Elaboration of a communications protocol for AD-HOC networks oriented to energy transmission
dc.contributor.advisor | Ortiz Triviño, Jorge Eduardo | spa |
dc.contributor.author | Jiménez Jiménez, Hernán Darío | spa |
dc.contributor.researchgroup | TLÖN-Grupo de Investigación en Redes de Telecomunicaciones Dinámicas & Lenguajes de Programación Distribuidos | spa |
dc.date.accessioned | 2020-06-09T23:01:33Z | spa |
dc.date.available | 2020-06-09T23:01:33Z | spa |
dc.date.issued | 2020-04-17 | spa |
dc.description.abstract | En este trabajo se realiza un análisis de los aspectos técnicos relacionados con la transmisión de energía en redes de área personal (PAN) y su potencial utilización mediante dispositivos inalámbricos de uso común, de manera que a través de las redes ad-hoc que utilizan protocolos de comunicaciones estándar mediante Wi-Fi, se pueda transmitir de manera simultánea información y energía. Se inicia con la exposición de las variables físicas más relevantes, evaluando las consideraciones más importantes tenidas en cuenta desde una orientación a servicio, tomando como referencia algunas técnicas de la ingeniería de protocolos y presentando constantemente, el estado del arte en cada punto de especial interés con el fin de ilustrar los eventuales requerimientos que se deberían abordar, con el propósito de obtener una transmisión de energía efectiva mediante los medios tecnológicos actualmente disponibles. Adicionalmente se presentan las ecuaciones consideradas, los componentes físicos y lógicos más importantes así como los modelos adoptados para el análisis del proceso de transmisión de energía inalámbrica. Se ponen de presente los tópicos relevantes en cada capa de la pila de protocolos de comunicaciones inalámbricas bajo el estándar IEEE 802.11n y se sugieren las posibles acciones de mejora desde una óptica teórica, que luego se consolidan en un escenario de simulación básico a través de un conjunto de reglas implementadas en el simulador de redes de comunicaciones NS-3, con sus clases nativas, sus funciones, sus librerías y códigos de referencia para aplicaciones inalámbricas. | spa |
dc.description.abstract | Through this work, is made an analysis of the technical aspects related to the energy transmission in personal area networks environments (PAN) and its potential use by means of wireless devices of common use, with the employ of ad-hoc networks that use standard protocols of communications over Wi-Fi and that simultaneously transmit information and energy. It begins with the exposition of the most relevant physical variables, evaluating the most important considerations from a service orientation viewpoint and taking borrowed as reference, some techniques of the protocol engineering. Constantly is presented the state of the art in points of special interest in order to illustrate the eventual requirements that should be addressed for obtaining an effective energy transmission through the technological means currently available. It is showed the equations considered, the physical and logical components as well as the models adopted in the analysis of the wireless energy transmission process. It is presented the topics key in each layer of the Wi-Fi communication protocol stack, under the guidelines of the IEEE 802.11n standard and the possible improvement actions suggested from a theoretical perspective, which are then consolidated in a basic simulation scenario throught a set of rules implemented in the NS-3 communications network simulator, using its native classes, functions, libraries and reference codes for wireless applications. | spa |
dc.description.degreelevel | Maestría | spa |
dc.format.extent | 118 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.citation | Jiménez, H. D. (2020). Elaboration of a communication protocol for AD-HOC networks oriented to energy transmission (Master's thesis). Available from Universidad Nacional de Colombia database. | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/77633 | |
dc.language.iso | eng | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Telecomunicaciones | spa |
dc.relation.references | A. K. Ermeey, A. P. Hu, M. B.-A. and K. C. A. (2016). Indoor 2.45 GHz Wi-Fi Energy Harvester With Bridgeless Converter. IEEE Journal on Selected Areas in Communications, 34(5), 1536–1549. | spa |
dc.relation.references | Airfuel. (n.d.). Airfuel. Retrieved September 22, 2019, from www.airfuel.org/wireless- power/ | spa |
dc.relation.references | Analog.com. (n.d.). Wireless Power Transfer. Retrieved September 22, 2019, from www.analog.com/en/products/power-management/battery- management/wireless- power-transfer.html | spa |
dc.relation.references | Balticnetworks. (2019). Itelite OMD50012V Data Sheet. Retrieved November 2, 2019, from https://www.balticnetworks.com/docs/OMD50012V.pdf | spa |
dc.relation.references | Berg, J. (2019). Linux Wireless. Retrieved November 1, 2019, from https://wireless.wiki.kernel.org/en/developers/documentation/mac80211/ratecontrol/ minstrel. | spa |
dc.relation.references | Caltech. NASA., J. (n.d.). Voyager mission. | spa |
dc.relation.references | Casazza, J., & Delea, F. (2010). Understanding Electric Power Systems: An Overview of Technology, the Marketplace, and Government Regulation. In Understanding Electric Power Systems: An Overview of Technology, the Marketplace, and Government Regulation. https://doi.org/10.1002/9780470588475 | spa |
dc.relation.references | Chen, C. Fumeaux, T. T. T. and D. L. (2017). High-efficiency microwave graphene antenna. 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting , San Diego, CA, 317–318. | spa |
dc.relation.references | Comer, D. (2014). Internetworking with TCP/IP (2014th ed.; Pearson., Ed.). | spa |
dc.relation.references | Congress of Colombia. (2014). Law 1715 of 2014. Retrieved September 22, 2019, from Official Diary website: http://www.secretariasenado.gov.co/senado/basedoc/ley_1715_2014.html. | spa |
dc.relation.references | CORNELL LAW. (2020). FCC 47 CFR § 15.407 - General technical requirements. Retrieved from https://www.law.cornell.edu/cfr/text/47/15.407 | spa |
dc.relation.references | Cover, T. M., & Thomas, J. A. (2012). Elements of information theory. John Wiley & Sons. | spa |
dc.relation.references | Cypress. (n.d.). Chipset Cypress CYW4356. Retrieved September 19, 2019, from https://www.cypress.com/file/298796/download | spa |
dc.relation.references | D. Skordoulis, Q. Ni, H. Chen, A. P. Stephens, C. L. and A. J. (2008). IEEE 802.11n MAC frame aggregation mechanisms for next-generation high-throughput WLANs. IEEE Wireless Communications, 15(1), 40–47. | spa |
dc.relation.references | D. Xia, J. H. and Q. F. (n.d.). Evaluation of the Minstrel rate adaptation algorithm in IEEE 802.11g WLANs. | spa |
dc.relation.references | Directional Gain of IEEE 802.11 MIMO Devices Employing Cyclic Delay Diversity. (2013). Retrieved from journal of separation science and Engineering website: http://www.rheintech.com/images/References/mimo.pdf | spa |
dc.relation.references | Eaton. (2015). The nine power problems. | spa |
dc.relation.references | Federal Communications Comission. (2014). Revision of Part 15 of the Commission’s Rules to Permit Unlicensed National Information Infrastructure (U-NII) Devices in the 5 GHz Band First Report and Order. FCC 14-30, ET Docket 13-49, (13), 1–59. https://doi.org/10.1017/CBO9781107415324.004 | spa |
dc.relation.references | Federal Communications Comission. (2017). FCC Publication 680106. Retrieved September 22, 2019, from 2017 website: https://apps.fcc.gov/oetcf/kdb/forms/FTSSearchResultPage.cfm?switch=P&id=41701 | spa |
dc.relation.references | Gangadhar, S., Nguyen, T. A. N., Umapathi, G., & Sterbenz, J. P. (2013, M. (2013). TCP Westwood (+) protocol implementation in ns-3. In Proceedings of the 6th ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering)., 167–175. | spa |
dc.relation.references | Gentile, R. (2017). Algorithms to Antenna: Beamforming to Improve Signal-to-Noise Levels and Achieve Higher Channel Capacity with MIMO Systems. 2017. Retrieved from http://www.mwrf.com/systems/algorithms-antenna-beamforming-improve- signal-noise-levels-and-achieve- higher-channel | spa |
dc.relation.references | Grover, P., & Sahai, A. (2010). Shannon meets Tesla: Wireless information and power transfer. IEEE International Symposium on Information Theory - Proceedings, 2363– 2367. https://doi.org/10.1109/ISIT.2010.5513714 | spa |
dc.relation.references | IEC. (2017). IEC 63028:2017 IEC:2017 Wireless power transfer – Airfuel alliance resonant baseline system specification (BSS) TC 100. | spa |
dc.relation.references | IEEE. (2009). IEEE Standard for Information technology-- Local and metropolitan area networks-- Specific requirements-- Part 11: Wireless LAN Medium Access Control (MAC)and Physical Layer (PHY) Specifications Amendment 5: Enhancements for Higher Throughput (pp. 1–565). pp. 1–565. | spa |
dc.relation.references | IEEE. (2012). IEEE Standard for Information technology--Telecommunications and information exchange between systems Local and metropolitan area networks-- Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications (pp. 1–2793). pp. 1–2793. | spa |
dc.relation.references | Intel. (2019). Wireless Networking. Retrieved September 19, 2019, from www.intel.com/content/www/us/en/support/articles/000005585/network-and-i- o/wireless-networking.html | spa |
dc.relation.references | ITU-R. (2016). Report ITU-R SM.2392-0 Applications of wireless power transmission via radio frequency beam SM Series (Vol. 0). | spa |
dc.relation.references | ITU. (2011). Dynamic frequency selection in wireless access systems including local area networks for the purpose of protecting the radiodetermination service in the 5 GHz band. ITU-R M.1652-1. | spa |
dc.relation.references | Kaiser, G. (2011). (2011). Electromagnetic inertia, reactive energy and energy flow velocity. Journal of Physics A: Mathematical and Theoretical, 44(34), 345206. | spa |
dc.relation.references | Kesselman, B. G. and A. (2007). Performance analysis of A-MPDU and A-MSDU aggregation in IEEE 802.11n. 2007 IEEE Sarnoff Symposium, 1–57. | spa |
dc.relation.references | Khademi, N., Welzl, M., & Gjessing, S. (2012). Experimental evaluation of TCP performance in multi- rate 802.11 WLANs. 2012 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), 1–9. | spa |
dc.relation.references | Kim, S., Vyas, R., Bito, J., Niotaki, K., Collado, A., Georgiadis, A., & Tentzeris, M. M. (2014). (2014). Ambient RF energy-harvesting technologies for self-sustainable standalone wireless sensor platforms. Proceedings of the IEEE, 102(11), 1649– 1666. | spa |
dc.relation.references | Lee, Y. D., Jeong, D. U., & Lee, H. J. (2010, N. (2010). Performance analysis of wireless link quality in wireless sensor networks. 5th International Conference on Computer Sciences and Convergence Information Technology IEEE., 1006–1010. | spa |
dc.relation.references | Liu, M. T. (1989). Protocol engineering. In Advances in computers..pdf. Advances in Computers, 29, 79–195. Retrieved from www.sciencedirect.com/science/article/pii/S0065245808605331 | spa |
dc.relation.references | Mcgregor, A., & Smithies, D. (2010). (2010). Rate adaptation for 802.11 wireless networks: Minstrel. ACM SIGCOMM ., 2010. | spa |
dc.relation.references | Paul, Thomas, and T. O. (2008). Wireless LAN comes of age: Understanding the IEEE 802.11 n amendment. IEEE Circuits and Systems Magazine, 1, 32. | spa |
dc.relation.references | Q. Wu, W. Chen, J. W. and J. L. (2015). Wireless Powered Communications, Industry Demands and a User-Centric Energy-Efficient Approach,. 2015 IEEE Globecom Workshops (GC Wkshps) , San Diego, CA, 2015, 2015. | spa |
dc.relation.references | Qi. (n.d.). Qi Standard. Retrieved from 22/09/2019 | spa |
dc.relation.references | Qiu, M. O. K. and L. (2016). Accurate WiFi packet delivery rate estimation and applications. IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer Communications , San Francisco, CA, 2016, Pp. 1-9., 1–9. | spa |
dc.relation.references | Qualcomm. (2019). Qualcomm WPT roadmap. Retrieved September 22, 2019, from https://www.qualcomm.com/media/documents/files/psma-roadmap-wireless-power- transfer.pdf | spa |
dc.relation.references | Ray, J. (1999). Special Edition Using Microsoft TCP/IP. 1999. | spa |
dc.relation.references | W. P. C. (n.d.). Wireless Power Consortium. Retrieved September 22, 2019, from www.wirelesspowerconsortium.com | spa |
dc.relation.references | Rogstad, D. H., Mileant, A., & Pham, T. T. (2005). Antenna Arraying Techniques in the Deep Space Network. In J. Wiley-Interscience. (Ed.). https://doi.org/10.1002/047172131x | spa |
dc.relation.references | RTCGroup. (2019). Wireless Power. Retrieved September 22, 2019, from //rtcgroup.com/files/MDEM201-11_Inductive_Charging_WP.pdf. 22/09/2019 | spa |
dc.relation.references | Ruckus R730 Data Sheet. (2019). Retrieved November 1, 2019, from webresources.ruckuswireless.com/datasheets/r730/ds-ruckus- r730.html. | spa |
dc.relation.references | Shoki, H. (2014). Trends, technical and regulatory issues, and standardization concerning commercialization of wireless power transfer technologies. Asia-Pacific Microwave Conference (Pp. 1095-1097). IEEE., 2014. | spa |
dc.relation.references | Srinivasan, K., & Levis, P. (2006). RSSI is underappreciated. Proceedings of the Third Workshop on Embedded Networked Sensors (EmNets), 2006. | spa |
dc.relation.references | Srinivasan, K., Kazandjieva, M. A., Jain, M., & Levis, P. (2008). Prr is not enough. | spa |
dc.relation.references | Stanford University. (n.d.). Wireless Energy Transfer. Retrieved from http://large.stanford.edu/courses/2010/ph240/ma1/ | spa |
dc.relation.references | Sun, L., Deng, H., Sheshadri, R. K., Zheng, W., & Koutsonikolas, D. (2017). Experimental evaluation of WiFi active power/energy consumption models for smartphones. IEEE Transactions on Mobile Computing, 16(1), 115–129. https://doi.org/10.1109/TMC.2016.2538228 | spa |
dc.relation.references | Tak, A., & Ustun, T. S. (2016). Wireless power grid: leapfrogging in power infrastructure of developing countries. 2016 IEEE Region 10 Conference (TENCON), (November), 1274–1277. | spa |
dc.relation.references | Talla, V., Kellogg, B., Ransford, B., Naderiparizi, S., Gollakota, S., & Smith, J. R. (2015). Powering the Next Billion Devices with Wi-Fi. https://doi.org/10.1145/1235 | spa |
dc.relation.references | Tanenbaum, Andrew S., and D. J. W. (2011). Computer networks (5th Spanish; I. Pearson Education, Ed.). | spa |
dc.relation.references | Tp-Link. (2019). Archer adapter Data Sheet. Retrieved. Retrieved November 2, 2019, from https://www.tp-link.com/au/home- networking/adapter/archer-t2u-plus/#overview. | spa |
dc.relation.references | Valagiannopoulos, C. A., & Alu, A. (. (2015). The role of reactive energy in the radiation by a dipole antenna. IEEE Transactions on Antennas and Propagation, 63(8), 3736– 3741. | spa |
dc.relation.references | Ventev. (n.d.). Terrawave M5016019D30006I Data Sheet. | spa |
dc.relation.references | Visser, H. J. (2017). A brief history of radiative wireless power transfer. In 2017 11th European Conference on Antennas and Propagation (EUCAP) (Pp. 327-330). IEEE., 2017. | spa |
dc.relation.references | Willis, H. L. (1997). Power Distribution Planning Reference Book, Second Edition. In Power Distribution Planning Reference Book, Second Edition. https://doi.org/10.1201/9780824755386 | spa |
dc.relation.references | Willis, H. L. (1997). Power Distribution Planning Reference Book, Second Edition. In Power Distribution Planning Reference Book, Second Edition. https://doi.org/10.1201/9780824755386 | spa |
dc.relation.references | Zeng, Y., Clerckx, B., & Zhang, R. (2017). Communications and Signals Design for Wireless Power Transmission. IEEE Transactions on Communications, 65(5), 2264– 2290. https://doi.org/10.1109/TCOMM.2017.2676103 | spa |
dc.relation.references | Zhang, Q., Fang, W., Liu, Q., Wu, J., Xia, P., & Yang, L. (2018). Distributed Laser Charging: A Wireless Power Transfer Approach. IEEE Internet of Things Journal, 5(5), 3853–3864. https://doi.org/10.1109/JIOT.2018.2851070 | spa |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.spa | Acceso abierto | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales | spa |
dc.subject.proposal | WPT | spa |
dc.subject.proposal | WPT | eng |
dc.subject.proposal | ad-hoc | eng |
dc.subject.proposal | ad-hoc | spa |
dc.subject.proposal | energía | spa |
dc.subject.proposal | energy | eng |
dc.subject.proposal | Wi-Fi | spa |
dc.subject.proposal | wireless | eng |
dc.subject.proposal | protocolo | spa |
dc.subject.proposal | Wi-Fi | eng |
dc.subject.proposal | protocol | eng |
dc.subject.proposal | NS-3 | spa |
dc.subject.proposal | inalámbrico | spa |
dc.subject.proposal | NS-3 | eng |
dc.title | Elaboration of a communications protocol for AD-HOC networks oriented to energy transmission | spa |
dc.title.alternative | Elaboración de un protocolo de comunicación para redes AD-HOC, orientado a transmisión de energía | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |