Aporte del análisis espectral para la estimación de carbono orgánico del suelo en cultivos de cítricos

dc.contributor.advisorPrieto Ortiz, Flavio Augusto
dc.contributor.advisorVelasquez Hernandez, Carlos Alberto
dc.contributor.authorVillamizar Marin, Luis Enrique
dc.contributor.cvlacVillamizar Marin, Luis Enrique [0001404535]spa
dc.contributor.googlescholarVillamizar Marin, Luis Enrique [y_Y8qHoAAAAJ]spa
dc.contributor.orcidVillamizar Marin, Luis Enrique [0009-0001-9837-9703]spa
dc.contributor.researchgateVillamizar, Luis [Luis-Villamizar-5]spa
dc.contributor.researchgroupGrupo de Automática de la Universidad Nacional Gaunalspa
dc.date.accessioned2023-06-22T16:18:13Z
dc.date.available2023-06-22T16:18:13Z
dc.date.issued2023
dc.descriptionilustraciones, fotografías a colorspa
dc.description.abstractEl análisis espectral ha surgido como una alternativa eficiente para el estudio y caracterización de las propiedades del suelo frente a los métodos convencionales. El carbono orgánico del suelo (COS) es un indicador clave para entender el estado del suelo y poder desarrollar prácticas sostenibles del uso del suelo. Este trabajo de investigación evalúa el potencial que tiene el análisis espectral para la estimación del COS en cultivos de cítricos en el municipio de Simacota en el departamento de Santander. Para ello se ajustaron y aplicaron protocolos para la toma de muestras de suelo y para realizar las mediciones espectrales. En total se adquirieron 490 muestras de suelos en la región, a las cuales se les tomaron las firmas espectrales en el rango visible (Vis) de 400 a 900 nm y en el rango del infrarrojo cercano (NIR) de 900 a 2500 nm. Se aplicaron distintos métodos de preprocesamiento a los datos espectrales para mejorar las características espectrales y reducir el ruido, así como métodos de reducción de dimensionalidad, con lo cual se pudieron identificar las longitudes de onda más importantes para la estimación. Se implementaron modelos de aprendizaje automático para la estimación del contenido de COS en los que se incluyeron la regresión de mínimos cuadrados parciales (PLSR), el regresor Cubist y dos modelos basados en redes convolucionales, VGG y Resnet. Los mejores resultados se obtuvieron con PLSR alcanzado un coeficiente de determinación $R^2=0.63$ para el conjunto de validación. Por otra parte, se definieron 2 y 4 grupos a partir del contenido de COS y se implementaron modelos para la clasificación en los que se incluyen los bosques aleatorios (RF), máquinas de vectores de soporte (SVM), clasificador de aumento de gradiente (GB) y los modelos de redes convoluciones configurados para la clasificación. Los mejores resultados de clasificación para 4 grupos alcanzaron una exactitud de 58\% con VGG y de 84\% para la clasificación con 2 grupos con RF. (Texto tomado de la fuente)spa
dc.description.abstractSpectral analysis has emerged as an efficient alternative for the study and characterization of soil properties compared to conventional methods. Soil organic carbon (SOC) is a key indicator to understand the state of the soil and to be able to develop sustainable land use practices. This research work evaluates the potential of spectral analysis for the estimation of COS in citrus crops in the municipality of Simacota in the department of Santander. To this end, protocols were adjusted and applied for taking soil samples and for performing spectral measurements. In total, 490 soil samples were acquired in the region, from which the spectral signatures were taken in the visible range (Vis) from 400 to 900 nm and in the near infrared range (NIR) from 900 to 2500 nm. Different pre-processing methods were applied to the spectral data to improve spectral characteristics and reduce noise, as well as dimensionality reduction methods, with which the most important wavelengths for the estimation could be identified. Machine learning models were implemented to estimate the COS content, including partial least squares regression (PLSR), the Cubist regressor, and two models based on convolutional networks, VGG and Resnet. The best results were obtained with PLSR reaching a coefficient of determination $R^2=0.63$ for the validation set. On the other hand, 2 and 4 groups were defined based on the COS content and models for classification were implemented, including Random Forests (RF), Support Vector Machines (SVM), Gradient Increase Classifier (GB) and the convolutional network models configured for classification. The best classification results for 4 groups reached an accuracy of 58\% with VGG and 84\% for classification with 2 groups with RF.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Automatización Industrialspa
dc.description.researchareaAutomatización Industrialspa
dc.format.extentxv, 98 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84050
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá,Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Automatización Industrialspa
dc.relation.referencesI. Amin, F. Fikrat, E. Mammadov, and M. Babayev, “Soil Organic Carbon Prediction by Vis-NIR Spectroscopy: Case Study the Kur-Aras Plain, Azerbaijan,” Communications in Soil Science and Plant Analysis, vol. 51, no. 6, pp. 726–734, 2020.spa
dc.relation.referencesB. G. Barthès and J.-L. Chotte, “Infrared spectroscopy approaches support soil organic carbon estimations to evaluate land degradation,” Land Degradation and Development, vol. 32, no. 1, pp. 310–322, 2021.spa
dc.relation.referencesR. Lal and R. F. Follett, Priorities in Soil Carbon Research in Response to Climate Change, ch. 23, pp. 401–410. John Wiley Sons, Ltd, 2009.spa
dc.relation.referencesB. Kuang and A. M. Mouazen, “Effect of spiking strategy and ratio on calibration of on-line visible and near infrared soil sensor for measurement in European farms,” Soil and Tillage Research, vol. 128, pp. 125–136, 2013.spa
dc.relation.referencesS. Trumbore and P. B. De Camargo, “Soil Carbon Dynamics,” Amazonia and Global Change, pp. 451–462, 2013.spa
dc.relation.referencesK. Van Cleve and R. F. Powers, Soil Carbon, Soil Formation, and Ecosystem Development, ch. 9, pp. 155–200. John Wiley Sons, Ltd, 1995.spa
dc.relation.referencesY. Bao, S. Ustin, X. Meng, X. Zhang, H. Guan, B. Qi, and H. Liu, “A regional-scale hyperspectral prediction model of soil organic carbon considering geomorphic features,” Geoderma, vol. 403, no. June, p. 115263, 2021.spa
dc.relation.referencesC. ganadero, “Hacen falta m´as laboratorios para estudio de suelos en Colombia.” https://www.contextoganadero.com/agricultura/ hacen-falta-mas-laboratorios-para-estudio-de-suelos-en-colombia, 2016.spa
dc.relation.referencesE. Ben Dor, C. Ong, and I. C. Lau, “Reflectance measurements of soils in the laboratory: Standards and protocols,” Geoderma, vol. 245-246, pp. 112–124, 2015.spa
dc.relation.referencesR. A. Viscarra Rossel, D. J. J. Walvoort, A. B. McBratney, L. J. Janik, and J. O. Skjemstad, “Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties,” Geoderma, vol. 131, no. 1, pp. 59–75, 2006.spa
dc.relation.referencesR. Reda, T. Saffaj, B. Ilham, O. Saidi, K. Issam, L. Brahim, and E. M. El Hadrami, “A comparative study between a new method and other machine learning algorithms for soil organic carbon and total nitrogen prediction using near infrared spectroscopy,” Chemometrics and Intelligent Laboratory Systems, vol. 195, no. June, 2019.spa
dc.relation.referencesB. Stenberg, “Effects of soil sample pretreatments and standardised rewetting as interacted with sand classes on Vis-NIR predictions of clay and soil organic carbon,” Geoderma, vol. 158, no. 1-2, pp. 15–22, 2010.spa
dc.relation.referencesY. Hong, M. A. Munnaf, A. Guerrero, S. Chen, Y. Liu, Z. Shi, and A. M. Mouazen, “Fusion of visible-to-near-infrared and mid-infrared spectroscopy to estimate soil organic carbon,” Soil and Tillage Research, vol. 217, p. 105284, 2022.spa
dc.relation.referencesM. S. Askari, S. M. O’Rourke, and N. M. Holden, “A comparison of point and imaging visible-near infrared spectroscopy for determining soil organic carbon,” Journal of Near Infrared Spectroscopy, vol. 26, no. 2, pp. 133–146, 2018.spa
dc.relation.referencesJ. M. Moura-Bueno, R. S. D. Dalmolin, T. Z. Horst-Heinen, S. Grunwald, and A. ten Caten, “Environmental covariates improve the spectral predictions of organic carbon in subtropical soils in southern Brazil,” Geoderma, vol. 393, no. August 2020, 2021.spa
dc.relation.referencesP. T. Sorenson, S. A. Quideau, and B. Rivard, “High resolution measurement of soil organic carbon and total nitrogen with laboratory imaging spectroscopy,” Geoderma, vol. 315, pp. 170–177, 2018.spa
dc.relation.referencesS. M. O’Rourke, U. Stockmann, N. M. Holden, A. B. McBratney, and B. Minasny, “An assessment of model averaging to improve predictive power of portable vis-NIR and XRF for the determination of agronomic soil properties,” Geoderma, vol. 279, pp. 31– 44, 2016.spa
dc.relation.referencesSeema, A. K. Ghosh, B. S. Das, and N. Reddy, “Application of VIS-NIR spectroscopy for estimation of soil organic carbon using different spectral preprocessing techniques and multivariate methods in the middle Indo-Gangetic plains of India,” Geoderma Regional, vol. 23, p. e00349, 2020.spa
dc.relation.referencesY. Hong, S. Chen, Y. Chen, M. Linderman, A. M. Mouazen, Y. Liu, L. Guo, L. Yu, Y. Liu, H. Cheng, and Y. Liu, “Comparing laboratory and airborne hyperspectral data for the estimation and mapping of topsoil organic carbon: Feature selection coupled with random forest,” Soil and Tillage Research, vol. 199, p. 104589, may 2020.spa
dc.relation.referencesY. Bao, S. Ustin, X. Meng, X. Zhang, H. Guan, B. Qi, and H. Liu, “A regional-scale hyperspectral prediction model of soil organic carbon considering geomorphic features,” Geoderma, vol. 403, p. 115263, 2021.spa
dc.relation.referencesY. Hong, L. Guo, S. Chen, M. Linderman, A. M. Mouazen, L. Yu, Y. Chen, Y. Liu, Y. Liu, H. Cheng, and Y. Liu, “Exploring the potential of airborne hyperspectral image for estimating topsoil organic carbon: Effects of fractional-order derivative and optimal band combination algorithm,” Geoderma, vol. 365, p. 114228, 2020.spa
dc.relation.referencesF. S. Terra, R. A. Viscarra Rossel, and J. A. Demattˆe, “Spectral fusion by Outer Product Analysis (OPA) to improve predictions of soil organic C,” Geoderma, vol. 335, pp. 35–46, feb 2019.spa
dc.relation.referencesH. Zhang, P. Shi, G. Crucil, B. van Wesemael, Q. Limbourg, and K. Van Oost, “Evaluating the capability of a UAV-borne spectrometer for soil organic carbon mapping in bare croplands,” Land Degradation and Development, vol. 32, no. 15, pp. 4375–4389, 2021.spa
dc.relation.referencesJ. J. F. Costa, E. Giasson, E. B. da Silva, J. A. Coblinski, and T. Tiecher, “Use of color ´ parameters in the grouping of soil samples produces more accurate predictions of soil texture and soil organic carbon,” Computers and Electronics in Agriculture, vol. 177, 2020.spa
dc.relation.referencesJ. Padarian, B. Minasny, and A. B. McBratney, “Using deep learning to predict soil properties from regional spectral data,” Geoderma Regional, vol. 16, p. e00198, 2019.spa
dc.relation.referencesN. L. Tsakiridis, C. G. Chadoulos, J. B. Theocharis, E. Ben-Dor, and G. C. Zalidis, “A three-level Multiple-Kernel Learning approach for soil spectral analysis,” Neurocomputing, vol. 389, pp. 27–41, may 2020.spa
dc.relation.referencesE. Tsimpouris, N. L. Tsakiridis, and J. B. Theocharis, “Using autoencoders to compress soil VNIR–SWIR spectra for more robust prediction of soil properties,” Geoderma, vol. 393, p. 114967, 2021.spa
dc.relation.referencesA. Pudelko and M. Chodak, “Estimation of total nitrogen and organic carbon contents in mine soils with NIR reflectance spectroscopy and various chemometric methods,” Geoderma, vol. 368, p. 114306, jun 2020.spa
dc.relation.referencesS. Singh and S. S. Kasana, “Estimation of soil properties from the EU spectral library using long short-term memory networks,” Geoderma Regional, vol. 18, p. e00233, 2019.spa
dc.relation.referencesL. Vesterdal, J. Leifeld, C. Poeplau, A. Don, and B. van Wesemael, Land-Use Change Effects on Soil Carbon Stocks in Temperate Regions – Development of Carbon Response Functions, ch. 3, pp. 33–48. John Wiley Sons, Ltd, 2011.spa
dc.relation.referencesC. Riefolo, A. Castrignan`o, C. Colombo, M. Conforti, S. Ruggieri, C. Vitti, and G. Buttafuoco, “Investigation of soil surface organic and inorganic carbon contents in a lowintensity farming system using laboratory visible and near-infrared spectroscopy,” Archives of Agronomy and Soil Science, vol. 66, no. 10, pp. 1436–1448, 2020.spa
dc.relation.referencesW. Huck, “Goal 15 Protect, restore and promote sustainable use of terrestrial ecosystems, sustainably manage forests, combat desertification, and halt and reverse land degradation and halt biodiversity loss Pro...,” Sustainable Development Goals, pp. 554– 581, 2022.spa
dc.relation.referencesN. M. Knox, S. Grunwald, M. L. McDowell, G. L. Bruland, D. B. Myers, and W. G. Harris, “Modelling soil carbon fractions with visible near-infrared (VNIR) and midinfrared (MIR) spectroscopy,” Geoderma, vol. 239-240, pp. 229–239, 2015.spa
dc.relation.referencesM. Rial, A. M. Cortizas, and L. Rodr´ıguez-Lado, “Mapping soil organic carbon content using spectroscopic and environmental data: A case study in acidic soils from NW Spain,” Science of The Total Environment, vol. 539, pp. 26–35, 2016.spa
dc.relation.referencesD. J. Brown, “Using a global VNIR soil-spectral library for local soil characterization and landscape modeling in a 2nd-order Uganda watershed,” Geoderma, vol. 140, no. 4, pp. 444–453, 2007.spa
dc.relation.referencesB.-H. Mevik and R. Wehrens, “Introduction to the pls Package,” Help section of the ”pls”package of RStudio software, no. Section 7, pp. 1–23, 2015.spa
dc.relation.referencesC. R. Lobsey, R. A. Viscarra Rossel, P. Roudier, and C. B. Hedley, “rs-local data-mines information from spectral libraries to improve local calibrations,” European Journal of Soil Science, vol. 68, no. 6, pp. 840–852, 2017.spa
dc.relation.referencesP. T. Sorenson, C. Small, M. C. Tappert, S. A. Quideau, B. Drozdowski, A. Underwood, and A. Janz, “Monitoring organic carbon, total nitrogen, and pH for reclaimed soils using field reflectance spectroscopy,” Canadian Journal of Soil Science, vol. 97, no. 2, pp. 241–248, 2017.spa
dc.relation.referencesJ. R. Quinlan, “Learning with continuous classes,” Australian Joint Conference on Artificial Intelligence, vol. 92, pp. 343–348, 1992.spa
dc.relation.referencesJ. Kingsley, N. M. Kebonye, P. C. Agyeman, and S. K. Ahado, “Comparison of Cubist models for soil organic carbon prediction via portable XRF measured data,” Environmental monitoring and assessment, vol. 193, no. 4, 2021.spa
dc.relation.referencesL. Zhong, X. Guo, Z. Xu, and M. Ding, “Soil properties: Their prediction and feature extraction from the LUCAS spectral library using deep convolutional neural networks,” Geoderma, vol. 402, no. November, p. 115366, 2021.spa
dc.relation.referencesN. L. Tsakiridis, K. D. Keramaris, J. B. Theocharis, and G. C. Zalidis, “Simultaneous prediction of soil properties from VNIR-SWIR spectra using a localized multi-channel 1-D convolutional neural network,” Geoderma, vol. 367, p. 114208, 2020.spa
dc.relation.referencesS. Zefang, R. A. Viscarra Rossel, Z. Shen, and R. A. Viscarra Rossel, “Automated spectroscopic modelling with optimised convolutional neural networks,” Scientific Reports (Nature Publisher Group), vol. 11, no. 1, 2021.spa
dc.relation.referencesS. Wang, K. Guan, C. Zhang, D. Lee, A. J. Margenot, Y. Ge, J. Peng, W. Zhou, Q. Zhou, and Y. Huang, “Using soil library hyperspectral reflectance and machine learning to predict soil organic carbon: Assessing potential of airborne and spaceborne optical soil sensing,” Remote Sensing of Environment, vol. 271, p. 112914, 2022.spa
dc.relation.referencesK. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings, pp. 1–14, 2015.spa
dc.relation.referencesK. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2016-Decem, pp. 770–778, 2016.spa
dc.relation.referencesSeema, A. K. Ghosh, B. S. Das, and N. Reddy, “Application of VIS-NIR spectroscopy for estimation of soil organic carbon using different spectral preprocessing techniques and multivariate methods in the middle Indo-Gangetic plains of India,” Geoderma Regional, vol. 23, p. e00349, 2020.spa
dc.relation.referencesS. Homhuan, W. Pansak, S. Lawawirojwong, and C. Narongrit, “Laboratory spectroscopy assessments of rainfed paddy soil samples on visible and near-infrared spectroscopy reflectance for estimating soil organic carbon,” Air, Soil and Water Research, vol. 9, pp. 77–85, 2016.spa
dc.relation.referencesT. Shi, Y. Chen, H. Liu, J. Wang, and G. Wu, “Soil organic carbon content estimation with laboratory-based visible-near-infrared reflectance spectroscopy: Feature selection,” Applied Spectroscopy, vol. 698, no. 8, pp. 831–837, 2014.spa
dc.relation.referencesR. A. Rossel and T. Behrens, “Using data mining to model and interpret soil diffuse reflectance spectra,” Geoderma, vol. 158, no. 1-2, pp. 46–54, 2010.spa
dc.relation.referencesS. G. Ribeiro, A. S. Teixeira, M. R. R. de Oliveira, M. C. G. Costa, I. Ara´ujo, L. C. J. Moreira, F. B. Lopes, G. R. Sharon, S. T. Adunias dos, d. O. Marcio Regys Rabelo, M. C. Gomes Costa, I. C. da Silva Ara´ujo, J. M. Luis Clenio, B. L. Fernando, S. G. Ribeiro, A. S. Teixeira, M. R. R. de Oliveira, M. C. G. Costa, I. Ara´ujo, L. C. J. Moreira, and F. B. Lopes, “Soil organic carbon content prediction using soil-reflected spectra: A comparison of two regression methods,” Remote Sensing, vol. 13, no. 23, p. 4752, 2021.spa
dc.relation.referencesL. Guo, C. Zhao, H. Zhang, Y. Chen, M. Linderman, Q. Zhang, and Y. Liu, “Comparisons of spatial and non-spatial models for predicting soil carbon content based on visible and near-infrared spectral technology,” Geoderma, vol. 285, pp. 280–292, 2017.spa
dc.relation.referencesE. Shahrayini, H. Shafizadeh-Moghadam, A. Noroozi, and M. K. Eghbal, “Multipledepth modeling of soil organic carbon using visible–near infrared spectroscopy,” Geocarto International, vol. 37, no. 5, pp. 1393–1407, 2022.spa
dc.relation.referencesL. A. Camargo, L. R. do Amaral, A. A. dos Reis, T. L. Brasco, and P. S. G. Magalh˜aes, “Improving soil organic carbon mapping with a field-specific calibration approach through diffuse reflectance spectroscopy and machine learning algorithms,” Soil Use and Management, vol. 38, no. 1, pp. 292–303, 2022.spa
dc.relation.referencesC. Hutengs, N. Eisenhauer, M. Sch¨adler, A. Lochner, M. Seidel, and M. Vohland, “VNIR and MIR spectroscopy of PLFA-derived soil microbial properties and associated soil physicochemical characteristics in an experimental plant diversity gradient,” Soil Biology and Biochemistry, vol. 160, p. 108319, 2021.spa
dc.relation.referencesA. Stevens and L. Ramirez-Lopez, An introduction to the prospectr package, 2022.spa
dc.relation.referencesF. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine Learning in Python,” Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.spa
dc.relation.referencesM. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Man´e, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Vi´egas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.” https://www.tensorflow.org/, 2015.spa
dc.relation.referencesF. Chollet, “keras.” https://github.com/fchollet/keras, 2015.spa
dc.relation.referencesC. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del R´ıo, M. Wiebe, P. Peterson, P. G´erardMarchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant, “Array programming with NumPy,” Nature, vol. 585, no. 7825, pp. 357–362, 2020.spa
dc.relation.referencesT. Pandas development team, “pandas-dev/pandas: Pandas,” 2020.spa
dc.relation.referencesJ. D. Hunter, “Matplotlib: A 2D graphics environment,” Computing in Science & Engineering, vol. 9, no. 3, pp. 90–95, 2007.spa
dc.relation.referencesInstituto geográfico Agustín Codazzi - IGAC, “Guía de Muestreo,” 2017.spa
dc.relation.referencesF. Cárdenas, “Propuesta de diseño de planificación agroecológica para el sistema de producción de la finca Villa Marta, ubicada en la vereda Santa Ana de Olvido, en el municipio Simacota, Santander.”spa
dc.relation.referencesN. Ortiz, “Plan de Desarrollo Municipal 2020 - 2023. Simacota Renace,” 2020.spa
dc.relation.referencesG. González, S. L. Cristancho, L. N. Ramírez, D. Ramírez, and L. Bernal, “La Cartografía Social como Herramienta en la Planificación de Cultivos Sostenibles en Simacota Santander,” UNIVERSIDAD LIBRE, p. 63.spa
dc.relation.referencesA. Walkley and I. A. Black, “An Examination of the Degtjareff Method for Determining Soil Organic Matter, and a Proposed Modification of the Chromic Acid Titration Method,” Soil Science, vol. 37, pp. 29–38, jan 1934.spa
dc.relation.referencesJ. M. Soriano-Disla, L. J. Janik, R. A. Viscarra Rossel, L. M. MacDonald, and M. J. McLaughlin, “The performance of visible, near-, and mid-infrared reflectance spectroscopy for prediction of soil physical, chemical, and biological properties,” Applied Spectroscopy Reviews, vol. 49, no. 2, pp. 139–186, 2014.spa
dc.relation.referencesN. Ravindranath and M. Ostwald, Carbon Inventory Methods, vol. 29. 2013.spa
dc.relation.referencesJ. A. Dematte, A. C. Dotto, A. F. Paiva, M. V. Sato, R. S. Dalmolin, M. d. S. B. de Araújo, E. B. da Silva, M. R. Nanni, A. ten Caten, N. C. Noronha, M. P. Lacerda, J. C. de Araújo Filho, R. Rizzo, H. Bellinaso, M. R. Francelino, C. E. Schaefer, L. E. Vicente, U. J. dos Santos, E. V. de Sá Barretto Sampaio, R. S. Menezes, J. J. L. de Souza, W. A. Abrahao, R. M. Coelho, C. R. Grego, J. L. Lani, A. R. Fernandes, D. A. Gon¸calves, S. H. Silva, M. D. de Menezes, N. Curi, E. G. Couto, L. H. dos Anjos, M. B. Ceddia, E. F. Pinheiro, S. Grunwald, G. M. Vasques, Júnior@, A. J. da Silva, ´ M. C. V. Barreto, G. N. Nóbrega, M. Z. da Silva, S. F. de Souza, G. S. Valladares, J. H. M. Viana, F. da Silva Terra, I. Horák-Terra, P. R. Fiorio, R. C. da Silva, E. F. Frade Júnior, R. H. Lima, J. M. Alba, V. S. de Souza Junior, M. D. L. M. S. Brefin, M. D. L. P. Ruivo, T. O. Ferreira, M. A. Brait, N. R. Caetano, I. Bringhenti, W. de Sousa Mendes, J. L. Safanelli, C. C. Guimaraes, R. R. Poppiel, A. B. e Souza, C. A. Quesada, and H. T. do Couto, “The Brazilian Soil Spectral Library (BSSL): A general view, application and challenges,” Geoderma, vol. 354, no. August, p. 113793, 2019.spa
dc.relation.referencesA. Gholizadeh, N. Carmon, A. Klement, E. Ben-Dor, and L. Bor˚uvka, “Agricultural soil spectral response and properties assessment: Effects of measurement protocol and data mining technique,” Remote Sensing, vol. 9, no. 10, pp. 1–14, 2017.spa
dc.relation.referencesJ. K. M. Biney, J. R. Blocher, L. Boruvka, and R. Vaˇs´at, “Does the limited use of orthogonal signal correction pre-treatment approach to improve the prediction accuracy of soil organic carbon need attention?,” Geoderma, vol. 388, 2021.spa
dc.relation.referencesD. J. Romero, E. Ben-Dor, J. A. Dematte, A. B. e. Souza, L. E. Vicente, T. R. Tavares, M. Martello, T. F. Strabeli, P. P. da Silva Barros, P. R. Fiorio, B. C. Gallo, M. V. Sato, and M. T. Eitelwein, “Internal soil standard method for the Brazilian soil spectral library: Performance and proximate analysis,” Geoderma, vol. 312, no. September 2017, pp. 95–103, 2018.spa
dc.relation.referencesOcean Insight, “Reflectance Measurement Tips.” https://www.oceaninsight.com/ knowledge-hub/hints--tips/reflectance-measurement-tips/, 2021.spa
dc.relation.referencesA. F. H. Goetz, “Making Accurate Field Spectral Reflectance Measurements,” no. October, p. 16, 2012.spa
dc.relation.referencesA. Savitzky and M. J. E. Golay, “Smoothing and Differentiation of Data by Simplified Least Squares Procedures.,” Analytical Chemistry, vol. 36, no. 8, pp. 1627–1639, 1964.spa
dc.relation.referencesJ. A. Fernández Pierna and P. Dardenne, “Soil parameter quantification by NIRS as a Chemometric challenge at ‘Chimiométrie 2006’,” Chemometrics and Intelligent Laboratory Systems, vol. 91, pp. 94–98, mar 2008.spa
dc.relation.referencesP. Geladi, D. MacDougall, and H. Martens, “Linearization and Scatter-Correction for Near-Infrared Reflectance Spectra of Meat,” Appl. Spectrosc., vol. 39, pp. 491–500, may 1985.spa
dc.relation.referencesR. N. Clark and T. L. Roush, “Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications,” Journal of Geophysical Research: Solid Earth, vol. 89, no. B7, pp. 6329–6340, 1984.spa
dc.relation.referencesF. S. Terra, R. A. Viscarra Rossel, and J. A. Demattˆe, “Spectral fusion by Outer Product Analysis (OPA) to improve predictions of soil organic C,” Geoderma, vol. 335, no. January 2018, pp. 35–46, 2019.spa
dc.relation.referencesM. Knadel, B. Stenberg, F. Deng, A. Thomsen, and M. H. Greve, “Comparing predictive abilities of three visible-near infrared spectrophotometers for soil organic carbon and clay determination,” Journal of Near Infrared Spectroscopy, vol. 21, no. 1, pp. 67–80, 2013.spa
dc.relation.referencesD. Pelliccia, “Outliers detection with PLS regression for NIR spectroscopy in Python.” https://nirpyresearch.com/ outliers-detection-pls-regression-nir-spectroscopy-python/, 2018.spa
dc.relation.referencesK. Dunn, Process Improvement Using Data Release. No. May, 2022.spa
dc.relation.referencesY. Ji, L. Sun, Y. Li, and D. Ye, “Detection of bruised potatoes using hyperspectral imaging technique based on discrete wavelet transform,” Infrared Physics and Technology, vol. 103, no. April, p. 103054, 2019.spa
dc.relation.referencesScikit-learn, “Robust covariance estimation and Mahalanobis distances relevance.” https://scikit-learn.org/stable/auto_examples/covariance/plot_ mahalanobis_distances.html, 2018.spa
dc.relation.referencesT. Mehmood, K. H. Liland, L. Snipen, and S. Sæbø, “A review of variable selection methods in Partial Least Squares Regression,” Chemometrics and Intelligent Laboratory Systems, vol. 118, pp. 62–69, aug 2012.spa
dc.relation.referencesR. A. Viscarra Rossel, D. J. Walvoort, A. B. McBratney, L. J. Janik, and J. O. Skjemstad, “Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties,” Geoderma, vol. 131, no. 1-2, pp. 59–75, 2006.spa
dc.relation.referencesJ. K. Carvalho, J. M. Moura-Bueno, R. Ramon, T. F. Almeida, G. Naibo, A. P. Martins, L. S. Santos, C. Gianello, and T. Tiecher, “Combining different pre-processing and multivariate methods for prediction of soil organic matter by near infrared spectroscopy (NIRS) in Southern Brazil,” Geoderma Regional, vol. 29, p. e00530, 2022.spa
dc.relation.referencesA. Sharififar, K. Singh, E. Jones, F. I. Ginting, and B. Minasny, “Evaluating a low-cost portable NIR spectrometer for the prediction of soil organic and total carbon using different calibration models,” Soil Use and Management, vol. 35, no. 4, pp. 607–616, 2019.spa
dc.relation.referencesJ. H. Camacho Tamayo, “Uso de la reflectancia difusa -NIR en la determinación de características físicas y químicas de un Oxisol. Carimagüa -Meta,” Universidad Nacional de Colombia. Sede Bogotá., p. 149, 2013.spa
dc.relation.referencesF. Fernández-Martínez, J. H. Camacho-Tamayo, and Y. Rubiano-Sanabria, “Estimating texture and organic carbon of an Oxisol by near infrared spectroscopy,” Revista Ciencia Agronomica, vol. 53, 2022.spa
dc.relation.referencesM. S. Askari, S. M. O’Rourke, and N. M. Holden, “A comparison of point and imaging visible-near infrared spectroscopy for determining soil organic carbon,” Journal of Near Infrared Spectroscopy, vol. 26, no. 2, pp. 133–146, 2018.spa
dc.relation.referencesR. A. V. Rossel and A. B. McBratney, Diffuse Reflectance Spectroscopy as a Tool for Digital Soil Mapping, pp. 165–172. Dordrecht: Springer Netherlands, 2008.spa
dc.relation.referencesR. A. Rossel and T. Behrens, “Using data mining to model and interpret soil diffuse reflectance spectra,” Geoderma, vol. 158, no. 1-2, pp. 46–54, 2010.spa
dc.relation.referencesR. A. Viscarra Rossel and W. S. Hicks, “Soil organic carbon and its fractions estimated by visible-near infrared transfer functions,” European Journal of Soil Science, vol. 66, no. 3, pp. 438–450, 2015.spa
dc.relation.referencesR. A. Viscarra Rossel, T. Behrens, E. Ben-Dor, D. J. Brown, J. A. Demattê, K. D. Shepherd, Z. Shi, B. Stenberg, A. Stevens, V. Adamchuk, H. Aïchi, B. G. Barthès, H. M. Bartholomeus, A. D. Bayer, M. Bernoux, K. Böttcher, L. Brodský, C. W. Du, A. Chappell, Y. Fouad, V. Genot, C. Gomez, S. Grunwald, A. Gubler, C. Guerrero, C. B. Hedley, M. Knadel, H. J. Morrás, M. Nocita, L. Ramirez-Lopez, P. Roudier, E. M. Campos, P. Sanborn, V. M. Sellitto, K. A. Sudduth, B. G. Rawlins, C. Walter, L. A. Winowiecki, S. Y. Hong, and W. Ji, “A global spectral library to characterize the world’s soil,” Earth-Science Reviews, vol. 155, no. January, pp. 198–230, 2016.spa
dc.relation.referencesM. Vohland, B. Ludwig, M. Seidel, and C. Hutengs, “Quantification of soil organic carbon at regional scale: Benefits of fusing vis-NIR and MIR diffuse reflectance data are greater for in situ than for laboratory-based modelling approaches,” Geoderma, vol. 405, p. 115426, 2022spa
dc.relation.referencesL. Deiss, A. J. Margenot, S. W. Culman, and M. S. Demyan, “Tuning support vector machines regression models improves prediction accuracy of soil properties in MIR spectroscopy,” Geoderma, vol. 365, p. 114227, 2020.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.lembCultivos y suelosspa
dc.subject.lembCrops and soilseng
dc.subject.lembProductividad del suelospa
dc.subject.lembSoil productivityeng
dc.subject.lembManejo de suelosspa
dc.subject.lembSoil managementeng
dc.subject.proposalCarbono orgánico del suelospa
dc.subject.proposalAnálisis espectralspa
dc.subject.proposalAprendizaje automáticospa
dc.subject.proposalAprendizaje profundospa
dc.subject.proposalEspectroscopiaspa
dc.subject.proposalReflectanciaspa
dc.subject.proposalAbsorbanciaspa
dc.subject.proposalSoil organic carboneng
dc.subject.proposalSpectral analysiseng
dc.subject.proposalMachine learningeng
dc.subject.proposalDeep learningeng
dc.subject.proposalSpectroscopyeng
dc.subject.proposalReflectanceeng
dc.subject.proposalAbsorbanceeng
dc.titleAporte del análisis espectral para la estimación de carbono orgánico del suelo en cultivos de cítricosspa
dc.title.translatedContribution of the spectral analysis for the estimation of soil organic carbon in citrus cropseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1094267501.2023.pdf
Tamaño:
11.85 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Automatización Industrial

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: