En 5 día(s), 22 hora(s) y 38 minuto(s): El Repositorio Institucional UNAL informa a la comunidad universitaria que, con motivo del periodo de vacaciones colectivas, el servicio de publicación estará suspendido: Periodo de cierre: Del 20 de diciembre al 18 de enero de 2026. Sobre los depósitos: Durante este tiempo, los usuarios podrán continuar realizando el depósito respectivo de sus trabajos en la plataforma. Reanudación: Una vez reiniciadas las actividades administrativas, los documentos serán revisados y publicados en orden de llegada.

Aportes al desarrollo de un sistema nanoestructurado incorporando un extracto de frutos de Physalis peruviana con posible actividad antidiabética

dc.contributor.advisorBaena Aristizábal, Yolimaspa
dc.contributor.authorMoreno Echeverri, Aura Mariaspa
dc.contributor.researchgroupGRUPO DE INVESTIGACIÓN EN TECNOLOGÍA DE PRODUCTOS NATURALES - TECPRONAspa
dc.date.accessioned2020-07-15T23:08:32Zspa
dc.date.available2020-07-15T23:08:32Zspa
dc.date.issued2020-07-15spa
dc.description.abstractSe prepararon nanopartículas poliméricas (NPs) a partir de un copolímero de mPEG-b-PCL de ~46 kDa, vacías y cargadas con un extracto etanólico estandarizado de frutos de Physalis peruviana, mediante una metodología modificada de doble emulsificación evaporación del solvente, utilizando como estabilizantes de la segunda emulsión PVA 2 %, mPEG-b-PCL de 8 KDa a diferentes concentraciones: 0.01, 0.03, 0.05, 0.1 %. Para la elaboración de las nanopartículas tanto vacías como con el extracto, se realizaron las siguientes etapas de investigación: la primera consistió en la obtención de materiales, así se llevó a cabo la síntesis del copolímero de mPEG-b-PCL~46 KDa por apertura de anillo, el cual fue caracterizado por espectroscopia Infrarroja (FT-IR), resonancia magnética nuclear (RMN) y calorimetría diferencial de barrido (DSC). Asimismo, se obtuvo el extracto etanólico estandarizado de frutos de Physalis peruviana, el cual fue caracterizado con su índice de refracción y sólidos totales; además se identificó una molécula trazadora de este por RMN, y se evaluó su actividad biológica in vitro mediante la evaluación del efecto sobre la actividad de la enzima alfa amilasa. Seguido de esto, ya con las materias primas obtenidas, se continuó con dos etapas más: en primer lugar, la elaboración de las NPs copoliméricas vacías variando el tipo de estabilizante de la segunda emulsión, realizando su caracterización de forma (TEM), tamaño, índice de polidispersidad y potencial ζ (DLS); el segundo paso correspondió a la realización de las NPs cargadas con el extracto etanólico, estas fueron caracterizadas de la misma forma que las NPs vacías. Para conocer la influencia del agente estabilizante en la encapsulación del extracto de frutos de Physalis peruviana, se emplearon las pruebas de DSC e IR y se confirmó la carga del extracto dentro de las nanopartículas por RMN. Como resultado, se obtuvieron nanopartículas esféricas de tamaños comprendidos entre aproximadamente 150 nm a 250 nm. Un potencial ζ entre aproximadamente -10 y -23 mV. El PdI estuvo en un rango de 0.146 a 0.280, sugiriendo una distribución ligeramente polidispersa. Además, se compararon los resultados del extracto libre (no encapsulado) con el extracto etanólico una vez liberado de las NPs mediante un estudio de liberación por membrana de diálisis de 3500 Da, al cual se le hizo seguimiento durante 72 h, evaluando su efecto en el porcentaje de inhibición de la alfa amilasa. Adicionalmente, el estudio de la liberación se complementó al evaluar el contenido de azúcares reductores en función del tiempo. De esa manera se demostró su posible actividad antidiabética.spa
dc.description.abstractIt was done polymeric nanoparticles (NPs) based on copolymer of mPEG-b-PCL of ~46 kDa, empty and loaded with and standard ethanolic extract made of the fruit Physalis peruviana, with a modified methodology by double solvent evaporation emulsification, using 2% PVA and 8 KDa mPEG-b-PCL as stabilizers of the second emulsion, at different concentrations: 0.01, 0.03, 0.05, 0.1%. For the elaboration of the nanoparticles both empty and with the extract, the following investigation stages were carried out: the first one It consisted of obtaining materials, thus the synthesis of the mPEG-b-PCL copolymer ~46 KDa was carried out by opening of ring, which it was characterized by Infrared spectroscopy (FT-IR), nuclear magnetic resonance imaging (NMR) and differential scanning calorimetry (DSC). Likewise, the standardized ethanolic extract of Physalis peruviana fruits was obtained, which it was characterized with its refractive index and total solids; In addition, a tracer molecule was identified by NMR and its biological activity was evaluated in vitro by evaluating the effect on the activity of the enzyme alpha amylase. Following this, with the raw materials obtained, two more stages were continued: first, the elaboration of the empty copolymeric NPs it was varying the type of stabilizer of the second emulsion, making its characterization of form (TEM), size, polydispersity index and potential ζ (DLS); the second step corresponded to the realization of the NPs loaded with the ethanolic extract, these were characterized in the same way as the empty NPs. In order to know the influence of the stabilizing agent on the encapsulation of the Physalis peruviana fruit extract, the DSC and IR tests were used and the loading of the extract into the nanoparticles was confirmed by NMR. As a result, spherical nanoparticles of sizes between about 150 nm to 250 nm were obtained. A potential ζ between approximately -10 and -23 mV. The PdI was in the range of 0.146 to 0.280, suggesting a slightly polydisperse distribution. In addition, the results of the free extract (not encapsulated) were compared with the ethanolic extract once released from the NPs by a release study with a 3500 Da dialysis membrane, which it was monitored for 72 hours, evaluating its effect on percent inhibition of alpha amylase. Additionally, the study of the release was complemented by evaluating the content of reducing sugars as a function of time. In that way its possible antidiabetic activity was demonstrated.spa
dc.description.additionalMagíster en Ciencias Farmacéuticas. Línea de Investigación: Diseño y desarrollo de productos fitofarmacéuticosspa
dc.description.degreelevelMaestríaspa
dc.description.projectContrato 187-2019spa
dc.description.sponsorshipMincienciasspa
dc.format.extent157spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationMoreno-Echeverri A. M. (2020). Aportes al desarrollo de un sistema nanoestructurado incorporando un extracto de frutos de Physalis peruviana con posible actividad antidiabética (Tesis de maestría). Universidad Nacional de Colombia, Bogotá.spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77783
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Farmaciaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias Farmacéuticasspa
dc.relation.referencesAbu Hassan, N. A., Sahudin, S., Hussain, Z., & Hussain, M. (2018). Self-Assembled Chitosan Nanoparticles for Percutaneous Delivery of Caffeine: Preparation, Characterization and in Vitro Release Studies. International Journal of Applied Pharmaceutics, 10(4). https://doi.org/10.22159/ijap.2018v10i4.25947spa
dc.relation.referencesAgronegocios (2016). Uchuva, el fruto que rompe fronteras. Recuperado de https://www.agronegocios.co/agricultura/uchuva-el-fruto-que-rompe-fronteras-2622244spa
dc.relation.referencesAl haushey, L., Bolzinger, M. A., Bordes, C., Gauvrit, J. Y., & Briançon, S. (2007). Improvement of a bovine serum albumin microencapsulation process by screening design. International Journal of Pharmaceutics, 344(1–2), 16-25. https://doi.org/10.1016/j.ijpharm.2007.05.067spa
dc.relation.referencesAlberto, C., & Rodríguez, B. (2012). Contribución al estudio farmacotécnico del extracto estandarizado de frutos de Physalis peruviana L. con miras a la obtención de un producto fitoterapéutico (Tesis de maestría). Universidad Nacional de Colombia, Bogotá. Recuperado de http://bdigital.unal.edu.co/9016/1/192546.2012.pdfspa
dc.relation.referencesAlfonso, K. (2017a). Frutas exóticas viven su cuarto de hora en el mercado de Europa. Recuperado de https://www.agronegocios.co/agricultura/frutas-exoticas-viven-su-cuarto-de-hora-en-el-mercado-de-europa-2622992spa
dc.relation.referencesAlfonso, K. (2017b). La uchuva duplica exportaciones a EE.UU. Recuperado de http://www.agronegocios.co/noticia/la-uchuva-duplica-exportaciones-eeuu.spa
dc.relation.referencesAlvarez, R., Gómez, M. (2009). Influencia del estado de maduración sobre la composición y las Características de Calidad de frutos de Physalis peruviana como materia prima para la elaboración de fitoterapéutico (Tesis de pregrado). Universidad Nacional de Colombia, Bogotá.spa
dc.relation.referencesAmerican Diabetes Association (2019). 2. Classification and diagnosis of diabetes: Standards of medical care in diabetes-2019. Diabetes Care, 42(1), S13-S28. https://doi.org/10.2337/dc19-S002spa
dc.relation.referencesAmuri, B., Maseho, M., Simbi, L., Okusa, P., Duez, P., & Byanga, K. (2017). Hypoglycemic and Antihyperglycemic Activities of Nine Medicinal Herbs Used as Antidiabetic in the Region of Lubumbashi (DR Congo). Phytotherapy Research, 31(7), 1029-1033. https://doi.org/10.1002/ptr.5814spa
dc.relation.referencesAOAC (2005). AOAC Official Method 923.09. "Invert sugar in sugars and syrups. Lane-Eynon General Volumetric Method. Final action. AOACspa
dc.relation.referencesArana, L., Salado, C., Vega, S., Aizpurua-olaizola, O., De, I., Suarez, T., … Alkorta, I. (2015). Colloids and Surfaces B : Biointerfaces Solid lipid nanoparticles for delivery of Calendula officinalis extract. Colloids and Surfaces B: Biointerfaces, 135, 18-26. https://doi.org/10.1016/j.colsurfb.2015.07.020spa
dc.relation.referencesAscher, K. R., Nemny, N. E., Eliyahu, M., Kirson, I., Abraham, A., & Glotter, E. (1980). Insect antifeedant properties of withanolides and related steroids from Solanaceae. Experientia, 36(8), 998-999. https://doi.org/10.1007/BF01953844spa
dc.relation.referencesBach, J. F. (1994). Insulin-dependent diabetes mellitus as an autoimmune disease. Endocrine Reviews, 15(4), 516-542. https://doi.org/10.1210/edrv-15-4-516spa
dc.relation.referencesBaena Aristizábal, C. M. (2015). Vectorización del extracto de Physalis peruviana L. en nuevos sistemas de liberación de uso farmacéutico (Tesis doctoral). Universidad Nacional de Colombia, Bogotá. Recuperado de http://www.bdigital.unal.edu.co/52419/spa
dc.relation.referencesBaena-Aristizábal, C. M., Fessi, H., Elaissari, A., & Mora-Huertas, C. E. (2016). Biodegradable microparticles preparation by double emulsification-Solvent extraction method: A Systematic study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 492, 213–229. doi: 10.1016/j.colsurfa.2015.11.067spa
dc.relation.referencesBagheri, L., Madadlou, A., Yarmand, M., & Mousavi, M. E. (2014). Spray-dried alginate microparticles carrying caffeine-loaded and potentially bioactive nanoparticles. Food Research International, 62, 1113-1119. https://doi.org/10.1016/j.foodres.2014.05.040spa
dc.relation.referencesBallesteros, L. F., Ramirez, M. J., Orrego, C. E., Teixeira, J. A., & Mussatto, S. I. (2017). Encapsulation of antioxidant phenolic compounds extracted from spent coffee grounds by freeze-drying and spray-drying using different coating materials. Food Chemistry, 237, 623-631. https://doi.org/10.1016/j.foodchem.2017.05.142spa
dc.relation.referencesBazana, M. T., da Silva, S. S., Codevilla, C. F., de Deus, C., Lucas, B. N., Ugalde, G. A., … de Menezes, C. R. (2019). Development of nanoemulsions containing Physalis peruviana calyx extract: A study on stability and antioxidant capacity. Food Research International, 125. https://doi.org/10.1016/j.foodres.2019.108645spa
dc.relation.referencesBell, J. G. (2019). En lo corrido del año colombia ha exportado 122 toneladas de uchuva a Estados Unidos. Recuperado de https://www.agronegocios.co/agricultura/en-lo-corrido-del-ano-colombia-ha-exportado-122-toneladas-de-uchuva-a-estados-unidos-2841318spa
dc.relation.referencesBenzie, I. F., & Wachtel-Galor, S. (Eds.) (2011). Herbel Medicine Biomolecular and clinical aspects. Herbel Medicine Biomolecular and clinical aspects. Taylor & Francis Group. https://doi.org/10.1063/1.2756553spa
dc.relation.referencesBernal, C. A. (2016). Desarrollo de un sistema de liberación modificada de un extracto estandarizado de Physalis peruviana L. aplicando el método de secado. (Tesis Doctoral). Universidad Nacional de Colombia, Bogotá. Recuperado de http://bdigital.unal.edu.co/62574/1/Carlos%20Bernal%2080049977.pdfspa
dc.relation.referencesBernal, C. A., Castellanos, L., Aragón, D. M., Martínez-Matamoros, D., Jiménez, C., Baena, Y., & Ramos, F. A. (2018). Peruvioses A to F, sucrose esters from the exudate of Physalis peruviana fruit as α-amylase inhibitors. Carbohydrate Research, 461, 4-10. https://doi.org/10.1016/j.carres.2018.03.003spa
dc.relation.referencesBernal, C. A., Aragón, M., & Baena, Y. (2016). Dry powder formulation from fruits of Physalis peruviana L. standardized extract with hypoglycemic activity. Powder Technology, 301, 839–847. https://doi.org/10.1016/j.powtec.2016.07.008spa
dc.relation.referencesBernal, C. A., Ramos, F. A., & Baena, Y. (2019). Dry powder formulation from Physalis peruviana L. fruits extract with antidiabetic activity formulated via co-spray drying. International Journal of Applied Pharmaceutics, 11(3), 109-117. https://doi.org/10.22159/ijap.2019v11i3.29520spa
dc.relation.referencesBhattacharjee, S. (2016). Review article DLS and zeta potential – What they are and what they are not ? Journal of Controlled Release, 235, 337-351. https://doi.org/10.1016/j.jconrel.2016.06.017spa
dc.relation.referencesBischoff, H. (1994). Pharmacology of α-glucosidase inhibition. European Journal of Clinical Investigation, 24(3), 3-10. https://doi.org/10.1111/j.1365-2362.1994.tb02249.xspa
dc.relation.referencesBula, J., & Cruz, A. (1993). Comprobación de la actividad hipoglicemiante por vía oral de Physalis peruviana (Tesis de pregrado). Universidad Nacional de Colombia, Bogotá.spa
dc.relation.referencesCagel, M., Tesan, F. C., Bernabeu, E., Salgueiro, M. J., Zubillaga, M. B., Moretton, M. A., & Chiappetta, D. A. (2017). Polymeric mixed micelles as nanomedicines: Achievements and perspectives. European Journal of Pharmaceutics and Biopharmaceutics, 113, 211-228. https://doi.org/10.1016/j.ejpb.2016.12.019spa
dc.relation.referencesCalixto, J. B. (2000). Efficacy, safety, quality control, marketing and regulatory guidelines for herbal medicines (phytotherapeutic agents). Brazilian Journal of Medical and Biological Research, 33(2), 179-189. https://doi.org/10.1590/S0100-879X2000000200004spa
dc.relation.referencesCañari, C., Nieva, A., & Maruenda, H. (2012). NMR Metabolic Profiling of Two Exotic Native Fruits from Peru: Vanilla pompona ssp Grandiflora and Physalis peruviana L. En SMASH 2012 NMR Conference, september 9th-12th, Providence, Rhode Island (p. 127). SMASH-NMRspa
dc.relation.referencesChiang, C. S., Hu, S. H., Liao, B. J., Chang, Y. C., & Chen, S. Y. (2013). Enhancement of cancer therapy efficacy by trastuzumab-conjugated and pH-sensitive nanocapsules with the simultaneous encapsulation of hydrophilic and hydrophobic compounds. Nanomedicine: Nanotechnology, Biology, and Medicine, 10, 1-9. https://doi.org/10.1016/j.nano.2013.07.009spa
dc.relation.referencesCohen-Sela, E., Chorny, M., Koroukhov, N., Danenberg, H. D., & Golomb, G. (2009). A new double emulsion solvent diffusion technique for encapsulating hydrophilic molecules in PLGA nanoparticles. Journal of Controlled Release, 133(2), 90–95. https://doi.org/10.1016/j.jconrel.2008.09.073spa
dc.relation.referencesCrucho, C. I., & Barros, M. T. (2017). Polymeric nanoparticles: A study on the preparation variables and characterization methods. Materials Science and Engineering C, 80, 771-784. https://doi.org/10.1016/j.msec.2017.06.004spa
dc.relation.referencesDate, A., Hanes, J., & Ensign, L. M. (2016). Nanoparticles for oral delivery: Design, evaluation and state-of-the-art. Journal of Controlled Release, 240, 504-526. https://doi.org/10.1016/j.jconrel.2016.06.016spa
dc.relation.referencesDewi, L., Sulchan, M., & Kisdjamiatun. (2018). Potency of cape gooseberry (Physalis peruviana ) juice in improving antioxidant and adiponectin level of high fat diet streptozotocin rat model. Rom J Diabetes Nutr Metab Dis., 25(3), 253-260. https://doi.org/10.2478/rjdnmd-2018-0029spa
dc.relation.referencesDing, S., Serra, C. A., Vandamme, T. F., Yu, W., & Anton, N. (2018). Double emulsions prepared by two–step emulsification: History, state-of-the-art and perspective. Journal of Controlled Release, 235, 31-49. https://doi.org/10.1016/j.jconrel.2018.12.037spa
dc.relation.referencesDubey, N., Varshney, R., Shukla, J., Ganeshpurkar, A., Hazari, P. P., Bandopadhaya, G. P., … Trivedi, P. (2012). Synthesis and evaluation of biodegradable PCL/PEG nanoparticles for neuroendocrine tumor targeted delivery of somatostatin analog. Drug Delivery, 19(3), 132-142. https://doi.org/10.3109/10717544.2012.657718spa
dc.relation.referencesEcheverry, S. M., Valderrama, I. H., Costa, G. M., Ospina-Giraldo, L. F., & Aragón, D. M. (2018). Development and optimization of microparticles containing a hypoglycemic fraction of calyces from Physalis peruviana. Journal of Applied Pharmaceutical Science, 8(5), 10-18. https://doi.org/10.7324/JAPS.2018.8502spa
dc.relation.referencesEsfanjani, A. F., Jafari, S. M., Assadpoor, E., & Mohammadi, A. (2015). Nano-encapsulation of saffron extract through double-layered multiple emulsions of pectin and whey protein concentrate. Journal of Food Engineering, 165, 149-155. https://doi.org/10.1016/j.jfoodeng.2015.06.022spa
dc.relation.referencesEsmaeili, A., & Asgari, A. (2015). In vitro release and biological activities of Carum copticum essential oil (CEO) loaded chitosan nanoparticles. International Journal of Biological Macromolecules, 81, 283–290. https://doi.org/10.1016/j.ijbiomac.2015.08.010spa
dc.relation.referencesEspectros de Resonancia Magnética Nuclear (RMN) de ácido cítrico (n.d.). Recuperado de https://sdbs.db.aist.go.jp/sdbs/cgi-bin/cre_index.cgispa
dc.relation.referencesFievez, V., Plapied, L., des Rieux, A., Pourcelle, V., Freichels, H., Wascotte, V., … Préat, V. (2009). Targeting nanoparticles to M cells with non-peptidic ligands for oral vaccination. European Journal of Pharmaceutics and Biopharmaceutics, 73(1), 16-24. https://doi.org/10.1016/j.ejpb.2009.04.009spa
dc.relation.referencesFlórez, V., Fisher, G., & Sora, Á. (2000). Producción, poscosecha y exportación de la uchuva (Physalis peruviana L.). Bogotá: Universidad Nacional de Colombia.spa
dc.relation.referencesForero, D. (2008). Desarrollo de una metodologia para la obtencion y caracterizacion de un extracto estandarizado de Physalis peruviana L. y propuesta para su adecuaciòn tecnológica (Tesis de pregrado). Universidad Nacional de Colombia, Bogotá.spa
dc.relation.referencesFurniss, B., Hannaford, A., Smith, P., & Tatchell, A. (1990). Vogel’s textbook of practical organic chemistry (5th ed.). New York: Longman scientific & Technical.spa
dc.relation.referencesGaignaux, A., Réeff, J., Siepmann, F., Siepmann, J., De Vriese, C., Goole, J., & Amighi, K. (2012). Development and evaluation of sustained-release clonidine-loaded PLGA microparticles. International Journal of Pharmaceutics, 437, 20-28. https://doi.org/10.1016/j.ijpharm.2012.08.006spa
dc.relation.referencesGamboa Ortiz, J. (2010). Ensayo clínico patogenésico sobre los cálices de Physalis peruviana L (Tesis de maestría). Universidad Nacional de Colombia, Bogotá. Recuperado de http://bdigital.unal.edu.co/3797/1/598305.2010.pdfspa
dc.relation.referencesGao, X., Gou, B., Huang, M., Huang, N., Qian, F., Wei, F., … Liu, Y. (2013). Preparation, characterization and application of star-shaped PCL/PEG micelles for the delivery of doxorubicin in the treatment of colon cancer. International Journal of Nanomedicine, 8(1), 971-982. https://doi.org/10.2147/IJN.S39532spa
dc.relation.referencesGarcía, A. T., & Súa, S. (1997). Evaluación de la actividad hipoglicemiante de algunas fracciones obtenidas de frutos de Physalis peruviana (Tesis de pregrado). Universidad Nacional de Colombia, Bogotá.spa
dc.relation.referencesGarti, N. (1997). Double emulsions -scope, limitations and new achievements. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 233-246spa
dc.relation.referencesGarti, N., & Bisperink, C. (1998). Double emulsions : progress and applications. Current Opinion in Colloid & Interface Science, 3(6), 657-667. https://doi.org/10.1016/S1359-0294(98)80096-4spa
dc.relation.referencesGonzález, I., Cabrera, M., & Bermejo, M. (2015). Metodologías Biofarmacéuticas en el Desarrollo de Medicamentos. Elche: Universidad Miguel Hernándezspa
dc.relation.referencesGrossen, P., Witzigmann, D., Sieber, S., & Huwyler, J. (2017). PEG-PCL-based nanomedicines: A biodegradable drug delivery system and its application. Journal of Controlled Release, 260, 46-60. https://doi.org/10.1016/j.jconrel.2017.05.028spa
dc.relation.referencesGuirguis, O. W., & Moselhey, M. T. (2012). Thermal and structural studies of poly(vinyl alcohol) and hydroxypropyl cellulose blends. Natural Science, 4(1), 57-67. https://doi.org/10.4236/ns.2012.41009spa
dc.relation.referencesGumustas, M., Sengel-turk, C. T., & Gumustas, A. (2017). Effect of Polymer-Based Nanoparticles on the Assay of Antimicrobial Drug Delivery Systems. Multifunctional Systems for Combined Delivery, Biosensing and Diagnostics. Elsevier Inc. https://doi.org/10.1016/B978-0-323-52725-5/00005-8spa
dc.relation.referencesHansawasdi, C., Kawabata, J., & Kasai, T. (2000). α-amylase inhibitors from roselle (Hibiscus sabdariffa Linn.) Tea. Bioscience, Biotechnology, and Biochemistry, 64(5), 1041-1043. https://doi.org/10.1271/bbb.64.1041spa
dc.relation.referencesHassan, H. A., Serag, H. M., Qadir, M. S., & Ramadan, M. F. (2017). Cape gooseberry (Physalis peruviana) juice as a modulator agent for hepatocellular carcinoma-linked apoptosis and cell cycle arrest. Biomedicine and Pharmacotherapy, 94, 1129-1137. https://doi.org/10.1016/j.biopha.2017.08.014spa
dc.relation.referencesHillery, A., Lloyd, A., & Swarbrick, J. (2001). Drug Delivery and Targeting; for Pharmacists and Pharmaceutical Scientists. Drug Targeting, 10(8), 637. https://doi.org/10.1080/1061186021000040848spa
dc.relation.referencesHolt, P. R., Atillasoy, E., Lindenbaum, J., Ho, S. B., Lupton, J. R., McMahon, D., & Moss, S. F. (1996). Effects of acarbose on fecal nutrients, colonic pH, and short-chain fatty acids and rectal proliferative indices. Metabolism, 45(9), 1179-1187. https://doi.org/https://doi.org/10.1016/S0026-0495(96)90020-7spa
dc.relation.referencesHoyos, T. N., Arteaga, M. V., & Muñoz, M. (2011). Factores de no adherencia al tratamiento en personas con Diabetes Mellitus tipo 2 en el domicilio. La visión del cuidador familiar. Investigación y Educación en Enfermería, 29(2), 194-203.spa
dc.relation.referencesHuang, Y., Li, L., & Li, G. (2015). An enzyme-catalysed access to amphiphilic triblock copolymer of PCL-b-PEG-b-PCL: Synthesis, characterization and self-assembly properties. Designed Monomers and Polymers, 18(8), 799-806. https://doi.org/10.1080/15685551.2015.1078113spa
dc.relation.referencesIbraheem, D., Iqbal, M., Agusti, G., Fessi, H., & Elaissari, A. (2014). Effects of process parameters on the colloidal properties of polycaprolactone microparticles prepared by double emulsion like process. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 445, 79-91. https://doi.org/10.1016/j.colsurfa.2014.01.012spa
dc.relation.referencesIDF (International Diabetes Federation) (2019). IDF Diabetes Atlas 2019 (9th ed.). Bélgica: IDF. https://doi.org/10.1289/image.ehp.v119.i03spa
dc.relation.referencesIqbal, M., Zafar, N., Fessi, H., & Elaissari, A. (2015). Double emulsion solvent evaporation techniques used for drug encapsulation. International Journal of Pharmaceutics, 496, 173-190. https://doi.org/10.1016/j.ijpharm.2015.10.057spa
dc.relation.referencesIzunobi, J. U., & Higginbotham, C. L. (2011). Polymer molecular weight analysis by 1H NMR spectroscopy. Journal of Chemical Education, 88(8), 1098-1104. https://doi.org/10.1021/ed100461vspa
dc.relation.referencesJenkins, S. (2011). Hansen solubility parameters (HSP). Chemical Engineering (118) (2a ed.). New York: Taylor & Francis Group.spa
dc.relation.referencesJeong, Y. Il, Na, H. S., Seo, D. H., Kim, D. G., Lee, H. C., Jang, M. K., … Nah, J. W. (2008). Ciprofloxacin-encapsulated poly(dl-lactide-co-glycolide) nanoparticles and its antibacterial activity. International Journal of Pharmaceutics, 352, 317-323.https://doi.org/10.1016/j.ijpharm.2007.11.001spa
dc.relation.referencesKasali, F. M., Kadima, J. N., Mpiana, P. T., Ngbolua, K., & Tshibangu, D. S. (2013). Assessment of antidiabetic activity and acute toxicity of leaf extracts from Physalis peruviana L. in guinea-pig. Asian Pacific Journal of Tropical Biomedicine, 3(11), 841-846. https://doi.org/10.1016/S2221-1691(13)60166-5spa
dc.relation.referencesKazeem, M. I., Adamson, J. O., & Ogunwande, I. A. (2013). Modes of Inhibition of α-Amylase and α-Glucosidase by Aqueous Extract of Morinda lucida Benth Leaf. BioMed Research International, (3), 1-6.spa
dc.relation.referencesKhoee, S., & Yaghoobian, M. (2008). An investigation into the role of surfactants in controlling particle size of polymeric nanocapsules containing penicillin-G in double emulsion. European Journal of Medicinal Chemistry, 44, 2392-2399. https://doi.org/10.1016/j.ejmech.2008.09.045spa
dc.relation.referencesKidane, Y., Bokrezion, T., Mebrahtu, J., Mehari, M., Gebreab, Y. B., Fessehaye, N., & Achila, O. O. (2018). In vitro inhibition of α-amylase and α-glucosidase by extracts from Psiadia punctulata and Meriandra bengalensis. Evidence-Based Complementary and Alternative Medicine, 2018. https://doi.org/10.1155/2018/2164345spa
dc.relation.referencesKim, Y., Sc, M., Jeong, Y., Sc, M., … Wang, M. (2005). Inhibitory effect of pine extract on alpha-glucosidase activity and postprandial hyperglycemia, 21, 756-761. https://doi.org/10.1016/j.nut.2004.10.014spa
dc.relation.referencesKrentz, A. J., & Bailey, C. J. (2005). Oral antidiabetic agents: Current role in type 2 diabetes mellitus. Drugs, 65(3), 385-411. https://doi.org/10.2165/00003495-200565030-00005spa
dc.relation.referencesKwon, Y. I., Vattem, D. A., & Shetty, K. (2006). Evaluation of clonal herbs of Lamiaceae species for management of diabetes and hypertension. Asia Pacific Journal of Clinical Nutrition, 15(1), 107-118. https://doi.org/10.1210/er.19.5.583spa
dc.relation.referencesLamprecht, A., Ubrich, N., Hombreiro Pérez, M., Lehr, C.-M., Hoffman, M., & Maincent, P. (2000). Influences of process parameters on nanoparticle preparation performed by a double emulsion pressure homogenization technique. International Journal of Pharmaceutics, 196(2), 17-182. https://doi.org/https://doi.org/10.1016/S0378-5173(99)00422-6spa
dc.relation.referencesLeung, L., Birtwhistle, R., Kotecha, J., Hannah, S., & Cuthbertson, S. (2009). Anti-diabetic and hypoglycaemic effects of Momordica charantia (bitter melon): A mini review. British Journal of Nutrition, 102(12), 1703-1708.https://doi.org/10.1017/S0007114509992054spa
dc.relation.referencesLi, R., Li, X., Xie, L., Ding, D., Hu, Y., Qian, X., … Liu, B. (2009). Preparation and evaluation of PEG-PCL nanoparticles for local tetradrine delivery. International Journal of Pharmaceutics, 379(1-2), 158-166. https://doi.org/10.1016/j.ijpharm.2009.06.007spa
dc.relation.referencesLiang, Y., Peng, X., Chen, Y., Deng, X., Gao, W., Cao, J., … He, B. (2015). Chain length effect on drug delivery of chrysin modified mPEG–PCL micelles. RSC Advances, 5(73), 59014-59021. https://doi.org/10.1039/C5RA09650Bspa
dc.relation.referencesLin, P. C., Lin, S., Wang, P. C., & Sridhar, R. (2014). Techniques for physicochemical characterization of nanomaterials. Biotechnology Advances, 32, 711-726. https://doi.org/10.1016/j.biotechadv.2013.11.006spa
dc.relation.referencesLiu, Z., Jiang, M., Kang, T., Miao, D., Gu, G., Song, Q., … Chen, J. (2013). Lactoferrin-modified PEG-co-PCL nanoparticles for enhanced brain delivery of NAP peptide following intranasal administration. Biomaterials, 34(15), 3870-3881. https://doi.org/10.1016/j.biomaterials.2013.02.003spa
dc.relation.referencesLourenco, C., Teixeira, M., Simões, S., & Gaspar, R. (1996). Steric stabilization: size and surface properties. International Journal of Pharmaceutics, 138(1), 1-2.spa
dc.relation.referencesLu, Z., Bei, J., & Wang, S. (1999). A method for the preparation of polymeric nanocapsules without stabilizer. Journal of Controlled Release, 61(1-2), 107-112.spa
dc.relation.referencesMa, J., Feng, P., Ye, C., Wang, Y., & Fan, Y. (2001). An improved interfacial coacervation technique to fabricate biodegradable nanocapsules of an aqueous peptide solution from polylactide and its block copolymers with poly(ethylene glycol). Colloid and Polymer Science, 279, 387-392. https://doi.org/10.1007/s003960000467spa
dc.relation.referencesMacLean, D. B., & Luo, L. G. (2004). Increased ATP content/production in the hypothalamus may be a signal for energy-sensing of satiety: Studies of the anorectic mechanism of a plant steroidal glycoside. Brain Research, 1020, 1-11. https://doi.org/10.1016/j.brainres.2004.04.041spa
dc.relation.referencesMahmoudi, R., Tajali Ardakani, M., Hajipour Verdom, B., Bagheri, A., Mohammad-Beigi, H., Aliakbari, F., Bardania, H. (2019). Chitosan nanoparticles containing Physalis alkekengi L. extract: preparation, optimization and their antioxidant activity. Bulletin of Materials Science, 42(3), 131. https://doi.org/10.1007/s12034-019-1815-3spa
dc.relation.referencesMaldonado, E., Torres, F. R., Martínez, M., & Perz-Castorena, A. L. (2006). Sucrose esters from the fruits of Physalis nicandroides var. attenuata. Journal of Natural Products, 69(19), 1511-1513.spa
dc.relation.referencesMardiyanto, V. (2013). Investigation of Nanoparticulate Formulation Intended for Caffeine Delivery to Hair Follicles (Tesis de doctorado). Universidad de Sarres. Saarland. Alemania.spa
dc.relation.referencesMarques, T. A., Rampazo, É. M., Zilliani, R. R., Marques, P. A., & Benincasa, F. (2016). Automated sugar analysis. Food Science and Technology, 36(1). https://doi.org/10.1590/1678-457X.0012spa
dc.relation.referencesMartinez, N. Y., Andrade, P. F., Durán, N., & Cavalitto, S. (2017). Development of double emulsion nanoparticles for the encapsulation of bovine serum albumin. Colloids and Surfaces B: Biointerfaces, 158, 190-196. https://doi.org/10.1016/j.colsurfb.2017.06.033spa
dc.relation.referencesMaruenda, H., Cabrera, R., Cañari-chumpitaz, C., Lopez, J. M., & Toubiana, D. (2018). NMR-based metabolic study of fruits of Physalis peruviana L . grown in eight different Peruvian ecosystems. Food Chemistry, 262, 94-101. https://doi.org/10.1016/j.foodchem.2018.04.032spa
dc.relation.referencesMedina, D. . (2012). Implementación de una metodología para la obtención de metabolitos secundarios que pueden ser utilizados como marcadores a partir de los frutos de Physalis peruviana (solanaceae), y evaluación de actividad hipoglucemiante (Tesis de Maestría). Universidad Nacional de Colombia, Bogotáspa
dc.relation.referencesMelo, A., & Urrea, J. (2009). Determinación de la influencia de las variables de extracción sobre el contenido de marcadores (witanolidos y glicoalcaloides) y el rendimiento en la obtención de un extracto de Physalis peruviana (uchuva) (Tesis de pregrado). Universidad Nacional de Colombia, Bogotá.spa
dc.relation.referencesMéndez-Sánchez, N., & Chávez Tapia, N. (2010). Gastroenterología (2ª ed.). McGraw Hill. Recuperado de https://accessmedicina.mhmedical.com/content.aspx?bookid=1480&sectionid=92819827spa
dc.relation.referencesMinisterio de la protección social. (2008). Vademécum colombiano de plantas medicinales. Recuperado de https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/SA/vademecum-colombiano-plantas-medicinales.pdfspa
dc.relation.referencesMinisterio de Salud y de Protección Social. (2015). Diabetes mellitus tipo 1 mayores de 15 años. Bogotá: Ministerio de Salud y de Protección Social.spa
dc.relation.referencesMohammed, Z. H., & Ibraheem, R. M. (2015). Anti-oxidant Activity of Methanol Extracts of Arum maculatum L. and Physalis peruviana L. Plants. Ibn Al-Haitham Journal for Pure and Applied Science, 28(2), 1-7.spa
dc.relation.referencesMora-Huertas, C. E., Fessi, H., & Elaissari, A. (2010). Polymer-based nanocapsules for drug delivery. International Journal of Pharmaceutics, 385, 113142. https://doi.org/10.1016/j.ijpharm.2009.10.018spa
dc.relation.referencesMora, Á. C., Aragón, D. M., & Ospina, L. F. (2010). Effects of Physalis peruviana fruit extract on stress oxidative parameters in streptozotocin-diabetic rats. Latin American Journal of Pharmacy, 29(7), 1132-1136spa
dc.relation.referencesMu, J., Meng, X., Chen, L., Lu, Z., Mou, Q., Li, X., … Yue, H. (2017). Highly stable and biocompatible W18O49@PEG-PCL hybrid nanospheres combining CT imaging and cancer photothermal therapy. RSC Advances, 7(18), 10692-10699. https://doi.org/10.1039/c6ra28161cspa
dc.relation.referencesNair, S. S., Kavrekar, V., & Mishra, A. (2013). In vitro studies on alpha amylase and alpha glucosidase inhibitory activities of selected plant extracts. European Journal of Experimental Biology, 3(1), 128-132.spa
dc.relation.referencesNarkhede, A., Nirmal, P., Tupe, R., Kulkarni, O., Harsulkar, A., & Jagtap, S. (2012). In vitro Antioxidant, Antiglycation and α - amylase inhibitory potential of Eulophia ochreata L . Journal of Pharmacy Research, 5(5), 2532-2537.spa
dc.relation.referencesNational Institute of Diabetes and Digestive and Kidney Diseases. (2017). Prediabetes & Insulin Resistance. Recuperado de http://pacificschoolserver.org/content/_public/Health%20and%20Safety/Non-Communicable%20Diseases/Diabetes%2C%20Prediabetes%20_%20Insulin%20Resistance%20_%20NIDDK.pdfspa
dc.relation.referencesNogueira de Assis, D., Mosqueira, V. C., Vilela, J. M., Andrade, M. S., & Cardoso, V. N. (2008). Release profiles and morphological characterization by atomic force microscopy and photon correlation spectroscopy of 99mTechnetium-fluconazole nanocapsules. International Journal of Pharmaceutics, 349(1-2), 152-160. https://doi.org/10.1016/j.ijpharm.2007.08.002spa
dc.relation.referencesNoor, N., Shah, A., Gani, A., Gani, A., & Masoodi, F. A. (2018). Microencapsulation of caffeine loaded in polysaccharide based delivery systems. Food Hydrocolloids, 82,312-321. https://doi.org/10.1016/j.foodhyd.2018.04.001spa
dc.relation.referencesOlivares, M. (2017). Exploring the potential of an Andean fruit: An interdisciplinary study on the cape gooseberry (Physalis peruviana L.) value chain. https://doi.org/http://dx.doi.org/10.18174/393622spa
dc.relation.referencesOrganización Mundial de la Salud. (2013). Estrategia de la OMS sobre medicina tradicional 2014-2023. Organización Mundial de la Salud. Recuperado de https://apps.who.int/medicinedocs/documents/s21201es/s21201es.pdfspa
dc.relation.referencesOrtiz, F. (2010). Implementación de metodologías analíticas para la identificación y cuantificación de glicoalcaloides presentes en frutos de uchuva (Physalis peruviana L.) (Tesis de pregrado). Universidad Nacional de Colombia, Bogotá.spa
dc.relation.referencesOviedo, J. (2009). Implementación aislamiento y purificación de glicoalcaloides a partir de frutos de Physalis peruviana L. (uchuva) (Tesis de pregrado). Universidad Nacional de Colombia, Bogotá.spa
dc.relation.referencesOzturk, A., Özdemİr, Y., Albayrak, B., Simsek, M., & Yildirim, K. (2017). Some nutrient characteristics of goldenberry ( Physalis peruviana l .) cultivar candidate from turkey. Scientific Papers, Series B, Horticulture, 61, 293-298.spa
dc.relation.referencesPancreatic cancer action network. (2018). El Páncreas. Recuperado de https://www.pancan.org/section_en_espanol/learn_about_pan_cancer/what_is_the_pancreas.phpspa
dc.relation.referencesPérez, C., De Jesús, P., & Griebenow, K. (2002). Preservation of lysozyme structure and function upon encapsulation and release from poly(lactic-co-glycolic) acid microspheres prepared by the water-in-oil-in-water method. International Journal of Pharmaceutics, 248, 193-206. https://doi.org/10.1016/S0378-5173(02)00435-0spa
dc.relation.referencesPerez, C., Sanchez, A., Putnam, D., Ting, D., Langer, R., & Alonso, M. J. (2001). Poly(lactic acid)-poly(ethylene glycol) nanoparticles as new carriers for the delivery of plasmid DNA. Journal of Controlled Release, 75, 211-224. https://doi.org/10.1016/S0168-3659(01)00397-2spa
dc.relation.referencesPetitti, M., Barresi, A. A., & Vanni, M. (2009). Controlled release of vancomycin from PCL microcapsules for an ophthalmic application. Chemical Engineering Research and Design, 87, 859-866. https://doi.org/10.1016/j.cherd.2008.12.008spa
dc.relation.referencesPisani, E., Fattal, E., Paris, J., Ringard, C., Rosilio, V., & Tsapis, N. (2008). Surfactant dependent morphology of polymeric capsules of perfluorooctyl bromide : Influence of polymer adsorption at the dichloromethane-water interface. Journal of Colloid and Interface Science, 326(1), 66-71. https://doi.org/10.1016/j.jcis.2008.07.013spa
dc.relation.referencesPrabakar, K., Sivalingam, P., Mohamed Rabeek, S. I., Muthuselvam, M., Devarajan, N., Arjunan, A., … Wembonyama, J. P. (2013). Evaluation of antibacterial efficacy of phyto fabricated silver nanoparticles using Mukia scabrella (Musumusukkai) against drug resistance nosocomial gram negative bacterial pathogens. Colloids and Surfaces B: Biointerfaces, 104, 282-288. https://doi.org/10.1016/j.colsurfb.2012.11.041spa
dc.relation.referencesPuente, L. A., Pinto-Muñoz, C. A., Castro, E. S., & Cortés, M. (2011). Physalis peruviana Linnaeus, the multiple properties of a highly functional fruit: A review. Food Research International, 44(7), 1733-1740. https://doi.org/10.1016/j.foodres.2010.09.034spa
dc.relation.referencesRamadan, M. F. (2011). Bioactive phytochemicals, nutritional value, and functional properties of cape gooseberry (Physalis peruviana): An overview. Food Research International, 44(7), 1830–1836. https://doi.org/10.1016/j.foodres.2010.12.042spa
dc.relation.referencesRamadan, M. F., Hassan, N. A., Elsanhoty, R. M., & Sitohy, M. Z. (2012). Goldenberry (Physalis peruviana) juice rich in health-beneficial compounds suppresses high-cholesterol diet-induced hypercholesterolemia in Rats. Journal of Food Biochemistry, 37, 708-722. doi: 10.1111/j.1745-4514.2012.00669.xspa
dc.relation.referencesRamírez, M. E., Rodríguez, O. Y., Hernández, O. S., Chel-Guerrero, L., & Aguilar, M. (2016). Estudio de la actividad hipoglucemiante y antioxidante de tronadora, raíz de wereque y raíz de nopal. En M. E. Ramírez Ortiz (Ed.), Propiedades funcionales de hoy (pp. 143–180). Barcelona, España: OmniaSciencespa
dc.relation.referencesRamírez, D. (2013). Evaluación en pequeños roedores de laboratorio del efecto hipoglicemiante de micropartículas conteniendo un extracto vegetal (Tesis de Pregrado). Universidad Nacional de Colombia, Bogotáspa
dc.relation.referencesRather, M. A., Bhat, B. A., & Qurishi, M. A. (2013). Multicomponent phytotherapeutic approach gaining momentum: Is the “one drug to fit all” model breaking down? Phytomedicine, 21(1), 1-14. https://doi.org/10.1016/j.phymed.2013.07.015spa
dc.relation.referencesRey, D. P. (2013). Evaluación in vitro del efecto de un extracto de frutos de Physalis peruviana sobre algunas carbohidrasas intestinales (Tesis de maestría). Universidad Nacional de Colombia, Bogotá. Recuperado de http://bdigital.unal.edu.co/58053/1/1014182296.2014.pdfspa
dc.relation.referencesRey, D. P., Ospina, L. F., & Aragón, D. M. (2015). Inhibitory effects of an extract of fruits of Physalis peruviana on some intestinal carbohydrases. Revista Colombiana de Ciencias Químico-Farmacéuticas, 44(1), 72-89. https://doi.org/10.15446/rcciquifa.v44n1.54281spa
dc.relation.referencesRizkalla, N., Range, C., Lacasse, F. X., & Hildgen, P. (2006). Effect of various formulation parameters on the properties of polymeric nanoparticles prepared by multiple emulsion method. Journal of Microencapsulation, 23(1), 39–57. https://doi.org/10.1080/02652040500286185spa
dc.relation.referencesRodríguez Arévalo, A. L. (2019). Establecimiento de las condiciones para la obtención de sistemas nanoestructurados empleando polietilenglicol-b-poli(ε-caprolactona) (PEG-b-PCL) (Trabajo de grado). Universidad Nacional de Colombia.spa
dc.relation.referencesRodriguez Bernal, C.-A., Linck, V., Castellanos, L., Ramos, F. A., & Baena, Y. (2019). Development of an oral control release system from Physalis peruviana L . fruits extract based on the co-spray-drying method, 354, 676-688. https://doi.org/10.1016/j.powtec.2019.06.024spa
dc.relation.referencesSahoo, S. K., Panyam, J., Prabha, S., & Labhasetwar, V. (2002). Residual polyvinyl alcohol associated with poly (D,L-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake. Journal of Controlled Release, 82, 105-114. https://doi.org/10.1016/S0168-3659(02)00127-Xspa
dc.relation.referencesSelvamani, V. (2019). Stability Studies on Nanomaterials Used in Drugs. Characterization and Biology of Nanomaterials for Drug Delivery. Elsevier Inc. https://doi.org/10.1016/b978-0-12-814031-4.00015-5spa
dc.relation.referencesSharma, N., Bano, A., Dhaliwal, H. S., & Sharma, V. (2015). Perspectives and possibilities of Indian species of genus Physalis (L.)-a comprehensive review. European Journal of Pharmaceutical and Medical Research, 2(2), 326-353.spa
dc.relation.referencesShen, C., Guo, S., & Lu, C. (2008). Degradation behaviors of monomethoxy poly(ethylene glycol)-b-poly(e-caprolactone) nanoparticles in aqueous solution. Polymers for Advanced Technologies, 19(1), 66–72. https://doi.org/10.1002/pat.975spa
dc.relation.referencesShimada S, (inventor) (2008). 20080254126. United Statates,Patent. Shuai, X., Ai, H., Nasongkla, N., Kim, S., & Gao, J. (2004). Micellar carriers based on block copolymers of poly(ε-caprolactone) and poly(ethylene glycol) for doxorubicin delivery. Journal of Controlled Release, 98, 415-426. https://doi.org/10.1016/j.jconrel.2004.06.003spa
dc.relation.referencesShuai, X., Merdan, T., Unger, F., Wittmar, M., & Kissel, T. (2003). Novel biodegradable ternary copolymers hy-PEI-g-PCL-b-PEG: Synthesis, characterization, and potential as efficient nonviral gene delivery vectors. Macromolecules, 36(15), 5751-5759. https://doi.org/10.1021/ma034390wspa
dc.relation.referencesSilva Pinto, M., Galvez Ranilla, L., Apostolidis, E., Maria Lajolo, F., Genovese, M. I., & Shetty, K. (2009). Evaluation of Antihyperglycemia and Antihypertension Potential of Native Peruvian Fruits Using In Vitro Models. Journal of Medicinal Food, 12(2). https://doi.org/10.1089/jmf.2008.0113spa
dc.relation.referencesSoppimath, K. S., Aminabhavi, T. M., Kulkarni, A. R., & Rudzinski, W. E. (2001). Biodegradable polymeric nanoparticles as drug delivery devices. Journal of Controlled Release, 70(1-2), 1-20. https://doi.org/10.1016/S0168-3659(00)00339-4spa
dc.relation.referencesSteppan, C., Bailey, S., Bhat, S., Brown, E., Banerjee, R., Wright, C., … Lazar, R. (2001). The hormone resistin links obesity to diabetes. Nature, 409, 307-312. Recuperado de https://www.nature.com/articles/35053000spa
dc.relation.referencesStewart, G. L. (2009). Diabetes mellitus: clasificación, fisiopatología y diagnóstico Diabetes mellitus: classification, pathophysiology, and diagnosis. Medwave, 9(12). Recuperado de http://www.medwave.cl/link.cgi/Medwave/PuestaDia/APS/4315?tab=metricaspa
dc.relation.referencesSu, Y. L., Fu, Z. Y., Zhang, J. Y., Wang, W. M., Wang, H., Wang, Y. C., & Zhang, Q. J. (2008). Microencapsulation of Radix salvia miltiorrhiza nanoparticles by spray-drying. Powder Technology, 184, 114-121. https://doi.org/10.1016/j.powtec.2007.08.014spa
dc.relation.referencesSubramanian, R., Asmawi, M. Z., & Sadikun, A. (2008). In vitro α-glucosidase and α-amylase enzyme inhibitory effects of Andrographis paniculata extract and andrographolide, 55(2), 391-398.spa
dc.relation.referencesTacx, J. C. J. F., Schoffeleers, H. M., Brands, A. G. M., & Teuwen, L. (2000). Dissolution behavior and solution properties of polyvinylalcohol as determined by viscometry and light scattering in DMSO, ethyleneglycol and water. Polymer, 41(3), 947-957.spa
dc.relation.referencesThe United States Pharmacopeial Convention (2015). The United States pharmacopeia: the national formulary. Maryland: United States Pharmacopeial Convention.spa
dc.relation.referencesTolosa, L. I. (2016). Super cuaderno FIRP SC280-R.spa
dc.relation.referencesTomar, P., Jain, N., & Dixit, V. K. (2013). Nanoparticulate delivery of LHRH analogue for the treatment of prostate cancer. Pharmaceutical Development and Technology, 18(3), 645-652. https://doi.org/10.3109/10837450.2012.663389spa
dc.relation.referencesTundis, R., Loizzo, M. R., & Menichini, F. (2010). Natural Products as α-Amylase and α-Glucosidase Inhibitors and their Hypoglycaemic Potential in the Treatment of Diabetes: An Update. Mini-Reviews in Medicinal Chemistry, 10, 315-331. https://doi.org/10.2174/138955710791331007spa
dc.relation.referencesVauthier, C., & Bouchemal, K. (2009). Methods for the preparation and manufacture of polymeric nanoparticles. Pharmaceutical Research, 26(5), 1025-1058. https://doi.org/10.1007/s11095-008-9800-3spa
dc.relation.referencesVila Jato, J. L. (2006). Nanotecnología Farmacéutica:una Galénica emergente. Discurso. Madrid: Real Academia Nacional de Farmacia.spa
dc.relation.referencesVillamil, J. C., Parra, C. M., & Pérez, L. D. (2019). Enhancing the performance of PEG-b-PCL copolymers as precursors of micellar vehicles for amphotericin B through its conjugation with cholesterol. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 572, 79-87. https://doi.org/10.1016/j.colsurfa.2019.03.086spa
dc.relation.referencesWilczewska, A. Z., Niemirowicz, K., Markiewicz, K. H., & Car, H. (2012). Nanoparticles as drug delivery systems. Pharmacological Reports, 64(5), 1020-1037. https://doi.org/10.1016/S1734-1140(12)70901-5spa
dc.relation.referencesYadav, A. K., Mishra, P., Jain, S., Mishra, P., Mishra, A. K., & Agrawal, G. P. (2008). Preparation and characterization of HA-PEG-PCL intelligent core corona nanoparticles for delivery of doxorubicin. Journal of Drug Targeting, 16(6), 464-478. https://doi.org/10.1080/10611860802095494spa
dc.relation.referencesYamauchi, T., Kamon, J., Ito, Y., TsuchLabela, A., Yokomizo, T., Kita, S., … Kadowaki, T. (2003). Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature, 423(6941), 762-769. https://doi.org/10.1038/nature01683.1.spa
dc.relation.referencesYang, J., Hou, Y., Ji, G., Song, Z., Liu, Y., Dai, G., … Chen, J. (2014). Targeted delivery of the RGD-labeled biodegradable polymersomes loaded with the hydrophilic drug oxymatrine on cultured hepatic stellate cells and liver fibrosis in rats. European Journal of Pharmaceutical Sciences, 52(1), 180-190. https://doi.org/10.1016/j.ejps.2013.11.017spa
dc.relation.referencesYen, F. L., Wu, T. H., Lin, L. T., Cham, T. M., & Lin, C. C. (2008). Nanoparticles formulation of Cuscuta chinensis prevents acetaminophen-induced hepatotoxicity in rats. Food and Chemical Toxicology, 46, 1771-1777. https://doi.org/10.1016/j.fct.2008.01.021spa
dc.relation.referencesZakeri-Milani, P., Loveymi, B. D., Jelvehgari, M., & Valizadeh, H. (2013). The characteristics and improved intestinal permeability of vancomycin PLGA-nanoparticles as colloidal drug delivery system. Colloids and Surfaces B: Biointerfaces, 103, 174-181. https://doi.org/10.1016/j.colsurfb.2012.10.021spa
dc.relation.referencesZamarioli, C. M., Martins, R. M., Carvalho, E. C., & Freitas, L. A. P. (2015). Nanoparticles containing curcuminoids (Curcuma longa): Development of topical delivery formulation. Brazilian Journal of Pharmacognosy, 25(1), 53-60. https://doi.org/10.1016/j.bjp.2014.11.010spa
dc.relation.referencesZambaux, M. F., Bonneaux, F., Gref, R., Maincent, P., Dellacherie, E., Alonso, M. J., … Vigneron, C. (1998). Influence of experimental parameters on the characteristics of poly(lactic acid) nanoparticles prepared by a double emulsion method. Journal of Controlled Release, 50(1-3), 31-40. https://doi.org/10.1016/S0168-3659(97)00106-5spa
dc.relation.referencesZamora, D., Chávez, N. C., & Méndez, N. (2004). Mecanismos moleculares de resistencia a la insulina. Gaceta Medica de México, 11(13), 149-159. Recuperado de http://www.medigraphic.com/pdfs/medsur/ms-2004/ms043b.pdfspa
dc.relation.referencesZhang, Y.-J., Deng, G.-F., Xu, X.-R., Wu, S., Li, S., & Li, H.-B. (2013). Chemical Components and Bioactivities of Cape Gooseberry (Physalis peruviana). International Journal of Food Nutrition and Safety, 3(1), 15-24.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/spa
dc.subject.ddc610 - Medicina y salud::615 - Farmacología y terapéuticaspa
dc.subject.ddc610 - Medicina y salud::616 - Enfermedadesspa
dc.subject.proposalNanopartículas poliméricasspa
dc.subject.proposalPolymeric nanoparticleseng
dc.subject.proposalPhysalis peruvianaspa
dc.subject.proposalPhysalis peruvianaeng
dc.subject.proposalDoble emulsificación modificadaspa
dc.subject.proposalModified double emulsificationeng
dc.subject.proposalEvaporación de solventespa
dc.subject.proposalSolvent evaporationeng
dc.subject.proposalDiabetesspa
dc.titleAportes al desarrollo de un sistema nanoestructurado incorporando un extracto de frutos de Physalis peruviana con posible actividad antidiabéticaspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Aportes al desarrollo de un sistema nanoestructurado incorporando un extracto de frutos de Physalis peruviana con posible actividad antidiabética-Aura Maria Moreno Echeverri.pdf
Tamaño:
4.19 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: