Reconstrucción metagenómica de las comunidades de microorganismos involucrados en la fermentación de cacao en dos regiones agroecológicas de Colombia

dc.contributor.advisorCaro Quintero, Alejandrospa
dc.contributor.authorVanegas Arévalo, Diana Laritzaspa
dc.coverage.countryColombiaspa
dc.coverage.tgnhttp://vocab.getty.edu/page/tgn/1000050
dc.date.accessioned2025-03-31T20:32:55Z
dc.date.available2025-03-31T20:32:55Z
dc.date.issued2025-03-07
dc.descriptionilustraciones, diagramasspa
dc.description.abstractEl microbioma de la fermentación del cacao es un ecosistema complejo, compuesto por una amplia variedad de bacterias, levaduras y hongos. Cada uno de estos microorganismos desempeña un papel crucial en la degradación de la pulpa del fruto, la transformación de los compuestos orgánicos y la producción de metabolitos secundarios que influyen directamente en el perfil aromático del chocolate. Desde las ciencias ómicas se ha avanzado en la caracterización de las comunidades involucradas en la fermentación, lo que ha permitido dilucidar algunas funciones y dinámicas dentro del proceso. Sin embargo, analizar estos microorganismos únicamente desde una perspectiva general de comunidad no es suficiente, ya que no permite diferenciar con precisión si éstos pertenecen a la misma especie o grupo poblacional. Este estudio aborda la fermentación de cacao en dos regiones agroecológicas de Colombia: la montaña santandereana (MS) y el bosque húmedo tropical (BHT), utilizando un enfoque metagenómico para reconstruir genomas microbianos y analizar su diversidad funcional y poblacional. Se recolectaron muestras durante una fermentación completa en ambas regiones, combinando el perfil de la comunidad de marcadores del gen 16S rRNA con metagenómica shotgun y un análisis de tipificación polimórfica de genes ortólogos de copia única. Se recuperaron 23 Genomas Ensamblados del Metagenoma (MAG’s): 15 en la región MS y 8 en el BHT, junto con la reconstrucción de capacidades metabólicas. En MS, la fermentación fue más rápida, con una mayor abundancia de bacterias ácido acéticas como Acetobacter orientalis y Gluconobacter oxydans, e incluyendo el primer reporte de Acetobacter papayae en la fermentación de cacao. En contraste, el BHT presentó una mayor diversidad de bacterias lácticas y levaduras. En ambas regiones, se reconstruyeron genomas de Tatumella, una enterobacteria clave en la degradación de pectina al inicio de la fermentación, y de Lactiplantibacillus plantarum, un lactobacilo comúnmente reportado en la fermentación de cacao. Finalmente, el análisis de diversidad poblacional mostró que L. plantarum aparentemente mantiene una estabilidad genética, mientras que Tatumella y Acetobacter orientalis cuentan con poblaciones diferentes, sugiriendo la aparición de variantes dentro de sus poblaciones. Este estudio proporciona una aproximación de la diversidad a nivel de especie y cepa lo cual permite comprender los mecanismos que subyacen a la fermentación del cacao y guiar el desarrollo de inoculantes específicos para optimizar las características del chocolate. (Texto tomado de la fuente).spa
dc.description.abstractThe microbiome of cocoa fermentation is a complex ecosystem, consisting of a wide variety of bacteria, yeasts, and fungi. Each of these microorganisms plays a crucial role in the breakdown of the fruit pulp, the transformation of organic compounds, and the production of secondary metabolites that directly influence the aromatic profile of chocolate. Advances in omics sciences have enabled the characterization of the communities involved in fermentation, shedding light on some functions and dynamics within the process. However, analyzing these microorganisms solely from a general community perspective is not sufficient, as it does not allow for precise differentiation between whether they belong to the same species or population group. This study addresses cocoa fermentation in two agroecological regions of Colombia: the Santander mountain range (MS) and the tropical rainforest (BHT), using a metagenomic approach to reconstruct microbial genomes and analyze their functional and population diversity. Samples were collected during a complete fermentation process in both regions, combining 16S rRNA gene marker community profiling with shotgun metagenomics and a polymorphic typing analysis of single-copy orthologous genes. Twenty-three Metagenome-Assembled Genomes (MAGs) were recovered: 15 in the MS region and 8 in the BHT, along with the reconstruction of metabolic capacities. In MS, fermentation was faster, with a higher abundance of acetic acid bacteria such as Acetobacter orientalis and Gluconobacter oxydans, including the first report of Acetobacter papayae in cocoa fermentation. In contrast, BHT showed a greater diversity of lactic acid bacteria and yeasts. In both regions, genomes of Tatumella, an enterobacterium key to pectin degradation at the onset of fermentation, and Lactiplantibacillus plantarum, a commonly reported lactobacillus in cocoa fermentation, were reconstructed. Finally, population diversity analysis revealed that L. plantarum maintains genetic stability, while Tatumella and Acetobacter orientalis show different populations, suggesting the emergence of variants within their populations. This study provides an approximation of diversity at the species and strain levels, enabling a better understanding of the mechanisms underlying cocoa fermentation and guiding the development of specific inoculants to optimize chocolate characteristics.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Biologíaspa
dc.format.extent71 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87798
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Biologíaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Biologíaspa
dc.relation.indexedAgrosaviaspa
dc.relation.indexedAgrovocspa
dc.relation.referencesAbbott, P. C., Benjamin, T. J., Burniske, G. R., Croft, M. M., Fenton, M. C., Kelly, C. R., Lundy, M. M., Rodriguez Camayo, F., & Wilcox Jr, M. D. (2019). Análisis de la cadena productiva del cacao en Colombia. Universidad Purdue y el Centro Internacional de Agricultura Tropical (CIAT).spa
dc.relation.referencesAdler, P., Bolten, C. J., Dohnt, K., Hansen, C. E., and Wittmann, C. (2013). Core fluxome and metafluxome of lactic acid bacteria under simulated cocoa pulp fermentation conditions. Applied and Environmental Microbiology. 79, 5670–5681. doi: 10.1128/AEM.01483-13spa
dc.relation.referencesAGROSAVIA. Corporación Colombiana de Investigación Agropecuaria. (2014). Clon de Cacao TCS 01: Theobroma Corpoica La Suiza 01. CORPOICAspa
dc.relation.referencesAGROSAVIA. Corporación colombiana de investigación agropecuaria (2019). Clon de Cacao TCS 01: Theobroma Corpoica La Suiza 01. Recuperado de: http://hdl.handle.net/20.500.12324/34650.spa
dc.relation.referencesArkin AP, Cottingham RW, Henry CS, Harris NL, Stevens RL, Maslov S, et al. (2018) KBase: The United States Department of Energy Systems Biology Knowledgebase. Nature Biotechnology. pp 36: 566. doi: 10.1038/nbt.4163spa
dc.relation.referencesAgudelo-Castañeda, G. A., Antolinez-Sandoval, E. Y., Báez-Daza, E. Y., Jaimes-Suárez, Y. Y., & Romero-Guerrero, G. A. (2023). Nuevas variedades de cacao seleccionadas en Colombia. Revista Mexicana de Ciencias Agricolas, 14(3). https://doi.org/10.29312/remexca.v14i3.3057spa
dc.relation.referencesAgyirifo, D. S., Wamalwa, M., Otwe, E. P., Galyuon, I., Runo, S., Takrama, J., & Ngeranwa, J. (2019). Metagenomics analysis of cocoa bean fermentation microbiome identifying species diversity and putative functional capabilities. Heliyon, 5(7). https://doi.org/10.1016/j.heliyon.2019.e02170spa
dc.relation.referencesAlmeida, O. G. G., Pinto, U. M., Matos, C. B., Frazilio, D. A., Braga, V. F., von Zeska-Kress, M. R., & De Martinis, E. C. P. (2020). Does Quorum Sensing play a role in microbial shifts along spontaneous fermentation of cocoa beans? An in silico perspective. Food Research International, 131, 109034. Doi:10.1016/j.foodres.2020.109034 10.1016/J.FOODRES.2020.109034spa
dc.relation.referencesAlmeida, O. G. G., & De Martinisa, E. C. P. (2021). Metagenome-Assembled Genomes Contribute to Unraveling of the Microbiome of Cocoa Fermentation. Applied and Environmental Microbiology, 87(16). https://doi.org/10.1128/AEM.00584-21spa
dc.relation.referencesAlneberg J, Bjarnason BS, de Bruijn I, Schirmer M, Quick J, Ijaz UZ, Lahti L, Loman NJ, Andersson AF, Quince C. (2014). Binning metagenomic contigs by coverage and composition. Nature Methods. 11: 1144-1146. https://doi.org/10.1038/nmeth.3103spa
dc.relation.referencesAnyansi, C., Straub, T. J., Manson, A. L., Earl, A. M., & Abeel, T. (2020). Computational Methods for Strain-Level Microbial Detection in Colony and Metagenome Sequencing Data. Frontiers in Microbiology, 11. doi:10.3389/fmicb.2020.01925spa
dc.relation.referencesArdhana, M & Graham, H (2003). The microbial ecology of cocoa bean fermentations in Indonesia. International Journal of Food Microbiology, 86(1-2), 87–99. Doi:10.1016/s0168-1605(03)00081-3spa
dc.relation.referencesArvelo, M., González, D., Maroto, S., Delgado, T. & Montoya, P. (2017). Manual técnico del cultivo de cacao: prácticas latinoamericanas / Instituto Interamericano de Cooperación para la Agricultura. San José, C.R.: IICA. 165 p. ISBN: 978-92-9248-732-4spa
dc.relation.referencesBeghini, F., McIver L., Blanco-Míguez, A., Dubois, L., Asnicar, F., Maharjan, S., Mailyan, A., Manghi, P., Scholz, M., Thomas, A., Valles-Colomer, M., Weingart, G. Zhang, Y., Zolfo M., Huttenhower, C., Franzosa, E., Segata, N. (2021) Integrating taxonomic, functional, and strain-level profiling of diverse microbial communities with bioBakery 3 eLife 10:e65088spa
dc.relation.referencesBolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics, 30(15). https://doi.org/10.1093/bioinformatics/btu170spa
dc.relation.referencesBolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, Bai Y, Bisanz JE, Bittinger K, Brejnrod A, Brislawn CJ, Brown CT, Callahan BJ, Caraballo-Rodríguez AM, Chase J, Cope EK, Da Silva R, Diener C, Dorrestein PC, Douglas GM, Durall DM, Duvallet C, Edwardson CF, Ernst M, Estaki M, Fouquier J, Gauglitz JM, Gibbons SM, Gibson DL, Gonzalez A, Gorlick K, Guo J, Hillmann B, Holmes S, Holste H, Huttenhower C, Huttley GA, Janssen S, Jarmusch AK, Jiang L, Kaehler BD, Kang KB, Keefe CR, Keim P, Kelley ST, Knights D, Koester I, Kosciolek T, Kreps J, Langille MGI, Lee J, Ley R, Liu YX, Loftfield E, Lozupone C, Maher M, Marotz C, Martin BD, McDonald D, McIver LJ, Melnik AV, Metcalf JL, Morgan SC, Morton JT, Naimey AT, Navas-Molina JA, Nothias LF, Orchanian SB, Pearson T, Peoples SL, Petras D, Preuss ML, Pruesse E, Rasmussen LB, Rivers A, Robeson MS, Rosenthal P, Segata N, Shaffer M, Shiffer A, Sinha R, Song SJ, Spear JR, Swafford AD, Thompson LR, Torres PJ, Trinh P, Tripathi A, Turnbaugh PJ, Ul-Hasan S, van der Hooft JJJ, Vargas F, Vázquez-Baeza Y, Vogtmann E, von Hippel M, Walters W, Wan Y, Wang M, Warren J, Weber KC, Williamson CHD, Willis AD, Xu ZZ, Zaneveld JR, Zhang Y, Zhu Q, Knight R, and Caporaso JG. 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology 37: 852–857. https://doi.org/10.1038/s41587-019-0209-9spa
dc.relation.referencesBortolini, C., Patrone, V., Puglisi, E., & Morelli, L. (2016). Detailed analyses of the bacterial populations in processed cocoa beans of different geographic origin, subject to varied fermentation conditions. International Journal of Food Microbiology, 236, 98–106. https://doi.org/10.1016/J.IJFOODMICRO.2016.07.004spa
dc.relation.referencesBrettin, T., Davis, J. J., Disz, T., Edwards, R. A., Gerdes, S., Olsen, G. J., Olson, R., Overbeek, R., Parrello, B., Pusch, G. D., Shukla, M., Thomason, J. A., Stevens, R., Vonstein, V., Wattam, A. R., & Xia, F. (2015). RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Scientific Reports, 5. https://doi.org/10.1038/srep08365spa
dc.relation.referencesCallahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods, 13(7), 581–583. doi:10.1038/nmeth.3869spa
dc.relation.referencesCalvo, A. M., Botina, B. L., García, M. C., Cardona, W. A., Montenegro, A. C., & Criollo, J. (2021). Dynamics of cocoa fermentation and its effect on quality. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-95703-2spa
dc.relation.referencesCamu, N., de Winter, T., Verbrugghe, K., Cleenwerck, I., Vandamme, P., Takrama, J. S., Vancanneyt, M., & de Vuyst, L. (2007). Dynamics and biodiversity of populations of lactic acid bacteria and acetic acid bacteria involved in spontaneous heap fermentation of cocoa beans in Ghana. Applied and Environmental Microbiology, 73(6). https://doi.org/10.1128/AEM.02189-06spa
dc.relation.referencesCamu, N., González, Á., de Winter, T., van Schoor, A., de Bruyne, K., Vandamme, P., Takrama, J. S., Addo, S. K., & de Vuyst, L. (2008). Influence of turning and environmental contamination on the dynamics of populations of lactic acid and acetic acid bacteria involved in spontaneous cocoa bean heap fermentation in Ghana. Applied and Environmental Microbiology, 74(1). https://doi.org/10.1128/AEM.01512-07spa
dc.relation.referencesCarvajal, V. M. (2022) Caracterización fisicoquímica del mucilago del cacao. Universidad Nacional Abierta y A Distancia – UNAD. Escuela de Ciencias Básicas Tecnología e Ingeniería - ECBTIspa
dc.relation.referencesChang, H., Gu, C., Wang, M., Chang, Z., Zhou, J., Yue, M., Junxia Chen, Xiaowei Qin, Zhen Feng (2024) Integrating shotgun metagenomics and metabolomics to elucidate the dynamics of microbial communities and metabolites in fine flavor cocoa fermentation in Hainan. Food Research International. Volume 177. https://doi.org/10.1016/j.foodres.2023.113849spa
dc.relation.referencesChagas Junior, G. C. A., Ferreira, N. R., & Lopes, A. S. (2021). The microbiota diversity identified during the cocoa fermentation and the benefits of the starter cultures use: an overview. In International Journal of Food Science and Technology (Vol. 56, Issue 2). https://doi.org/10.1111/ijfs.14740spa
dc.relation.referencesChaumeil, P., Mussig, A., Hugenholtz, P., Parks, D. (2022). GTDB-Tk v2: memory friendly classification with the genome taxonomy database. Bioinformatics, Volume 38, Issue 23, 1 December, Pages 5315 5316. DOI: https://doi.org/10.1093/bioinformatics/btac672spa
dc.relation.referencesDanecek, P., Bonfield, J. K., Liddle, J., Marshall, J., Ohan, V., Pollard, M. O., Whitwham, A., Keane, T., McCarthy, S. A., & Davies, R. M. (2021). Twelve years of SAMtools and BCFtools. GigaScience, 10(2). https://doi.org/10.1093/gigascience/giab008spa
dc.relation.referencesDe Bruyne, K., Camu, N., de Vuyst, L., & Vandamme, P. (2009). Lactobacillus fabifermentans sp. nov. and Lactobacillus cacaonum sp. nov., isolated from Ghanaian cocoa fermentations. International Journal of Systematic and Evolutionary Microbiology, 59(1). https://doi.org/10.1099/ijs.0.001172-0spa
dc.relation.referencesDe C. Lima, C. O., Vaz, A. B. M., De Castro, G. M., Lobo, F., Solar, R., Rodrigues, C., Góes-Neto, A. (2020). Integrating microbial metagenomics and physicochemical parameters and a new perspective on starter culture for fine cocoa fermentation. Food Microbiology, 103608. doi:10.1016/j.fm.2020.103608spa
dc.relation.referencesDe Maayer, P., Venter, S. N., Kamber, T., Duffy, B., Coutinho, T. A., & Smits, T. H. M. (2011). Comparative genomics of the type VI secretion systems of Pantoea and Erwinia species reveals the presence of putative effector islands that may be translocated by the VgrG and Hcp proteins. BMC Genomics, 12. https://doi.org/10.1186/1471-2164-12-576spa
dc.relation.referencesDe Maayer, P., Chan, W. Y., Blom, J., Venter, S. N., Duffy, B., Smits, T. H. M., & Coutinho, T. A. (2012). The large universal Pantoea plasmid LPP-1 plays a major role in biological and ecological diversification. BMC Genomics, 13(1). https://doi.org/10.1186/1471-2164-13-625spa
dc.relation.referencesDe Vuyst, L., & Weckx, S. (2016). The cocoa bean fermentation process: from ecosystem analysis to starter culture development. Journal of Applied Microbiology, 121(1), 5-17.spa
dc.relation.referencesDellaglio, F., Vancanneyt, M., Endo, A., Vandamme, P., Felis, G. E., Castioni, A., Fujimoto, J., Watanabe, K., & Okada, S. (2006). Lactobacillus durianis Leisner et al. 2002 is a later heterotypic synonym of Lactobacillus vaccinostercus Kozaki and Okada 1983. International Journal of Systematic and Evolutionary Microbiology, 56(8). https://doi.org/10.1099/ijs.0.64316-0spa
dc.relation.referencesDelgado-Ospina, J., Triboletti, S., Alessandria, V., Serio, A., Sergi, M., Paparella, A., Rantsiou, K., & Chaves-López, C. (2020). Functional biodiversity of yeasts isolated from Colombian fermented and dry Cocoa beans. Microorganisms, 8(7). https://doi.org/10.3390/microorganisms8071086spa
dc.relation.referencesDíaz-Muñoz, C., & de Vuyst, L. (2022). Functional yeast starter cultures for cocoa fermentation. In Journal of Applied Microbiology (Vol. 133, Issue 1). https://doi.org/10.1111/jam.15312spa
dc.relation.referencesDostert, N., Roque, J., Cano, A., La Torre, M. y Weigend, M. (2012). Hoja Botánica: Cacao. Museo de Historia Natural. Universidad Nacional Mayor de San Marcos. Recuperado de: http://www.botconsult.com/downloads/Hoja_Botanica_Cacao_2012.pdfspa
dc.relation.referencesEstrada, W., Romero, X., Moreno, J. (2011). Guía técnica del cultivo de cacao manejado con técnicas agroecológicas. Centro Agronómico Tropical de Investigación y Enseñanza-CATIE. Confederación de Federaciones de la Reforma Agraria Salvadoreña. CONFRAS. San Salvador, El Salvador. Recuperado de: http://infocafes.com/portal/wp-content/uploads/2015/12/Estrada_et_al_Guia_Tecnica_Cacao.pdfspa
dc.relation.referencesEvaluaciones Agropecuarias Municipales (2016). Evaluaciones Agropecuarias Municipales: Cultivo de Cacao - Año 2016. Evaluaciones Agropecuarias del Ministerio de Agricultura y Desarrollo Rural. Recuperado de: http://www.agronet.gov.co/estadistica/Paginas/default.aspxspa
dc.relation.referencesFedecacao. (2021, Enero 22). Así se comportó la producción de cacao por departamentos en el 2020. Fedecacao. Retrieved December 13, 2021, from https://www.fedecacao.com.co/post/copy-of-design-a-stunning-blogspa
dc.relation.referencesFigueroa, C., Mota-Gutierrez, J., Ferrocino, I., Hernández-Estrada, Z. J., González-Ríos, O., Cocolin, L., & Suárez-Quiroz, M. L. (2019). The challenges and perspectives of the selection of starter cultures for fermented cocoa beans. International Journal of Food Microbiology, 301, 41–50. https://doi.org/10.1016/J.IJFOODMICRO.2019.05.002spa
dc.relation.referencesFountain, A. C., & Huetz-Adams, F. (2020, Diciembre). Cocoa Barometer 2020. VOICE Network. Retrieved Diciembre 10, 2021, from https://www.voicenetwork.eu/cocoa-barometer/spa
dc.relation.referencesFu, L., Niu, B., Zhu, Z., Wu, S., & Li, W. (2012). CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics, 28(23). https://doi.org/10.1093/bioinformatics/bts565spa
dc.relation.referencesGarcia-Armisen, T., Papalexandratou, Z., Hendryckx, H., Camu, N., Vrancken, G., de Vuyst, L., & Cornelis, P. (2010). Diversity of the total bacterial community associated with Ghanaian and Brazilian cocoa bean fermentation samples as revealed by a 16 S rRNA gene clone library. Applied Microbiology and Biotechnology, 87(6). https://doi.org/10.1007/s00253-010-2698-9spa
dc.relation.referencesGarcía, L., Yockteng, R., Caro, A. & Delgadillo, P. (2023). El rol de la microbiota en la degradación de la pectina durante el proceso de la fermentación del grano de cacao. Universidad CESspa
dc.relation.referencesGaspar, D.P.; Chagas Junior, G.C.A.; de Aguiar Andrade, E.H.; Nascimento, L.D.d.; Chisté,R.C.; Ferreira, N.R.; Martins, L.H.d.S.; Lopes, A.S.(2021) How Climatic Seasons of the Amazon Biome Affect the Aromatic and Bioactive Profiles of Fermented and Dried Cocoa Beans?. Molecules, 26, 3759. https:// doi.org/10.3390/molecules26133759.spa
dc.relation.referencesGhaffarian, S., & Panahi, B. (2024). Occurrence and diversity pattern of CRISPR-Cas systems in Acetobacter genus provides insights on adaptive defense mechanisms against to invasive DNAs. Frontiers in Microbiology, 15. https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2024.1357156spa
dc.relation.referencesGiacometti, J., Jolić, S. M., & Josić, D. (2015). Cocoa Processing and Impact on Composition. Processing and Impact on Active Components in Food, 605–612. doi:10.1016/b978-0-12-404699-3.00073-1.spa
dc.relation.referencesGlaeser, S. P., & Kämpfer, P. (2015). Multilocus sequence analysis (MLSA) in prokaryotic taxonomy. In Systematic and Applied Microbiology (Vol. 38, Issue 4). https://doi.org/10.1016/j.syapm.2015.03.007spa
dc.relation.referencesGumustop, I., Ortakci, F. (2023). Analyzing the genetic diversity and biotechnological potential of Leuconostoc pseudomesenteroides by comparative genomics. Frontiers in Microbiology, 13, 1074366.spa
dc.relation.referencesGutiérrez, T. J. (2017). State-of-the-Art Chocolate Manufacture: A Review. Comprehensive Reviews in Food Science and Food Safety, 16(6), 1313–1344. doi:10.1111/1541-4337.12301spa
dc.relation.referencesGutiérrez-Ríos, H. G., Suárez-Quiroz, M. L., Hernández-Estrada, Z. J., Castellanos-Onorio, O. P., Alonso-Villegas, R., Rayas-Duarte, P., Cano-Sarmiento, C., Figueroa-Hernández, C. Y., & González-Rios, O. (2022). Yeasts as Producers of Flavor Precursors during Cocoa Bean Fermentation and Their Relevance as Starter Cultures: A Review. In Fermentation (Vol. 8, Issue 7). https://doi.org/10.3390/fermentation8070331spa
dc.relation.referencesHall, M., & Beiko, R. G. (2018). 16S rRNA Gene Analysis with QIIME2. Microbiome Analysis, 113–129. doi:10.1007/978-1-4939-8728-3_8spa
dc.relation.referencesHamdouche, Y., Meile, J. C., Lebrun, M., Guehi, T., Boulanger, R., Teyssier, C., & Montet, D. (2019). Impact of turning, pod storage and fermentation time on microbial ecology and volatile composition of cocoa beans. Food Research International. doi:10.1016/j.foodres.2019.01.001spa
dc.relation.referencesHamdouche, Y., Guehi, T., Durand, N., Kedjebo, K. B. D., Montet, D., & Meile, J. C. (2015). Dynamics of microbial ecology during cocoa fermentation and drying: towards the identification of molecular markers. Food Control, 48, 117-122.spa
dc.relation.referencesHo, V. T. T., Zhao, J., & Fleet, G. (2014). Yeasts are essential for cocoa bean fermentation. International Journal of Food Microbiology, 174. https://doi.org/10.1016/j.ijfoodmicro.2013.12.014spa
dc.relation.referencesHua, X., Zhang, C., Han, J., & Xu, Y. (2022). A wholly biological method for galactaric acid production from pectin by the combination of enzymatic hydrolysis and resting-cell catalysis. Green Chemistry, 24(13), 5197-5203.spa
dc.relation.referencesICCO. (2018, abril 21). Report of the preparatory meeting on annex “C” of the international cocoa agreement, 2010. ICCO-Fine or Flavour Cocoa. Retrieved 12 12, 2021, from https://www.icco.org/fine-or-flavor-cocoa/spa
dc.relation.referencesIlleghems K, De Vuyst L, Papalexandratou Z, Weckx S (2012) Phylogenetic analysis of a spontaneous cocoa bean fermentation metagenome reveals new insights into its bacterial and fungal community diversity. PLoS One 7(5):e38040. https://doi.org/10.1371/journal.pone.0038040spa
dc.relation.referencesIlleghems, K., Pelicaen, R., De Vuyst, L., Weckx, S., 2016. Assessment of the contribution of cocoa-derived strains of Acetobacter ghanensis and Acetobacter senegalensis to the cocoa bean fermentation process through a genomic approach. Food Microbiol. 58spa
dc.relation.referencesJovel, J., Patterson, J., Wang, W., Hotte, N., O’Keefe, S., Mitchel, T., Perry, T., Kao, D., Mason, A. L., Madsen, K. L., & Wong, G. K. S. (2016). Characterization of the gut microbiome using 16S or shotgun metagenomics. Frontiers in Microbiology, 7(APR). https://doi.org/10.3389/fmicb.2016.00459spa
dc.relation.referencesKang DD, Froula J, Egan R, Wang Z. (2015). MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ. 2015;3: e1165. doi:10.7717/peerj.1165. https://doi.org/10.7717/peerj.1165.spa
dc.relation.referencesKrähmer, A., Engel, A., Kadow, D., Ali, N., Umaharan, P., Kroh, L. W., & Schulz, H. (2015, Agosto 15). Fast and neat – Determination of biochemical quality parameters in cocoa using near infrared spectroscopy. Food Chemistry, 181, 152-159. ELSEVIER. https://doi.org/10.1016/j.foodchem.2015.02.084.spa
dc.relation.referencesHegmann, E., Niether, W., Phillips, W., Rohsius, C., & Lieberei, R. (2020). Besides variety, also season and ripening stage have a major influence on fruit pulp aroma of cacao (Theobroma cacao L.). Journal of Applied Botany and Food Quality, 93, 266–275. https://doi.org/10.5073/JABFQ.2020.093.033spa
dc.relation.referencesKilmanoglu, H., Cinar, A. Y., & Durak, M. Z. (2024). Evaluation of microbiota-induced changes in biochemical, sensory properties and volatile profile of kombucha produced by reformed microbial community. Food Chemistry: X, 22, 101469.spa
dc.relation.referencesKokou Edoh, A. & Ngo Samnick, E. (2014). Cocoa production and processing.The Pro-Agro Collection. Engineers Without Borders, Cameroon (ISF Cameroun) and The Technical Centre for Agricultural and Rural Cooperation (CTA).spa
dc.relation.referencesKoskiniemi, S., Sun, S., Berg, O. G., & Andersson, D. I. (2012). Selection-driven gene loss in bacteria. PLoS Genetics, 8(6). https://doi.org/10.1371/journal.pgen.1002787spa
dc.relation.referencesKongor, J. E., Hinneh, M., de Walle, D. V., Afoakwa, E. O., Boeckx, P., & Dewettinck, K. (2016). Factors influencing quality variation in cocoa (Theobroma cacao) bean flavour profile — A review. Food Research International, 82, 44–52. doi:10.1016/j.foodres.2016.01.012spa
dc.relation.referencesKouamé, C., Loiseau, G., Grabulos, J., Boulanger, R., & Mestres, C. (2021). Development of a model for the alcoholic fermentation of cocoa beans by a Saccharomyces cerevisiae strain. International Journal of Food Microbiology, 337, 108917. https://doi.org/10.1016/J.IJFOODMICRO.2020.108917spa
dc.relation.referencesLangmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nature Methods pp 9: 357 359. doi:10.1038/nmeth.1923spa
dc.relation.referencesLee, A. H., Neilson, A. P., O’Keefe, S. F., Ogejo, J. A., Huang, H., Ponder, M., Chu, H. S. S., Jin, Q., Pilot, G., & Stewart, A. C. (2019). A laboratory-scale model cocoa fermentation using dried, unfermented beans and artificial pulp can simulate the microbial and chemical changes of on-farm cocoa fermentation. European Food Research and Technology, 245(2). https://doi.org/10.1007/s00217-018-3171-8spa
dc.relation.referencesLi D., Liu C-M, Luo R, Sadakane K, Lam T-W. (2015). MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics.31: 1674 1676. doi:10.1093/bioinformatics/btv033spa
dc.relation.referencesLi, L., Wieme, A., Spitaels, F., Balzarini, T., Nunes, O. C., Manaia, C. M., van Landschoot, A., de Vuyst, L., Cleenwerck, I., & Vandamme, P. (2014). Acetobacter sicerae sp. nov., isolated from cider and kefir, and identification of species of the genus Acetobacter by dnaK, GroEL and rpoB sequence analysis. International Journal of Systematic and Evolutionary Microbiology, 64(PART 7). https://doi.org/10.1099/ijs.0.058354-0spa
dc.relation.referencesLima C., Vaz A., De Castro G., Lobo, F., Solar, R., Rodrigues C., Martins R., Vandenberghe L., Pereira G.,Miúra da Costa A., Guimaraes R., Azevedo V., Trovatti A., Soccol C., Goes-Neto, A. (2021a). Integrating microbial metagenomics and physicochemical parameters and a new perspective on starter culture for fine cocoa fermentation. Food Microbiology, 93, 103608. https://doi.org/10.1016/J.FM.2020.103608spa
dc.relation.referencesLima, C. O. D. C., De Castro, G. M., Solar, R., Vaz, A. B., Lobo, F., Pereira, G., ... & Góes-Neto, A. (2022). Unraveling potential enzymes and their functional role in fine cocoa beans fermentation using temporal shotgun metagenomics. Frontiers in Microbiology, 13, 994524.spa
dc.relation.referencesLouca, S., Doebeli, M., & Parfrey, L. W. (2018). Correcting for 16S rRNA gene copy numbers in microbiome surveys remains an unsolved problem. Microbiome, 6(1). https://doi.org/10.1186/s40168-018-0420-9spa
dc.relation.referencesMaiden, M. C. J., van Rensburg, M. J. J., Bray, J. E., Earle, S. G., Ford, S. A., Jolley, K. A., & McCarthy, N. D. (2013). MLST revisited: The gene-by-gene approach to bacterial genomics. In Nature Reviews Microbiology (Vol. 11, Issue 10). https://doi.org/10.1038/nrmicro3093spa
dc.relation.referencesMagni, C., García-quintáns, N., Martín, M., & Mendoza, D. de. (2008). Sistemas de utilización del citrato en bacterias ácido lácticas. Fundamentos Biológicos, Procesos y Biotecnología de Las Bacterias Lácticas, I.spa
dc.relation.referencesMarič L, Cleenwerck I, Accetto T, Vandamme P, Tr_cek J. 2020. Description of Komagataeibacter melaceti sp. nov. and Komagataeibacter melomenusus sp. nov. isolated from apple cider vinegar. Microorganisms 8:1178. https://doi.org/10.3390/microorganisms8081178.spa
dc.relation.referencesMatsutani, M., Matsumoto, N., Hirakawa, H., Shiwa, Y., Yoshikawa, H., Okamoto-Kainuma, A., Ishikawa, M., Kataoka, N., Yakushi, T., & Matsushita, K. (2020). Comparative genomic analysis of closely related acetobacter pasteurianus strains provides evidence of horizontal gene transfer and reveals factors necessary for thermotolerance. Journal of Bacteriology, 202(8). https://doi.org/10.1128/JB.00553-19spa
dc.relation.referencesMcDonald, D., Price, M. N., Goodrich, J., Nawrocki, E. P., Desantis, T. Z., Probst, A., Andersen, G. L., Knight, R., & Hugenholtz, P. (2012). An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME Journal, 6(3). https://doi.org/10.1038/ismej.2011.139spa
dc.relation.referencesMendoza, M. & Lizarazo, P. (2021). Assessment of the fungal community associated withcocoa bean fermentation from two regions in Colombia. Food Research International, 149, 110670. doi:10.1016/j.foodres.2021.110670spa
dc.relation.referencesMinagricultura. (2021, Marzo). CADENA DE CACAO. Dirección de Cadenas Agrícolas y Forestales. SIOC. Sistema de Información de Gestión y Desempeño de Organizaciones de Cadenas. https://sioc.minagricultura.gov.co/Cacao/Pages/default.aspxspa
dc.relation.referencesMota-Gutierrez, J., Ferrocino, I., Giordano, M., Suarez-Quiroz, M. L., Gonzalez-Ríos, O., & Cocolin, L. (2021). Influence of Taxonomic and Functional Content of Microbial Communities on the Quality of Fermented Cocoa Pulp-Bean Mass. Applied and Environmental Microbiology, 87(14). https://doi.org/10.1128/AEM.00425-21spa
dc.relation.referencesMotamayor, J. C., Risterucci, A. M., Lopez, P. A., Ortiz, C. F., Moreno, A., & Lanaud, C. (2002). Cacao domestication I: The origin of the cacao cultivated by the Mayas. Heredity, 89(5). https://doi.org/10.1038/sj.hdy.6800156spa
dc.relation.referencesNayfach, S., Rodriguez-Mueller, B., Garud, N., & Pollard, K. S. (2016). An integrated metagenomics pipeline for strain profiling reveals novel patterns of bacterial transmission and biogeography. Genome Research, 26(11). https://doi.org/10.1101/gr.201863.115spa
dc.relation.referencesNair, K.P. (2010). 5 - Cocoa (Theobroma cacao L.). In The Agronomy and Economy of Important Tree Crops of the Developing World (1st ed., Vol. 1, pp. 131-180). Elsevier Science. https://doi.org/10.1016/B978-0-12-384677-8.00005-9spa
dc.relation.referencesNeveling, D. P., Endo, A., & Dicks, L. M. (2012). Fructophilic Lactobacillus kunkeei and Lactobacillus brevis isolated from fresh flowers, bees and bee-hives. Current microbiology, 65, 507-515.spa
dc.relation.referencesOrdoñez RH, Landines-Vera EF, Urresto-Villegas JC, CaicedoJaramillo CF (2020) Microorganisms during cocoa fermentation: systematic review. Foods Raw Mater 8:155–162. https://doi.org/ 10.21603/2308-4057-2020-1-155-162spa
dc.relation.referencesOstovar, K., & Keeney, P. G. (1973). Isolation and characterization of microorganisms involved in the fermentation of Trinidad's cacao beans. Journal of Food Science, 38(4), 611–617. doi:10.1111/j.1365-2621.1973.tb02826.xspa
dc.relation.referencesOuattara, H. D., Ouattara, H. G., Droux, M., Reverchon, S., Nasser, W., & Niamke, S. L. (2017). Lactic acid bacteria involved in cocoa beans fermentation from Ivory Coast: Species diversity and citrate lyase production. International Journal of Food Microbiology, 256, 11–19. doi:10.1016/j.ijfoodmicro.2017.05spa
dc.relation.referencesOuattara, H., & Niamké, S. (2021). Mapping the functional and strain diversity of the main Microbiota involved in cocoa fermentation from Cote d’Ivoire. Food Microbiology, 98, 103767. doi:10.1016/j.fm.2021.103767spa
dc.relation.referencesOtzen, T., & Manterola, C. (2017). Técnicas de Muestreo sobre una Población a Estudio. International Journal of Morphology, 35(1). https://doi.org/10.4067/S0717-95022017000100037spa
dc.relation.referencesPacheco-Montealegre, M. E., Dávila-Mora, L. L., Botero-Rute, L. M., Reyes, A., & Caro-Quintero, A. (2020). Fine Resolution Analysis of Microbial Communities Provides Insights Into the Variability of Cocoa Bean Fermentation. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.00650spa
dc.relation.referencesPalmer, M., Steenkamp, E. T., Coetzee, M. P. A., Blom, J., & Venter, S. N. (2018). Genome-based characterization of biological processes that differentiate closely related bacteria. Frontiers in Microbiology, 9(FEB). https://doi.org/10.3389/fmicb.2018.00113spa
dc.relation.referencesPapalexandratou, Z., Vrancken, G., De Bruyne, K., Vandamme, P., & De Vuyst, L. (2011). Spontaneous organic cocoa bean box fermentations in Brazil are characterized by a restricted species diversity of lactic acid bacteria and acetic acid bacteria. Food Microbiology, 28(7), 1326-1338spa
dc.relation.referencesPapalexandratou, Z., Lefeber, T., Bahrim, B., Lee, O. S., Daniel, H. M., & de Vuyst, L. (2013). Hanseniaspora opuntiae, Saccharomyces cerevisiae, Lactobacillus fermentum, and Acetobacter pasteurianus predominate during well-performed Malaysian cocoa bean box fermentations, underlining the importance of these microbial species for a successful cocoa bean fermentation process. Food Microbiology, 35(2). https://doi.org/10.1016/j.fm.2013.02.015spa
dc.relation.referencesPapalexandratou, Z., Kaasik, K., Kauffmann, L. V., Skorstengaard, A., Bouillon, G., Espensen, J. L., Hansen, L. H., Jakobsen, R. R., Blennow, A., Krych, L., Castro-Mejía, J. L., & Nielsen, D. S. (2019). Linking cocoa varietals and microbial diversity of Nicaraguan fine cocoa bean fermentations and their impact on final cocoa quality appreciation. International Journal of Food Microbiology, 304. https://doi.org/10.1016/j.ijfoodmicro.2019.05.012spa
dc.relation.referencesParks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P., & Tyson, G. W. (2015). CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Research, 25(7). https://doi.org/10.1101/gr.186072.114spa
dc.relation.referencesPeng Y, Leung HCM, Yiu SM, Chin FYL. 2012. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics.28: 1420 1428. doi:10.1093/bioinformatics/bts174spa
dc.relation.referencesPereira, G. V., Magalhães-Guedes, K. T., & Schwan, R. F. (2013). RDNA-based DGGE analysis and electron microscopic observation of cocoa beans to monitor microbial diversity and distribution during the fermentation process. Food Research International, 53(1). https://doi.org/10.1016/j.foodres.2013.05.030spa
dc.relation.referencesPham, V. H. T., & Kim, J. (2012). Cultivation of unculturable soil bacteria. Trends in Biotechnology, 30(9), 475–484. doi:10.1016/j.tibtech.2012.05.007spa
dc.relation.referencesPinzón, J. & Rojas, J. (2012). Guía técnica para el cultivo del cacao. Quinta edición Federación Nacional de Cacaoteros FEDECACAO. Ministerio de Agricultura y Desarrollo Rural. República de Colombia.spa
dc.relation.referencesPrjibelski, A., Antipov, D., Meleshko, D., Lapidus, A., & Korobeynikov, A. (2020). Using SPAdes De Novo Assembler. Current Protocols in Bioinformatics, 70(1). https://doi.org/10.1002/cpbi.102spa
dc.relation.referencesQiu, X., Zhang, Y., & Hong, H. (2021). Classification of acetic acid bacteria and their acid resistant mechanism. AMB Express, 11(1), Article 29. https://doi.org/10.1186/ s13568-021-01189-6spa
dc.relation.referencesQuast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Opens external link in new windowNucl. Acids Res. 41 (D1): D590-D596.spa
dc.relation.referencesSantander Muñoz, M., Rodríguez Cortina, J., Vaillant, F. E., & Escobar Parra, S. (2020). An overview of the physical and biochemical transformation of cocoa seeds to beans and to chocolate: Flavor formation. Critical Reviews in Food Science and Nutrition, 60(10), 1593-1613.spa
dc.relation.referencesSarbu, I., & Csutak, O. (2019). The Microbiology of Cocoa Fermentation. Caffeinated and Cocoa Based Beverages, 423–446. doi:10.1016/b978-0-12-815864-7.00013-1spa
dc.relation.referencesSchwan, R. F., & Wheals, A. E. (2004). The Microbiology of Cocoa Fermentation and its Role in Chocolate Quality. Critical Reviews in Food Science and Nutrition, 44(4), 205–221. doi:10.1080/10408690490464104spa
dc.relation.referencesSerra, J. L., Moura, F., Pereira, G. V. M., Soccol, C. R., Rogez, H., & Darnet, S. (2019). Determination of the microbial community in Amazonian cocoa bean fermentation by Illumina-based metagenomic sequencing. LWT. doi:10.1016/j.lwt.2019.02.038spa
dc.relation.referencesSieber, C. M. K., Probst, A. J., Sharrar, A., Thomas, B. C., Hess, M., Tringe, S. G., & Banfield, J. F. (2018). Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nature Microbiology, 3(7). https://doi.org/10.1038/s41564-018-0171-1spa
dc.relation.referencesShaffer, M., Borton, M. A., McGivern, B. B., Zayed, A. A., la Rosa, S. L. 0003 3527 8101, Solden, L. M., Liu, P., Narrowe, A. B., Rodríguez-Ramos, J., Bolduc, B., Gazitúa, M. C., Daly, R. A., Smith, G. J., Vik, D. R., Pope, P. B., Sullivan, M. B., Roux, S., & Wrighton, K. C. (2020). DRAM for distilling microbial metabolism to automate the curation of microbiome function. Nucleic Acids Research, 48(16). https://doi.org/10.1093/nar/gkaa621spa
dc.relation.referencesShetty, S., Kamble, A., & Singh, H. (2023). Insights into the Potential Role of Plasmids in the Versatility of the Genus Pantoea. In Molecular Biotechnology. https://doi.org/10.1007/s12033-023-00960-3spa
dc.relation.referencesSnauwaert, I., Papalexandratou, Z., de Vuyst, L., & Vandamme, P. (2013). Characterization of strains of Weissella fabalis sp. nov. and Fructobacillus tropaeoli from spontaneous cocoa bean fermentations. International Journal of Systematic and Evolutionary Microbiology, 63(PART 5). https://doi.org/10.1099/ijs.0.040311-0spa
dc.relation.referencesStanke, M., & Morgenstern, B. (2005). AUGUSTUS: A web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Research, 33(SUPPL. 2). https://doi.org/10.1093/nar/gki458spa
dc.relation.referencesSuzuki, R., Kosako, Y., Ohkuma, M., Komagata, K., & Uchimura, T. (2012). Acetobacter okinawensis sp. nov., Acetobacter papayae sp. nov., and Acetobacter persicus sp. nov.; novel acetic acid bacteria isolated from stems of sugarcane, fruits, and a flower in Japan. The Journal of General and Applied Microbiology, 58(3), 235-243.spa
dc.relation.referencesTaylor, A., Cardenas-Torres, E., Miller, M., Dave Zhao, S., Engeseth, N. (2022) Microbes associated with spontaneous cacao fermentations - A systematic review and meta-analysis. Current Research in Food Science. Volume 5. 1452-1464. ISSN 2665-9271. https://doi.org/10.1016/j.crfs.2022.08.008.spa
dc.relation.referencesThorvaldsdóttir, H., Robinson, T., Mesirov, J.P. (2013). Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Briefings in Bioinformatics 14, 178-192.spa
dc.relation.referencesTigrero, J.; Maridueña, M.; Liao, H.; Prado, M.; Zambrano, C.; Monserrate, B.; Cevallos, M. (2022) Microbial Diversity and Contribution to the Formation of Volatile Compounds during Fine Flavor Cocoa Bean Fermentation. Foods, 11, 915. https://doi.org/10.3390/foods11070915spa
dc.relation.referencesToole, D. R., Zhao, J., Martens-Habbena, W., & Strauss, S. L. (2021). Bacterial functional prediction tools detect but underestimate metabolic diversity compared to shotgun metagenomics in southwest Florida soils. Applied Soil Ecology, 168. https://doi.org/10.1016/j.apsoil.2021.104129spa
dc.relation.referencesTracey Allen K. Freitas, Po-E Li, Matthew B. Scholz and Patrick S. G. Chain (2015) Accurate read-based metagenome characterization using a hierarchical suite of unique signatures, Nucleic Acids Research (DOI: 10.1093/nar/gkv180)spa
dc.relation.referencesTracz, D. M., Gilmour, M. W., Mabon, P., Beniac, D. R., Hoang, L., Kibsey, P., Domselaar, G. van, Tabor, H., Westmacott, G. R., Corbett, C. R., & Bernard, K. A. (2015). Tatumella saanichensis sp. nov., isolated from a cystic fibrosis patient. International Journal of Systematic and Evolutionary Microbiology, 65(6). https://doi.org/10.1099/ijs.0.000207spa
dc.relation.referencesTruong, D. T., Tett, A., Pasolli, E., Huttenhower, C., & Segata, N. (2017). Microbial strain-level population structure and genetic diversity from metagenomes. Genome Research, 27(4), 626–638. doi:10.1101/gr.216242.116spa
dc.relation.referencesVerce M, Schoonejans J, Hernandez Aguirre C, Molina-Bravo R, De Vuyst L and Weckx S (2021) A Combined Metagenomics and Metatranscriptomics Approach to Unravel Costa Rican Cocoa Box Fermentation Processes Reveals Yet Unreported Microbial Species and Functionalities. Front. Microbiol. 12:641185. doi: 10.3389/fmicb.2021.641185spa
dc.relation.referencesViesser, J. A., de Melo Pereira, G. V., de Carvalho Neto, D. P., Vandenberghe, L. P. de S., Azevedo, V., Brenig, B., … Soccol, C. R. (2020). Exploring the contribution of fructophilic lactic acid bacteria to cocoa beans fermentation: isolation, selection and evaluation. Food Research International, 109478. doi:10.1016/j.foodres.2020.109478spa
dc.relation.referencesViesser, J. A., de Melo Pereira, G. V., de Carvalho Neto, D. P., Favero, G. R., de Carvalho, J.C., Goés-Neto, A., Soccol, C. R. (2021). Global cocoa fermentation microbiome: revealing new taxa and microbial functions by next generation sequencing technologies. World Journal of Microbiology and Biotechnology, 37(7). Doi: 10.1007/s11274-021-03079-2spa
dc.relation.referencesWang, B., Shao, Y., Chen, T., Chen, W., & Chen, F. (2015). Global insights into acetic acid resistance mechanisms and genetic stability of Acetobacter pasteurianus strains by comparative genomics. Scientific Reports, 5. https://doi.org/10.1038/srep18330spa
dc.relation.referencesWingett, S. W., & Andrews, S. (2018). FastQ Screen: A tool for multi-genome mapping and quality control. F1000Research, 7. https://doi.org/10.12688/f1000research.15931.2spa
dc.relation.referencesWu Y-W, Simmons BA, Singer SW. (2016). MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics. 32: 605 607. doi:10.1093/bioinformatics/btv638 (2) 1spa
dc.relation.referencesWood, D. E., Lu, J., & Langmead, B. (2019). Improved metagenomic analysis with Kraken 2. Genome Biology, 20(1). https://doi.org/10.1186/s13059-019-1891-0spa
dc.relation.referencesXu, H., Liu, W., Zhang, W., Yu, J., Song, Y., Menhe, B., Zhang, H., & Sun, Z. (2015). Use of multilocus sequence typing to infer genetic diversity and population structure of Lactobacillus plantarum isolates from different sources. BMC Microbiology, 15(1). https://doi.org/10.1186/s12866-015-0584-4spa
dc.relation.referencesXu, L., Dong, Z., Fang, L., Luo, Y., Wei, Z., Guo, H., Zhang, G., Gu, Y. Q., Coleman-Derr, D., Xia, Q., & Wang, Y. (2019). OrthoVenn2: A web server for whole-genome comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Research, 47(W1). https://doi.org/10.1093/nar/gkz333spa
dc.relation.referencesZheng, J., Wittouck, S., Salvetti, E., Franz, C. M. A. P., Harris, H. M. B., Mattarelli, P., O’toole, P. W., Pot, B., Vandamme, P., Walter, J., Watanabe, K., Wuyts, S., Felis, G. E., Gänzle, M. G., & Lebeer, S. (2020). A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. International Journal of Systematic and Evolutionary Microbiology, 70(4). https://doi.org/10.1099/ijsem.0.004107spa
dc.relation.referencesZhou, Y., Liu, M., & Yang, J. (2022). Recovering metagenome-assembled genomes from shotgun metagenomic sequencing data: Methods, applications, challenges, and opportunities. In Microbiological Research (Vol. 260). https://doi.org/10.1016/j.micres.2022.127023spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.agrovocMetagenómicaspa
dc.subject.agrovocmetagenomicseng
dc.subject.agrovocAgente fermentadorspa
dc.subject.agrovocleavening agentseng
dc.subject.agrovocTheobroma cacaospa
dc.subject.agrovocTheobroma cacaoeng
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantaciónspa
dc.subject.proposalTheobroma cacaospa
dc.subject.proposalFermentaciónspa
dc.subject.proposalMetagenómicaspa
dc.subject.proposalDiversidad funcionalspa
dc.subject.proposalDiversidad poblacionalspa
dc.subject.proposalTheobroma cacaoeng
dc.subject.proposalFermentationeng
dc.subject.proposalMetagenomicseng
dc.subject.proposalFunctional diversityeng
dc.subject.proposalPopulation diversityeng
dc.titleReconstrucción metagenómica de las comunidades de microorganismos involucrados en la fermentación de cacao en dos regiones agroecológicas de Colombiaspa
dc.title.translatedMetagenomic reconstruction of microbial communities involved in cocoa fermentation in two agroecological regions of Colombiaeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentAdministradoresspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentMedios de comunicaciónspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032471305.2025.pdf
Tamaño:
1.83 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Biología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: