Caracterización y diferenciación de mieles de Colombia mediante aplicación de herramientas instrumentales sensoriales y propiedades fisicoquímicas

dc.contributor.advisorZuluaga Domínguez, Carlos Mario
dc.contributor.advisorZuleta Zuluaga, Carlos Mario
dc.contributor.authorAcosta Opayome, Diana Carolina
dc.coverage.countryColombia
dc.date.accessioned2021-09-10T17:03:29Z
dc.date.available2021-09-10T17:03:29Z
dc.date.issued2021-09-08
dc.descriptionIlustraciones y tablasspa
dc.description.abstractColombia is recognized in the world for its great biodiversity which generates high potential for honey production, however, the importance that has been given to beekeeping is not remarkable until now. The study of the physicochemical properties of honey is important to recognize the quality of this product. However, the lack of legislation has led to a high rate of counterfeiting and poor quality verification. The characterization and classification according to the climatic zone of 115 Colombian honeys was carried out through the evaluation of physicochemical parameters, in order to verify compliance with quality criteria. These samples were also analyzed by means of an electronic nose, for the evaluation of the aromatic profile (volatile components), and electronic language of cyclic voltammetry, to obtain responses associated with electroactive species in solution (non- volatile components), as additional classification tools by origin. Finally, in order to evaluate electronic language as an authentication tool, the results obtained by this technique were compared for 50 authentic samples and 50 adulterated samples. Statistical techniques of principal component analysis (PCA), k nearest neighbors (KNN) and artificial neural networks (ANN) were used in order to observe the potential in classification by origin and differentiation with respect to adulterated products. The characterization of the honey complied with the main quality parameters reported in local and external standards. It was possible to differentiate the honey samples according to their climatic zone with a 77% non- error rate from the information obtained by the physicochemical parameters, nose and electronic tongue. The PCA allowed to differentiate samples of adulterated honey from authentic honeys, from the data obtained with electronic language. This study contributes to the recognition of the differentiating characteristics of honeys according to their origin, to increase their commercial value in the market, and an important precedent is established for the development of an analytical methodology for verifying the authenticity of Colombian bee honeys.eng
dc.description.abstractColombia es reconocida en el mundo por su gran biodiversidad lo que genera altos potenciales de producción de miel, no obstante, la importancia que se ha dado a la apicultura no es destacable hasta ahora. El estudio de las propiedades fisicoquímicas de la miel es importante para reconocer la calidad de este producto. Sin embargo, la falta de legislación ha propiciado un alto índice de falsificación y una escasa verificación de la calidad. Se llevó a cabo la caracterización y clasificación según la zona climática de 115 mieles colombianas a través de la evaluación de parámetros físicoquímicos, con el fin de verificar el cumplimiento de criterios de calidad. Estas muestras se analizaron también por medio de nariz electrónica, para la evaluación del perfil aromático (componentes volátiles), y lengua electrónica de voltametría cíclica, para obtener respuestas asociadas a especies electroactivas en disolución (componentes no volátiles), como herramientas adicionales de clasificación por origen. Finalmente, con el fin de evaluar la lengua electrónica como herramienta de autenticación, se compararon los resultados obtenidos por esta técnica para 50 muestras auténticas y 50 muestras adulteradas. Se emplearon las técnicas estadísticas de análisis de componentes principales (PCA), k vecinos más cercanos (KNN) y redes neuronales artificiales (ANN) con el fin de observar el potencial en la clasificación por origen y la diferenciación con respecto a productos adulterados. La caracterización de la miel cumplió con los principales parámetros de calidad reportados en los estándares locales y externos. Se logró diferenciar las muestras de miel según su zona climatica con un 77% de tasa de no error a partir de la información obtenida por los parámetros fisicoquìmicos, nariz y lengua electrónica. El PCA permitió diferenciar muestras de miel adulteradas de mieles autenticas, a partir de los datos obtenidos con lengua electrónica. Con este estudio se contribuye al reconocimiento de las características diferenciadoras de las mieles según su proveniencia, para incrementar su valor comercial en el mercado, y se establece un antecedente importante para el desarrollo de una metodología analítica para la verificación de autenticidad de mieles de abeja colombianas. (Texto tomado de la fuente).spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencia y Tecnología de Alimentosspa
dc.format.extentxvii, 121 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80155
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Agronomíaspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Ciencia y Tecnología de Alimentosspa
dc.relation.indexedAgrosaviaspa
dc.relation.indexedAgrovocspa
dc.relation.referencesAl-Farsi, M., Al-Amri, A., Al-Hadhrami, A., & Al-Belushi, S. (2018). Color, flavonoids, phenolics and antioxidants of Omani honey. Heliyon, 4(10), e00874. https://doi.org/https://doi.org/10.1016/j.heliyon.2018.e00874
dc.relation.referencesAl, M., Daniel, D., Moise, A., Bobis, O., Laslo, L., & Bogdanov, S. (2009). Physico-chemical and bioactive properties of different floral origin honeys from Romania. Food Chemistry, 112(4), 863–867. https://doi.org/10.1016/j.foodchem.2008.06.055
dc.relation.referencesAlcañiz, M. (2011). Diseño de un sistema de lengua electrónica basado en técnicas electroquímicas voltamétricas y su aplicación en el ámbito agroalimentario [Universidad politécnica de Valencia]. http://tdx.cesca.cat/handle/10803/34322
dc.relation.referencesAmariei, S., Norocel, L., & Scripcä, L. A. (2020). An innovative method for preventing honey crystallization. Innovative Food Science & Emerging Technologies, 66, 102481. https://doi.org/https://doi.org/10.1016/j.ifset.2020.102481
dc.relation.referencesAmpuero, S., Bogdanov, S., & Bosset, J.-O. (2004). Classification of unifloral honeys with an MS-based electronic nose using different sampling modes: SHS, SPME and INDEX. European Food Research and Technology, 218(2), 198–207. https://doi.org/10.1007/s00217-003-0834-9
dc.relation.referencesApiarios el pinar. (2016). Proyecto “Validación a nivel nacional e internacional de la comercializacion de prototipos de productos de las abejas con base en la innovación y el desarrollo tecnológico.”
dc.relation.referencesApplied Biosystems. (2005). MarkerViewTM PCA Tutorial-1-PCA Tutorial (pp. 1–14). MDS Sciex.
dc.relation.referencesAscencio Tuso, D. J. (2014). Evaluación de los cambios pre y postcosecha de la miel de especies de abejas sin aguijón [Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/52276
dc.relation.referencesBabarinde, G. O., Babarinde, S. A., Adegbola, D. O., & Ajayeoba, S. I. (2011). Effects of harvesting methods on physicochemical and microbial qualities of honey. Journal of Food Science and Technology, 48(5), 628–634. https://doi.org/10.1007/s13197-011-0329-9
dc.relation.referencesBallabio, D., Grisoni, F., & Todeschini, R. (2018). Multivariate comparison of classification performance measures. Chemometrics and Intelligent Laboratory Systems, 174(April 2017), 33–44. https://doi.org/10.1016/j.chemolab.2017.12.004
dc.relation.referencesBallabio, D., Robotti, E., Grisoni, F., Quasso, F., Bobba, M., Vercelli, S., Gosetti, F., Calabrese, G., Sangiorgi, E., Orlandi, M., & Marengo, E. (2018). Chemical profiling and multivariate data fusion methods for the identification of the botanical origin of honey. Food Chemistry, 266, 79–89. https://doi.org/10.1016/j.foodchem.2018.05.084
dc.relation.referencesBallabio, D., & Todeschini, R. (2009). Infrared Spectroscopy for Food Quality Analysis and Control Multivariate Classifi cation for Qualitative Analysis. Infrared Spectroscopy for Food Quality Analysis and Control, 83–104.
dc.relation.referencesBaroni, M. V., Arrua, C., Nores, M. L., Fayé, P., Díaz, M. del P., Chiabrando, G. A., & Wunderlin, D. A. (2009). Composition of honey from Córdoba (Argentina): Assessment of North/South provenance by chemometrics. Food Chemistry, 114(2), 727–733. https://doi.org/10.1016/j.foodchem.2008.10.018
dc.relation.referencesBarragán, M. (2014). Apicultura Campesina una Alternativa para el Desarrollo Rural en Ocamonte, Santander [Pontificia universidad Javeriana]. http://hdl.handle.net/10554/12407
dc.relation.referencesBelay, A., Solomon, W. K., Bultossa, G., Adgaba, N., & Melaku, S. (2013). Physicochemical properties of the Harenna forest honey, Bale, Ethiopia. Food Chemistry, 141(4), 3386–3392. https://doi.org/https://doi.org/10.1016/j.foodchem.2013.06.035
dc.relation.referencesBenedetti, S., Mannino, S., Sabatini, A., & Marcazzan, G. (2004). Electronic nose and neural network use for the classification of honey. Http://Dx.Doi.Org/10.1051/Apido:2004025, 35. https://doi.org/10.1051/apido:2004025
dc.relation.referencesBentabol Manzanares, A., García, Z. H., Galdón, B. R., Rodríguez, E. R., & Romero, C. D. (2011). Differentiation of blossom and honeydew honeys using multivariate analysis on the physicochemical parameters and sugar composition. Food Chemistry, 126(2), 664–672. https://doi.org/10.1016/j.foodchem.2010.11.003
dc.relation.referencesBlanco, C. A., De La Fuente, R., Caballero, I., & Rodríguez-Méndez, M. L. (2015). Beer discrimination using a portable electronic tongue based on screen-printed electrodes. Journal of Food Engineering, 157, 57–62. https://doi.org/10.1016/j.jfoodeng.2015.02.018
dc.relation.referencesBobis, O., Moise, A. R., Ballesteros, I., Reyes, E. S., Durán, S. S., Sánchez-Sánchez, J., Cruz-Quintana, S., Giampieri, F., Battino, M., & Alvarez-Suarez, J. M. (2020). Eucalyptus honey: Quality parameters, chemical composition and health-promoting properties. Food Chemistry, 325, 126870. https://doi.org/https://doi.org/10.1016/j.foodchem.2020.126870
dc.relation.referencesBogdanov, S., Lüllmann, C., Martin, P., von der Ohe, W., Russmann, H., Vorwohl, G., Oddo, L. P., Sabatini, A. G., Marcazzan, G. L., Piro, R., Flamini, C., Morlot, M., Lhéritier, J., Borneck, R., Marioleas, P., Tsigouri, A., Kerkvliet, J., Ortiz, A., Ivanov, T., … Vit, P. (1999). Honey quality and international regulatory standards: Review by the international honey commission. Bee World, 80(2), 61–69. https://doi.org/10.1080/0005772x.1999.11099428
dc.relation.referencesBogdanov, S., Ruoff, K., & Oddo, L. P. (2004). Physico-chemical methods for the characterisation of unifloral honeys: a review. Apidologie 35, S4–S17. https://doi.org/10.1051/apido
dc.relation.referencesBommarco, R., Marini, L., & Vaissière, B. E. (2012). Insect pollination enhances seed yield, quality, and market value in oilseed rape. Oecologia, 169(4), 1025–1032. https://doi.org/10.1007/s00442-012-2271-6
dc.relation.referencesBougrini, M., Tahri, K., Haddi, Z., El Bari, N., Llobet, E., Jaffrezic-Renault, N., & Bouchikhi, B. (2014). Aging time and brand determination of pasteurized milk using a multisensor e-nose combined with a voltammetric e-tongue. Materials Science and Engineering C, 45, 348–358. https://doi.org/10.1016/j.msec.2014.09.030
dc.relation.referencesBougrini, M., Tahri, K., Saidi, T., El Alami El Hassani, N., Bouchikhi, B., & El Bari, N. (2016a). Classification of Honey According to Geographical and Botanical Origins and Detection of Its Adulteration Using Voltammetric Electronic Tongue. Food Analytical Methods, 9(8), 2161–2173. https://doi.org/10.1007/s12161-015-0393-2
dc.relation.referencesBougrini, M., Tahri, K., Saidi, T., El Alami El Hassani, N., Bouchikhi, B., & El Bari, N. (2016b). Classification of Honey According to Geographical and Botanical Origins and Detection of Its Adulteration Using Voltammetric Electronic Tongue. Food Analytical Methods, 9(8), 2161–2173. https://doi.org/10.1007/s12161-015-0393-2
dc.relation.referencesBrereton, R. G. (2015). Pattern recognition in chemometrics. Chemometrics and Intelligent Laboratory Systems, 149, 90–96. https://doi.org/https://doi.org/10.1016/j.chemolab.2015.06.012
dc.relation.referencesBrown, S. D. (2010). Book Reviews: Introduction to Multivariate Statistical Analysis in Chemometrics. In Applied Spectroscopy (Vol. 64, Issue 4). https://doi.org/10.1366/000370210791114185
dc.relation.referencesBurbano, H., Ruelas-Monjardín, L. C., Nava-Tablada, M. E., Cervantes, J., Barradas, V. L., Fonte, S., Vanek, S., Loayza, L., Mazzocchi, G., Andrade C., H. J., Segura M, M. A., Sierra R., E., Angel Sanchez, D. I., Trujillo, H. C., Office, U. S. G. A., Gómez Sal, A., De los Ríos, J., Gallego, A., Vélez, L., … Alpizar, F. (2017). La importancia de los servicios ecosistemicos para la agricultura. Evaluación de Los Ecosistemas Del Milenio de España, 33(2), 255–266. https://doi.org/10.7818/re.2014.22-1.00
dc.relation.referencesCai, J., Wu, X., Yuan, L., Han, E., Zhou, L., & Zhou, A. (2013). Determination of Chinese Angelica honey adulterated with rice syrup by an electrochemical sensor and chemometrics. Analytical Methods, 5(9), 2324–2328. https://doi.org/10.1039/c3ay00041a
dc.relation.referencesCastro, L. (2018). Evaluación de la composición, calidad y generación de valor de miel de abejas originaria de zonas forestales en la laltillanura del departamento de Vichada [Universidad Nacional de Colombia]. http://bdigital.unal.edu.co/64664/1/1066733730.2018.pdf
dc.relation.referencesCavia, M. del mar. (2002). Estudio del envejecimiento de mieles de Burgus y Galicia: Influencia de la granulación inducida. Universidad de Burgos.
dc.relation.referencesChen, H., Jin, L., Fan, C., & Wang, W. (2017). Non-targeted volatile profiles for the classification of the botanical origin of Chinese honey by solid-phase microextraction and gas chromatography–mass spectrometry combined with chemometrics. Journal of Separation Science, 40(22), 4377–4384. https://doi.org/10.1002/jssc.201700733
dc.relation.referencesCodex Alimentarius Commission. (2001). Codex Alimentarius Commission Standards. Codex Stan 12-1981, 1–8.
dc.relation.referencesProyecto de Ley 103-2019 Senado, (2019).
dc.relation.referencesCorrea, A. R., Cuenca, M. M., Zuluaga, C. M., Scampicchio, M. M., & Quicazán, M. C. (2017). Validación de la técnica de nariz electrónica para la determinación del perfil olfativo de miel de abejas. Ingenieria e Investigacion, 37(3), 45–51. https://doi.org/10.15446/ing.investig.v37n3.59656
dc.relation.referencesCuenca, M. (2014). Desarrollo de una herramienta instrumental de gusto artificial aplicable a bebidas alcohólicas a base de miel de abejas. Universidad Nacional de Colombia. Departamento de Ingeniería Química y Ambiental.
dc.relation.referencesDa Silva, P. M., Gauche, C., Gonzaga, L. V., Costa, A. C. O., & Fett, R. (2016). Honey: Chemical composition, stability and authenticity. Food Chemistry, 196(April), 309–323. https://doi.org/10.1016/j.foodchem.2015.09.051
dc.relation.referencesDe Groot, R. S., Wilson, M. A., & Boumans, R. M. J. (2002). A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecological Economics, 41(3), 393–408. https://doi.org/10.1016/S0921-8009(02)00089-7
dc.relation.referencesDias, L. A., Peres, A. M., Vilas-Boas, M., Rocha, M. A., Estevinho, L., & Machado, A. A. S. C. (2008). An electronic tongue for honey classification. Microchimica Acta, 163(1–2), 97–102. https://doi.org/10.1007/s00604-007-0923-8
dc.relation.referencesDíaz, C. (2009). Influencia de las condiciones de almacenamiento sobre la calidad físico-química y biólogica de la miel. Tesis Doctoral, 271. https://zaguan.unizar.es/record/2052/files/TESIS-2009-036.pdf
dc.relation.referencesDymerski, T., Gebicki, J., Wardencki, W., & Namieśnik, J. (2014). Application of an electronic nose instrument to fast classification of Polish honey types. Sensors (Switzerland), 14(6), 10709–10724. https://doi.org/10.3390/s140610709
dc.relation.referencesEl Alami El Hassani, N., Tahri, K., Llobet, E., Bouchikhi, B., Errachid, A., Zine, N., & El Bari, N. (2018). Emerging approach for analytical characterization and geographical classification of Moroccan and French honeys by means of a voltammetric electronic tongue. Food Chemistry, 243, 36–42. https://doi.org/https://doi.org/10.1016/j.foodchem.2017.09.067
dc.relation.referencesEl Sohaimy, S. A., Masry, S. H. D., & Shehata, M. G. (2015). Physicochemical characteristics of honey from different origins. Annals of Agricultural Sciences, 60(2), 279–287. https://doi.org/https://doi.org/10.1016/j.aoas.2015.10.015
dc.relation.referencesElamine, Y., Inácio, P. M. C., Lyoussi, B., Anjos, O., Estevinho, L. M., da Graça Miguel, M., & Gomes, H. L. (2019). Insight into the sensing mechanism of an impedance based electronic tongue for honey botanic origin discrimination. Sensors and Actuators B: Chemical, 285, 24–33. https://doi.org/https://doi.org/10.1016/j.snb.2019.01.023
dc.relation.referencesElamine, Y., Lyoussi, B., Miguel, M. G., Anjos, O., Estevinho, L., Alaiz, M., Girón-Calle, J., Martín, J., & Vioque, J. (2020). Physicochemical characteristics and antiproliferative and antioxidant activities of moroccan zantaz honey rich in methyl syringate. Food Chemistry, 128098. https://doi.org/https://doi.org/10.1016/j.foodchem.2020.128098
dc.relation.referencesElbanna, K., Attalla, K., Elbadry, M., Abdeltawab, A., Gamal-Eldin, H., & Fawzy Ramadan, M. (2014). Impact of floral sources and processing on the antimicrobial activities of different unifloral honeys. Asian Pacific Journal of Tropical Disease. https://doi.org/10.1016/S2222-1808(14)60504-1
dc.relation.referencesElgrishi, N., Rountree, K. J., McCarthy, B. D., Rountree, E. S., Eisenhart, T. T., & Dempsey, J. L. (2018). A Practical Beginner’s Guide to Cyclic Voltammetry. Journal of Chemical Education, 95(2), 197–206. https://doi.org/10.1021/acs.jchemed.7b00361
dc.relation.referencesEliasson, A.-C., & Larsson, K. (1993). Cereals in breadmaking : a molecular colloidal approach (C. Press (ed.)).
dc.relation.referencesEscriche, I., Kadar, M., Domenech, E., & Gil-Sánchez, L. (2012). A potentiometric electronic tongue for the discrimination of honey according to the botanical origin. Comparison with traditional methodologies: Physicochemical parameters and volatile profile. Journal of Food Engineering, 109(3), 449–456. https://doi.org/https://doi.org/10.1016/j.jfoodeng.2011.10.036
dc.relation.referencesEscuredo, O., Míguez, M., Fernández González, M., & Carmen Seijo, M. (2013). Nutritional value and antioxidant activity of honeys produced in a European Atlantic area. Food Chemistry, 138(2–3), 851–856. https://doi.org/10.1016/j.foodchem.2012.11.015
dc.relation.referencesEuropeo, P. (2018). El comercio de la Miel en Europa. http://www.europarl.europa.eu/news/es/headlines/economy/20180222STO98435/el-mercado-de-la-miel-en-europa-infografia
dc.relation.referencesFaal, S., Loghavi, M., & Kamgar, S. (2019). Physicochemical properties of Iranian ziziphus honey and emerging approach for predicting them using electronic nose. Measurement, 148, 106936. https://doi.org/https://doi.org/10.1016/j.measurement.2019.106936
dc.relation.referencesFallico, B., Zappalà, M., Arena, E., & Verzera, A. (2004). Effects of conditioning on HMF content in unifloral honeys. Food Chemistry, 85(2), 305–313. https://doi.org/https://doi.org/10.1016/j.foodchem.2003.07.010
dc.relation.referencesFAO. (2018). Estadísticas de producción de miel.
dc.relation.referencesFattori, S. B. (2004). “La Miel” Propiedades, Composición y Análisis Físico-Químicos. 359100, 243. www.apimondia.org
dc.relation.referencesFawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861–874. https://doi.org/10.1016/j.patrec.2005.10.010
dc.relation.referencesFeng, P., Shao, F., Shi, Y., & Wan, Q. (2014). Gas sensors based on semiconducting nanowire field-effect transistors. Sensors (Basel, Switzerland), 14(9), 17406–17429. https://doi.org/10.3390/s140917406
dc.relation.referencesFontaine, A. (2018). Predictive Analytics with scikit-learn and TensorFlow.
dc.relation.referencesFrank, I. E., & Todeschini, R. (1994). The Data Analysis Handbook. In Data Handling in Science and Technology (Vol. 14, Issue C). https://doi.org/10.1016/S0922-3487(08)70048-0
dc.relation.referencesGamboa Abril, V., Diaz Moreno, C., & Figueroa Ramirez, J. (2012). Tipificación de mieles de mielato de Robre (Quercus Humboldtti) de Boyacá y Santander.
dc.relation.referencesGarnica, D., Arcos, A., & Gómez, J. (2006). Guía Ambiental Apícola. www.humboldt.org.co
dc.relation.referencesGay Martin, M. (2012). Nuevos avances en sensores voltamétricos nanoestructurados y miniaturizados. Aplicación en una Lengua Electrónica en el Sector Alimentario. 165.
dc.relation.referencesGomes, S., Dias, L. G., Moreira, L. L., Rodrigues, P., & Estevinho, L. (2010). Physicochemical, microbiological and antimicrobial properties of commercial honeys from Portugal. Food and Chemical Toxicology, 48(2), 544–548. https://doi.org/10.1016/j.fct.2009.11.029
dc.relation.referencesGonzález-Miret, M. L., Terrab, A., Hernanz, D., Fernández-Recamales, M. Á., & Heredia, F. J. (2005). Multivariate correlation between color and mineral composition of honeys and by their botanical origin. Journal of Agricultural and Food Chemistry, 53(7), 2574–2580. https://doi.org/10.1021/jf048207p
dc.relation.referencesGranato, D., Santos, J. S., Escher, G. B., Ferreira, B. L., & Maggio, R. M. (2018). Use of principal component analysis (PCA) and hierarchical cluster analysis (HCA) for multivariate association between bioactive compounds and functional properties in foods: A critical perspective. Trends in Food Science & Technology, 72, 83–90. https://doi.org/https://doi.org/10.1016/j.tifs.2017.12.006
dc.relation.referencesHajinezhad, M., Mohtasebi, S. S., Ghasemi-Varnamkhasti, M., & Aghbashlo, M. (2017). Detecting Adulteration in Lotus Honey Using a Machine Olfactory System. Journal of Agricultural Machinery, 7(2), 439–450.
dc.relation.referencesHarvey, M., McMeekin, A., & Warde, A. (2004). Qualities of food. In Qualities of food. https://doi.org/10.7765/9781526137609
dc.relation.referencesHuang, L., Liu, H., Zhang, B., & Wu, D. (2015). Application of Electronic Nose with Multivariate Analysis and Sensor Selection for Botanical Origin Identification and Quality Determination of Honey. Food and Bioprocess Technology, 8(2), 359–370. https://doi.org/10.1007/s11947-014-1407-6
dc.relation.referencesHuidobro, J. F., & Simal, J. (1984). Determinación del color y turbidez en las mieles. Anales de Bromatolog­a, 36(2), 225–245.
dc.relation.referencesIDEAM. (2010). Valores medios multianuales de humedad relativa en % promedio 1981-2010.
dc.relation.referencesJaramillo, D. (2002). Introducción a la ciencia del suelo. Introduccion a La Ciencia Del Suelo, 619.
dc.relation.referencesKarabagias, I. K., Maia, M., Karabagias, V. K., Gatzias, I., & Badeka, A. V. (2020). Quality and origin characterisation of Portuguese, Greek, Oceanian, and Asian honey, based on poly-parametric analysis hand in hand with dimension reduction and classification techniques. European Food Research and Technology, 246(5), 987–1006. https://doi.org/10.1007/s00217-020-03461-8
dc.relation.referencesKavanagh, S., Gunnoo, J., Marques Passos, T., Stout, J. C., & White, B. (2019). Physicochemical properties and phenolic content of honey from different floral origins and from rural versus urban landscapes. Food Chemistry, 272, 66–75. https://doi.org/https://doi.org/10.1016/j.foodchem.2018.08.035
dc.relation.referencesKek, S. P., Chin, N. L., Tan, S. W., Yusof, Y. A., & Chua, L. S. (2017). Classification of Honey from Its Bee Origin via Chemical Profiles and Mineral Content. Food Analytical Methods, 10(1), 19–30. https://doi.org/10.1007/s12161-016-0544-0
dc.relation.referencesKenjerić, F. Č., Mannino, S., Bennedetti, S., Primorac, L., & Čačić Kenjerić, D. (2009). Honey botanical origin determination by electronic nose. Journal of Apicultural Research, 48(2), 99–103. https://doi.org/10.3896/IBRA.1.48.2.03
dc.relation.referencesKumar, A., Gill, J. P. S., Bedi, J. S., Manav, M., Ansari, M. J., & Walia, G. S. (2018). Sensorial and physicochemical analysis of Indian honeys for assessment of quality and floral origins. Food Research International, 108, 571–583. https://doi.org/https://doi.org/10.1016/j.foodres.2018.04.005
dc.relation.referencesLammertyn, J., Veraverbeke, E. A., & Irudayaraj, J. (2004). zNoseTM technology for the classification of honey based on rapid aroma profiling. Sensors and Actuators B: Chemical, 98(1), 54–62. https://doi.org/https://doi.org/10.1016/j.snb.2003.09.012
dc.relation.referencesLaverde Rodríguez, J. C., Egea Hernández, L. M., Rodríguez Zárate, D. M., & Peña Sáenz, J. E. (2010). Agenda prospectiva de investigación y desarrollo tecnológico para la cadena productiva de las abejas y la apicultura en Colombia con énfasis en miel de Abejas. In Animal Genetics (Vol. 39, Issue 5, pp. 561–563).
dc.relation.referencesLi, S., & Thomas, A. (2020). Cyclic Voltammetry Emerged carbon nanomaterials from metal-organic precursors for electro- chemical catalysis in energy conversion Fuel Cell Degradation and Failure Analysis. Cv.
dc.relation.referencesLorenzo, C. (2002). La miel de Madrid.
dc.relation.referencesMajor, N., Marković, K., Krpan, M., Šarić, G., Hruškar, M., & Vahčić, N. (2011). Rapid honey characterization and botanical classification by an electronic tongue. Talanta, 85(1), 569–574. https://doi.org/10.1016/j.talanta.2011.04.025
dc.relation.referencesMandić, M., Primorac, L., Čačić Kenjerić, D., Bubalo, D., Perl, A., & Flanjak, I. (2006). Characterisation of Oak Mistletoe and Common Thistle Honeys by Physicochemical, Sensory and Melissopalynology Parameters. Deutsche Lebensmittel-Rundschau: Zeitschrift Für Lebensmittelkunde Und Lebensmittelrecht, 102.
dc.relation.referencesMendes, E., Brojo Proença, E., Ferreira, I. M. P. L. V. ., & Ferreira, M. A. (1998). Quality evaluation of Portuguese honey. Carbohydrate Polymers, 37(3), 219–223. https://doi.org/https://doi.org/10.1016/S0144-8617(98)00063-0
dc.relation.referencesCadena Productiva de las Abejas y la Apicultura., Ministerio de agricultura y desarrollo rural 23 (2015).
dc.relation.referencesMinisterio de Agricultura y Desarrollo Rural. (2018). Cadena Productiva de las Abejas y la Apicultura en Colombia. http://www.agronet.gov.co/www/docs_apicola/2008225164159_Plegable CPAA.pdf
dc.relation.referencesMissio da Silva, P., Gonzaga, L. V., Biluca, F. C., Schulz, M., Vitali, L., Micke, G. A., Oliveira Costa, A. C., & Fett, R. (2020). Stability of Brazilian Apis mellifera L. honey during prolonged storage: Physicochemical parameters and bioactive compounds. LWT, 129, 109521. https://doi.org/10.1016/j.lwt.2020.109521
dc.relation.referencesMohaghegh, S., Arefi, R., Ameri, S., & Rose, D. (1995). Design and Development of An Artificial Neural Network for Estimation of Formation Permeability. SPE Computer Applications, 7(06), 151–154. https://doi.org/10.2118/28237-PA
dc.relation.referencesNates Parra, G., Montoya, P. M., Chamorro, F. J., Ramírez, N., Giraldo, C., & Obregón, D. (2013). Origen geográfico y botánico de mieles de Apis mellifera (APIDAE) en cuatro departamentos de Colombia. Acta Biológica Colombiana, 18(3), 427–438. https://revistas.unal.edu.co/index.php/actabiol/article/view/38290
dc.relation.referencesNyawali, B., Chungu, D., Chisha-Kasumu, E., Vinya, R., Chileshe, F., & Ng’andwe, P. (2015). Enzymatic browning reduction in white cabbage (Brassica oleracea) using honey: Does honey color matter? LWT - Food Science and Technology, 61(2), 543–549. https://doi.org/https://doi.org/10.1016/j.lwt.2014.12.006
dc.relation.referencesO’Sullivan G., M. (2017). A Handbook for Sensory and Consumer-Driven New Product Development. In A Handbook for Sensory and Consumer-Driven New Product Development. https://doi.org/10.1016/c2014-0-03843-9
dc.relation.referencesOliveri, P., & Downey, G. (2012). Multivariate class modeling for the verification of food-authenticity claims. TrAC Trends in Analytical Chemistry, 35, 74–86. https://doi.org/https://doi.org/10.1016/j.trac.2012.02.005
dc.relation.referencesOrganización de la Cadena Productiva de las Abejas y la Apicultura en Colombia. (2011). Acuerdo de competitividad 2011-2025 (No. 2011–2025).
dc.relation.referencesOroian, M., & Ropciuc, S. (2019). Romanian honey authentication using voltammetric electronic tongue. Correlation of voltammetric data with physico-chemical parameters and phenolic compounds. Computers and Electronics in Agriculture, 157, 371–379. https://doi.org/https://doi.org/10.1016/j.compag.2019.01.008
dc.relation.referencesOrtiz Valbuena, A. (1992). Contribución a la denominación de origen de la miel de alcarria.
dc.relation.referencesOtles, S. (2009). Handbook of Food Analysis Instruments (1st Editio). CRC Press.
dc.relation.referencesParra, F. (2019). Capitulo 6. Métodos de clasificación. Estadística y Machine Learning Con R. https://bookdown.org/content/2274/portada.html/ 2021-01-13
dc.relation.referencesPasias, I. N., Kiriakou, I. K., & Proestos, C. (2017). HMF and diastase activity in honeys: A fully validated approach and a chemometric analysis for identification of honey freshness and adulteration. Food Chemistry, 229, 425–431. https://doi.org/https://doi.org/10.1016/j.foodchem.2017.02.084
dc.relation.referencesPatel, H. K., Austin, R. H., & Barber, J. (2014). The Electronic Nose: Artificial Olfaction Technology. In Biological and Medical Physics, Biomedical Engineering. http://link.springer.com/10.1007/978-81-322-1548-6
dc.relation.referencesPearson, K. (1901). On Lines and Planes of Closets Fit to Systems of Points in Space. Philosophical Magazine, 559–572.
dc.relation.referencesPereira, J. R., da R. Campos, A. N., de Oliveira, F. C., Silva, V. R. O., David, G. F., Da Silva, J. G., Nascimento, W. W. G., Silva, M. H. L., & Denadai, Â. M. L. (2020). Physical-chemical characterization of commercial honeys from Minas Gerais, Brazil. Food Bioscience, 36(April 2019), 100644. https://doi.org/10.1016/j.fbio.2020.100644
dc.relation.referencesPeris, M., & Escuder Gilabert, L. (2016). Electronic noses and tongues to assess food authenticity and adulteration. Trends in Food Science & Technology, 58(0924–2244), 40–54.
dc.relation.referencesPersaud, K. (2016). Chapter 1- Electronic Noses and Tongues in the Food Industry (M. L. B. T.-E. N. and T. in F. S. Rodríguez Méndez (ed.); pp. 1–12). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-800243-8.00001-9
dc.relation.referencesPersaud, K., & Dodd, G. (1982). Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature, 299(5881), 352–355. https://doi.org/10.1038/299352a0
dc.relation.referencesPita-Calvo, C., & Vázquez, M. (2017). Differences between honeydew and blossom honeys: A review. Trends in Food Science and Technology, 59, 79–87. https://doi.org/10.1016/j.tifs.2016.11.015
dc.relation.referencesPourtallier, J., & Taliercio, Y. (1972). Honey control analyses. In Apiacta (Vol. 1, pp. 2–5).
dc.relation.referencesQuicazán, M. C. (2015). Guía Práctica Para el control y la Evaluacion de la calidad de miel y Polen (p. 36).
dc.relation.referencesQuicazán S, M. C., Díaz M, A. C., & Zuluaga D, C. M. (2011). La nariz electrónica, una novedosa herramienta para el control de procesos y calidad en la industria agroalimentaria. Vitae, 18(2), 209–217.
dc.relation.referencesRadovic, B. S., Careri, M., Mangia, A., Musci, M., Gerboles, M., & Anklam, E. (2001). Contribution of dynamic headspace GC–MS analysis of aroma compounds to authenticity testing of honey. Food Chemistry, 72(4), 511–520. https://doi.org/https://doi.org/10.1016/S0308-8146(00)00263-6
dc.relation.referencesRecuero de los Santos, P. (2018). Machine Learning a tu alcance: La matriz de confusión. https://empresas.blogthinkbig.com/ml-a-tu-alcance-matriz-confusion/ 2020-11-13
dc.relation.referencesRodríguez Medina, D. A. (2016). Identificación de la huella digital para miel de abejas con origen en zonas cafeteras de Colombia. Universidad Nacional de Colombia.
dc.relation.referencesSakač, N., & Sak-Bosnar, M. (2012). A rapid method for the determination of honey diastase activity. Talanta, 93, 135–138. https://doi.org/https://doi.org/10.1016/j.talanta.2012.01.063
dc.relation.referencesSalamanca Grosso, G., Osorio, M., & Roberto, I. (2015). Perfil de componentes volátiles de mieles florales y monoflorales colombianas. https://doi.org/10.13140/RG.2.2.15475.78883
dc.relation.referencesSandoval Niño, Z. L., & Prieto Ortiz, F. A. (2007). Caracterización de café cereza empleando técnicas de visión artificial. 60(64), 4105–4127.
dc.relation.referencesSantamaria, A. (2009). Diagnóstico productivo y comercial de la cadena apícola de los programas para la sustitución de cultivos ilícitos y desarrollo alternativo de Acción Social y UNODC (pp. 0–137).
dc.relation.referencesSaxena, S., Gautam, S., & Sharma, A. (2010). Physical, biochemical and antioxidant properties of some Indian honeys. Food Chemistry, 118(2), 391–397. https://doi.org/10.1016/j.foodchem.2009.05.001
dc.relation.referencesSchramm, D. D., Karim, M., Schrader, H. R., Holt, R. R., Cardetti, M., & Keen, C. L. (2003). Honey with high levels of antioxidants can provide protection to healthy human subjects. Journal of Agricultural and Food Chemistry, 51(6), 1732–1735. https://doi.org/10.1021/jf025928k
dc.relation.referencesSerra Bonvehi, J., Ventura Coll, F., & Orantes Bermejo, J. F. (2019). Characterization of avocado honey (Persea americana Mill.) produced in Southern Spain. Food Chemistry, 287, 214–221. https://doi.org/https://doi.org/10.1016/j.foodchem.2019.02.068
dc.relation.referencesSiddiqui, I. R. (1970). The sugars of honey. Advances in Carbohydrate Chemistry and Biochemistry, 25(C), 285–309. https://doi.org/10.1016/S0065-2318(08)60430-8
dc.relation.referencesSilva, A. A., Lima Neto, I. A., Misságia, R. M., Ceia, M. A., Carrasquilla, A. G., & Archilha, N. L. (2015). Artificial neural networks to support petrographic classification of carbonate-siliciclastic rocks using well logs and textural information. Journal of Applied Geophysics, 117, 118–125. https://doi.org/https://doi.org/10.1016/j.jappgeo.2015.03.027
dc.relation.referencesSilva, L. R., Sousa, A., & Taveira, M. (2017). Characterization of Portuguese honey from Castelo Branco region according to their pollen spectrum, physicochemical characteristics and mineral contents. Journal of Food Science and Technology, 54(8), 2551–2561. https://doi.org/10.1007/s13197-017-2700-y
dc.relation.referencesSimsek, A., Bilsel, M., & Goren, A. C. (2012). 13C/12C pattern of honey from Turkey and determination of adulteration in commercially available honey samples using EA-IRMS. Food Chemistry, 130(4), 1115–1121. https://doi.org/https://doi.org/10.1016/j.foodchem.2011.08.017
dc.relation.referencesSiti Nurhidayah, S., Shirwan, M., Sani, A., Azwan, M., Yuswan, H., Kartinee, N., Noorzianna, Y., Wasoh, H., Nadiha, N., Zaki, M., & Mohd, A. (2020). Discrimination of Malaysian stingless bee honey from different entomological origins based on physicochemical properties and volatile compound profiles using chemometrics and machine learning. Food Chemistry, November, 128654. https://doi.org/10.1016/j.foodchem.2020.128654
dc.relation.referencesSkoog, D. A., West, D. M., & Holler, James, F. (1997). Fundamentos de Química Analítica.
dc.relation.referencesSobrino-Gregorio, L., Bataller, R., Soto, J., & Escriche, I. (2018). Monitoring honey adulteration with sugar syrups using an automatic pulse voltammetric electronic tongue. Food Control, 91, 254–260. https://doi.org/10.1016/j.foodcont.2018.04.003
dc.relation.referencesSolayman, M., Islam, M. A., Paul, S., Ali, Y., Khalil, M. I., Alam, N., & Gan, S. H. (2016). Physicochemical Properties, Minerals, Trace Elements, and Heavy Metals in Honey of Different Origins: A Comprehensive Review. Comprehensive Reviews in Food Science and Food Safety, 15(1), 219–233. https://doi.org/10.1111/1541-4337.12182
dc.relation.referencesStolzenbach, S., Byrne, D. V, & Bredie, W. L. P. (2011). Sensory local uniqueness of Danish honeys. Food Research International, 44(9), 2766–2774. https://doi.org/https://doi.org/10.1016/j.foodres.2011.06.006
dc.relation.referencesTan, J., & Xu, J. (2020). Applications of electronic nose (e-nose) and electronic tongue (e-tongue) in food quality-related properties determination: A review. Artificial Intelligence in Agriculture, 4, 104–115. https://doi.org/https://doi.org/10.1016/j.aiia.2020.06.003
dc.relation.referencesTiwari, K., Tudu, B., Bandhopadhya, R., & Chatterjee, A. (2012). Discrimination of monofloral honey using cyclic voltammetry. Proceedings - 2012 3rd National Conference on Emerging Trends and Applications in Computer Science, NCETACS-2012, Ic, 132–136. https://doi.org/10.1109/NCETACS.2012.6203312
dc.relation.referencesTiwari, K., Tudu, B., Bandyopadhyay, R., & Chatterjee, A. (2013). Identification of monofloral honey using voltammetric electronic tongue. Journal of Food Engineering, 117(2), 205–210. https://doi.org/10.1016/j.jfoodeng.2013.02.023
dc.relation.referencesTiwari, K., Tudu, B., Bandyopadhyay, R., Chatterjee, A., & Pramanik, P. (2018). Voltammetric sensor for electrochemical determination of the floral origin of honey based on a zinc oxide nanoparticle modified carbon paste electrode. Journal of Sensors and Sensor Systems, 7(1), 319–329. https://doi.org/10.5194/jsss-7-319-2018
dc.relation.referencesTosi, E., Martinet, R., Ortega, M., Lucero, H., & Ré, E. (2008). Honey diastase activity modified by heating. Food Chemistry, 106(3), 883–887. https://doi.org/10.1016/j.foodchem.2007.04.025
dc.relation.referencesUrrego R, J. F. (2017). Carecterizacion de Mieles de Apis mellifera ,Colectadas De Diferentes Regiones de Antioquia. [Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/59936
dc.relation.referencesValcárcel, M., & Cárdenas, S. (2004). Qualitative Analysis. Encyclopedia of Analytical Science: Second Edition, 405–411. https://doi.org/10.1016/B0-12-369397-7/00707-X
dc.relation.referencesVanhanen, L. P., Emmertz, A., & Savage, G. P. (2011). Mineral analysis of mono-floral New Zealand honey. Food Chemistry, 128(1), 236–240. https://doi.org/10.1016/j.foodchem.2011.02.064
dc.relation.referencesVásquez, C. L. (2010). Caracterización de mieles de San Pedro de Atacama basada en análisis físicos , químicos y melisopalinológicos .Tesis pregrado Licenciado en Biología. Universidad Astral de Chile.
dc.relation.referencesVelásquez, C., Gil, J. ., Urrego, J. ., Durango, D., & Castañeda, I. . (2016). Palinológico y fisicoquímicos de miel de abejas ( Apis mellifera l . ) Procedente de algunos municipios del oriente y suroeste de Antioquia ( COLOMBIA ). Revista de La Facultad de Ciencias Universidad Nacional de Colombia, Sede Medellín, 5(2), 65–87.
dc.relation.referencesVelásquez Giraldo, A. (2013). Caracterización físico-química y microbiológica de la miel de Apis mellifera sp. del Suroeste de Antioquia, Colombia. Ingeniería y Ciencia - Ing.Cienc., 9(18), 61–74. http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/1843
dc.relation.referencesVit, Patricia. Silvia, R.M. Roubik, P. D. (2013). Pot-Honey (P. Vit, S. R. M. Pedro, & D. W. Roubik (eds.)). Springer. https://doi.org/10.1007/978-1-4614-4960-7
dc.relation.referencesWang, J. (2000). Analytical electrochemistry (Second Edi). Wiley-VCH.
dc.relation.referencesWei, Z., & Wang, J. (2014). Tracing floral and geographical origins of honeys by potentiometric and voltammetric electronic tongue. Computers and Electronics in Agriculture, 108, 112–122. https://doi.org/10.1016/j.compag.2014.07.014
dc.relation.referencesWei, Z., Wang, J., & Liao, W. (2009). Technique potential for classification of honey by electronic tongue. Journal of Food Engineering, 94(3–4), 260–266. https://doi.org/10.1016/j.jfoodeng.2009.03.016
dc.relation.referencesWhite, J. W., & Maher, J. (1953). Transglucosidation by honey invertase. Archives of Biochemistry and Biophysics, 42(2), 360–367. https://doi.org/https://doi.org/10.1016/0003-9861(53)90365-8
dc.relation.referencesWu, L., Du, B., Vander Heyden, Y., Chen, L., Zhao, L., Wang, M., & Xue, X. (2017). Recent advancements in detecting sugar-based adulterants in honey – A challenge. TrAC - Trends in Analytical Chemistry, 86, 25–38. https://doi.org/10.1016/j.trac.2016.10.013
dc.relation.referencesYucel, Y. (2013). Characterization of Hatay honeys according to their multi-element analysis using ICP-OES combined with chemometrics. Food Chemistry, 140(1/2), 231–237. https://doi.org/10.1016/j.foodchem.2013.02.046
dc.relation.referencesYücel, Y., & Pinar Sultanoǧlu, P. (2013). Characterization of honeys from Hatay Region by their physicochemical properties combined with chemometrics. Food Bioscience, 1, 16–25. https://doi.org/https://doi.org/10.1016/j.fbio.2013.02.001
dc.relation.referencesZhou, J., Suo, Z., Zhao, P., Cheng, N., Gao, H., Zhao, J., & Cao, W. (2013). Jujube honey from china: Physicochemical characteristics and mineral contents. Journal of Food Science, 78(3). https://doi.org/10.1111/1750-3841.12049
dc.relation.referencesZuluaga, C., Díaz, C., & Quicazán, M. (2014). Nariz Electrónica. Fundamentos, manejo de datos y aplicación en productos apícolas (Primera Ed). Universidad Nacional de Colombia.
dc.relation.referencesZuluaga Domínguez, C. M., Nieto Veloza, A., & Quicazán de Cuenca, M. (2018). Classification of Colombian honeys by electronic nose and physical-chemical parameters, using neural networks and genetic algorithms. Journal of Apicultural Research, 57(1). https://doi.org/10.1080/00218839.2017.1339521
dc.relation.referencesZuluaga Domínguez, C. M., VIT, P., Drummond Murillo, S., Moreno, A. C., & Quicazán, M. C. (2013). Perfil aromático y contenido de humedad como parámetros discriminantes para la clasificación quimiométrica de mieles de pote de diferentes especies de Meliponini. 1–8.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc630 - Agricultura y tecnologías relacionadasspa
dc.subject.lembMiel de abejas
dc.subject.lembHoney
dc.subject.lembQuímica analítica
dc.subject.lembAnalytic chemistry
dc.subject.lembHive management
dc.subject.lembApiarios
dc.subject.proposalHoneyeng
dc.subject.proposalDifferentiationeng
dc.subject.proposalChemometricseng
dc.subject.proposalElectronic noseeng
dc.subject.proposalElectrochemical sensorseng
dc.subject.proposalMielspa
dc.subject.proposalDiferenciaciónspa
dc.subject.proposalQuimiometríaspa
dc.subject.proposalNariz electrónicaspa
dc.subject.proposalSensores electroquímicosspa
dc.titleCaracterización y diferenciación de mieles de Colombia mediante aplicación de herramientas instrumentales sensoriales y propiedades fisicoquímicasspa
dc.title.translatedCharacterization and differentiation of colombian honeys through the application of instrumental sensory tools and physicochemical propertieseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPadres y familiasspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1018420810.2021.pdf
Tamaño:
3.35 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencia y Tecnología de Alimentos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: