Reconstrucción metagenómica de las comunidades de microorganismos involucrados en la fermentación de cacao en dos regiones agroecológicas de Colombia
dc.contributor.advisor | Caro Quintero, Alejandro | spa |
dc.contributor.author | Vanegas Arévalo, Diana Laritza | spa |
dc.coverage.country | Colombia | spa |
dc.coverage.tgn | http://vocab.getty.edu/page/tgn/1000050 | |
dc.date.accessioned | 2025-03-31T20:32:55Z | |
dc.date.available | 2025-03-31T20:32:55Z | |
dc.date.issued | 2025-03-07 | |
dc.description | ilustraciones, diagramas | spa |
dc.description.abstract | El microbioma de la fermentación del cacao es un ecosistema complejo, compuesto por una amplia variedad de bacterias, levaduras y hongos. Cada uno de estos microorganismos desempeña un papel crucial en la degradación de la pulpa del fruto, la transformación de los compuestos orgánicos y la producción de metabolitos secundarios que influyen directamente en el perfil aromático del chocolate. Desde las ciencias ómicas se ha avanzado en la caracterización de las comunidades involucradas en la fermentación, lo que ha permitido dilucidar algunas funciones y dinámicas dentro del proceso. Sin embargo, analizar estos microorganismos únicamente desde una perspectiva general de comunidad no es suficiente, ya que no permite diferenciar con precisión si éstos pertenecen a la misma especie o grupo poblacional. Este estudio aborda la fermentación de cacao en dos regiones agroecológicas de Colombia: la montaña santandereana (MS) y el bosque húmedo tropical (BHT), utilizando un enfoque metagenómico para reconstruir genomas microbianos y analizar su diversidad funcional y poblacional. Se recolectaron muestras durante una fermentación completa en ambas regiones, combinando el perfil de la comunidad de marcadores del gen 16S rRNA con metagenómica shotgun y un análisis de tipificación polimórfica de genes ortólogos de copia única. Se recuperaron 23 Genomas Ensamblados del Metagenoma (MAG’s): 15 en la región MS y 8 en el BHT, junto con la reconstrucción de capacidades metabólicas. En MS, la fermentación fue más rápida, con una mayor abundancia de bacterias ácido acéticas como Acetobacter orientalis y Gluconobacter oxydans, e incluyendo el primer reporte de Acetobacter papayae en la fermentación de cacao. En contraste, el BHT presentó una mayor diversidad de bacterias lácticas y levaduras. En ambas regiones, se reconstruyeron genomas de Tatumella, una enterobacteria clave en la degradación de pectina al inicio de la fermentación, y de Lactiplantibacillus plantarum, un lactobacilo comúnmente reportado en la fermentación de cacao. Finalmente, el análisis de diversidad poblacional mostró que L. plantarum aparentemente mantiene una estabilidad genética, mientras que Tatumella y Acetobacter orientalis cuentan con poblaciones diferentes, sugiriendo la aparición de variantes dentro de sus poblaciones. Este estudio proporciona una aproximación de la diversidad a nivel de especie y cepa lo cual permite comprender los mecanismos que subyacen a la fermentación del cacao y guiar el desarrollo de inoculantes específicos para optimizar las características del chocolate. (Texto tomado de la fuente). | spa |
dc.description.abstract | The microbiome of cocoa fermentation is a complex ecosystem, consisting of a wide variety of bacteria, yeasts, and fungi. Each of these microorganisms plays a crucial role in the breakdown of the fruit pulp, the transformation of organic compounds, and the production of secondary metabolites that directly influence the aromatic profile of chocolate. Advances in omics sciences have enabled the characterization of the communities involved in fermentation, shedding light on some functions and dynamics within the process. However, analyzing these microorganisms solely from a general community perspective is not sufficient, as it does not allow for precise differentiation between whether they belong to the same species or population group. This study addresses cocoa fermentation in two agroecological regions of Colombia: the Santander mountain range (MS) and the tropical rainforest (BHT), using a metagenomic approach to reconstruct microbial genomes and analyze their functional and population diversity. Samples were collected during a complete fermentation process in both regions, combining 16S rRNA gene marker community profiling with shotgun metagenomics and a polymorphic typing analysis of single-copy orthologous genes. Twenty-three Metagenome-Assembled Genomes (MAGs) were recovered: 15 in the MS region and 8 in the BHT, along with the reconstruction of metabolic capacities. In MS, fermentation was faster, with a higher abundance of acetic acid bacteria such as Acetobacter orientalis and Gluconobacter oxydans, including the first report of Acetobacter papayae in cocoa fermentation. In contrast, BHT showed a greater diversity of lactic acid bacteria and yeasts. In both regions, genomes of Tatumella, an enterobacterium key to pectin degradation at the onset of fermentation, and Lactiplantibacillus plantarum, a commonly reported lactobacillus in cocoa fermentation, were reconstructed. Finally, population diversity analysis revealed that L. plantarum maintains genetic stability, while Tatumella and Acetobacter orientalis show different populations, suggesting the emergence of variants within their populations. This study provides an approximation of diversity at the species and strain levels, enabling a better understanding of the mechanisms underlying cocoa fermentation and guiding the development of specific inoculants to optimize chocolate characteristics. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias - Biología | spa |
dc.format.extent | 71 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87798 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.department | Departamento de Biología | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Biología | spa |
dc.relation.indexed | Agrosavia | spa |
dc.relation.indexed | Agrovoc | spa |
dc.relation.references | Abbott, P. C., Benjamin, T. J., Burniske, G. R., Croft, M. M., Fenton, M. C., Kelly, C. R., Lundy, M. M., Rodriguez Camayo, F., & Wilcox Jr, M. D. (2019). Análisis de la cadena productiva del cacao en Colombia. Universidad Purdue y el Centro Internacional de Agricultura Tropical (CIAT). | spa |
dc.relation.references | Adler, P., Bolten, C. J., Dohnt, K., Hansen, C. E., and Wittmann, C. (2013). Core fluxome and metafluxome of lactic acid bacteria under simulated cocoa pulp fermentation conditions. Applied and Environmental Microbiology. 79, 5670–5681. doi: 10.1128/AEM.01483-13 | spa |
dc.relation.references | AGROSAVIA. Corporación Colombiana de Investigación Agropecuaria. (2014). Clon de Cacao TCS 01: Theobroma Corpoica La Suiza 01. CORPOICA | spa |
dc.relation.references | AGROSAVIA. Corporación colombiana de investigación agropecuaria (2019). Clon de Cacao TCS 01: Theobroma Corpoica La Suiza 01. Recuperado de: http://hdl.handle.net/20.500.12324/34650. | spa |
dc.relation.references | Arkin AP, Cottingham RW, Henry CS, Harris NL, Stevens RL, Maslov S, et al. (2018) KBase: The United States Department of Energy Systems Biology Knowledgebase. Nature Biotechnology. pp 36: 566. doi: 10.1038/nbt.4163 | spa |
dc.relation.references | Agudelo-Castañeda, G. A., Antolinez-Sandoval, E. Y., Báez-Daza, E. Y., Jaimes-Suárez, Y. Y., & Romero-Guerrero, G. A. (2023). Nuevas variedades de cacao seleccionadas en Colombia. Revista Mexicana de Ciencias Agricolas, 14(3). https://doi.org/10.29312/remexca.v14i3.3057 | spa |
dc.relation.references | Agyirifo, D. S., Wamalwa, M., Otwe, E. P., Galyuon, I., Runo, S., Takrama, J., & Ngeranwa, J. (2019). Metagenomics analysis of cocoa bean fermentation microbiome identifying species diversity and putative functional capabilities. Heliyon, 5(7). https://doi.org/10.1016/j.heliyon.2019.e02170 | spa |
dc.relation.references | Almeida, O. G. G., Pinto, U. M., Matos, C. B., Frazilio, D. A., Braga, V. F., von Zeska-Kress, M. R., & De Martinis, E. C. P. (2020). Does Quorum Sensing play a role in microbial shifts along spontaneous fermentation of cocoa beans? An in silico perspective. Food Research International, 131, 109034. Doi:10.1016/j.foodres.2020.109034 10.1016/J.FOODRES.2020.109034 | spa |
dc.relation.references | Almeida, O. G. G., & De Martinisa, E. C. P. (2021). Metagenome-Assembled Genomes Contribute to Unraveling of the Microbiome of Cocoa Fermentation. Applied and Environmental Microbiology, 87(16). https://doi.org/10.1128/AEM.00584-21 | spa |
dc.relation.references | Alneberg J, Bjarnason BS, de Bruijn I, Schirmer M, Quick J, Ijaz UZ, Lahti L, Loman NJ, Andersson AF, Quince C. (2014). Binning metagenomic contigs by coverage and composition. Nature Methods. 11: 1144-1146. https://doi.org/10.1038/nmeth.3103 | spa |
dc.relation.references | Anyansi, C., Straub, T. J., Manson, A. L., Earl, A. M., & Abeel, T. (2020). Computational Methods for Strain-Level Microbial Detection in Colony and Metagenome Sequencing Data. Frontiers in Microbiology, 11. doi:10.3389/fmicb.2020.01925 | spa |
dc.relation.references | Ardhana, M & Graham, H (2003). The microbial ecology of cocoa bean fermentations in Indonesia. International Journal of Food Microbiology, 86(1-2), 87–99. Doi:10.1016/s0168-1605(03)00081-3 | spa |
dc.relation.references | Arvelo, M., González, D., Maroto, S., Delgado, T. & Montoya, P. (2017). Manual técnico del cultivo de cacao: prácticas latinoamericanas / Instituto Interamericano de Cooperación para la Agricultura. San José, C.R.: IICA. 165 p. ISBN: 978-92-9248-732-4 | spa |
dc.relation.references | Beghini, F., McIver L., Blanco-Míguez, A., Dubois, L., Asnicar, F., Maharjan, S., Mailyan, A., Manghi, P., Scholz, M., Thomas, A., Valles-Colomer, M., Weingart, G. Zhang, Y., Zolfo M., Huttenhower, C., Franzosa, E., Segata, N. (2021) Integrating taxonomic, functional, and strain-level profiling of diverse microbial communities with bioBakery 3 eLife 10:e65088 | spa |
dc.relation.references | Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics, 30(15). https://doi.org/10.1093/bioinformatics/btu170 | spa |
dc.relation.references | Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, Bai Y, Bisanz JE, Bittinger K, Brejnrod A, Brislawn CJ, Brown CT, Callahan BJ, Caraballo-Rodríguez AM, Chase J, Cope EK, Da Silva R, Diener C, Dorrestein PC, Douglas GM, Durall DM, Duvallet C, Edwardson CF, Ernst M, Estaki M, Fouquier J, Gauglitz JM, Gibbons SM, Gibson DL, Gonzalez A, Gorlick K, Guo J, Hillmann B, Holmes S, Holste H, Huttenhower C, Huttley GA, Janssen S, Jarmusch AK, Jiang L, Kaehler BD, Kang KB, Keefe CR, Keim P, Kelley ST, Knights D, Koester I, Kosciolek T, Kreps J, Langille MGI, Lee J, Ley R, Liu YX, Loftfield E, Lozupone C, Maher M, Marotz C, Martin BD, McDonald D, McIver LJ, Melnik AV, Metcalf JL, Morgan SC, Morton JT, Naimey AT, Navas-Molina JA, Nothias LF, Orchanian SB, Pearson T, Peoples SL, Petras D, Preuss ML, Pruesse E, Rasmussen LB, Rivers A, Robeson MS, Rosenthal P, Segata N, Shaffer M, Shiffer A, Sinha R, Song SJ, Spear JR, Swafford AD, Thompson LR, Torres PJ, Trinh P, Tripathi A, Turnbaugh PJ, Ul-Hasan S, van der Hooft JJJ, Vargas F, Vázquez-Baeza Y, Vogtmann E, von Hippel M, Walters W, Wan Y, Wang M, Warren J, Weber KC, Williamson CHD, Willis AD, Xu ZZ, Zaneveld JR, Zhang Y, Zhu Q, Knight R, and Caporaso JG. 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology 37: 852–857. https://doi.org/10.1038/s41587-019-0209-9 | spa |
dc.relation.references | Bortolini, C., Patrone, V., Puglisi, E., & Morelli, L. (2016). Detailed analyses of the bacterial populations in processed cocoa beans of different geographic origin, subject to varied fermentation conditions. International Journal of Food Microbiology, 236, 98–106. https://doi.org/10.1016/J.IJFOODMICRO.2016.07.004 | spa |
dc.relation.references | Brettin, T., Davis, J. J., Disz, T., Edwards, R. A., Gerdes, S., Olsen, G. J., Olson, R., Overbeek, R., Parrello, B., Pusch, G. D., Shukla, M., Thomason, J. A., Stevens, R., Vonstein, V., Wattam, A. R., & Xia, F. (2015). RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Scientific Reports, 5. https://doi.org/10.1038/srep08365 | spa |
dc.relation.references | Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods, 13(7), 581–583. doi:10.1038/nmeth.3869 | spa |
dc.relation.references | Calvo, A. M., Botina, B. L., García, M. C., Cardona, W. A., Montenegro, A. C., & Criollo, J. (2021). Dynamics of cocoa fermentation and its effect on quality. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-95703-2 | spa |
dc.relation.references | Camu, N., de Winter, T., Verbrugghe, K., Cleenwerck, I., Vandamme, P., Takrama, J. S., Vancanneyt, M., & de Vuyst, L. (2007). Dynamics and biodiversity of populations of lactic acid bacteria and acetic acid bacteria involved in spontaneous heap fermentation of cocoa beans in Ghana. Applied and Environmental Microbiology, 73(6). https://doi.org/10.1128/AEM.02189-06 | spa |
dc.relation.references | Camu, N., González, Á., de Winter, T., van Schoor, A., de Bruyne, K., Vandamme, P., Takrama, J. S., Addo, S. K., & de Vuyst, L. (2008). Influence of turning and environmental contamination on the dynamics of populations of lactic acid and acetic acid bacteria involved in spontaneous cocoa bean heap fermentation in Ghana. Applied and Environmental Microbiology, 74(1). https://doi.org/10.1128/AEM.01512-07 | spa |
dc.relation.references | Carvajal, V. M. (2022) Caracterización fisicoquímica del mucilago del cacao. Universidad Nacional Abierta y A Distancia – UNAD. Escuela de Ciencias Básicas Tecnología e Ingeniería - ECBTI | spa |
dc.relation.references | Chang, H., Gu, C., Wang, M., Chang, Z., Zhou, J., Yue, M., Junxia Chen, Xiaowei Qin, Zhen Feng (2024) Integrating shotgun metagenomics and metabolomics to elucidate the dynamics of microbial communities and metabolites in fine flavor cocoa fermentation in Hainan. Food Research International. Volume 177. https://doi.org/10.1016/j.foodres.2023.113849 | spa |
dc.relation.references | Chagas Junior, G. C. A., Ferreira, N. R., & Lopes, A. S. (2021). The microbiota diversity identified during the cocoa fermentation and the benefits of the starter cultures use: an overview. In International Journal of Food Science and Technology (Vol. 56, Issue 2). https://doi.org/10.1111/ijfs.14740 | spa |
dc.relation.references | Chaumeil, P., Mussig, A., Hugenholtz, P., Parks, D. (2022). GTDB-Tk v2: memory friendly classification with the genome taxonomy database. Bioinformatics, Volume 38, Issue 23, 1 December, Pages 5315 5316. DOI: https://doi.org/10.1093/bioinformatics/btac672 | spa |
dc.relation.references | Danecek, P., Bonfield, J. K., Liddle, J., Marshall, J., Ohan, V., Pollard, M. O., Whitwham, A., Keane, T., McCarthy, S. A., & Davies, R. M. (2021). Twelve years of SAMtools and BCFtools. GigaScience, 10(2). https://doi.org/10.1093/gigascience/giab008 | spa |
dc.relation.references | De Bruyne, K., Camu, N., de Vuyst, L., & Vandamme, P. (2009). Lactobacillus fabifermentans sp. nov. and Lactobacillus cacaonum sp. nov., isolated from Ghanaian cocoa fermentations. International Journal of Systematic and Evolutionary Microbiology, 59(1). https://doi.org/10.1099/ijs.0.001172-0 | spa |
dc.relation.references | De C. Lima, C. O., Vaz, A. B. M., De Castro, G. M., Lobo, F., Solar, R., Rodrigues, C., Góes-Neto, A. (2020). Integrating microbial metagenomics and physicochemical parameters and a new perspective on starter culture for fine cocoa fermentation. Food Microbiology, 103608. doi:10.1016/j.fm.2020.103608 | spa |
dc.relation.references | De Maayer, P., Venter, S. N., Kamber, T., Duffy, B., Coutinho, T. A., & Smits, T. H. M. (2011). Comparative genomics of the type VI secretion systems of Pantoea and Erwinia species reveals the presence of putative effector islands that may be translocated by the VgrG and Hcp proteins. BMC Genomics, 12. https://doi.org/10.1186/1471-2164-12-576 | spa |
dc.relation.references | De Maayer, P., Chan, W. Y., Blom, J., Venter, S. N., Duffy, B., Smits, T. H. M., & Coutinho, T. A. (2012). The large universal Pantoea plasmid LPP-1 plays a major role in biological and ecological diversification. BMC Genomics, 13(1). https://doi.org/10.1186/1471-2164-13-625 | spa |
dc.relation.references | De Vuyst, L., & Weckx, S. (2016). The cocoa bean fermentation process: from ecosystem analysis to starter culture development. Journal of Applied Microbiology, 121(1), 5-17. | spa |
dc.relation.references | Dellaglio, F., Vancanneyt, M., Endo, A., Vandamme, P., Felis, G. E., Castioni, A., Fujimoto, J., Watanabe, K., & Okada, S. (2006). Lactobacillus durianis Leisner et al. 2002 is a later heterotypic synonym of Lactobacillus vaccinostercus Kozaki and Okada 1983. International Journal of Systematic and Evolutionary Microbiology, 56(8). https://doi.org/10.1099/ijs.0.64316-0 | spa |
dc.relation.references | Delgado-Ospina, J., Triboletti, S., Alessandria, V., Serio, A., Sergi, M., Paparella, A., Rantsiou, K., & Chaves-López, C. (2020). Functional biodiversity of yeasts isolated from Colombian fermented and dry Cocoa beans. Microorganisms, 8(7). https://doi.org/10.3390/microorganisms8071086 | spa |
dc.relation.references | Díaz-Muñoz, C., & de Vuyst, L. (2022). Functional yeast starter cultures for cocoa fermentation. In Journal of Applied Microbiology (Vol. 133, Issue 1). https://doi.org/10.1111/jam.15312 | spa |
dc.relation.references | Dostert, N., Roque, J., Cano, A., La Torre, M. y Weigend, M. (2012). Hoja Botánica: Cacao. Museo de Historia Natural. Universidad Nacional Mayor de San Marcos. Recuperado de: http://www.botconsult.com/downloads/Hoja_Botanica_Cacao_2012.pdf | spa |
dc.relation.references | Estrada, W., Romero, X., Moreno, J. (2011). Guía técnica del cultivo de cacao manejado con técnicas agroecológicas. Centro Agronómico Tropical de Investigación y Enseñanza-CATIE. Confederación de Federaciones de la Reforma Agraria Salvadoreña. CONFRAS. San Salvador, El Salvador. Recuperado de: http://infocafes.com/portal/wp-content/uploads/2015/12/Estrada_et_al_Guia_Tecnica_Cacao.pdf | spa |
dc.relation.references | Evaluaciones Agropecuarias Municipales (2016). Evaluaciones Agropecuarias Municipales: Cultivo de Cacao - Año 2016. Evaluaciones Agropecuarias del Ministerio de Agricultura y Desarrollo Rural. Recuperado de: http://www.agronet.gov.co/estadistica/Paginas/default.aspx | spa |
dc.relation.references | Fedecacao. (2021, Enero 22). Así se comportó la producción de cacao por departamentos en el 2020. Fedecacao. Retrieved December 13, 2021, from https://www.fedecacao.com.co/post/copy-of-design-a-stunning-blog | spa |
dc.relation.references | Figueroa, C., Mota-Gutierrez, J., Ferrocino, I., Hernández-Estrada, Z. J., González-Ríos, O., Cocolin, L., & Suárez-Quiroz, M. L. (2019). The challenges and perspectives of the selection of starter cultures for fermented cocoa beans. International Journal of Food Microbiology, 301, 41–50. https://doi.org/10.1016/J.IJFOODMICRO.2019.05.002 | spa |
dc.relation.references | Fountain, A. C., & Huetz-Adams, F. (2020, Diciembre). Cocoa Barometer 2020. VOICE Network. Retrieved Diciembre 10, 2021, from https://www.voicenetwork.eu/cocoa-barometer/ | spa |
dc.relation.references | Fu, L., Niu, B., Zhu, Z., Wu, S., & Li, W. (2012). CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics, 28(23). https://doi.org/10.1093/bioinformatics/bts565 | spa |
dc.relation.references | Garcia-Armisen, T., Papalexandratou, Z., Hendryckx, H., Camu, N., Vrancken, G., de Vuyst, L., & Cornelis, P. (2010). Diversity of the total bacterial community associated with Ghanaian and Brazilian cocoa bean fermentation samples as revealed by a 16 S rRNA gene clone library. Applied Microbiology and Biotechnology, 87(6). https://doi.org/10.1007/s00253-010-2698-9 | spa |
dc.relation.references | García, L., Yockteng, R., Caro, A. & Delgadillo, P. (2023). El rol de la microbiota en la degradación de la pectina durante el proceso de la fermentación del grano de cacao. Universidad CES | spa |
dc.relation.references | Gaspar, D.P.; Chagas Junior, G.C.A.; de Aguiar Andrade, E.H.; Nascimento, L.D.d.; Chisté,R.C.; Ferreira, N.R.; Martins, L.H.d.S.; Lopes, A.S.(2021) How Climatic Seasons of the Amazon Biome Affect the Aromatic and Bioactive Profiles of Fermented and Dried Cocoa Beans?. Molecules, 26, 3759. https:// doi.org/10.3390/molecules26133759. | spa |
dc.relation.references | Ghaffarian, S., & Panahi, B. (2024). Occurrence and diversity pattern of CRISPR-Cas systems in Acetobacter genus provides insights on adaptive defense mechanisms against to invasive DNAs. Frontiers in Microbiology, 15. https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2024.1357156 | spa |
dc.relation.references | Giacometti, J., Jolić, S. M., & Josić, D. (2015). Cocoa Processing and Impact on Composition. Processing and Impact on Active Components in Food, 605–612. doi:10.1016/b978-0-12-404699-3.00073-1. | spa |
dc.relation.references | Glaeser, S. P., & Kämpfer, P. (2015). Multilocus sequence analysis (MLSA) in prokaryotic taxonomy. In Systematic and Applied Microbiology (Vol. 38, Issue 4). https://doi.org/10.1016/j.syapm.2015.03.007 | spa |
dc.relation.references | Gumustop, I., Ortakci, F. (2023). Analyzing the genetic diversity and biotechnological potential of Leuconostoc pseudomesenteroides by comparative genomics. Frontiers in Microbiology, 13, 1074366. | spa |
dc.relation.references | Gutiérrez, T. J. (2017). State-of-the-Art Chocolate Manufacture: A Review. Comprehensive Reviews in Food Science and Food Safety, 16(6), 1313–1344. doi:10.1111/1541-4337.12301 | spa |
dc.relation.references | Gutiérrez-Ríos, H. G., Suárez-Quiroz, M. L., Hernández-Estrada, Z. J., Castellanos-Onorio, O. P., Alonso-Villegas, R., Rayas-Duarte, P., Cano-Sarmiento, C., Figueroa-Hernández, C. Y., & González-Rios, O. (2022). Yeasts as Producers of Flavor Precursors during Cocoa Bean Fermentation and Their Relevance as Starter Cultures: A Review. In Fermentation (Vol. 8, Issue 7). https://doi.org/10.3390/fermentation8070331 | spa |
dc.relation.references | Hall, M., & Beiko, R. G. (2018). 16S rRNA Gene Analysis with QIIME2. Microbiome Analysis, 113–129. doi:10.1007/978-1-4939-8728-3_8 | spa |
dc.relation.references | Hamdouche, Y., Meile, J. C., Lebrun, M., Guehi, T., Boulanger, R., Teyssier, C., & Montet, D. (2019). Impact of turning, pod storage and fermentation time on microbial ecology and volatile composition of cocoa beans. Food Research International. doi:10.1016/j.foodres.2019.01.001 | spa |
dc.relation.references | Hamdouche, Y., Guehi, T., Durand, N., Kedjebo, K. B. D., Montet, D., & Meile, J. C. (2015). Dynamics of microbial ecology during cocoa fermentation and drying: towards the identification of molecular markers. Food Control, 48, 117-122. | spa |
dc.relation.references | Ho, V. T. T., Zhao, J., & Fleet, G. (2014). Yeasts are essential for cocoa bean fermentation. International Journal of Food Microbiology, 174. https://doi.org/10.1016/j.ijfoodmicro.2013.12.014 | spa |
dc.relation.references | Hua, X., Zhang, C., Han, J., & Xu, Y. (2022). A wholly biological method for galactaric acid production from pectin by the combination of enzymatic hydrolysis and resting-cell catalysis. Green Chemistry, 24(13), 5197-5203. | spa |
dc.relation.references | ICCO. (2018, abril 21). Report of the preparatory meeting on annex “C” of the international cocoa agreement, 2010. ICCO-Fine or Flavour Cocoa. Retrieved 12 12, 2021, from https://www.icco.org/fine-or-flavor-cocoa/ | spa |
dc.relation.references | Illeghems K, De Vuyst L, Papalexandratou Z, Weckx S (2012) Phylogenetic analysis of a spontaneous cocoa bean fermentation metagenome reveals new insights into its bacterial and fungal community diversity. PLoS One 7(5):e38040. https://doi.org/10.1371/journal.pone.0038040 | spa |
dc.relation.references | Illeghems, K., Pelicaen, R., De Vuyst, L., Weckx, S., 2016. Assessment of the contribution of cocoa-derived strains of Acetobacter ghanensis and Acetobacter senegalensis to the cocoa bean fermentation process through a genomic approach. Food Microbiol. 58 | spa |
dc.relation.references | Jovel, J., Patterson, J., Wang, W., Hotte, N., O’Keefe, S., Mitchel, T., Perry, T., Kao, D., Mason, A. L., Madsen, K. L., & Wong, G. K. S. (2016). Characterization of the gut microbiome using 16S or shotgun metagenomics. Frontiers in Microbiology, 7(APR). https://doi.org/10.3389/fmicb.2016.00459 | spa |
dc.relation.references | Kang DD, Froula J, Egan R, Wang Z. (2015). MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ. 2015;3: e1165. doi:10.7717/peerj.1165. https://doi.org/10.7717/peerj.1165. | spa |
dc.relation.references | Krähmer, A., Engel, A., Kadow, D., Ali, N., Umaharan, P., Kroh, L. W., & Schulz, H. (2015, Agosto 15). Fast and neat – Determination of biochemical quality parameters in cocoa using near infrared spectroscopy. Food Chemistry, 181, 152-159. ELSEVIER. https://doi.org/10.1016/j.foodchem.2015.02.084. | spa |
dc.relation.references | Hegmann, E., Niether, W., Phillips, W., Rohsius, C., & Lieberei, R. (2020). Besides variety, also season and ripening stage have a major influence on fruit pulp aroma of cacao (Theobroma cacao L.). Journal of Applied Botany and Food Quality, 93, 266–275. https://doi.org/10.5073/JABFQ.2020.093.033 | spa |
dc.relation.references | Kilmanoglu, H., Cinar, A. Y., & Durak, M. Z. (2024). Evaluation of microbiota-induced changes in biochemical, sensory properties and volatile profile of kombucha produced by reformed microbial community. Food Chemistry: X, 22, 101469. | spa |
dc.relation.references | Kokou Edoh, A. & Ngo Samnick, E. (2014). Cocoa production and processing.The Pro-Agro Collection. Engineers Without Borders, Cameroon (ISF Cameroun) and The Technical Centre for Agricultural and Rural Cooperation (CTA). | spa |
dc.relation.references | Koskiniemi, S., Sun, S., Berg, O. G., & Andersson, D. I. (2012). Selection-driven gene loss in bacteria. PLoS Genetics, 8(6). https://doi.org/10.1371/journal.pgen.1002787 | spa |
dc.relation.references | Kongor, J. E., Hinneh, M., de Walle, D. V., Afoakwa, E. O., Boeckx, P., & Dewettinck, K. (2016). Factors influencing quality variation in cocoa (Theobroma cacao) bean flavour profile — A review. Food Research International, 82, 44–52. doi:10.1016/j.foodres.2016.01.012 | spa |
dc.relation.references | Kouamé, C., Loiseau, G., Grabulos, J., Boulanger, R., & Mestres, C. (2021). Development of a model for the alcoholic fermentation of cocoa beans by a Saccharomyces cerevisiae strain. International Journal of Food Microbiology, 337, 108917. https://doi.org/10.1016/J.IJFOODMICRO.2020.108917 | spa |
dc.relation.references | Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nature Methods pp 9: 357 359. doi:10.1038/nmeth.1923 | spa |
dc.relation.references | Lee, A. H., Neilson, A. P., O’Keefe, S. F., Ogejo, J. A., Huang, H., Ponder, M., Chu, H. S. S., Jin, Q., Pilot, G., & Stewart, A. C. (2019). A laboratory-scale model cocoa fermentation using dried, unfermented beans and artificial pulp can simulate the microbial and chemical changes of on-farm cocoa fermentation. European Food Research and Technology, 245(2). https://doi.org/10.1007/s00217-018-3171-8 | spa |
dc.relation.references | Li D., Liu C-M, Luo R, Sadakane K, Lam T-W. (2015). MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics.31: 1674 1676. doi:10.1093/bioinformatics/btv033 | spa |
dc.relation.references | Li, L., Wieme, A., Spitaels, F., Balzarini, T., Nunes, O. C., Manaia, C. M., van Landschoot, A., de Vuyst, L., Cleenwerck, I., & Vandamme, P. (2014). Acetobacter sicerae sp. nov., isolated from cider and kefir, and identification of species of the genus Acetobacter by dnaK, GroEL and rpoB sequence analysis. International Journal of Systematic and Evolutionary Microbiology, 64(PART 7). https://doi.org/10.1099/ijs.0.058354-0 | spa |
dc.relation.references | Lima C., Vaz A., De Castro G., Lobo, F., Solar, R., Rodrigues C., Martins R., Vandenberghe L., Pereira G.,Miúra da Costa A., Guimaraes R., Azevedo V., Trovatti A., Soccol C., Goes-Neto, A. (2021a). Integrating microbial metagenomics and physicochemical parameters and a new perspective on starter culture for fine cocoa fermentation. Food Microbiology, 93, 103608. https://doi.org/10.1016/J.FM.2020.103608 | spa |
dc.relation.references | Lima, C. O. D. C., De Castro, G. M., Solar, R., Vaz, A. B., Lobo, F., Pereira, G., ... & Góes-Neto, A. (2022). Unraveling potential enzymes and their functional role in fine cocoa beans fermentation using temporal shotgun metagenomics. Frontiers in Microbiology, 13, 994524. | spa |
dc.relation.references | Louca, S., Doebeli, M., & Parfrey, L. W. (2018). Correcting for 16S rRNA gene copy numbers in microbiome surveys remains an unsolved problem. Microbiome, 6(1). https://doi.org/10.1186/s40168-018-0420-9 | spa |
dc.relation.references | Maiden, M. C. J., van Rensburg, M. J. J., Bray, J. E., Earle, S. G., Ford, S. A., Jolley, K. A., & McCarthy, N. D. (2013). MLST revisited: The gene-by-gene approach to bacterial genomics. In Nature Reviews Microbiology (Vol. 11, Issue 10). https://doi.org/10.1038/nrmicro3093 | spa |
dc.relation.references | Magni, C., García-quintáns, N., Martín, M., & Mendoza, D. de. (2008). Sistemas de utilización del citrato en bacterias ácido lácticas. Fundamentos Biológicos, Procesos y Biotecnología de Las Bacterias Lácticas, I. | spa |
dc.relation.references | Marič L, Cleenwerck I, Accetto T, Vandamme P, Tr_cek J. 2020. Description of Komagataeibacter melaceti sp. nov. and Komagataeibacter melomenusus sp. nov. isolated from apple cider vinegar. Microorganisms 8:1178. https://doi.org/10.3390/microorganisms8081178. | spa |
dc.relation.references | Matsutani, M., Matsumoto, N., Hirakawa, H., Shiwa, Y., Yoshikawa, H., Okamoto-Kainuma, A., Ishikawa, M., Kataoka, N., Yakushi, T., & Matsushita, K. (2020). Comparative genomic analysis of closely related acetobacter pasteurianus strains provides evidence of horizontal gene transfer and reveals factors necessary for thermotolerance. Journal of Bacteriology, 202(8). https://doi.org/10.1128/JB.00553-19 | spa |
dc.relation.references | McDonald, D., Price, M. N., Goodrich, J., Nawrocki, E. P., Desantis, T. Z., Probst, A., Andersen, G. L., Knight, R., & Hugenholtz, P. (2012). An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME Journal, 6(3). https://doi.org/10.1038/ismej.2011.139 | spa |
dc.relation.references | Mendoza, M. & Lizarazo, P. (2021). Assessment of the fungal community associated withcocoa bean fermentation from two regions in Colombia. Food Research International, 149, 110670. doi:10.1016/j.foodres.2021.110670 | spa |
dc.relation.references | Minagricultura. (2021, Marzo). CADENA DE CACAO. Dirección de Cadenas Agrícolas y Forestales. SIOC. Sistema de Información de Gestión y Desempeño de Organizaciones de Cadenas. https://sioc.minagricultura.gov.co/Cacao/Pages/default.aspx | spa |
dc.relation.references | Mota-Gutierrez, J., Ferrocino, I., Giordano, M., Suarez-Quiroz, M. L., Gonzalez-Ríos, O., & Cocolin, L. (2021). Influence of Taxonomic and Functional Content of Microbial Communities on the Quality of Fermented Cocoa Pulp-Bean Mass. Applied and Environmental Microbiology, 87(14). https://doi.org/10.1128/AEM.00425-21 | spa |
dc.relation.references | Motamayor, J. C., Risterucci, A. M., Lopez, P. A., Ortiz, C. F., Moreno, A., & Lanaud, C. (2002). Cacao domestication I: The origin of the cacao cultivated by the Mayas. Heredity, 89(5). https://doi.org/10.1038/sj.hdy.6800156 | spa |
dc.relation.references | Nayfach, S., Rodriguez-Mueller, B., Garud, N., & Pollard, K. S. (2016). An integrated metagenomics pipeline for strain profiling reveals novel patterns of bacterial transmission and biogeography. Genome Research, 26(11). https://doi.org/10.1101/gr.201863.115 | spa |
dc.relation.references | Nair, K.P. (2010). 5 - Cocoa (Theobroma cacao L.). In The Agronomy and Economy of Important Tree Crops of the Developing World (1st ed., Vol. 1, pp. 131-180). Elsevier Science. https://doi.org/10.1016/B978-0-12-384677-8.00005-9 | spa |
dc.relation.references | Neveling, D. P., Endo, A., & Dicks, L. M. (2012). Fructophilic Lactobacillus kunkeei and Lactobacillus brevis isolated from fresh flowers, bees and bee-hives. Current microbiology, 65, 507-515. | spa |
dc.relation.references | Ordoñez RH, Landines-Vera EF, Urresto-Villegas JC, CaicedoJaramillo CF (2020) Microorganisms during cocoa fermentation: systematic review. Foods Raw Mater 8:155–162. https://doi.org/ 10.21603/2308-4057-2020-1-155-162 | spa |
dc.relation.references | Ostovar, K., & Keeney, P. G. (1973). Isolation and characterization of microorganisms involved in the fermentation of Trinidad's cacao beans. Journal of Food Science, 38(4), 611–617. doi:10.1111/j.1365-2621.1973.tb02826.x | spa |
dc.relation.references | Ouattara, H. D., Ouattara, H. G., Droux, M., Reverchon, S., Nasser, W., & Niamke, S. L. (2017). Lactic acid bacteria involved in cocoa beans fermentation from Ivory Coast: Species diversity and citrate lyase production. International Journal of Food Microbiology, 256, 11–19. doi:10.1016/j.ijfoodmicro.2017.05 | spa |
dc.relation.references | Ouattara, H., & Niamké, S. (2021). Mapping the functional and strain diversity of the main Microbiota involved in cocoa fermentation from Cote d’Ivoire. Food Microbiology, 98, 103767. doi:10.1016/j.fm.2021.103767 | spa |
dc.relation.references | Otzen, T., & Manterola, C. (2017). Técnicas de Muestreo sobre una Población a Estudio. International Journal of Morphology, 35(1). https://doi.org/10.4067/S0717-95022017000100037 | spa |
dc.relation.references | Pacheco-Montealegre, M. E., Dávila-Mora, L. L., Botero-Rute, L. M., Reyes, A., & Caro-Quintero, A. (2020). Fine Resolution Analysis of Microbial Communities Provides Insights Into the Variability of Cocoa Bean Fermentation. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.00650 | spa |
dc.relation.references | Palmer, M., Steenkamp, E. T., Coetzee, M. P. A., Blom, J., & Venter, S. N. (2018). Genome-based characterization of biological processes that differentiate closely related bacteria. Frontiers in Microbiology, 9(FEB). https://doi.org/10.3389/fmicb.2018.00113 | spa |
dc.relation.references | Papalexandratou, Z., Vrancken, G., De Bruyne, K., Vandamme, P., & De Vuyst, L. (2011). Spontaneous organic cocoa bean box fermentations in Brazil are characterized by a restricted species diversity of lactic acid bacteria and acetic acid bacteria. Food Microbiology, 28(7), 1326-1338 | spa |
dc.relation.references | Papalexandratou, Z., Lefeber, T., Bahrim, B., Lee, O. S., Daniel, H. M., & de Vuyst, L. (2013). Hanseniaspora opuntiae, Saccharomyces cerevisiae, Lactobacillus fermentum, and Acetobacter pasteurianus predominate during well-performed Malaysian cocoa bean box fermentations, underlining the importance of these microbial species for a successful cocoa bean fermentation process. Food Microbiology, 35(2). https://doi.org/10.1016/j.fm.2013.02.015 | spa |
dc.relation.references | Papalexandratou, Z., Kaasik, K., Kauffmann, L. V., Skorstengaard, A., Bouillon, G., Espensen, J. L., Hansen, L. H., Jakobsen, R. R., Blennow, A., Krych, L., Castro-Mejía, J. L., & Nielsen, D. S. (2019). Linking cocoa varietals and microbial diversity of Nicaraguan fine cocoa bean fermentations and their impact on final cocoa quality appreciation. International Journal of Food Microbiology, 304. https://doi.org/10.1016/j.ijfoodmicro.2019.05.012 | spa |
dc.relation.references | Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P., & Tyson, G. W. (2015). CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Research, 25(7). https://doi.org/10.1101/gr.186072.114 | spa |
dc.relation.references | Peng Y, Leung HCM, Yiu SM, Chin FYL. 2012. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics.28: 1420 1428. doi:10.1093/bioinformatics/bts174 | spa |
dc.relation.references | Pereira, G. V., Magalhães-Guedes, K. T., & Schwan, R. F. (2013). RDNA-based DGGE analysis and electron microscopic observation of cocoa beans to monitor microbial diversity and distribution during the fermentation process. Food Research International, 53(1). https://doi.org/10.1016/j.foodres.2013.05.030 | spa |
dc.relation.references | Pham, V. H. T., & Kim, J. (2012). Cultivation of unculturable soil bacteria. Trends in Biotechnology, 30(9), 475–484. doi:10.1016/j.tibtech.2012.05.007 | spa |
dc.relation.references | Pinzón, J. & Rojas, J. (2012). Guía técnica para el cultivo del cacao. Quinta edición Federación Nacional de Cacaoteros FEDECACAO. Ministerio de Agricultura y Desarrollo Rural. República de Colombia. | spa |
dc.relation.references | Prjibelski, A., Antipov, D., Meleshko, D., Lapidus, A., & Korobeynikov, A. (2020). Using SPAdes De Novo Assembler. Current Protocols in Bioinformatics, 70(1). https://doi.org/10.1002/cpbi.102 | spa |
dc.relation.references | Qiu, X., Zhang, Y., & Hong, H. (2021). Classification of acetic acid bacteria and their acid resistant mechanism. AMB Express, 11(1), Article 29. https://doi.org/10.1186/ s13568-021-01189-6 | spa |
dc.relation.references | Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Opens external link in new windowNucl. Acids Res. 41 (D1): D590-D596. | spa |
dc.relation.references | Santander Muñoz, M., Rodríguez Cortina, J., Vaillant, F. E., & Escobar Parra, S. (2020). An overview of the physical and biochemical transformation of cocoa seeds to beans and to chocolate: Flavor formation. Critical Reviews in Food Science and Nutrition, 60(10), 1593-1613. | spa |
dc.relation.references | Sarbu, I., & Csutak, O. (2019). The Microbiology of Cocoa Fermentation. Caffeinated and Cocoa Based Beverages, 423–446. doi:10.1016/b978-0-12-815864-7.00013-1 | spa |
dc.relation.references | Schwan, R. F., & Wheals, A. E. (2004). The Microbiology of Cocoa Fermentation and its Role in Chocolate Quality. Critical Reviews in Food Science and Nutrition, 44(4), 205–221. doi:10.1080/10408690490464104 | spa |
dc.relation.references | Serra, J. L., Moura, F., Pereira, G. V. M., Soccol, C. R., Rogez, H., & Darnet, S. (2019). Determination of the microbial community in Amazonian cocoa bean fermentation by Illumina-based metagenomic sequencing. LWT. doi:10.1016/j.lwt.2019.02.038 | spa |
dc.relation.references | Sieber, C. M. K., Probst, A. J., Sharrar, A., Thomas, B. C., Hess, M., Tringe, S. G., & Banfield, J. F. (2018). Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nature Microbiology, 3(7). https://doi.org/10.1038/s41564-018-0171-1 | spa |
dc.relation.references | Shaffer, M., Borton, M. A., McGivern, B. B., Zayed, A. A., la Rosa, S. L. 0003 3527 8101, Solden, L. M., Liu, P., Narrowe, A. B., Rodríguez-Ramos, J., Bolduc, B., Gazitúa, M. C., Daly, R. A., Smith, G. J., Vik, D. R., Pope, P. B., Sullivan, M. B., Roux, S., & Wrighton, K. C. (2020). DRAM for distilling microbial metabolism to automate the curation of microbiome function. Nucleic Acids Research, 48(16). https://doi.org/10.1093/nar/gkaa621 | spa |
dc.relation.references | Shetty, S., Kamble, A., & Singh, H. (2023). Insights into the Potential Role of Plasmids in the Versatility of the Genus Pantoea. In Molecular Biotechnology. https://doi.org/10.1007/s12033-023-00960-3 | spa |
dc.relation.references | Snauwaert, I., Papalexandratou, Z., de Vuyst, L., & Vandamme, P. (2013). Characterization of strains of Weissella fabalis sp. nov. and Fructobacillus tropaeoli from spontaneous cocoa bean fermentations. International Journal of Systematic and Evolutionary Microbiology, 63(PART 5). https://doi.org/10.1099/ijs.0.040311-0 | spa |
dc.relation.references | Stanke, M., & Morgenstern, B. (2005). AUGUSTUS: A web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Research, 33(SUPPL. 2). https://doi.org/10.1093/nar/gki458 | spa |
dc.relation.references | Suzuki, R., Kosako, Y., Ohkuma, M., Komagata, K., & Uchimura, T. (2012). Acetobacter okinawensis sp. nov., Acetobacter papayae sp. nov., and Acetobacter persicus sp. nov.; novel acetic acid bacteria isolated from stems of sugarcane, fruits, and a flower in Japan. The Journal of General and Applied Microbiology, 58(3), 235-243. | spa |
dc.relation.references | Taylor, A., Cardenas-Torres, E., Miller, M., Dave Zhao, S., Engeseth, N. (2022) Microbes associated with spontaneous cacao fermentations - A systematic review and meta-analysis. Current Research in Food Science. Volume 5. 1452-1464. ISSN 2665-9271. https://doi.org/10.1016/j.crfs.2022.08.008. | spa |
dc.relation.references | Thorvaldsdóttir, H., Robinson, T., Mesirov, J.P. (2013). Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Briefings in Bioinformatics 14, 178-192. | spa |
dc.relation.references | Tigrero, J.; Maridueña, M.; Liao, H.; Prado, M.; Zambrano, C.; Monserrate, B.; Cevallos, M. (2022) Microbial Diversity and Contribution to the Formation of Volatile Compounds during Fine Flavor Cocoa Bean Fermentation. Foods, 11, 915. https://doi.org/10.3390/foods11070915 | spa |
dc.relation.references | Toole, D. R., Zhao, J., Martens-Habbena, W., & Strauss, S. L. (2021). Bacterial functional prediction tools detect but underestimate metabolic diversity compared to shotgun metagenomics in southwest Florida soils. Applied Soil Ecology, 168. https://doi.org/10.1016/j.apsoil.2021.104129 | spa |
dc.relation.references | Tracey Allen K. Freitas, Po-E Li, Matthew B. Scholz and Patrick S. G. Chain (2015) Accurate read-based metagenome characterization using a hierarchical suite of unique signatures, Nucleic Acids Research (DOI: 10.1093/nar/gkv180) | spa |
dc.relation.references | Tracz, D. M., Gilmour, M. W., Mabon, P., Beniac, D. R., Hoang, L., Kibsey, P., Domselaar, G. van, Tabor, H., Westmacott, G. R., Corbett, C. R., & Bernard, K. A. (2015). Tatumella saanichensis sp. nov., isolated from a cystic fibrosis patient. International Journal of Systematic and Evolutionary Microbiology, 65(6). https://doi.org/10.1099/ijs.0.000207 | spa |
dc.relation.references | Truong, D. T., Tett, A., Pasolli, E., Huttenhower, C., & Segata, N. (2017). Microbial strain-level population structure and genetic diversity from metagenomes. Genome Research, 27(4), 626–638. doi:10.1101/gr.216242.116 | spa |
dc.relation.references | Verce M, Schoonejans J, Hernandez Aguirre C, Molina-Bravo R, De Vuyst L and Weckx S (2021) A Combined Metagenomics and Metatranscriptomics Approach to Unravel Costa Rican Cocoa Box Fermentation Processes Reveals Yet Unreported Microbial Species and Functionalities. Front. Microbiol. 12:641185. doi: 10.3389/fmicb.2021.641185 | spa |
dc.relation.references | Viesser, J. A., de Melo Pereira, G. V., de Carvalho Neto, D. P., Vandenberghe, L. P. de S., Azevedo, V., Brenig, B., … Soccol, C. R. (2020). Exploring the contribution of fructophilic lactic acid bacteria to cocoa beans fermentation: isolation, selection and evaluation. Food Research International, 109478. doi:10.1016/j.foodres.2020.109478 | spa |
dc.relation.references | Viesser, J. A., de Melo Pereira, G. V., de Carvalho Neto, D. P., Favero, G. R., de Carvalho, J.C., Goés-Neto, A., Soccol, C. R. (2021). Global cocoa fermentation microbiome: revealing new taxa and microbial functions by next generation sequencing technologies. World Journal of Microbiology and Biotechnology, 37(7). Doi: 10.1007/s11274-021-03079-2 | spa |
dc.relation.references | Wang, B., Shao, Y., Chen, T., Chen, W., & Chen, F. (2015). Global insights into acetic acid resistance mechanisms and genetic stability of Acetobacter pasteurianus strains by comparative genomics. Scientific Reports, 5. https://doi.org/10.1038/srep18330 | spa |
dc.relation.references | Wingett, S. W., & Andrews, S. (2018). FastQ Screen: A tool for multi-genome mapping and quality control. F1000Research, 7. https://doi.org/10.12688/f1000research.15931.2 | spa |
dc.relation.references | Wu Y-W, Simmons BA, Singer SW. (2016). MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics. 32: 605 607. doi:10.1093/bioinformatics/btv638 (2) 1 | spa |
dc.relation.references | Wood, D. E., Lu, J., & Langmead, B. (2019). Improved metagenomic analysis with Kraken 2. Genome Biology, 20(1). https://doi.org/10.1186/s13059-019-1891-0 | spa |
dc.relation.references | Xu, H., Liu, W., Zhang, W., Yu, J., Song, Y., Menhe, B., Zhang, H., & Sun, Z. (2015). Use of multilocus sequence typing to infer genetic diversity and population structure of Lactobacillus plantarum isolates from different sources. BMC Microbiology, 15(1). https://doi.org/10.1186/s12866-015-0584-4 | spa |
dc.relation.references | Xu, L., Dong, Z., Fang, L., Luo, Y., Wei, Z., Guo, H., Zhang, G., Gu, Y. Q., Coleman-Derr, D., Xia, Q., & Wang, Y. (2019). OrthoVenn2: A web server for whole-genome comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Research, 47(W1). https://doi.org/10.1093/nar/gkz333 | spa |
dc.relation.references | Zheng, J., Wittouck, S., Salvetti, E., Franz, C. M. A. P., Harris, H. M. B., Mattarelli, P., O’toole, P. W., Pot, B., Vandamme, P., Walter, J., Watanabe, K., Wuyts, S., Felis, G. E., Gänzle, M. G., & Lebeer, S. (2020). A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. International Journal of Systematic and Evolutionary Microbiology, 70(4). https://doi.org/10.1099/ijsem.0.004107 | spa |
dc.relation.references | Zhou, Y., Liu, M., & Yang, J. (2022). Recovering metagenome-assembled genomes from shotgun metagenomic sequencing data: Methods, applications, challenges, and opportunities. In Microbiological Research (Vol. 260). https://doi.org/10.1016/j.micres.2022.127023 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.agrovoc | Metagenómica | spa |
dc.subject.agrovoc | metagenomics | eng |
dc.subject.agrovoc | Agente fermentador | spa |
dc.subject.agrovoc | leavening agents | eng |
dc.subject.agrovoc | Theobroma cacao | spa |
dc.subject.agrovoc | Theobroma cacao | eng |
dc.subject.ddc | 630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantación | spa |
dc.subject.proposal | Theobroma cacao | spa |
dc.subject.proposal | Fermentación | spa |
dc.subject.proposal | Metagenómica | spa |
dc.subject.proposal | Diversidad funcional | spa |
dc.subject.proposal | Diversidad poblacional | spa |
dc.subject.proposal | Theobroma cacao | eng |
dc.subject.proposal | Fermentation | eng |
dc.subject.proposal | Metagenomics | eng |
dc.subject.proposal | Functional diversity | eng |
dc.subject.proposal | Population diversity | eng |
dc.title | Reconstrucción metagenómica de las comunidades de microorganismos involucrados en la fermentación de cacao en dos regiones agroecológicas de Colombia | spa |
dc.title.translated | Metagenomic reconstruction of microbial communities involved in cocoa fermentation in two agroecological regions of Colombia | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Administradores | spa |
dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Medios de comunicación | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1032471305.2025.pdf
- Tamaño:
- 1.83 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Biología
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: