Elaboration of a communications protocol for AD-HOC networks oriented to energy transmission

dc.contributor.advisorOrtiz Triviño, Jorge Eduardospa
dc.contributor.authorJiménez Jiménez, Hernán Daríospa
dc.contributor.researchgroupTLÖN-Grupo de Investigación en Redes de Telecomunicaciones Dinámicas & Lenguajes de Programación Distribuidosspa
dc.date.accessioned2020-06-09T23:01:33Zspa
dc.date.available2020-06-09T23:01:33Zspa
dc.date.issued2020-04-17spa
dc.description.abstractEn este trabajo se realiza un análisis de los aspectos técnicos relacionados con la transmisión de energía en redes de área personal (PAN) y su potencial utilización mediante dispositivos inalámbricos de uso común, de manera que a través de las redes ad-hoc que utilizan protocolos de comunicaciones estándar mediante Wi-Fi, se pueda transmitir de manera simultánea información y energía. Se inicia con la exposición de las variables físicas más relevantes, evaluando las consideraciones más importantes tenidas en cuenta desde una orientación a servicio, tomando como referencia algunas técnicas de la ingeniería de protocolos y presentando constantemente, el estado del arte en cada punto de especial interés con el fin de ilustrar los eventuales requerimientos que se deberían abordar, con el propósito de obtener una transmisión de energía efectiva mediante los medios tecnológicos actualmente disponibles. Adicionalmente se presentan las ecuaciones consideradas, los componentes físicos y lógicos más importantes así como los modelos adoptados para el análisis del proceso de transmisión de energía inalámbrica. Se ponen de presente los tópicos relevantes en cada capa de la pila de protocolos de comunicaciones inalámbricas bajo el estándar IEEE 802.11n y se sugieren las posibles acciones de mejora desde una óptica teórica, que luego se consolidan en un escenario de simulación básico a través de un conjunto de reglas implementadas en el simulador de redes de comunicaciones NS-3, con sus clases nativas, sus funciones, sus librerías y códigos de referencia para aplicaciones inalámbricas.spa
dc.description.abstractThrough this work, is made an analysis of the technical aspects related to the energy transmission in personal area networks environments (PAN) and its potential use by means of wireless devices of common use, with the employ of ad-hoc networks that use standard protocols of communications over Wi-Fi and that simultaneously transmit information and energy. It begins with the exposition of the most relevant physical variables, evaluating the most important considerations from a service orientation viewpoint and taking borrowed as reference, some techniques of the protocol engineering. Constantly is presented the state of the art in points of special interest in order to illustrate the eventual requirements that should be addressed for obtaining an effective energy transmission through the technological means currently available. It is showed the equations considered, the physical and logical components as well as the models adopted in the analysis of the wireless energy transmission process. It is presented the topics key in each layer of the Wi-Fi communication protocol stack, under the guidelines of the IEEE 802.11n standard and the possible improvement actions suggested from a theoretical perspective, which are then consolidated in a basic simulation scenario throught a set of rules implemented in the NS-3 communications network simulator, using its native classes, functions, libraries and reference codes for wireless applications.spa
dc.description.degreelevelMaestríaspa
dc.format.extent118spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationJiménez, H. D. (2020). Elaboration of a communication protocol for AD-HOC networks oriented to energy transmission (Master's thesis). Available from Universidad Nacional de Colombia database.spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77633
dc.language.isoengspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Telecomunicacionesspa
dc.relation.referencesA. K. Ermeey, A. P. Hu, M. B.-A. and K. C. A. (2016). Indoor 2.45 GHz Wi-Fi Energy Harvester With Bridgeless Converter. IEEE Journal on Selected Areas in Communications, 34(5), 1536–1549.spa
dc.relation.referencesAirfuel. (n.d.). Airfuel. Retrieved September 22, 2019, from www.airfuel.org/wireless- power/spa
dc.relation.referencesAnalog.com. (n.d.). Wireless Power Transfer. Retrieved September 22, 2019, from www.analog.com/en/products/power-management/battery- management/wireless- power-transfer.htmlspa
dc.relation.referencesBalticnetworks. (2019). Itelite OMD50012V Data Sheet. Retrieved November 2, 2019, from https://www.balticnetworks.com/docs/OMD50012V.pdfspa
dc.relation.referencesBerg, J. (2019). Linux Wireless. Retrieved November 1, 2019, from https://wireless.wiki.kernel.org/en/developers/documentation/mac80211/ratecontrol/ minstrel.spa
dc.relation.referencesCaltech. NASA., J. (n.d.). Voyager mission.spa
dc.relation.referencesCasazza, J., & Delea, F. (2010). Understanding Electric Power Systems: An Overview of Technology, the Marketplace, and Government Regulation. In Understanding Electric Power Systems: An Overview of Technology, the Marketplace, and Government Regulation. https://doi.org/10.1002/9780470588475spa
dc.relation.referencesChen, C. Fumeaux, T. T. T. and D. L. (2017). High-efficiency microwave graphene antenna. 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting , San Diego, CA, 317–318.spa
dc.relation.referencesComer, D. (2014). Internetworking with TCP/IP (2014th ed.; Pearson., Ed.).spa
dc.relation.referencesCongress of Colombia. (2014). Law 1715 of 2014. Retrieved September 22, 2019, from Official Diary website: http://www.secretariasenado.gov.co/senado/basedoc/ley_1715_2014.html.spa
dc.relation.referencesCORNELL LAW. (2020). FCC 47 CFR § 15.407 - General technical requirements. Retrieved from https://www.law.cornell.edu/cfr/text/47/15.407spa
dc.relation.referencesCover, T. M., & Thomas, J. A. (2012). Elements of information theory. John Wiley & Sons.spa
dc.relation.referencesCypress. (n.d.). Chipset Cypress CYW4356. Retrieved September 19, 2019, from https://www.cypress.com/file/298796/downloadspa
dc.relation.referencesD. Skordoulis, Q. Ni, H. Chen, A. P. Stephens, C. L. and A. J. (2008). IEEE 802.11n MAC frame aggregation mechanisms for next-generation high-throughput WLANs. IEEE Wireless Communications, 15(1), 40–47.spa
dc.relation.referencesD. Xia, J. H. and Q. F. (n.d.). Evaluation of the Minstrel rate adaptation algorithm in IEEE 802.11g WLANs.spa
dc.relation.referencesDirectional Gain of IEEE 802.11 MIMO Devices Employing Cyclic Delay Diversity. (2013). Retrieved from journal of separation science and Engineering website: http://www.rheintech.com/images/References/mimo.pdfspa
dc.relation.referencesEaton. (2015). The nine power problems.spa
dc.relation.referencesFederal Communications Comission. (2014). Revision of Part 15 of the Commission’s Rules to Permit Unlicensed National Information Infrastructure (U-NII) Devices in the 5 GHz Band First Report and Order. FCC 14-30, ET Docket 13-49, (13), 1–59. https://doi.org/10.1017/CBO9781107415324.004spa
dc.relation.referencesFederal Communications Comission. (2017). FCC Publication 680106. Retrieved September 22, 2019, from 2017 website: https://apps.fcc.gov/oetcf/kdb/forms/FTSSearchResultPage.cfm?switch=P&id=41701spa
dc.relation.referencesGangadhar, S., Nguyen, T. A. N., Umapathi, G., & Sterbenz, J. P. (2013, M. (2013). TCP Westwood (+) protocol implementation in ns-3. In Proceedings of the 6th ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering)., 167–175.spa
dc.relation.referencesGentile, R. (2017). Algorithms to Antenna: Beamforming to Improve Signal-to-Noise Levels and Achieve Higher Channel Capacity with MIMO Systems. 2017. Retrieved from http://www.mwrf.com/systems/algorithms-antenna-beamforming-improve- signal-noise-levels-and-achieve- higher-channelspa
dc.relation.referencesGrover, P., & Sahai, A. (2010). Shannon meets Tesla: Wireless information and power transfer. IEEE International Symposium on Information Theory - Proceedings, 2363– 2367. https://doi.org/10.1109/ISIT.2010.5513714spa
dc.relation.referencesIEC. (2017). IEC 63028:2017 IEC:2017 Wireless power transfer – Airfuel alliance resonant baseline system specification (BSS) TC 100.spa
dc.relation.referencesIEEE. (2009). IEEE Standard for Information technology-- Local and metropolitan area networks-- Specific requirements-- Part 11: Wireless LAN Medium Access Control (MAC)and Physical Layer (PHY) Specifications Amendment 5: Enhancements for Higher Throughput (pp. 1–565). pp. 1–565.spa
dc.relation.referencesIEEE. (2012). IEEE Standard for Information technology--Telecommunications and information exchange between systems Local and metropolitan area networks-- Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications (pp. 1–2793). pp. 1–2793.spa
dc.relation.referencesIntel. (2019). Wireless Networking. Retrieved September 19, 2019, from www.intel.com/content/www/us/en/support/articles/000005585/network-and-i- o/wireless-networking.htmlspa
dc.relation.referencesITU-R. (2016). Report ITU-R SM.2392-0 Applications of wireless power transmission via radio frequency beam SM Series (Vol. 0).spa
dc.relation.referencesITU. (2011). Dynamic frequency selection in wireless access systems including local area networks for the purpose of protecting the radiodetermination service in the 5 GHz band. ITU-R M.1652-1.spa
dc.relation.referencesKaiser, G. (2011). (2011). Electromagnetic inertia, reactive energy and energy flow velocity. Journal of Physics A: Mathematical and Theoretical, 44(34), 345206.spa
dc.relation.referencesKesselman, B. G. and A. (2007). Performance analysis of A-MPDU and A-MSDU aggregation in IEEE 802.11n. 2007 IEEE Sarnoff Symposium, 1–57.spa
dc.relation.referencesKhademi, N., Welzl, M., & Gjessing, S. (2012). Experimental evaluation of TCP performance in multi- rate 802.11 WLANs. 2012 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), 1–9.spa
dc.relation.referencesKim, S., Vyas, R., Bito, J., Niotaki, K., Collado, A., Georgiadis, A., & Tentzeris, M. M. (2014). (2014). Ambient RF energy-harvesting technologies for self-sustainable standalone wireless sensor platforms. Proceedings of the IEEE, 102(11), 1649– 1666.spa
dc.relation.referencesLee, Y. D., Jeong, D. U., & Lee, H. J. (2010, N. (2010). Performance analysis of wireless link quality in wireless sensor networks. 5th International Conference on Computer Sciences and Convergence Information Technology IEEE., 1006–1010.spa
dc.relation.referencesLiu, M. T. (1989). Protocol engineering. In Advances in computers..pdf. Advances in Computers, 29, 79–195. Retrieved from www.sciencedirect.com/science/article/pii/S0065245808605331spa
dc.relation.referencesMcgregor, A., & Smithies, D. (2010). (2010). Rate adaptation for 802.11 wireless networks: Minstrel. ACM SIGCOMM ., 2010.spa
dc.relation.referencesPaul, Thomas, and T. O. (2008). Wireless LAN comes of age: Understanding the IEEE 802.11 n amendment. IEEE Circuits and Systems Magazine, 1, 32.spa
dc.relation.referencesQ. Wu, W. Chen, J. W. and J. L. (2015). Wireless Powered Communications, Industry Demands and a User-Centric Energy-Efficient Approach,. 2015 IEEE Globecom Workshops (GC Wkshps) , San Diego, CA, 2015, 2015.spa
dc.relation.referencesQi. (n.d.). Qi Standard. Retrieved from 22/09/2019spa
dc.relation.referencesQiu, M. O. K. and L. (2016). Accurate WiFi packet delivery rate estimation and applications. IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer Communications , San Francisco, CA, 2016, Pp. 1-9., 1–9.spa
dc.relation.referencesQualcomm. (2019). Qualcomm WPT roadmap. Retrieved September 22, 2019, from https://www.qualcomm.com/media/documents/files/psma-roadmap-wireless-power- transfer.pdfspa
dc.relation.referencesRay, J. (1999). Special Edition Using Microsoft TCP/IP. 1999.spa
dc.relation.referencesW. P. C. (n.d.). Wireless Power Consortium. Retrieved September 22, 2019, from www.wirelesspowerconsortium.comspa
dc.relation.referencesRogstad, D. H., Mileant, A., & Pham, T. T. (2005). Antenna Arraying Techniques in the Deep Space Network. In J. Wiley-Interscience. (Ed.). https://doi.org/10.1002/047172131xspa
dc.relation.referencesRTCGroup. (2019). Wireless Power. Retrieved September 22, 2019, from //rtcgroup.com/files/MDEM201-11_Inductive_Charging_WP.pdf. 22/09/2019spa
dc.relation.referencesRuckus R730 Data Sheet. (2019). Retrieved November 1, 2019, from webresources.ruckuswireless.com/datasheets/r730/ds-ruckus- r730.html.spa
dc.relation.referencesShoki, H. (2014). Trends, technical and regulatory issues, and standardization concerning commercialization of wireless power transfer technologies. Asia-Pacific Microwave Conference (Pp. 1095-1097). IEEE., 2014.spa
dc.relation.referencesSrinivasan, K., & Levis, P. (2006). RSSI is underappreciated. Proceedings of the Third Workshop on Embedded Networked Sensors (EmNets), 2006.spa
dc.relation.referencesSrinivasan, K., Kazandjieva, M. A., Jain, M., & Levis, P. (2008). Prr is not enough.spa
dc.relation.referencesStanford University. (n.d.). Wireless Energy Transfer. Retrieved from http://large.stanford.edu/courses/2010/ph240/ma1/spa
dc.relation.referencesSun, L., Deng, H., Sheshadri, R. K., Zheng, W., & Koutsonikolas, D. (2017). Experimental evaluation of WiFi active power/energy consumption models for smartphones. IEEE Transactions on Mobile Computing, 16(1), 115–129. https://doi.org/10.1109/TMC.2016.2538228spa
dc.relation.referencesTak, A., & Ustun, T. S. (2016). Wireless power grid: leapfrogging in power infrastructure of developing countries. 2016 IEEE Region 10 Conference (TENCON), (November), 1274–1277.spa
dc.relation.referencesTalla, V., Kellogg, B., Ransford, B., Naderiparizi, S., Gollakota, S., & Smith, J. R. (2015). Powering the Next Billion Devices with Wi-Fi. https://doi.org/10.1145/1235spa
dc.relation.referencesTanenbaum, Andrew S., and D. J. W. (2011). Computer networks (5th Spanish; I. Pearson Education, Ed.).spa
dc.relation.referencesTp-Link. (2019). Archer adapter Data Sheet. Retrieved. Retrieved November 2, 2019, from https://www.tp-link.com/au/home- networking/adapter/archer-t2u-plus/#overview.spa
dc.relation.referencesValagiannopoulos, C. A., & Alu, A. (. (2015). The role of reactive energy in the radiation by a dipole antenna. IEEE Transactions on Antennas and Propagation, 63(8), 3736– 3741.spa
dc.relation.referencesVentev. (n.d.). Terrawave M5016019D30006I Data Sheet.spa
dc.relation.referencesVisser, H. J. (2017). A brief history of radiative wireless power transfer. In 2017 11th European Conference on Antennas and Propagation (EUCAP) (Pp. 327-330). IEEE., 2017.spa
dc.relation.referencesWillis, H. L. (1997). Power Distribution Planning Reference Book, Second Edition. In Power Distribution Planning Reference Book, Second Edition. https://doi.org/10.1201/9780824755386spa
dc.relation.referencesWillis, H. L. (1997). Power Distribution Planning Reference Book, Second Edition. In Power Distribution Planning Reference Book, Second Edition. https://doi.org/10.1201/9780824755386spa
dc.relation.referencesZeng, Y., Clerckx, B., & Zhang, R. (2017). Communications and Signals Design for Wireless Power Transmission. IEEE Transactions on Communications, 65(5), 2264– 2290. https://doi.org/10.1109/TCOMM.2017.2676103spa
dc.relation.referencesZhang, Q., Fang, W., Liu, Q., Wu, J., Xia, P., & Yang, L. (2018). Distributed Laser Charging: A Wireless Power Transfer Approach. IEEE Internet of Things Journal, 5(5), 3853–3864. https://doi.org/10.1109/JIOT.2018.2851070spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generalesspa
dc.subject.proposalWPTspa
dc.subject.proposalWPTeng
dc.subject.proposalad-hoceng
dc.subject.proposalad-hocspa
dc.subject.proposalenergíaspa
dc.subject.proposalenergyeng
dc.subject.proposalWi-Fispa
dc.subject.proposalwirelesseng
dc.subject.proposalprotocolospa
dc.subject.proposalWi-Fieng
dc.subject.proposalprotocoleng
dc.subject.proposalNS-3spa
dc.subject.proposalinalámbricospa
dc.subject.proposalNS-3eng
dc.titleElaboration of a communications protocol for AD-HOC networks oriented to energy transmissionspa
dc.title.alternativeElaboración de un protocolo de comunicación para redes AD-HOC, orientado a transmisión de energíaspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
79851852.2020.pdf
Tamaño:
1.85 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: