Functors between some categories of representations of finite growth

dc.contributor.advisorDorado Correa, Ivon Andrea
dc.contributor.authorMedina Arellano, Gonzalo
dc.contributor.orcidMedina Arellano, Gonzalo [0000000347299057]
dc.contributor.researchgateGonzalo Medina Arellano [Gonzalo-Medina-8]
dc.contributor.researchgroupRepresentaciones de Estructuras Algebraicas
dc.date.accessioned2026-02-04T14:15:38Z
dc.date.available2026-02-04T14:15:38Z
dc.date.issued2025-11-19
dc.descriptiongraficas, tablasspa
dc.description.abstractFunctorial relations between some categories arising from finite growth representation problems are established. We focus on the Four Subspace Problem and some of its subproblems. We define and analyze functors that map between the representation categories of these subproblems and the one corresponding to the quiver associated to the Four Subspace Problem. We study how these functors induce embeddings of the postprojective and preinjective components of the Auslander-Reiten quiver of the Kronecker problem into the corresponding components for the Auslander-Reiten quiver associated to the Four Subspace Problem. We also present new solutions to three of the subproblems considered: the Kronecker problem (via partially ordered sets with involution), and two problems corresponding to Euclidean quivers of types $\widetilde{A}_{2}$ (as a matrix problem) and $\widetilde{A}_{3}$ (approached via a reduction mechanism allowing the use of induction).eng
dc.description.abstractEstablecemos relaciones functoriales entre algunas categorías que surgen de problemas de tipo de representación de crecimiento finito. Nos centramos en el Problema de los Cuatro Subespacios y algunos de sus subproblemas. Definimos y analizamos funtores que establecen correspondencias entre las categorías de representaciones de estos subproblemas y la correspondiente al carcaj asociado al Problema de los Cuatro Subespacios. Estudiamos cómo estos funtores inducen inmersiones de las componentes postproyectiva y preinyectiva del carcaj de Auslander-Reiten del problema de Kronecker en las componentes correspondientes del carcaj de Auslander-Reiten asociado al Problema de los Cuatro Subespacios. También, presentamos nuevas soluciones a tres de los subproblemas considerados: el problema de Kronecker (mediante conjuntos parcialmente ordenados con involución), y dos problemas correspondientes a carcajes euclidianos de tipos $\widetilde{A}_{2}$ (como un problema matricial) y $\widetilde{A}_{3}$ (mediante un mecanismo de reducción que permite el uso de inducción).spa
dc.description.curricularareaMatemáticas Y Estadística.Sede Manizales
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Ciencias - Matemáticas
dc.format.extentxiv, 123 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/89387
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizales
dc.publisher.facultyFacultad de Ciencias Exactas y Naturales
dc.publisher.placeManizales, Colombia
dc.publisher.programManizales - Ciencias Exactas y Naturales - Doctorado en Ciencias - Matemáticas
dc.relation.referencesArnold, D. M. (2000). Abelian groups and representations of finite partially ordered sets (Vol. 2). CMS Books in Mathematics.
dc.relation.referencesAssem, I., Simson, D., & Skowroński, A. (2006). Elements of the repre- sentation theory of associative algebras: Techniques of representation theory (Vol. 1). Cambridge Univ. Press.
dc.relation.referencesAuslander, M., Reiten, I., & Smalø, S. O. (1995). Representation theory of artin algebras. Cambridge Univ. Press.
dc.relation.referencesBautista, R., & Cifuentes, V. (2025). On the Auslander–Reiten quiver for the category of representations of partially ordered sets with an involution. Boletín de la Sociedad Matemática Mexicana, 31(59). https://doi.org/https://doi.org/10.1007/s40590-025- 00735-7
dc.relation.referencesBautista, R., & Dorado, I. (2017). Algebraically equipped posets. Boletín de la Sociedad Matemática Mexicana, 23, 557–609. https://doi. org/10.1007/s40590-016-0131-9
dc.relation.referencesBenson, D. J. (1995). Representations and cohomology (Vol. 1). Cambridge University Press. https://doi.org/10.1017/CBO9780511623615
dc.relation.referencesBondarenko, V. M., & Zavadskij, A. G. (1991). Posets with an equiv- alence relation of tame type and of finite growth. Can. Math, Soc. Conf. Proc, 11, 67–88.
dc.relation.referencesBrenner, S. (1967). Endomorphism algebras of vector spaces with distinguished sets of subspaces. J. Algebra, (6), 100–114.
dc.relation.referencesBrenner, S. (1974a). Decomposition properties of some small diagrams of modules, 127–141.
dc.relation.referencesBrenner, S. (1974b). On four subspaces of a vector space. J. Algebra, (29), 587–599.
dc.relation.referencesDe Vries, H. (1984). Pairs of linear mappings. Indagationes Mathematicae (Proceedings), 87(4), 449–452. https://doi.org/10.1016/1385- 7258(84)90047-7
dc.relation.referencesDieudonné, J. (1946). Sur la réduction canonique des couples de ma- trices. Bulletin de la Société Mathématique de France, 74, 130–146. https://doi.org/10.24033/bsmf.1380
dc.relation.referencesDmytryshyn, A., da Fonseca, C. M., & Rybalkina, T. (2016). Classifi- cation of pairs of linear mappings between two vector spaces and between their quotient space and subspace. Linear Alge- bra and its Applications, 509, 228–246. https://doi.org/https: //doi.org/10.1016/j.laa.2016.07.016
dc.relation.referencesDobrovol’skaya, N. M., & Ponomarev, V. A. (1965). A pair of confronted operators. Uspekhi Mat. Nauk, 20(6(126)), 81–86.
dc.relation.referencesDorado, I., & Medina, G. (2023). On the Kronecker problem and partially ordered sets with involution. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 47(185), 1045– 1060. https://doi.org/10.18257/raccefyn.1975
dc.relation.referencesDorado, I., & Medina, G. (2025). On a classification problem for a e 3 . Revista de la Academia Colombiana de Ciencias quiver of type A Exactas, Físicas y Naturales, 49(191), 411–427. https://doi.org/ 10.18257/raccefyn.3174
dc.relation.referencesDrozd, Y. A. (1979). Tame and wild matrix problems. Representations and Quadratic Forms, 39–74.
dc.relation.referencesDrozd, Y. A. (1980). Tame and wild matrix problems. Lecture Notes in Math., (831), 242–258.
dc.relation.referencesForbregd, T. A. (2008). The 4 subspace problem [Master’s Thesis]. Nor- wegian University of Science and Technology.
dc.relation.referencesFreyd, P. (1964). Abelian categories: An introduction to the theory of functors. Harper & Row. https://books.google.com.co/books?id= Yg2oAAAAIAAJ
dc.relation.referencesGabriel, P. (1972–1973). Représentations indécomposables des ensem- bles ordonnés. Séminaire Dubreil. Algèbre et théorie des nombres, 26, 1–4.
dc.relation.referencesGabriel, P., & Roiter, A. V. (1992). Representations of finite-dimensional algebras (A. I. Kostrikin & I. R. Shafarevich, Eds.; Vol. 73). Springer-Verlag.
dc.relation.referencesGelfand, I. M., & Ponomarev, V. A. (1970). Problems of linear alge- bra and classification of quadruples of subspaces in a finite dimensional vector space. Hilbert space operators, 5, 163–237.
dc.relation.referencesKronecker, L. (1890). Algebraische reduktion der scharen bilinearer formen. Sitzungsber. Akad. Berlin, 763–776.
dc.relation.referencesLam, T. Y. (2013). A first course in noncommutative rings (2nd ed.). Springer New York, NY. https://doi.org/10.1007/978-1-4419- 8616-0
dc.relation.referencesMac Lane, S. (1961). Categories for the working mathematician (1st ed.). Springer.
dc.relation.referencesMedina, G. (2024). Introducción a la teoría de representaciones de conjuntos parcialmente ordenados. Universidad Nacional de Colombia.
dc.relation.referencesMedina, G., & Zavadskij, A. G. (2004). The four subspace problem: An elementary solution. Linear Algebra and its Applications, 392, 11–23.
dc.relation.referencesNazarova, L. A. (1967). Representations of a tetrad. Izv. Akad. Nauk. SSSR, 31, 1361–1377 Traducción al inglés en Math. USSR Izv. 1, 1967.
dc.relation.referencesNazarova, L. A. (1973). Representations of quivers of infinite type. Izv. Akad. Nauk. SSSR, 37, 752–791 Traducción al inglés en Math. USSR Izv. 7:4, 1973.
dc.relation.referencesNazarova, L. A. (1975). Partially ordered sets of infinite type. Izv. Akad. Nauk. SSSR, 39, 963–991 Traducción al inglés en Math. USSR Izv. 9, 1975.
dc.relation.referencesNazarova, L. A., & Roiter, A. V. (1973). On a problem of I.M. Gelfand. Funktsional Anal. i Prilozhen, 7(4), 64–69.
dc.relation.referencesNazarova, L. A., & Zavadskij, A. G. (1981). Partially ordered sets of finite growth and their representations. (27.81).
dc.relation.referencesNazarova, L. A., & Zavadskij, A. G. (1982). Partially ordered sets of finite growth [(En ruso) Traducción al inglés en Functional Anal. Appl. 16, 1982]. Funktsional Anal. I Prilozhen., (2), 72–73.
dc.relation.referencesPareigis, B. (1970). Categories and functors. Academic Press.
dc.relation.referencesPonomarev, V. A. (n.d.). Elements of the theory of additive binary relations in a finite-dimensional vector space.
dc.relation.referencesRingel, C. M. (1984). Tame algebras and integral quadratic forms (Vol. 1099). Springer Berlin, Heidelberg. https : / / doi . org / 10 . 1007 / bfb0072873
dc.relation.referencesSchiffler, R. (2014). Quiver representations. Springer-Verlag.
dc.relation.referencesSchubert, H. (1972). Categories. Springer Berlin Heidelberg. https:// doi.org/10.1007/978-3-642-65364-3_1
dc.relation.referencesSimson, D. (1992). Linear representations of partially ordered sets and vector space categories. Gordon; Breach Science Publishers.
dc.relation.referencesSimson, D., & Skowroński, A. (2007a). Elements of the representation the- ory of associative algebras: Tubes and concealed algebras of euclidean type (Vol. 2). Cambridge Univ. Press.
dc.relation.referencesSimson, D., & Skowroński, A. (2007b). Elements of the representation theory of associative algebras: Representation-infinite tilted algebras (Vol. 3). Cambridge Univ. Press.
dc.relation.referencesSkowroński, A. (1987). Group algebras of polynomial growth. Manuscr. Math., 59, 499–516.
dc.relation.referencesSkowroński, A. (1990). Algebras of polynomial growth. In S. Balcerzyk, T. Józefiak, J. Krempa, D. Simson, & W. Vogel (Eds.), Topics in algebra, part 1: Rings and representations of algebras (pp. 535–568, Vol. 26). PWN - Polish Scientific Publishers.
dc.relation.referencesTowber, J. (1971). Linear relations. Journal of Algebra, 1–20.
dc.relation.referencesWeierstrass, K. (1868). Zur theorie der quadratischen und bilinearen formen. Monatsber. Akad. Wiss., 311–338.
dc.relation.referencesZavadskij, A. G. (1977). Differentiation with respect to a pair of points. In Y. A. Mitropolskii & L. A. Nazarova (Eds.), Matrix problems (pp. 115–121).
dc.relation.referencesZavadskij, A. G. (1990). The auslander–reiten quiver for posets of finite growth. Topics in Algebra, Banach Cent. Publ., 26, 569–587.
dc.relation.referencesZavadskij, A. G. (1991). An algorithm for posets with an equivalence relation. Can. Math, Soc. Conf. Proc, 11, 299–322.
dc.relation.referencesZavadskij, A. G. (2007). On the Kronecker Problem and related prob- lems of linear algebra. Linear Algebra and its Applications, 425, 26–62. https://doi.org/10.1016/j.laa.2007.03.011
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseReconocimiento 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc510 - Matemáticas
dc.subject.ddc510 - Matemáticas::512 - Álgebra
dc.subject.proposalFuntorspa
dc.subject.proposalCarcajspa
dc.subject.proposalRepresentación indescomponiblespa
dc.subject.proposalCategoría de Krull-Schmidtspa
dc.subject.proposalTipo de representación de crecimiento finitospa
dc.subject.proposalProblema matricialspa
dc.subject.proposalCarcaj de Auslander-Reitenspa
dc.subject.proposalFunctoreng
dc.subject.proposalQuivereng
dc.subject.proposalIndecomposable representationeng
dc.subject.proposalKrull- Schmidt categoryeng
dc.subject.proposalFinite growth representation typeeng
dc.subject.proposalMatrix problemeng
dc.subject.proposalAuslander-Reiten quivereng
dc.subject.unescoÁlgebra
dc.subject.unescoAlgebra
dc.subject.unescoMatemáticas
dc.subject.unescoMathematics
dc.titleFunctors between some categories of representations of finite growtheng
dc.title.translatedFuntores entre algunas categorías de representaciones de crecimiento finitospa
dc.typeTrabajo de grado - Doctorado
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentEspecializada
dcterms.audience.professionaldevelopmentPúblico general
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis de Doctorado en Ciencias - Matemáticas.pdf
Tamaño:
933.55 KB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias - Matemáticas

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: