S., & Deshpande, A. (2006). Micellar characterisation of saponin from Sapindus mukorossi. Tenside Surfactants Detergents, 43(5), 262-268. | spa |
| dc.relation.references | Balandrin, M., Klocke, J., Wurtele, E., & Bollinger, W. (1985). Natural plant chemicals: sources of industrial and medicinal materials. Science, 1154-1160. | spa |
| dc.relation.references | Barcelo, D., & Bennett, J. (2016). Human health and environmental risks of unconventional shale gas hydrofracking. Sci. Total Environ, 544(15), 1139-1140. | spa |
| dc.relation.references | Becerra Gutiérrez, L., & Horna Acevedo, M. (2016). Aislamiento de microorganismos productores de biosurfactantes y lipasas a partir de efluentes residuales de camales y suelos contaminados con hidrocarburos. Scientia Agropecuaria, 23 - 31. | spa |
| dc.relation.references | Bermúdez, L., & Rodríguez, L. (2013). Investigación en la gestión empresarial. Bogotá, D.C.: Ecoe Ediciones. | spa |
| dc.relation.references | Biswal, N. R., & Paria, S. (2014). Interfacial and wetting behavior of natural synthetic mixed surfactant systems. RSC Advances, 4(18), 9182-9188. | spa |
| dc.relation.references | Blondina, G. J., Singer, M., Lee, I., Ouano, M., Hodgins, M., Tjeerdema, R., y otros. (1999). Influence of salinity on petroleum accommodation by dispersants. Spill Science & Technology Bulletin, 5(2), 127-134. | spa |
| dc.relation.references | Bly, M. (2011). Deepwater Horizon Accident Investigation Report. DIANE Publishing. | spa |
| dc.relation.references | Brandvik, P., Daling, P., Leirvik, F., & Krause, D. (2019). Interfacial tension between oil and seawater as a function of dispersant dosage. Marine Pollution Bulletin, 109-114. | spa |
| dc.relation.references | Brooijmans, R., Pastink, M., & Siezen, R. (2009). Hidrocarbon degrading bacteria: the oil spill clean up crew. Microbial Biotechnology, 2(6), 587-594. | spa |
| dc.relation.references | Browm, C., & Fieldhouse, B. (2011). Enviroment Canada'S Methods For Assessing oil Spill Treating Agents. Elsevier. | spa |
| dc.relation.references | Brusseau, M. (1988). The impact of physical, chemical and biological factor son biodegradation. En R. Serra, Proceedings of the International Conference on Biotechnology for Soil Remediation: Scientific Basics and Practical Applications (págs. 81-98). 81-98: C.I.P.A. S.R.L. | spa |
| dc.relation.references | C.I. , B. (1937). The method of probits. Science, 38-39. | spa |
| dc.relation.references | Cazarin, G., Augusto, L., & Melo, R. (2007). Doenças hematológicas e situações de risco ambiental: a importância do registro para a vigilância epidemiológica. Revista Brasileira de Epidemiologia, 10(3), 380-390. | spa |
| dc.relation.references | Cerniglia, C., Gibson, D., & Van Baalen, C. (1980). Oxidation of naphthalene by cyanobacteria and microalgae. Journal of General Microbiology, 116(2), 495-500. | spa |
| dc.relation.references | Chaineau, C., Rougeux, G., Yéprémian, C., & Oudot, J. (2005). Effects of nutrient concentration on the biodegradation of crude oil and associated microbial populations in the soil. Soil Biology and Biochemistry, 37(8), 1490-1497. | spa |
| dc.relation.references | Chandra, S., Sharma, R., Singh, K., & Sharma, A. (2013). Application of bioremediation technology in the environment contaminated with petroleum hydrocarbon. Annals of Microbiology, 63(2), 417-431. | spa |
| dc.relation.references | Choi, S., Kwon, K., Sohn, J., & Kim, S. (2002). Evaluation of fertilizer additions to stimulate oil biodegradation in sand seashore mesocosmos. Journal of Microbiology and Biotechnology, 12(3), 431-436. | spa |
| dc.relation.references | Clayton, J. R., Tsang, S. F., Frank, V., Marsden, P., & Harrington, J. (1992). Chemical dispersant agents: evaluation of three laboratory procedures for estimating performance. San Diego, Estados Unidos: Science Application International Corporation. | spa |
| dc.relation.references | Colwell, R., Walker, J., & Cooney, J. (1977). Ecological aspects of microbial degradation of petroleum in the marine environment. Critical Reviews in Microbiology, 5(4), 423-445. | spa |
| dc.relation.references | CONAMA. (2011). Conselho Nacional do Meio Ambiente Brasil. Resolução n_430. CONAMA. | spa |
| dc.relation.references | Cooney, J., Silver, S., & Beck, E. (1985). Factors influencing hydrocarbon degradation in three freshwater lakes. Microbial Ecology, 11(2), 127-137. | spa |
| dc.relation.references | Costa, A., Romão, L., Araújo, B., Lucas, S., Maciel, S., Wisniewski, A., y otros. (2012). Environmental strategies to remove volatile aromatic fractions (BTEX) from petroleum industry wastewater using biomass. Bioresource Technology, 105, 31-39. | spa |
| dc.relation.references | Coutinho, R., & Gomes, C. (2007). Técnicas para remediação de aquíferos contaminados por vazamentos de derivados de petróleo em postos de combustíveis. São Paulo, SP: XVII Simpósio Brasileiro de Recursos Hídricos. | spa |
| dc.relation.references | Cruse, R. (1962). Structural Geometry in the Selection of Retardants and Dispersants for Use in Water Evaporation Suppression. Transport Processes, 219-233. | spa |
| dc.relation.references | Daling, P. S., Mackay, D., Mackay, N., & Brandvik, P. (1990). Droplet size distributions in chemical dispersion of oil-spills: towards a mathematical model. Oil and Chemical Pollution, 7(3), 173-198. | spa |
| dc.relation.references | Das, N., & Chandran, P. (2011). Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int, 1-13. | spa |
| dc.relation.references | Del´Arco, J., & de Franca, F. (2001). Influence of oil contamination levels on hydrocarbon biodegradation in sandy sediment. Environmental Pollution, 112(3), 515-519. | spa |
| dc.relation.references | Demopoulos, A., & Strom, D. G. (2012). Benthic Community Structure and Composition in Sediment from the Northern Gulf of Mexico Shoreline,Texas to Florida. U.S. Geological Survey (USGS). | spa |
| dc.relation.references | Departamento Nacional de Planeación. (2019). Guía de distribución de los recursos del sistema general de regalías entre fondos y beneficiarios. Bogotá, D.C.: DNP. | spa |
| dc.relation.references | Dhar, J., Bajpai, V., Setty, B., & Kamboj, V. (1989). Morphological changes in human spermatozoa as examined under scanning electron microscope after in vitro exposure to saponins isolated from sapindus mukorossi. Contraception, 39(5), 563-568. | spa |
| dc.relation.references | Díaz, M. P., Boy, K. G., Gigson, J. W., & Burges, J. G. (2002). Biodegradation of crude oil across a wide range of salinities by an extremely halotolerant bacterial consortium MPD-M, immobilized onto polypropylene fibers. Biotechnology and Bioengineering, 79(2), 145- 153. | spa |
| dc.relation.references | Doran, P. (1998). Principios de ingeniería de los bioprocesos. Editorial Acribia. | spa |
| dc.relation.references | Du, M., Huang, S., Zhang, J., Wang, J., Hu, L., & Jiang, J. (2015). Toxicolological test of saponins from Sapindus mukorossi Gaerth. Open Journal of Forestry, 5(7), 749-753. | spa |
| dc.relation.references | Ecopetrol. (2014). Exportaciones de Crudo. Obtenido de Ecopetrol: https://www.ecopetrol.com.co/wps/portal/es/ecopetrol-web/productos-y- servicios/comercio-internacional/exportaciones/exportaciones-de- crudo/!ut/p/z0/04_Sj9CPykssy0xPLMnMz0vMAfIjo8ziLQIMHd09DQy9DQJDDQ0cjQzNP J3CHIMCvE30C7IdFQHDKlKO/ | spa |
| dc.relation.references | El-Tarabily, K. (2002). Total microbial activity and microbial composition of a mangrove sediment are reduced by oil pollution at a site in the Arabian Gulf Can. J. Microbiol., 48(2), 176-182. | spa |
| dc.relation.references | Environmental Protection Agency. (1994). Subpart J-Use of dispersants and other chemicals. Obtenido de EPA: https://www.epa.gov/emergency-response/40-code-federal- regulations-cfr-300900-920 | spa |
| dc.relation.references | Environmental Protection Agency. (2012). Mid-Atlantic Risk Assessment: Risk-based Concentration. EPA (Environmental Protection Agency), United States. Obtenido de EPA: http://www.epa.gov/ reg3hwmd/risk/human/rb- concentration_table/Generic_Tables/index.htm | spa |
| dc.relation.references | Etkin, D. S. (1998). Factors in the dispersant use decision-making process: historical overview and look to the future. Canadá: Enviroment Canadá: Proceedings of the 21st Arctic and Marine Oilspill ProgramTechnical Seminar. | spa |
| dc.relation.references | Exame. (2011). Mancha de óleo teve redução de 12 Km2 para 2 Km2. Obtenido de Exame: https://exame.abril.com.br/mundo/mancha-de-oleo-teve-reducao-de-12-km2-para-2- km2-2/ | spa |
| dc.relation.references | Falatko, D. M. (1991). Effects of biologically reduced surfactants on the mobility and biodegradation of petroleum hydrocarbons. [Thesis]. Blackburg, VA: Virginia Polythecnic Institute and State University. | spa |
| dc.relation.references | Fellenberg, G. (1980). Introdução aos problemas da poluição ambiental. São Paulo, SP: EPU. | spa |
| dc.relation.references | Filipsson, F., Åseda, B., & Karlsson. (1998). Limonene. Obtenido de World Health Organization: https://www.who.int/ipcs/publications/cicad/en/cicad05.pdf?ua=1 | spa |
| dc.relation.references | Fingas, M., Bier, I., Bobra, M., & Callaghan, S. (1991). Studies on the physical and chemical behavior of oil and dispersant mixtures. En International Oil Spill Conference (págs. 419- 426). Washington, D. C.: American Petroleum Institutw. | spa |
| dc.relation.references | Fingas, M., Huang, E., Fieldhouse, B., Wang, L., & Mullin, J. (1996). The effect of energy, settling time and shaking time on the swirling flask dispersant apparatus. Spill Science & Technology Bulletin, 3(4), 193-194. | spa |
| dc.relation.references | Ghagi, R., Satpute, S., Chopade, B., & Banpurkar, A. (2011). Study of functional properties of Sapindus mukorossi as a potential bio-surfactant. indian Journal of Science & Technology, 4(5). | spa |
| dc.relation.references | Giraldo J, D. (2014). Actividad emulsificante y de remoción de metales pesados del ramnolípido producido por Pseudomonas aeruginosa PB 25. Revista de la Sociedad Química del Perú. | spa |
| dc.relation.references | Gong, Y., Zhao, X., Cai, Z., O'Reilly, S., Hao, X., & Zhao, D. (2014). A review of oil, dispersed oil and sediment interactions in the aquatic environment: influence on the fate, transport and remediation of oil spills. Mar Pollut Bull, 79(1-2), 16-33. | spa |
| dc.relation.references | Goswami, P., & Singh, H. D. (1991). Different modes of hydrocarbon uptake by two Pseudomonas species. Biotechnol Bioeng, 37(1), 1-11. | spa |
| dc.relation.references | Guillard, R. (1975). Culture ofphytoplankton for feeding marineinvertebrates, culture of marine invertebrateanimals. New York: Plenum Pres. | spa |
| dc.relation.references | Hagerty, C. L., & Ramseur, J. L. (2010). Deepwater horizon oil spill. Selected issues for Congress. DIANE Publishing. | spa |
| dc.relation.references | Herrera, P. (2019). Eficacia disolvente y citotoxicidad del aceite de cáscara de limón (Citrus limon). Revista Estimatologica Herediana. | spa |
| dc.relation.references | Holliger, C., Gaspard, S., Glod, G., Heijman, C., Schumacher, W., Schwarzenbach, R., y otros. (1997). Contaminated environments in the subsurface and bioremediation: organic contaminants. FEMS Microbiology Review, 20(3-4), 517-523. | spa |
| dc.relation.references | Holmberg, K. (2001). Natural surfactants. Current Opinion in Colloid & Interface Science, 6(2), 148-159. | spa |
| dc.relation.references | International Petroleum Industry Environmental Conservation Association. (2001). Dipersantes y su papel en la respuesta a derrames de hidrocraburos. Londres: SERIE INFORME DE IPIECA. | spa |
| dc.relation.references | IPIECA-IOGP. (2015). Response strategy development using net environmental benefit analysis (NEBA). IPIECAIOGP Good Practice Guide Series, Oil Spill Response Joint Industry Project (OSR-JIP). IOGP Report 527. IOGP. | spa |
| dc.relation.references | Ittner Bliss, C. (1934). THE METHOD OF PROBITS. Science, 38. | spa |
| dc.relation.references | Janbandhu, A., & Fulekar, M. (2011). Biodegradation of phenanthrene using adapted microbial consortium isolated from petrochemical contaminated environment. Journal of Hazardous Materials, 187(1-3), 333-340. | spa |
| dc.relation.references | Jernelöv, A. (2010). The threats from oil spills: Now, then, and in the future. Ambio, 39(5-6), 353- 366. | spa |
| dc.relation.references | Jiao, J., & Burguess, D. J. (2003). Rheology and stability of water-in oil in-water multiple emulsions containing Span 83 y Tween 80. AAPS pharm Scientists., 5(1), 1-12. | spa |
| dc.relation.references | Jin, i., Wang, H., Jing, Y., & Liu, M. (2019). An efficient and environmental-friendly dispersant based on the synergy of amphiphilic surfactants for oil spill remediation. Chemosphere, 241 - 247. | spa |
| dc.relation.references | Jun Li, L., & Hong, P. (2018). Water accelerated transformation of d-limonene induced by ultraviolet irradiation and air exposure. ELSEVIER, 434-441. | spa |
| dc.relation.references | Karimi, E., Jaafar, H., & Ahmad, S. (2011). Phytochemical analysis and antimicrobial activities of methanolic extracts of leaf stem and root from different varieties of Labisia pumila Benth. Molecules, 16(6), 4438-4450. | spa |
| dc.relation.references | Kim, S., Choi, D., Sim, D., & Oh, Y. (2005). Evaluation of bioremediation effectiveness on crude oil- contaminated sand. Chemosphere, 59(6), 845-852. | spa |
| dc.relation.references | Kujawinski, E., Kido, M., Valentine, D., Boysen, A., Longnecker, K., & Redmond, M. (2011). Fate of dispersants associated with the deepwater horizon oil spill. Environ Sci Technol, 45(4), 1298-1306. | spa |
| dc.relation.references | Landis, M., Kamal, A., Kovalcik, K., Croghan, C., Norris, G., & Bergdale, A. (2016). The impact of commercially treated oil and gas produced water discharges on bromide concentrations and modeled brominated trihalomethane disinfection byproducts at two downstream municipal drinking water plants in the upper Allegheny River, Pennsylvania. Sci. Total Environ, 542-Part A(15), 505-520. | spa |
| dc.relation.references | Lebrero, R., Estrada, J., Muñoz, R., & Quijano, G. (2012). Toluene mass transfer characterization in a biotrickling filter. Biochemical Engineering Journal, 60, 44-49. | spa |
| dc.relation.references | Lin, Q., & Mendelssohn, I. A. (2012). Impacts and recovery of the Deepwater Horizon oil spill on vegetation structure and function of coastal salt marshes in the Northern Gulf of Mexico. Environ. Sci. Technol, 46(7) , 3737–3743. | spa |
| dc.relation.references | Liu, Z., & Callies, U. (2019). Implications of using chemical dispersants to combat oil spills in the German Bight – Depiction by means of a Bayesian network. Environmental Pollution, 609- 620. | spa |
| dc.relation.references | Ma´anit, A. (2011). Oil spill exposes Shell's ticking timebomb. Obtenido de The Guardian: http://www.guardian.co.uk/commentisfree/2011/aug/17/oil-spill-shell-timebomb | spa |
| dc.relation.references | Machado, L. A. (2000). Aveia: forragem e cobertura do solo. Dorado: Embrapa. Agropecuária Oeste. | spa |
| dc.relation.references | Mahmound, A., Aziza, Y., Abdeltif, A., & Rachida, M. (2008). Biosurfactant production by Bacillus strain injected in the petroleum reservoir. Journal of Industrial Microbiology Biotechnolgy, 35, 1303-1306. | spa |
| dc.relation.references | Marques, A., Moraes, R., & Maurat, M. (2009). Poluição Marinha, second. Rio de Janeiro: Ed. Interciência. | spa |
| dc.relation.references | Martínez, E., Ramírez, F., & Acosta, L. (2016). Emulsificación de petróleo crudo para su trasporte por oleoductos. Ingeniería. Investigación y Tecnología, 17(3), 395-403. | spa |
| dc.relation.references | Midori, A., & Coello, D. (2020). D-LIMONENO UN MONOTERPENO SUSTANCIAL PARA LA VIDA Y SU VINCULACIÓN CON EL CANNABIS Midori. Ciencia 2020, 117- 119. | spa |
| dc.relation.references | Mitchell, F., & Holdway, D. (2000). The acute and chronic toxicity of the dispersants Corexit 9527 and 9500, water accommodated fraction (WAF) of crude oil, and dispersant enhanced WAF (DEWAF) to Hydra viridissima (green hydra). Water Research, 34(1), 343-348. | spa |
| dc.relation.references | Mitra, S., & Dungan, S. (1997). Micellar properties of Quillaja saponin. 1. effects of temperature, salt and pH on solution properties. J. Agric. Food Chem., 45, 1587-1595. | spa |
| dc.relation.references | Molgaard, P., Chihaka, A., Lemmich, E., Furu, P., Windberg, C., Ingerslev, F., y otros. (2000). Biodegradability of the molluscicidal saponins of Phytolacca dodecandra. Regulatory Toxicology and Pharmacology, 32(3), 248-255. | spa |
| dc.relation.references | Moustafa, K. (2016). Oil, Earth mass and gravitational force. Sci. Total Environ, 548–549(1) , 479- 482. | spa |
| dc.relation.references | Mulligan, C., & Gibbs, B. (1993). Factors influencing the economics of biosurfactants. En N. Kosaric, Biosurfactants, Production, Properties, Applications (págs. 329-371). New York: Marcel Deker. | spa |
| dc.relation.references | Muthusamy, K., Gopalakrishnan, S., Ravi, T., & Sivachidambaram, P. (2008). Biosurfactans: properties, commercial production and application. Current Science, 94(6), 736-747. | spa |
| dc.relation.references | NCP Product Schedule Manager. (Julio de 2020). U.S. Environmental Protection Agency. Obtenido de NCP Product Schedule (Products Available for Use on Oil Spills): https://www.epa.gov/emergency-response/ncp-product-schedule-products-available- use-oil-spills | spa |
| dc.relation.references | Nichols, W. (2001). The U.S. Environmental Protection Agency: National Oil and Hazardous Substances Pollution Contingency Plan, Subpart J Product Schedule, (40 CFR 300.900), OSC, 1479. EPA. | spa |
| dc.relation.references | Nitschke, M., & Valadares, S. (2007). Biosurfactants in food industry. Trends in Food Science & Technology, 18(5), 252-259. | spa |
| dc.relation.references | OESP. (2013). O Estado de São Paulo. Diário, São Paulo. | spa |
| dc.relation.references | Ojeda, M., Hernández, M., Domínguez, D., Pulido, A., & Hernández, G. (2008). Efecto del tipo de surfactantes en la restauración de Suelos Contaminados con Hidrocarburos de Petróleo. Obtenido de Universidad Juárez Autónoma de Tabasco: http://www.archivos.ujat.mx/dip/divulgacion%20y%20video%20cinetifico%202008/DAIA/ EOjedaM.pdf | spa |
| dc.relation.references | Omar, S., Büdecker, U., & Rehm, H. (1990). Degradation of oily sludge from a flotation unit by free and immobilized microorganisms. Appl. Environ. Microbiol, 34(2), 259-263. | spa |
| dc.relation.references | Ostroumov, S. A. (2003). Studying effects of some surfactants and detergent some filter-feeding bivalves. Hydrobiologia, 50(1-3), 341-344. | spa |
| dc.relation.references | Oudot, J., Merlin, F., & Pinvidic, P. (1998). Weathering rates of oil components in a bioremediation experiment in estuarine sediments. Marine Environmental Research, 45(2), 113- 125. | spa |
| dc.relation.references | Overholt, W., Marks, K., Romero, I., Hollander, D., Snell, T., & Kostka, J. (2015). Hydrocarbon- degrading bacteria exhibit a species-specific response to dispersed oil while moderating ecotoxicity. Appl Environ Microbiol., 82(2), 518-527. | spa |
| dc.relation.references | Periódico El Colombiano. (2015). Gobierno atiende emergencia por derrame de petróleo en Cauca y Norte de Santander. Obtenido de El Colombiano: http://www.elcolombiano.com/colombia/gobierno-atiende-emergencia-por-derrame- de- petroleo-en-cauca-y-norte-de-santander-BX2550254 | spa |
| dc.relation.references | Phan, C., Bakar, N., & Hamzah, A. (2013). A comparative study on biosurfactant activity of crude- oil degrading bacteria and its correlation to total petroleum hydrocarbon degradation. Bioremediation Journal, 17(4) , 240-251. | spa |
| dc.relation.references | Pirôllo, M., Mariano, A., Lovaglio, R., Costa, S., Walter, V., Hausmann, R., y otros. (2008). Biosurfactant synthesis by Pseudomonas aeruginosa LBI isolated from a hydrocarbon- contaminated site. J Appl Microbiol, 105(5), 1484-1490. | spa |
| dc.relation.references | Plohl, K., Leskovšek, H., & Bricelj, M. (2002). Biological degradation of motor oil in water. Acta Chimica Slovenica, 49(2), 279-289. | spa |
| dc.relation.references | Pradhan, A., & Bhattacharyya, A. (2017). Quest for an eco-friendly alternative surfactant: Surface and foam characteristics of natural surfactants. Journal of Cleaner Production, 150, 127- 134. | spa |
| dc.relation.references | Rahman, K., Rahman, T., Kourkoutas, Y., Petsas, I., Marchant, R., & Banat, I. (2003). Enhanced bioremediation of n-alkane in petroleum sludge using bacterial consortium amended with rhamnolipid and micronutrients. Bioresource Technology, 90(2), 159-168. | spa |
| dc.relation.references | Rahman, P., & Gakpe, E. (2008). Production, characterisation and applications of biosurfactants- review. Biotechnology, 7(2), 360-370. | spa |
| dc.relation.references | Raiger, L., & López, N. (2009). Los biosurfactantes y la industria petrolera. Química Viva, 8(3), 146-161. | spa |
| dc.relation.references | Ramseur, J. (2010). Deepwater Horizon Oil Spill: The Fate of the Oil. Congressional Research Service, Library of Congress. | spa |
| dc.relation.references | Remtavares. (2010). La biorremediación puede ser útil para la degradación de algunos contaminantes. Obtenido de Madrid+d: https://www.madrimasd.org/blogs/remtavares/2010/03/22/131435 | spa |
| dc.relation.references | Rico-Martínez, R., Snell, T., & Shearer, T. (2013). Synergistic toxicity of Macondo crude oil and dispersant Corexit 9500A(®) to the Brachionus plicatilis species complex (Rotifera). Environ Pollut, 173, 5-10. | spa |
| dc.relation.references | Riojas, H., Gortáres, P., Mondaca, I., & Balderas, J. (2011). Aplicación de Tween 80 y D – Limoneno en la biorremediación de suelo contaminado por hidrocarburos. CONCYTEG, 571–584. | spa |
| dc.relation.references | Riojas, H., Gortáres, P., Mondaca, I., & Balderas, J. (2011). Sinergia en surfactantes para la remediación de suelos contaminados con hidrocarburos. Real Sociedad Española de Química, 243-249. | spa |
| dc.relation.references | Rojas, A., N, G., Roldán, C., & Martínez, Z.-M. (2007). A field trial for an ex-situ bioremediation of a drilling mud-polluted site. Chemosphere, 1595–1600. | spa |
| dc.relation.references | Roy, D., Kommalapati, R., Mandava, S., Valsaraj, K., & Constant, W. (1997). Soil washing potential of a natural surfactant. Environ. Sci. Technol., 31(3), 670-675. | spa |
| dc.relation.references | Salati, S., Papa, G., & Adani, F. (2011). Perspective on the use of humic acids from biomass as natural surfactants for industrial applications. Biotechnology Advances, 29(6), 913-922. | spa |
| dc.relation.references | Sihag, S., Pathak, H., & Jaroli, D. (2014). Factors affecting the rate of biodegradation of polyaromatic hydrocarbons. International Journal of Pure & Applied Bioscience, 2(3), 185- 202. | spa |
| dc.relation.references | Singh, B., & Sharma, R. (2015). Plant terpenes: defense responses, phylogenetic analysis, regulation and clinical applications. 3 Biotech, 129-152. | spa |
| dc.relation.references | Singh, R., Gupta, N., Singh, S., Singh, A., Suman, R., & Annie, K. (2002). Toxicity of Ionic and Nonionic Surfactants to Six Macrobes Found in Agra, India. Bulletin of Environmental Contamination and Toxicology, 69(2), 265-270. | spa |
| dc.relation.references | Tanti, B., & Buragohain, K. (2013). Biodegradation of petroleum Tar by Pseudomonas Spp. from oil field of Assam, India. Bioremediation Journal, 17(2), 107-112. | spa |
| dc.relation.references | Technical Group for Marine Pollution Preparedness and Response. (2016). Europeam Maritime Safety Agency. Obtenido de EMSA: http://www.emsa.europa.eu/emsa-documents/latest/item/2671-overview-of-national-dispersant-testing-and-approval- policies-in-the-eu.html | spa |
| dc.relation.references | Torres, D. (2003). El papel de los microorganismos en la biodegradación de compuestos tóxicos. Ecosistemas, 12(2), 1-5. | spa |
| dc.relation.references | Torres, L., Yadav, O., & Khan, E. (2016). A review on risk assessment techniques for hydraulic fracturing water and produced water management implemented in onshore unconventional oil and gas production. Sci. Total Environ, 539(1), 478–493. | spa |
| dc.relation.references | Varjani, S. (2014). Hydrocarbon Degrading and Biosurfactants (Bioemulsifiers) Producing Bacteria from Petroleum Oil Wells. Gandhinagar, India: Kadi Sarva Vishwavidyalaya. | spa |
| dc.relation.references | Varjani, S. J. (2017). Microbial degradation of petroleum hydrocarbons. Bioresource Technology, 223, 277-286. | spa |
| dc.relation.references | Varjani, S., & Upasani, V. (2013). Comparative studies on bacterial consortia for hydrocarbon degradation. Int. J. Innovative Res. Sci. Eng. Technol, 2(10) , 5377-5383. | spa |
| dc.relation.references | Velasco, J., & Volke, T. (2003). El composteo: una alternativa tecnológica para la biorremediación de suelos en México. Gaceta Ecológica, (66), 41-53. | spa |
| dc.relation.references | Villamar, F. (2004). Determinación de la toxicidad en dispersantes del petróleo mediante bioensayos para calular el LC50. Acta Oceanográfica del Pacífico, 147-154. | spa |
| dc.relation.references | Wang, A., Li, Y., Yang, X., Bao, M., & Cheng, H. (2017). The enhanced stability and biodegradation of dispersed crude oil droplets by Xanthan Gum as an additive of chemical dispersant Mar. Mar Pollut Bull., 118(1-2), 275-280. | spa |
| dc.relation.references | Weiss, J., & Mushiolik, G. (2007). Factors affecting the droplet size of water-in-oil (w/o) and the oil globule size in water –in-oil-in-water emulsions (w/o/w). Journal of Dispersion Sciencie and Technology, 28(5), 703-717. | spa |
| dc.relation.references | Wells, P. G., Anderson, J. W., & Mackay, D. (1984). Uniform methods for exposure regimes in aquatic toxicology experiments with chemically dispersed oils. En T. E. Allen, Oil Spill Chemical Dispersants: Research, Experience and Recommendations (págs. 23-37). | spa |
| dc.relation.references | Filadelfia, Estados Unidos: American Society for Testing and Materials. | spa |
| dc.relation.references | Wilkes, H., Buckel, W., Golding, B., & Rabus, R. (2016). Metabolism of hydrocarbons in n-alkane utilizing anaerobic bacteria. J Mol Microbiol Biotechnol, 26(1-3), 138-151. | spa |
| dc.relation.references | World Health Organization. (2006). Guidelines for Drinking-water Quality: Incorporating First Addendum. In: Recommendations, third ed., vol. 1. Switzerland: WHO Library Cataloguing-in-Publication Data, WHO Press. | spa |
| dc.relation.references | Yakimov, M., Timmis, K., & Golyshin, P. (2007). Obligated oil-degrading marine bacteria. Current Opinion in Biotechnology, 18(3), 257-266. | spa |
| dc.relation.references | Yeung, C., Law, B., Milligan, T., Lee, K., Whyte, L., & Greer, C. (2011). Analysis of bacterial diversity and metals in produced water, seawater and sediments from an offshore oil and gas production platform. Mar Pollut Bull, 62(10), 2095-2105. | spa |
| dc.relation.references | Youssef, N., Simpson, D., & Duncan, K. (2007). In situ biosurfactant production by Bacillus strains injected into a limestone petroleum reservoirs. Applied and Environmental Microbiology, 73(4) , 1239-1247. | spa |
| dc.relation.references | Zeinstra-Helfrich, M., Koops, W., & Murk, A. (2015). The NET effect of dispersants — a critical review of testing and modelling of surface oil dispersion. Marine Pollution Bulletin, 100(1). | spa |
| dc.relation.references | Zhou, W., Wang, X., Chen, C., & Zhu, L. (2013). Enhanced soil washing of phenanthrene by a plant-derived natural biosurfactant, Sapindus saponin. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 425, 122-128. | spa |
| dc.rights | Derechos reservados - Universidad Nacional de Colombia | spa |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
| dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
| dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
| dc.rights.spa | Acceso abierto | spa |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
| dc.subject.ddc | 660 - Ingeniería química | spa |
| dc.subject.proposal | natural surfactant | eng |
| dc.subject.proposal | surfactante natural | spa |
| dc.subject.proposal | dispersants | eng |
| dc.subject.proposal | dispersantes | spa |
| dc.subject.proposal | emulsion | eng |
| dc.subject.proposal | emulsión | spa |
| dc.subject.proposal | Derrame de petróleo | spa |
| dc.subject.proposal | oil spill | eng |
| dc.subject.proposal | Hydrocarbon spill | eng |
| dc.subject.proposal | Derrame de hidrocarburos | spa |
| dc.title | Evaluación de un surfactante de origen natural como dispersante en derrames de hidrocarburos en mares | spa |
| dc.title.alternative | Evaluation of a surfactant of natural origin as dispersant in oil spills in sea | spa |
| dc.type | Trabajo de grado - Maestría | spa |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
| dc.type.content | Text | spa |
| dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1131105729.2020.pdf
- Tamaño:
- 1.92 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Biotecnología
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 3.87 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:

