Diseño de diferentes configuraciones en la morfología estructural para películas poliméricas compuestas depositadas sobre un panel tipo sándwich (vidrio-polímero-vidrio) que permitan controlar la radiación solar afectando el índice de refracción y el coeficiente de transmisión térmica con aplicación en el acondicionamiento climático de edificaciones
| dc.contributor.advisor | Perilla Perilla, Jairo Ernesto | spa |
| dc.contributor.author | Perez Marín, Andrés Felipe | spa |
| dc.contributor.educationalvalidator | Torres Salcedo, Néstor Jaime | spa |
| dc.contributor.researchgroup | Biomateriales – GMAT | spa |
| dc.contributor.researchgroup | Grupo de Investigación en Procesos Químicos y Bioquímicos | spa |
| dc.date.accessioned | 2025-10-23T18:55:29Z | |
| dc.date.available | 2025-10-23T18:55:29Z | |
| dc.date.issued | 2025-10-21 | |
| dc.description | ilustraciones, diagramas, fotografías | spa |
| dc.description.abstract | La presente investigación se instala como un diálogo entre la arquitectura bioclimática y la ingeniería, ciencia y tecnología de los materiales, con el fin de abordar el problema del control pasivo de la radiación solar a través de la envolvente o piel de la edificación. Un aspecto importante en la eficiencia energética de los edificios se asocia con el consumo de energía para su acondicionamiento climático. Según los datos reportados para 2022, este sector consume el 30% del total de la energía de todo el mundo (REN21, 2024). Eso significa que el consumo directo de los edificios representa alrededor de un tercio de la demanda energética mundial. En este contexto, las películas poliméricas en estructuras multicapa (tipo blend) surgen como alternativa tecnológica para controlar de forma pasiva la radiación solar incidente, actuando como filtros selectivos que reducen la ganancia térmica sin comprometer la iluminación natural. En razón a lo anterior, esta investigación ha tenido como objetivo diseñar diferentes configuraciones morfológicas para el empleo de películas poliméricas compuestas en estructuras multicapa depositadas sobre un panel tipo sándwich (vidrio-polímero-vidrio), que permitan controlar la radiación solar afectando el índice de refracción y el coeficiente de transmisión térmica, con aplicación en el acondicionamiento climático de edificaciones. Como resultado se obtiene, por medio de un diseño óptico multicapa, un panel tipo sándwich conformado así: vidrio + película de nanocerámica (NC) + película de PET (FP3) + vidrio, el cual posee una alta reflexión en el rango del NIR (30%) y una transmitancia visible elevada (85% prom). Las propiedades ópticas de los sistemas propuestos se evalúan mediante espectroscopia UV - VIS - NIR y los métodos de Swanepoel (1983) y Bhattacharyya (1993) para determinar el índice de refracción (n) y el coeficiente de extinción (k). Esta investigación aporta en el conocimiento sobre el diseño y la caracterización de sistemas poliméricos multicapa, fortaleciendo así la base científica para el desarrollo de sistemas pasivos de control de radiación solar con materiales locales en el contexto climático colombiano. (Texto tomado de la fuente). | spa |
| dc.description.abstract | The current research settles a dialogue between bio-climatic architecture and materials engineering, science and technology, with the goal of addressing the problem of passive solar radiation control by the coating or skin of the buildings. This means that an important factor in the energetic efficiency of buildings is associated with the consumption of energy for their proper climate conditioning. According to the data reported for 2022, the construction sector consumes 30% of the world’s total energy (REN21, 2024); this means that the direct energy consumption of buildings represents around a third of the global energy demand. In this context, multi-layered polymer films in structures (blend type) appear as a technological alternative for the passive control of incident solar radiation, acting as selective filters that diminish thermal gain without compromising natural light. In view of the above, this research proposes different designs for morphologic configurations for the use of multi-layered film panels deployed in sandwich-type panels (glass-polymer-glass) that allow for the control of solar radiation affecting the refractive index and the thermal transmission coefficient with applications in thermal conditioning in buildings. As a result, we get, through a multi-layered optic design, a sandwich-type panel composed by glass + Nano-Ceramic layer (NC) + PET film (FP3) + glass, which possesses a high reflection rate in the NIR range (30%) and an elevated visible transmittance (80% avg). Optical properties of the composite systems are reviewed by UV–VIS–NIR spectroscopy and through Swanepoel (1983) and Bhattacharyya (1993) methods, to determine the refractive index (n) and extinction coefficient (k). This research provides the knowledge about the design and characterization of multi-layered polymer systems, strengthening the scientific ground for the development of passive solar radiation control systems with local materials in the Colombian climate context. | eng |
| dc.description.degreelevel | Doctorado | spa |
| dc.description.degreename | Doctor en Ingenieria - Ciencia y Tecnologia de Materiales | spa |
| dc.description.methods | Diseño de la metodología experimental: Consistió en la caracterización óptica y estructural de películas poliméricas (PVC, LDPE, PP, PET y NC y sistemas multicapa tipo blend) mediante espectroscopía de absorción UV-VIS-NIR, FTIR y difracción de rayos X (XRD). Esto con el fin de determinar los parámetros ópticos, el grado de cristalinidad y el comportamiento espectral frente a la radiación solar de los materiales objeto de estudio. La primera parte de este capítulo se concentra en el establecimiento de los parámetros requeridos para la realización de las mediciones y la segunda parte en los resultados obtenidos. Estos se analizaron comparativamente para establecer la relación entre la morfología, el índice de refracción (n) y el coeficiente de extinción (k), orientando su aplicación a sistemas pasivos de control de radiación solar en la envolvente de la edificación. | spa |
| dc.description.researcharea | Materiales cerámicos y compuestos | spa |
| dc.format.extent | xxvi, 196 páginas | spa |
| dc.format.mimetype | application/pdf | |
| dc.identifier.instname | Universidad Nacional de Colombia | spa |
| dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
| dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/89059 | |
| dc.language.iso | spa | |
| dc.publisher | Universidad Nacional de Colombia | spa |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
| dc.publisher.department | Departamento de Ingeniería Mecánica y Mecatrónica | spa |
| dc.publisher.faculty | Facultad de Ingeniería | spa |
| dc.publisher.place | Bogotá, Colombia | spa |
| dc.publisher.program | Bogotá - Ingeniería - Doctorado en Ingeniería - Ciencia y Tecnología de Materiales | spa |
| dc.relation.references | Alavéz, R. (2003). Comportamiento termofísico de los materiales como alternativa de construcción. . Memorias del XXVII Semana Internacional de Energía Solar., (p. 33). México. | |
| dc.relation.references | Alcañiz, E. d. (2003). Electroscopías electrónicas. In E. d. Alcañiz, En Determinación estructural de compuestos inorgánicos (pp. 26-35). Universidad de Alcalá. | |
| dc.relation.references | Al-Mahdouri, A. et al. (2013). Evaluation of optical properties and thermal performances of different greenhouse covering materials. Solar Energy, 96, 21-32. | |
| dc.relation.references | Almanza, R. (2009). Filtros solares y ahorro de energía. . Ciudad de México: Instituto de Ingeniería, UNAM. | |
| dc.relation.references | Alsaygh, A. e. (2014). Characterization of polyethylene synthesized by zirconium single site catalysts. Applied Petrochemical Research, 4, 79–84. | |
| dc.relation.references | ASTM Internacional. (2022). ASTM D542-22. Standard Test Method for Index of Refraction of Transparent Organic Plastics. Retrieved 06 2023, from ASTM Internacional: https://store.astm.org/d0542-22.html | |
| dc.relation.references | ASTM International. (2021). ASTM D1003-21. Standard Test Method for Haze and Luminous Transmittance of Transparent Plastics. Retrieved 06 2023, from ASTM Internacional: https://store.astm.org/standards/d1003 | |
| dc.relation.references | Bahadori-Jahromi, A. et al. (2017). Impact of Window Films on the Overall Energy. Sustainability, 9, 731. doi:10.3390/su9050731 | |
| dc.relation.references | Barry, G. (2014). JRC Annual Report 2014: Joint Research Centre. Joint Research Centre. Luxembourg: Publications Office of the European Union. Retrieved 02 2024, from https://publications.jrc.ec.europa.eu/repository/handle/JRC93347 | |
| dc.relation.references | Bassiri, N. P. (1973). Optical constants of polyethylene and polystyrene films in the far infrared. Applied Optics, 12(4), 800–803. | |
| dc.relation.references | Bhattacharyya, D. et al. (1993). Determination of refractive index of thin films beyond the absorption edge. Vacuum, 44(10), 979-981. Retrieved from https://www.sciencedirect.com/science/article/abs/pii/0042207X9390282F | |
| dc.relation.references | Bhattacharyya, S. K. (2009). Determination of optical constants of thin films from transmittance trace. Thin Solid Films, 517(18), 5530-5536. | |
| dc.relation.references | Bonal, V. e. (2021). Simultaneous Determination of Refractive Index and Thickness of Submicron Optical Polymer Films from Transmission Spectra. Polymers, 13(15). doi:https://doi.org/10.3390/polym13152545 | |
| dc.relation.references | Borjanović, V. et al. (2016). Proton radiation resistance of Poly (ethylene terephthalate)-nanodiamond-graphene nanoplatelet nanocomposites. Journal of Materials Science, 51(2). doi:DOI:10.1007/s10853-015-9431-0 | |
| dc.relation.references | Bower, D. &. (1989). The characterization of polymers. In D. &. Bower, The Vibrational Spectroscopy of Polymers (pp. 162-226). New York: Cambridge University Press. | |
| dc.relation.references | Brydson, J. (1999). Plastics Materials. Oxford (Boston): Butterworth Heinemann Ltd | |
| dc.relation.references | Campbell, R. &. (1993). The gamma phase of high-molecular-weight polypropylene: 1. Morphological aspects. Polymer, 34(23), 4809-4816. | |
| dc.relation.references | Chen, L. et al. (2018). Electronic Structure of Polymer Dielectrics: The Role of Chemical and Morphological Complexity. Chemistry of Materials, 30, 7699-7706. doi:https://pubs.acs.org/doi/10.1021/acs.chemmater.8b02997 | |
| dc.relation.references | Chen, Z. et al. (2012). FTIR spectroscopic analysis of poly(ethylene terephthalate) on crystallization. European Polymer Journal, 48, 1586-1610. | |
| dc.relation.references | Cheng, J. &. (2016). Orientation of LDPE Crystals from Microscale to Nanoscale via Microlayer or Nanolayer Coextrusion. Chinese Journal of Polymer Science, 34(12), 1411−1422. | |
| dc.relation.references | Core Materials. (s.f.). Polypropylene. Retrieved 05 15, 2020, from CORE (COnnecting REpositories): https://core.ac.uk/ | |
| dc.relation.references | Curcija, C. et al. (2018). WINDOW Technical Documentation. Berkeley, California: Lawrence Berkeley National Laborator. | |
| dc.relation.references | Danley, R. et al. (2008). A Rapid-Scanning Differential Scanning Calorimeter. American Laboratory, 9-11. Retrieved from https://www.americanlaboratory.com/914-Application-Notes/695-A-Rapid-Scanning-Differential-Scanning-Calorim | |
| dc.relation.references | Drake, L. J. (1982). How solar control glass products are made and how the perform. Glass Digest, 15, 66-70. | |
| dc.relation.references | Edder, C. et al. (2006). Benzothiadiazoleand pyrrole-based polymers bearing thermally cleavable solubilizing groups as precursors for low bandgap polymers. Chemical communications, 18, 1965-1967. | |
| dc.relation.references | Fadel, M. et al. (2020). Preparation and characterization of polyethylene terephthalate–chamomile oil blends with enhanced hydrophilicity and anticoagulant propertiesand anticoagulant properties and anticoagulant properties and anticoagulant properties. Progress in Biomate, 9, 97-106. doi:https://doi.org/10.1007/s40204-020-00133-4 | |
| dc.relation.references | Fang, J. et al. (2012). NeedlelessMelt-Electrospinning of Polypropylene Nanofibres. Journal of Nanomaterials(382639). doi:10.1155/2012/382639 | |
| dc.relation.references | Fang, X. (2000). A Study of the U-Factor of the Window with a High-Reflectivity Venetian Blind. Solar Energy, 68(2), 207–214. | |
| dc.relation.references | Feng, K. et al. (2024). Passive daytime radiative cooling: from mechanism to materials and applications. Materials Today Energy, 43. doi:https://doi.org/10.1016/j.mtener.2024.101575 | |
| dc.relation.references | Furman, S. &. (1992). Basics of Optics of Multilayer Systems. Editions Frontieres, Gif-sur-Yvette. | |
| dc.relation.references | Gulmine, J. V. (2002). Polyethylene characterization by FTIR. Polymer Testing,. 21(5), 557-563. | |
| dc.relation.references | Hitachi High-Technologies Corporation. (s.f.). Measurement of Optical Characteristic of Plastic by UH4150 Spectrophotometer - An example of High Throughput measurements in the UV, Visible and Near-Infrared Regions - Sheet No. UV130006-02. Retrieved from https://www.hitachi-hightech.com/products/images/12272/uh4150_data1_e.pdf | |
| dc.relation.references | Hohne, G. et al. (1996). Calibration of Differential Scanning Calorimeters. In G. e. Hohne, Differential Scanning Calorimetry (pp. 65-114). Berlin: Springer. | |
| dc.relation.references | Hua, J. et al. (2018). Optical Properties of Smart Thermochromic Film by Computational Optical Model. Optik, 157, 1-10. Retrieved from https://www.sciencedirect.com/science/article/pii/S0030402617314857 | |
| dc.relation.references | Humboldt Universität zu Berlin. (s.f.). Advanced Lab: DSC Investigation of Polymers. (M.-N. F.-I. Physik, Ed.) Retrieved 09 15, 2025, from Humboldt Universität zu Berlin: https://polymerscience.physik.hu-berlin.de/docs/manuals/DSC.pdf | |
| dc.relation.references | Hüper Optik. (2013). Ceramic 70. Retrieved 08 15, 2022, from Hüper Optik: https://drive.google.com/file/d/1LzD4OHCXhA_JajYQwrZOGIBty7O61x6i/view | |
| dc.relation.references | Ibarra, R. (2018). El impulso de las energías renovables en la lucha contra el cambio climático a través de los certificados ambientales en el sector eléctrico mexicano. Boletín mexicano de derecho comparado, 51(152). doi:https://doi.org/10.22201/iij.24484873e.2018.152.12918 | |
| dc.relation.references | Iturriaga, A. (2008). La Ventana. Análisis y Estrategias respecto a la Energía Solar. Barcelona: Master de Arquitectura y Medio Ambiente: Integración de energías renovables en la Arquitectura. Universidad Politécnica de Cataluña. | |
| dc.relation.references | Jelle, B. P. (2013). Solar radiation glazing factors for window panes, glass structures and electrochromic windows in buildings - Measurement and calculation. Solar Energy Materials & Solar Cells, 116, 291-323. | |
| dc.relation.references | Jog, J. (2013). Crystallization of Polyethyleneterephthalate. Journal of Macromolecular Science, Part C, 35(3), 531-553. | |
| dc.relation.references | Jung, M. et al. (2018). Validation of ATR FT-IR to identify polymers of plastic marine debris, including those ingested by marine organisms. Marine Pollution Bulletin, 127, 704-716. Retrieved from https://www.pelagicos.net/Reprints/2018/Jung_et_al._2018_MarPollBull.pdf | |
| dc.relation.references | Kamburo, S. S. (2014). Similarities and peculiarities between the crystal structures of the hydrates of sodium sulfate and selenate. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials. doi:10.1107/S2052520614007653 | |
| dc.relation.references | Karlsson, J. (2001). Windows Optical Performance and Energy Efficiency. Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, Uppsala. | |
| dc.relation.references | Kayyarapua, B. et al. (2016). Structural, Thermal and Optical Properties of Pure and Mn2+ Doped Poly(Vinyl Chloride) Films. Materials Research, 19(5), 1167-1175. doi:http://dx.doi.org/10.1590/1980-5373-MR-2016-0239 | |
| dc.relation.references | Kintek. (2025). ¿Qué es la extrusión multicapa? . Retrieved 10 02, 2025, from Kindle-Tech: https://es.kindle-tech.com/faqs/what-is-the-process-of-multilayer-extrusion | |
| dc.relation.references | Klabunde, K. L. (1998). Chemistry of Advance Materials: An Overview. Willey-VCH Inc. | |
| dc.relation.references | Knittl, Z. (1976). Optics of Thin Films. Wiley & Sons. | |
| dc.relation.references | Lee, J. &. (2014). Optical characterization of multilayer solar control films on glass substrates. Solar Energy Materials and Solar Cells, 125, 241–248. | |
| dc.relation.references | Li, Y. e. (2024). Humidity-tolerant porous polymer coating for passive daytime radiative cooling. Nature Communications, 15(1), 6823. doi:https://doi.org/10.1038/s41467-024-44156-7 | |
| dc.relation.references | Linseis. (s.f.). DSC PT1000. Retrieved 07 15, 2025, from Linseis: https://linseis.co.kr/%EC%A0%9C%ED%92%88/%EC%8B%9C%EC%B0%A8-%EC%A3%BC%EC%82%AC-%EC%97%B4%EB%9F%89-%EC%B8%A1%EC%A0%95/dsc-pt-1000/ | |
| dc.relation.references | Loewenstein, E. et al. (1973). Optical constants of polyethylene terephthalate (PET) film. Applied Optics, 12(2), 398–402. Retrieved from https://opg.optica.org/ao/abstract.cfm?uri=ao-12-2-398 | |
| dc.relation.references | Lotz, H. e. (2001). Thick Optical Multilayer Systems on PET-Film. 44th Annual Technical Conference Proceedings (pp. 172-177). Society of Vacuum Coaters. | |
| dc.relation.references | Ma, H.-Y. et al. (2016). High Refractive Organic–Inorganic Hybrid Film Prepared by Low Water Sol-Gel and UV-Irradiation Processes. Nanomaterials, 6(44). doi:10.3390/nano6030044 | |
| dc.relation.references | Macleod, H. (2010). Thin Film Optical Filters. CRC Press. | |
| dc.relation.references | Mark, J. (2007). Physical Properties of Polymers Handbook (2nd ed.). (S. S. Media, Ed.) New York. | |
| dc.relation.references | Memarzadeh, K. et al. (1988). Variable angle of incidence spectroscopic ellipsometric characterization of TiO2/Ag/TiO2 optical coatings. Journal of Applied Physics, 64, 3407–3410. | |
| dc.relation.references | Miravete, A. (2021). Los nuevos materiales en la construcción (Segunda Edición ed.). Zaragoza: Centro Politécnico Superior de Zaragoza. | |
| dc.relation.references | Misra, A. &. (1979). Stress-induced crystallization of poly (ethylene terephthalate). Journal of Polymer Science: Polymer Physics Edition, 17, 235-257. | |
| dc.relation.references | MIT. (s.f.). FreeSnell: Polyethylene. Retrieved from MIT edu: https://people.csail.mit.edu/jaffer/FreeSnell/polyethylene.html | |
| dc.relation.references | Northside Window Tinting. (s.f.). WINCOS AUTOMOTIVE FILMS. Retrieved 05 02, 2022, from Northside Window Tinting: https://www.northsidewindowtinting.net.au/premium-window-tinting/ | |
| dc.relation.references | Ohring, M. (2002). A Review of Materials Science. In M. Ohring, Materials science of thin films. Orlando, Fl.: Academic Press. | |
| dc.relation.references | Olsen, E. (1990). Métodos ópticos de análisis. . Barcelona: Reverté. | |
| dc.relation.references | OMS. (2021). Cambio climático. Retrieved 08 10, 2025, from Organización Mundial de la Salud: https://www.who.int/es/news-room/fact-sheets/detail/climate-change-and-health | |
| dc.relation.references | Organización Internacional de Normalización. (2003). Glass in building — Determination of light transmittance, solar direct transmittance, total solar energy transmittance, ultraviolet transmittance and related glazing factors (ISO 9050:2003). Retrieved from https://www.iso.org/standard/35062.html | |
| dc.relation.references | Padilla, J. (2010). Polímeros conductores: su papel en un desarrollo energético sostenible. Barcelona: Editorial Reverte. | |
| dc.relation.references | Pankove. (1975). Optical Processes in Semiconductors,. NJ, USA: Prentice-Hall, Inc. | |
| dc.relation.references | Paukkeri, R. &. (1993). Thermal behaviour of polypropylene fractions: 1. Influence of tacticity and molecular weight on crystallization and melting behavior. Polymer, 34(19), 4075-4082. | |
| dc.relation.references | Pereira, A. P. (2017). Processing and Characterization of PET Composites Reinforced With Geopolymer Concrete Waste. Materials Research, 20(2), 411-420. | |
| dc.relation.references | Pérez, R. (2005). Procesado y optimización de espectros Raman mediante técnicas de lógica difusa: aplicación a la identificación de materiales pictóricos. . Barcelona: Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions. | |
| dc.relation.references | Piegari, A. &. (2018). Optical thin films and coatings. From materials to applications. Woodhead Publishing Limited. doi:10.1016/C2016-0-02583-4 | |
| dc.relation.references | Poley, L. et al. (2004). Photothermal characterization of low density polyethylene food packages. Polímeros, Ciência e Tecnologia, 14(1), 8-12. | |
| dc.relation.references | Prabowo, I. et al. (2017). The effect of modified ijuk fibers to crystallinity of polypropylene composite. Innovation in Polymer Science and Technology 2016 (IPST 2016), 223. doi:10.1088/1757-899X/223/1/012020 | |
| dc.relation.references | Pulker, H. (1984). Coatings on Glass. Thin Films Science and Technology. Amsterdam: Elsevler. | |
| dc.relation.references | Qi, Y. et al. (2016). Transparent and heat insulation plasticized polyvinyl chloride(PVC) thin film withsolarspectrallyselectiveproperty. Solar Energy Materials & Solar Cells, 151, 30-35. | |
| dc.relation.references | Rabek, J. (1995). Polymer Photodegradation. Mechanisms and experimental methods. Springer Science + Business Media. Retrieved from https://link.springer.com/book/10.1007/978-94-011-1274-1 | |
| dc.relation.references | Radhakrishnan, J. et al. (1998). Nearly pure α2 form crystals obtained by melt crystallization of high tacticity isotactic polypropylene. Polymer, 39(13), 2995-2997. Retrieved from https://www.sciencedirect.com/science/article/abs/pii/S0032386197006174 | |
| dc.relation.references | Ren, Y. et al. (2025). Recrystallization During Annealing of Low-Density Polyethylene Non-Woven Fabric by Melt Electrospinning. Polymers, 17(2121). doi:https://doi.org/10.3390/ | |
| dc.relation.references | REN21. (2024). Renewables 2024 Global Status Report Collection, Renewables in Energy Demand. Retrieved 08 14, 2025, from REN21: https://www.ren21.net/gsr-2024/modules/energy_demand/02_renewables_in_buildings/ | |
| dc.relation.references | Rojas, F. (s.f.). Tablas de espectroscopía infrarroja. Retrieved 08 04, 2024, from Educatic UNAM: https://ada.educatic.unam.mx/pluginfile.php/586/mod_assign/intro/TablasInterpretaci%C3%B3nIR.pdf | |
| dc.relation.references | Rubin, M. e. (1998). Window optics. Solar Energy, 62, 149-161. | |
| dc.relation.references | Salazar, J. (2003). Protección solar en edificaciones. Fundamentos Teóricos. VII Encuentro nacional de estudiantes de arquitectura. Medellín: Grupo EMAT. Universidad Nacional de Colombia. Sede Medellín. | |
| dc.relation.references | Samyn, P. &. (1997). Present trend and architect's expectation on coated glass. Journal of Non-Crystalline Solids, 218, 1-6. | |
| dc.relation.references | Sánchez, J. J. (2003). Comportamiento Térmico y Mecánico del Poli(Etilén Tereftalato) (PET) Modificado con Resinas Poliméricas Basadas en Bisfenol-A. Universitat Politècnica de Catalunya. | |
| dc.relation.references | Santamouris, M. et al. (2011). Using advanced cool materials in the urban built environment to mitígate heat islands and inprove termal confort conditions. Solar Energy. | |
| dc.relation.references | Santhoskumar, A. et al. (2012). Synthesis of Transition Metal 12 Hydroxy Oleate and their Effect on Photo and Biodegradation of Low-Density Polyethylene Films. Journal of Bioremediation & Biodegradation, 3, 142. doi:doi:10.4172/2155-6199.1000142 | |
| dc.relation.references | Sato, H. et al. (2003). Near infrared spectra of pellets and thin. J. Near Infrared Spectrosc., 309–321. | |
| dc.relation.references | Scalfi, L. et al. (2021). On the Gibbs–Thomson equation for the. J. Chem. Phys., 154(114711). doi:https://doi.org/10.1063/5.0044330 | |
| dc.relation.references | Schmacke, S. (2010). Investigations of Polyethylene Materials. Dissertation para la obtención del título de Doctor en Ciencias Naturales de la Facultad de Física de la Universidad Técnica de Dortmund. | |
| dc.relation.references | Schulz, M. et al. (2015). Morphology control in precision polyolefins. Appl Petrochem Res, 5, 3-8. doi:10.1007/s13203-013-0041-y | |
| dc.relation.references | Shimadzu. (s.f.). Measurement of Solar Transmittance through Plate Glass. Retrieved 08 15, 2025, from Shimadzu. Analytical and Measuring Instruments: https://www.shimadzu.com/an/industries/engineering-materials/measurement-of-solar-transmit2/index.html | |
| dc.relation.references | Sierra, N. et al. (2010). Protocolo para el control de calidad de envases de plástico, utilizados en la industria farmacéutica, de cosméticos y de alimento . Revista Colombiana de Ciencias Químico – Farmacéuticas, 39(2). | |
| dc.relation.references | Skoog, D. A. (1984). Análisis Instrumental. McGraw-Hill. | |
| dc.relation.references | Strub, E. et al. (2024). Pertechnetates – A Structural Study Across the Periodic Table. Chemistry—A European Journal, 30. doi:doi.org/10.1002/chem.202400131 | |
| dc.relation.references | Sun, Y. (2017). Glazing system with transparent insulation material for building energy saving and daylight comfort. Thesis submitted to the University of Nottingham for degree of Doctor of Philosophy. | |
| dc.relation.references | Surface Science Western. (s.f.). Differential Scanning Calorimetry (DSC). Retrieved 09 10, 2025, from Surface Science Western: https://www.surfacesciencewestern.com/analytical-services/differential-scanning-calorimetry-dsc/ | |
| dc.relation.references | Swanepoel, R. (1983). Determination of the Thickness and Optical Constants of Amorphous Silicon. Journal of Physics E: Scientific Instruments, 16, 1214-1218. doi:https://iopscience.iop.org/article/10.1088/0022-3735/16/12/023 | |
| dc.relation.references | Szcryrbowski, J. (1989). Effect of solar control window glass on thermal heat balance in cars. Glass International, 64-65. | |
| dc.relation.references | Tabares, J. &.-D. (2024). Impacto de las propiedades superficiales de una cubierta sobre el desempeño térmico interior. Análisis descriptivo sobre un local comercial de gran superficie en tres ciudades colombianas. Revista de Arquitectura, 26(1), 165-180. doi:https://doi.org/10.14718/RevArq.2024.26.3702 | |
| dc.relation.references | Thorlabs, Inc. (s.f.). ITO-Coated PET Film. Retrieved 10 10, 2023, from Thorlabs.com: https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=9535 | |
| dc.relation.references | University College London. (2006). Instrument X-ray Optics. I. Reflection Geometry. Retrieved 09 15, 2025, from Department of Chemistry, University College London: http://pd.chem.ucl.ac.uk/pdnn/inst1/optics1.htm | |
| dc.relation.references | UPME. (s.f). Plan Estratégico Institucional 2023-2026. Retrieved 09 10, 2025, from https://www.upme.gov.co/nosotros/nuestra-entidad/plan-estrategico-institucional/ | |
| dc.relation.references | Urbaniak-Domagala, W. (2011). The Use of the Spectrometric Technique FTIR-ATR. Capítulo 3. In M. Akhyar, Advanced Aspects of Spectroscopy (pp. 85-104). Intechopen.com. doi:http://dx.doi.org/10.5772/48143 | |
| dc.relation.references | Van Krevelen, D. (2009). Properties of Polymers. In D. Van Krevelen, Chapter 10. Optical Properties (Fourth Ed. ed., pp. 287-318). Elsevier B.V. Retrieved from https://www.sciencedirect.com/book/9780080548197/properties-of-polymers | |
| dc.relation.references | Varga, J. (1989). β-Modification of polypropylene and its two-component systems. Journal of Thermal Analysis, 35, 1891-1912. Retrieved from https://link.springer.com/article/10.1007/BF01911675 | |
| dc.relation.references | Velandia, J. (2017). Identificación de polímeros por espectroscopía infrarroja. Revista Ontare, 5, 115-140. | |
| dc.relation.references | Venkateswaran, G. et al. (1998). Effects of temperature profiles through preform thickness on the properties of reheat-blown PET containers. Advances in Polymer Technology, 17, 237-349. | |
| dc.relation.references | Villegas-Camacho, O. e. (2024). FTIR-Plastics: A Fourier Transform Infrared Spectroscopy dataset for the six most prevalent industrial plastic polymers. Data in Brief, 55(110612). | |
| dc.relation.references | Wang, C. C. (2024b). Passive daytime radiative cooling materials toward real-world applications. Progress in Materials Science, 144. doi:https://doi.org/10.1016/j.pmatsci.2024.101276 | |
| dc.relation.references | Wang, C. et al. (2013). β-Crystallization of isotactic polypropylene in the presence of β-nucleating agent and different crystallinity poly(ethylene terephthalate). Thermochimica Acta, 559, 17-22. | |
| dc.relation.references | Wang, Y. et al. (2024a). Radiative cooling and indoor light management enabled by a polymer-based micro-photonic multifunctional metamaterial. Nature Communications, 15(1), 1712. doi:https://doi.org/10.1038/s41467-024-45177-4t | |
| dc.relation.references | Wunderlich, B. (1973). Macromolecular Physics. Vol. 1. New York: Academic Press. | |
| dc.relation.references | Wyant, J. (s.f.). Multilayer Films. Optics 505. Retrieved 09 10, 2025, from Wright Lab: https://wp.optics.arizona.edu/jcwyant/wp-content/uploads/sites/13/2016/08/multilayerfilms.pdf | |
| dc.relation.references | Xianhu, L. et al. (2025). A transparent polymer-composite film for window energy conservation. Nano-Micro Letters, 17(151). | |
| dc.relation.references | Zerbi, G. et al. (1964). Classification of crystallinity bands in the infrared spectra of polymers. Journal of Polymer Science Part C: Polymer Symposia, 7, 141-151. | |
| dc.relation.references | Ziaeemehr, B. a. (2023). Increasing Solar Reflectivity of Building Envelope Materials to Mitigate Urban Heat Islands: State-of-the-Art Review. Buildings, 13(11), 2868. doi:https://doi.org/10.3390/buildings13112868 | |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
| dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
| dc.subject.ddc | 540 - Química y ciencias afines::543 - Química analítica | spa |
| dc.subject.ddc | 620 - Ingeniería y operaciones afines::621 - Física aplicada | spa |
| dc.subject.proposal | Radiación solar | spa |
| dc.subject.proposal | Vidrio | spa |
| dc.subject.proposal | Polímeros multicapa | spa |
| dc.subject.proposal | Índice de refracción | spa |
| dc.subject.proposal | Solar radiation | eng |
| dc.subject.proposal | Glass | eng |
| dc.subject.proposal | Multi-layer polymer | eng |
| dc.subject.proposal | Refractive index | eng |
| dc.subject.unesco | Arquitectura tradicional | spa |
| dc.subject.unesco | Traditional architecture | eng |
| dc.subject.unesco | Tecnología de materiales | spa |
| dc.subject.unesco | Materials engineering | eng |
| dc.subject.unesco | Consumo de energía | spa |
| dc.subject.unesco | Energy consumption | eng |
| dc.subject.unesco | Polímero | spa |
| dc.subject.unesco | Polymers | eng |
| dc.title | Diseño de diferentes configuraciones en la morfología estructural para películas poliméricas compuestas depositadas sobre un panel tipo sándwich (vidrio-polímero-vidrio) que permitan controlar la radiación solar afectando el índice de refracción y el coeficiente de transmisión térmica con aplicación en el acondicionamiento climático de edificaciones | spa |
| dc.title.translated | Different configuration designs in the structural morphology for composite polymer films layered over sandwich-type panel (glass-polymer-glass) which allow for the control of solar radiation affecting the refractive index and the thermal transmission coefficient with applications in thermal conditioning in buildings | eng |
| dc.type | Trabajo de grado - Doctorado | spa |
| dc.type.coar | http://purl.org/coar/resource_type/c_db06 | |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
| dc.type.content | Text | |
| dc.type.driver | info:eu-repo/semantics/doctoralThesis | |
| dc.type.redcol | http://purl.org/redcol/resource_type/TD | |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | |
| dcterms.audience.professionaldevelopment | Investigadores | spa |
| dcterms.audience.professionaldevelopment | Estudiantes | spa |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 79297310.2025.pdf
- Tamaño:
- 9.5 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Doctorado en Ingeniería - Ciencia y Tecnología de Materiales
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:

