Caracterización y tipificación de sistemas de ganadería de cría en la sabana inundable del departamento de Arauca

dc.contributor.advisorAfanador Téllez, Germánspa
dc.contributor.authorBotello Mendoza, Carolinaspa
dc.contributor.researchgroupGestion Tecnologica e Innovación en Sistemas Pecuarios-SIGETECspa
dc.coverage.countryColombiaspa
dc.coverage.regionAraucaspa
dc.date.accessioned2021-01-25T13:32:37Zspa
dc.date.available2021-01-25T13:32:37Zspa
dc.date.issued2020-01-30spa
dc.description.abstractLa presente investigación aborda el estudio de sistemas de cría bovina de las Sabanas Inundables. Los datos utilizados se obtuvieron por medio de la realización de encuestas a propietarios de 92 fincas de 137 vinculadas al Proyecto Bovino Arauca (PBA). En primer lugar, se llevó a cabo un análisis estructural y funcional de los sistemas de cría en los componentes: sanitario, biofísico, reproducción y nutrición y alimentación. Posteriormente a este primer análisis, se realizó un proceso de tipificación de los sistemas de producción con base en variables asociadas a los componentes descritos. La técnica de agrupamiento empleada fue un análisis de conglomerados bietápico y se usó el criterio de información bayesiano (BIC), estableciéndose tres tipologías de sistemas de cría bovina en función de las variables: trabajadores por ha de pasto, unidades funcionales, suplementación de terneros y presencia de un administrador. Las variables estructurales y funcionales asociadas a cada tipología fueron analizadas por ANOVA. La tipología 1 conglomera sistemas de cría en fincas grandes (763,3 ha), con área de pastura y zonas inundables de gran extensión (655,9 ha y 280 ha respectivamente), el 88,6% de sus fincas se ubican en la zona de vida Boque Seco Tropical, el 8,6% en el Bosque Húmedo Premontano Transición Cálida y a diferencia de las demás tipologías, comprende un 2,9% de fincas que se ubican en el Bosque Húmedo Tropical. Las pasturas que predominan son nativas, el valor promedio de la hectárea de tierra está alrededor de $2.227.142,9, y su mayoría se ubica en los municipios de Cravo Norte y Puerto Rondón. La ganadería es la principal fuente de ingreso del núcleo familiar, en promedio 5,2 personas dependen de los ingresos que genera la actividad ganadera, el nivel escolar de los productores es primaria (60%), los ganaderos tienen una edad promedio de 48 años, los cuales participan activamente junto con su familia en las actividades ganaderas, por ello no contempla la contratación de los servicios de un administrador. La tipología 2 corresponde a fincas más pequeñas (454,9 ha), el 62,9% de estos predios se ubican en la zona de vida Bosque Seco Tropical y un 37,1% en el Bosque Húmedo Premontano Transición Cálida. Las áreas de pasturas y las áreas inundables muestran un comportamiento similar a la tipología 1 (385,6 ha y 164,9 ha, respectivamente). Alrededor del 69% de las fincas de este grupo tienen como pasturas predominantes las pasturas nativas, pero una proporción importante de finca ha adelantado proceso de mejoramiento de praderas mixtas o introducidas. La principal fuerza de trabajo es la mano de obra contratada, contempla mayores proporciones de nivel escolar profesional y técnico, lo que facilita que los ganaderos puedan desempeñar alguna profesión o actividad extra fuera de su finca. Este tipo de características hace que la ganadería no sea la principal fuente de ingreso e incentiva la presencia de un administrador y reduce la participación de la familia en actividades relacionada con la producción ganadera. La edad promedio de los ganaderos es de 44,7 años. La mayor proporción de estas fincas se ubican en el municipio de Arauca (60%), el valor promedio de la hectárea de tierra es de $6.340.000; el más alto de las tres tipologías. La tipología 3, agrupa fincas con áreas menores a las tipologías 1 y 2 (398,9 ha) y están ubicadas en el municipio de Cravo Norte y Puerto Rondón, tan solo un 4,5% se encuentran en el municipio de Arauca, el valor promedio de la hectárea de tierra es de $1.672.727,3, el 63,6% de las fincas se ubican el Bosque Seco Tropical y un 36,4% en el Bosque Húmedo Premontano Transición Cálida. Las áreas de pasto e inundable siguen la misma tendencia de la tipología 2 (328,5 y 107 respectivamente), las pastura que predominan son las nativas (63,6%) seguida de las mixtas (36,4%). La principal fuente de mano de obra es la familia y por ello no usan servicio de administrador. Alrededor del 64% de los ganaderos de esta tipología tiene un nivel escolar que va desde la primaria incompleta hasta la secundaria incompleta, la ganadería es la principal fuente de ingreso, de la cual dependen en promedio 3,4 personas. Los ganaderos son personas mayores con una edad promedio de 57,6 años. La idoneidad de las tipologías 1, 2 y 3 fue evaluada a través de las variables cuantitativas asociadas a componentes: componente biofísico: el área total (ha) (763,3(1) vs 398,9(3), p<0,05), área de pastos (ha) (655,9(1) vs 328,5(3), p<0,05), área inundable (ha) (280(1) vs 107,0(3), p<0,05); componente de producción: unidades funcionales/ha de pasto (0,68(1) vs 0,30(2), p<0,05) y componente socioeconómico: horas laboradas en una semana en la finca (190,8(2) vs 289,2(1) y 307,0(3), p<0,05), horas laboradas en una semana en la finca/ha (0,6(1) y 1,0(2) vs1,7(3), p<0,05), Horas laboradas en una semana en la finca por la familia (59,2(2) vs 188,2(1) 248,5(3), p<0,05), proporción de horas laboradas en una semana en la finca por la familia (%) (63,6(1) vs 30,6(2) vs 84,4(3), p<0,05), horas laboradas por la familia en una semana por área de tierra (0,39(1) vs 0,23(2) y 1,32(3), p<0,05), horas laboradas en una semana en la finca por mano de obra contratada (132,3(2) vs 58,5(3), p<0,05), proporción de horas laboradas en una semana en la finca por mano de obra contratada (%) (40,5(1) vs 69,7(2) vs 15,6(3), p<0,05), horas laboradas a la semana por personal contratado por unidad de tierra (0,22(1) vs 0,73(2), p<0,05), Unidades de Trabajo Anual (UTA) (3,5(1) vs 6,7(3), p<0,05), UTA/Unidad Funcional (0,08(1) vs 0,18(3), p<0,05), número de personas que dependen de los ingresos de la finca (5,2(1) vs 3,1(2) y 3,4(3), p<0,05), costo de la tierra ($/ha) (2.227.142,9(1) y 1.672.727,3(3) vs 6.340.000,0(2), p<0,05) y edad del productor (48(1) y 44,7(2) vs 57,6 (3), p<0,05) (Texto tomado de la fuente).spa
dc.description.abstractThis research addresses the study of cow-calf systems of cattle located in the Flooded Savannas. The data used were obtained by conducting surveys of owners of 92 farms out of a total 137 linked to the Arauca cattle project (PBA). In the first place, a structural and functional analysis was carried out on components: sanitary, biophysical, reproduction and nutrition and feeding of the cow-calf systems. Subsequently, a process of typing these production systems was carried out based on variables associated with the components described. The clustering technique used was a two-stage cluster analysis and the Bayesian information criterion (BIC) was used, establishing three typologies of cow-calf systems based on the variables: workers per ha of pasture, functional units, supplementation of calves and presence of administrator. The structural and functional variables associated with each typology were analyzed by ANOVA. Typology 1 conglomerates cow-calf systems in large farms (763,3 ha), with both pasture and flood areas of great extent (655,9 ha and 280 ha respectively), 88.6% of their farms are located in Boque Seco Tropical life zone, 8,6% in the Premontane Transition Warm Humid Forest and unlike the other typologies, comprises 2,9% of farms located in the Tropical Humid Forest. The predominant pastures are native, the average value of the land hectare is around $ 2.227.142,9, and most are located in the municipalities of Cravo Norte and Puerto Rondón. Livestock is the main source of income of the family nucleus, on average 5,2 people depend on the income generated by the livestock activity, the school level of the producers is primary (60%), the farmers have an average age of 48 years , which actively participate with their family in livestock activities, so do not contemplate the hiring of the services of an administrator. Typology 2 corresponds to smaller farms, but with large areas (454,9 ha), 62,9% of these farms are located in the Tropical Dry Forest life zone and 37,1% in the Premontane Transition Wet Forest Warm. Pasture and flood areas show a behavior similar to typology 1 (385,6 ha and 164,9 ha, respectively). Around 69% of the farms in this group have native pastures as predominant pastures, but a significant proportion of the farm has advanced improved mixed or introduced pastures. The main work force is the hired labor force, it contemplates greater proportions of professional and technical school level, which makes it easier for farmers to carry out any extra profession or activity outside their farm. This type of characteristics makes livestock not the main source of income and encourages the presence of an administrator and reduces the family's participation in activities related to livestock production. The average age of farmers is 44,7 years. The largest proportion of these farms are located in the municipality of Arauca (60%), the average value of the hectare of land is $ 6.340.000; the highest of the three typologies. Typology 3, groups farms with areas smaller than typologies 1 and 2 (398,9 ha) and are located in the municipality of Cravo Norte and Puerto Rondón, only 4.5% are in the municipality of Arauca, the average value of the hectare of land is $ 1.672.727,3, 63.6% of the farms are located in the Tropical Dry Forest and 36.4% in the Premontane Transition Humid Forest. Pasture areas follow the same trend of typology 2 (328,5 and 107 respectively), the predominant pastures are native (63,6%) followed by mixed pastures (36,4%). The main source of labor is the family and therefore do not use administrator service. Around 64% of farmers of this type have a school level ranging from incomplete primary to incomplete secondary, livestock is the main source of income, on which 3,4 people depend. The farmers are elderly people with an average age of 57,6 years. The suitability of typologies 1, 2 and 3 was evaluated through the quantitative variables associated with components: biophysical component: the total area (ha) (763,3 (1) vs 398,9 (3), p <0,05), pasture area (ha) (655,9 (1) vs 328,5 (3), p <0,05), flood area (ha ) (280 (1) vs 107,0 (3), p <0.05); Production component: functional units / ha of grass (0,68 (1) vs. 0,30 (2), p <0,05) and socioeconomic component: hours worked in a week on the farm (190,8 (2) vs 289,2 (1) and 307,0 (3), p <0,05), hours worked in a week on the farm / ha (0,6 (1) and 1,0 (2) vs. 1,7 ( 3), p <0,05), Hours worked in a week on the farm by the family (59,2 (2) vs 188,2 (1) 248,5 (3) p <0,05), proportion of hours worked in a week on the farm by the family (%) (63,6 (1) vs 30,6 (2) vs 84,4 (3), p <0,05 ), hours worked by the family in one week per land area (0,39 (1) vs 0,23 (2) and 1,32 (3), p <0,05), hours worked in a week in the farm by hired labor (132,3 (2) vs 58,5 (3), p <0,05), proportion of hours worked in a week on the farm by hired labor (%) (40,5 (1) vs 69,7 (2) vs 15,6 (3), p <0,05), hours worked per week by personnel hired per unit of land (0,22 (1) vs 0,73 (2 ), p <0,05), Annual Work Units (3,5 (1) vs 6,7 (3), p <0,05), UTA / Functional Unit (0,08 (1) vs 0,18 (3), p <0,05), number of people who depend on farm income (5,2 (1) vs 3,1 (2) and 3,4 (3), p <0,05) , land cost ($/ha) (2.227.142,9 (1) and 1.672.727,3 (3) vs. 6.340.000,0 (2), p <0,05) and producer's age (48 (1) and 44,7 (2) vs 57,6 (3), p <0,05).eng
dc.description.degreelevelMaestríaspa
dc.description.researchareaGestión Empresarialspa
dc.format.extent129spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationBotello, C. (2020). Caracterización y tipificación de sistemas de ganadería de cría en la sabana inundable del departamento de Arauca [Tesis de maestría, Universidad Nacional de Colombia]. Repositorio Institucional.spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78892
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.programBogotá - Medicina Veterinaria y de Zootecnia - Maestría en Salud y Producción Animalspa
dc.relation.referencesAhmad M, Bravo B. 1996. Technical Efficiency Measures for Dairy Farms Using Panel Data: A Comparison of Alternative Model Specifications. Journal of Productivity Analysis, 7: 399–415.spa
dc.relation.referencesAllaby, M. 1994. The Concise Oxford Dictionary of Ecology. Oxford University Press, UK, 41 5 ppspa
dc.relation.referencesAllen T.F.H., Starr T.B., 1982. Hierarchy: perspectives for ecological complexity. The University of Chicago Press, USA, 310 pp.spa
dc.relation.referencesAnderson D M, Fredrickson E L, Estell R E. 2012. Managing livestock using animal behaviour: mixed-species stocking and flerds. Animal, 6(8): 1339-1349.spa
dc.relation.referencesBanfield J, Raftery A. 1993. “Model-Based Gaussian and Non-Gaussian Clustering”, Biometrics. 49: 803–821.spa
dc.relation.referencesBasset-Mens C, van der Werf H M G. 2005. Scenario-based environmental assessment of farming systems: the case of pig production in France. Agriculture, Ecosystems & Environment, 105 (1-2): 127–144.spa
dc.relation.referencesBacher, J. 2000. A Probabilistic Clustering Model for Variables of Mixed Type. Quality & Quantity, 34: 223–235.spa
dc.relation.referencesBarret, G. 1992. Landscape ecology. Designing sustainable agricultural landscapes. In: Olson, R. K. (Ed.), Integrating sustainable agriculture, ecology and environmental policy. Haworth Press, Binghampton, USA, pp. 83-103.spa
dc.relation.referencesBaudron F, Giller K E. 2014. Agriculture and nature: Trouble and strife? Biological Conservation, 170: 232-245.spa
dc.relation.referencesBeaufoy G, Baldock D, Clark J. 1994. The nature of farming: low intensity farming systems in nine European countries. Institute for European Environmental Policy, London, UK, 68 pp.spa
dc.relation.referencesBerdegue, J. y Larrain, B. 1988. Cómo trabajan los campesinos. Editorial Celater, Colombia.spa
dc.relation.referencesBouma, J., Kuyvenhoven, A., Bouman, B.A.M., Luyten, J.C., Zandstra, H.G., 1995. Ecoregional approaches for sutainable land use and food production. Kluwer Academic Publishers, Dordrecht, The Netherlands, 505 ppspa
dc.relation.referencesBoyazoglu J. 1998. Livestock farming as a factor of environmental, social and economic stability with special reference to research. Livestock Production Science, 57 (1): 1-14.spa
dc.relation.referencesBrester G, Clause R. 2011. Commodity Beef Profile. Agricultural Marketing Resource Centre.spa
dc.relation.referencesBueno E, Morcillo P. 1993. Aspectos estratégicos de la competitividad empresarial: Un modelo de análisis. Anales de Economía y Administración de Empresas, 0, 29-47.spa
dc.relation.referencesCaballero R, 2007. High Nature Value (HNV) grazing systems in Europe: a link between biodiversity and farm economics. Open Agriculture Journal, 1 (1): 11–19.spa
dc.relation.referencesCaballero R, Riseth J A, Labba N, Tyran E, Musial W, Motik E, Boltshauser A, Hofstetter P, Gueydon A, Roeder N, Hoffmann H, Moreira M B, Coelho I S, Brito O, Gil A. 2007. Comparative typology in six European low-intensity systems of grassland management. Advances in Agronomy, 96: 351–420.spa
dc.relation.referencesCaballero R. 2001. Typology of cereal-sheep farming systems in Castile-La Mancha (south-central Spain). Agr Syst 68: 215-232.spa
dc.relation.referencesCapillon A. 1986. "A classification of farming systems, preliminary to an extension program". In: A methodology farming systems research and extension: management and methodology. Manhattan, U.S. Kansas State University. pp: 219-235.spa
dc.relation.referencesCaraveli H. 2000. A comparative analysis on intensification and extensificatión in mediterranean agriculture: dilemmas for LFAs policy. Journal of Rural Studies 16: 231-242.spa
dc.relation.referencesChiu, T., Fang, D., Chen, J., Wang, Y., and Jeris, C. 2001. A Robust and Scalable Clustering Algorithm for Mixed Type Attributes in Large Database Environment. In Proceedings ofthe 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining2001, pages 263–268.spa
dc.relation.referencesCasey J W, Holden N M. 2006. Greenhouse gas emissions from conventional, agri-environmental scheme, and organic Irish suckler-beef units. Journal of Environmental Quality, 35 (1): 231–239.spa
dc.relation.referencesCocca G, Sturaro E, Gallo L, Ramanzin M. 2012. Is the abandonment of traditional livestock farming systems the main driver of mountain landscape change in Alpine areas?. Land Use Policy 29:878-886spa
dc.relation.referencesCutts D, Dominquez J, Duffy J, Knox S. 2012. Cattle Statistics. Statistics Canada. Ottawa.spa
dc.relation.referencesDelgado L. 2017. Diseño y desarrollo de aplicaciones para un sistema de información GIS dentro del área consultoría y sistema. [Tesis de pregrado].spa
dc.relation.referencesDemiryürek K. 2010. Information systems and communication networks for agriculture and rural people. Agric. Econ. – Czech. 56:209-214.spa
dc.relation.referencesDe Ridder, N., 1997. Hierarchical levels in agro-ecosystems: selective case studies on water and nitrogen. PhD-Thesis, Wageningen Agricultural University, The Netherlands, 193 pp.spa
dc.relation.referencesDirección D. R. 2005. Un enfoque para el desarrollo rural: desarrollo territorial participativo y negociado (dtpn). FAO. 116p.spa
dc.relation.referencesDumanski J., Pettapiece, W.W., McGregor, R.J., 1998. Relevance of scale dependent approaches for integrating biophysical and socio-economic information and development of agroecological indicators. Nutrient Cycling in Agroecosystems 50: 13-22spa
dc.relation.referencesDumont B, Fortun L, Jouven M, Thomas M, Tichit M. 2013. Prospects from agroecology and industrial ecology for animal production in the 21st century. Animal, 7 (6): 1028-1043.spa
dc.relation.referencesDyson T. 1996. Population and food, global trends and future prospects. Routledge, London, U.K., 231 pp.spa
dc.relation.referencesEveritt B, Landau S, Leese M, Stahl D. 2011. Cluster Analysis (5th ed.), Chichester: John Wiley & Sons.spa
dc.relation.referencesFederación Colombiana de Ganaderos 2013. Plan estratégico de la ganadería colombiana 2.019. Bogotá D.C. 296p.spa
dc.relation.referencesFederación Colombiana de Ganaderos 2016. Orientación del hato ganadero. [Internet]. [Citado 2017 octubre 20] Disponible en: http://www.fedegan.org.co/estadisticas/inventario-ganaderospa
dc.relation.referencesFraley C, Raftery A. 2002. “Model-Based Clustering, Discriminant Analysis, and Density Estimation”, Journal of the American Statistical Association, 97(458), 611–631.spa
dc.relation.referencesFrisch J E, Vercoe J E. 1984. An analysis of growth of different cattle genotypes reared in different environments. Journal of Agricultural Science 103:137–153.spa
dc.relation.referencesGalyean M L, Ponce C, Schutz J. 2011. The future of beef production in North America. Animal Frontiers 1(2):29–36.spa
dc.relation.referencesGarcía, C. y Calle, L. 1998. Consideraciones metodológicas para la tipificación de sistemas de producción bovina a partir de fuentes secundarias. Agron. Mesoam. 27(2):253-264. 2016 ISSN 1021-7444.spa
dc.relation.referencesGaravito O E. 2012. Análisis del modelo de asistencia técnica para pequeños productores de bovinos doble propósito Caso: Municipio de Los Palmitos, Sucre. [Tesis de Maestría]. [Bogotá, Colombia]. Universidad Nacional de Colombia.spa
dc.relation.referencesGaspar, P. 2007. Evaluación técnico-económica y caracterización de sistemas ganaderos extensivos en dehesas de Extremadura. Tesis Doctoral. Universidad de Extremadura. España.spa
dc.relation.referencesGaspar P, Mesías F J, Escribano M, Rodríguez de Ledesma A, Pulido F. 2007. Economic and management characterization of dehesa farms: Implications for their sustainability. Agroforestry Systems, 71 (3): 151-162.spa
dc.relation.referencesGellrich M, Zimmermann N E. 2007. Investigating the regional-scale pattern of agricultural land abandonment in the Swiss mountains: A spatial statistical modelling approach. Landscape and Urban Planning 79: 65-76spa
dc.relation.referencesGenthon M. 1984. "A classification of farming systems in the Eastern District of Dominica". In: Proceedings of the Caribbean Food Crops Society. Vol. XX.spa
dc.relation.referencesGibon A. 2005. Managing grassland for production, the environment and the landscape. Challenges at the farm and the landscape level. Livestock Production Science, 96 (1): 11–31.spa
dc.relation.referencesGibon A, Sibbald A, Flamant J, Lhoste P, Revilla R, Rubino R, Sorensen J. 1999. Livestock farming systems research in Europe and its potential contribution for managing towards sustainability in livestock farming. Livest. Prod. Sci. 61, 121–137.spa
dc.relation.referencesGorton M, Davidova S .2004. Farm productivity and efficiency in the CEE applicant countries: a synthesis of results. Agric Econ 30:1–16spa
dc.relation.referencesHart R D. 1982. "An Ecological system conceptual framework for agricultural research and development". In: W.W. Shanner, P.F. Phillip, W.R. Schmehl (Eds.). Readings in farming systems research and development. Westview Press, Boulder, Colorado.spa
dc.relation.referencesHair J, Anderson R, Tatham R, Black W. 1998. Multivariate data analysis. New Jersey: Prentice-Hall.spa
dc.relation.referencesHair J, Black W, Babin B, Anderson R. 2010. Multivariate Data Analysis: A Global Perspective, Seventh Edition, Pearson.spa
dc.relation.referencesHenao D, Ruíz C, Borde M, Holguín H, Montes J, Velandia J, Franco S, Velazco H, Navarro O, Salazar M. 2013. Plan estratégico departamental de ciencia, tecnología e innovación de Arauca PECDTI Arauca 2022. 1a ed. Bogotá D.C. Ediciones Antropos Ltda. 270p. Disponible en:http://hdl.handle.net/11146/280spa
dc.relation.referencesHenkin Z, Ungar E D, Dvash L, Perevolotsky A, Yehuda Y, Sternberg M, Voet H, Landau S Y. 2011. Effects of cattle grazing on herbage quality in an herbaceous Mediterranean rangeland. Grass and Forage Science 66:516-525.spa
dc.relation.referencesHill L L. 2.006. Georeferencing: The Geographic Associations of Information. 1th ed. London:The MIT Press. 260p.spa
dc.relation.referencesHocquette J F, Chatellier V. 2011. Prospects for the European beef sector over the next 30 years. Animal Frontiers 1(2):20–28.spa
dc.relation.referencesHolmann F. 1990. Grupos genéticos y sistemas de producción de leche en países tropicales: Experiencias en Investigación y programas de desarrollo. lnternational Development Research Centre (IDRC). Montevideo. Uruguay.spa
dc.relation.referencesHoogeveen Y, Petersen J, Gabrielsen P. 2005. Agriculture and biodiversity in Europe. In High-level Pan-European Conference on Agriculture and Biodiversity. Paris (France), 5-7 June 2002. Compendium of Background Reports. Council of Europe. 40-64p.spa
dc.relation.referencesHolling, C.S. 1973. Resilience and stability of ecological systems. Annual Review of Ecology and Systematics 4: 1-23spa
dc.relation.referencesHorrocks J, Dungait A J, Cardenas L M, Heal K V. 2014. Does extensification lead to enhanced provision of ecosystems services from soils in UK agriculture? Land Use Policy, 38: 123-128.spa
dc.relation.referencesHunziker M. 1995. The spontaneous reafforestation in abandoned agricultural lands: perception and aesthetic assessment by locals and tourists, Landscape and Urban Planning 31:399-410spa
dc.relation.referencesKoestler, A., 1967. The ghost in the machine. Macmillan, New Yorkspa
dc.relation.referencesKostrowicki, J. 1977. Agricultural typology concept and method. Agricultural Systems 2(1): 33-45.spa
dc.relation.referencesInstituto Colombiano Agropecuario 2017. Censo Pecuario Nacional 2017. [Internet]. [Citado 2019 Febrero 09] Disponible en: https://www.ica.gov.co/areas/pecuaria/servicios/epidemiologia-veterinaria/censos-2016/censo-2018.aspxspa
dc.relation.referencesJiménez H, Vargas O, Ourtlaquez G, Pérez R. 2001. Aproximación al conocimiento de la biodiversidad de la llanura inundable de Arauca. Corpoica Reg. 8. Boletín Técnico. 26.20p.spa
dc.relation.referencesJohnson, R. A., & Wichern, D. W. (1998). Applied multivariate statistical analysis. Upper Saddle River: Prentice Hall.spa
dc.relation.referencesJoost S, Colli L , Baret P, Garcia J, Boettcher P, Tixier-Boichard M, Ajmone MarsanP. 2010. Integrating geo-referenced multiscale and multidisciplinary data forthe management of biodiversity in livestock genetic resources. Animal Genetics. 41:47–63.spa
dc.relation.referencesKöbrich C, Rehman T, Khan M. 2003. Typification of farming systems for constructing representative farm models: two illustrations of the application of multi-variate analyses in Chile and Pakistan. Agricultural systems. 76(1):141-157.spa
dc.relation.referencesKovács-Hostyánszkia A, Elek Z, Balázs K, Centeri C, Falusi E, Jeanneret P, Penksza K, Podmaniczky L, Szalkovszkie O, Báldi A. 2014. Earthworms, spiders and bees as indicators of habitat quality and management in a low-input farming region - A whole farm approach. Ecological Indicators, 33: 111-120spa
dc.relation.referencesKremen C, Iles A, Bacon C. 2012. Diversified farming systems: An agroecological, system-based alternative to modern industrial agriculture. Ecology and Society, 17 (4): 44.spa
dc.relation.referencesKremen C, Miles A. 2012. Ecosystem services in biologically diversified versus conventional farming systems: benefits, externalities, and trade-offs. Ecology and Society, 17 (4): 40.spa
dc.relation.referencesLandais E. 1998. Modelling farm diversity: new approaches to typology building in France. Agricultural systems.58 (4): 505-527spa
dc.relation.referencesLaurent C. 1988. "A farm typology, a product and a tool for a development programme". In: Fanning Systems Research and Extension Symposium. Fayeteville, U.S.A. Liu, B. 2007. Web Data Mining: Exploring hyperlinks, contents and usage data. Springer.spa
dc.relation.referencesLeguía H, Alessandria E, Sánchez J, Zamar J, Pietrarelli L, Arborno M. 2008. Recuperación del suelo: prácticas agroecológicas en sistemas agrícolas extensivos de Córdoba, Argentina. Leisa. 24:17-20.spa
dc.relation.referencesMacDonald D, Crabtree J R, Wiesinger G, Dax T, Stamom N, Fleury P, Lazpita J G, Gibon A. 2000. Agricultural abandonment in mountain areas of Europe: environmental consequences and policy response. Journal of Environment and Managemnet 59, 47–69.spa
dc.relation.referencesMadry W, Mena Y, Roszkowska-Madra B, Gozdowski D, Hryniewski R, Castel J, 2013. An overview of farming system typology methodologies and its use in the study of pasture-based farming system: a review. Spanish Journal of Agricultural Research. 11 (2): 316-326.spa
dc.relation.referencesManingas R, Perez V, Macaraig A, Alesna W, Villagonzalo S. 2005. Electronic Information Dissemination through the Farmers’ Information and Technology Services (FITS)/Techno Pinoy Program: Bringing Information and Technology Within the Reach of the Farmers. Disponible en:http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.202.7673&rep=re p1&type=pdfspa
dc.relation.referencesMarsden T. 2003. The condition of rural sustainability. Uitgeverij Van Gorcum. Wageningen. 269p.spa
dc.relation.referencesMartín M, Escribano M, Mesías F J, Rodríguez de Ledesma A, Pulido F. 2001. Sistemas extensivos de producción animal. Archivos de Zootecnia, 50 (192): 465‐489.spa
dc.relation.referencesMartín-Burriel I, Rodellar C, Cañón J, Cortés O, Dunner S, Landi V, Martínez-Martínez A, Gama L T, Ginja C, Penedo M C T, Sanz A, Zaragoza P, Delgado J V. 2011. Genetic diversity, structure, and breed relationships in Iberian cattle. Journal of Animal Science, 89 (4): 893–906.spa
dc.relation.referencesMC N. 2016, Mixture Model-Based Classification, Boca Raton FL: Chapman & Hall/CRC Press.spa
dc.relation.referencesMcNicholas, P. D. 2016. Mixture Model-based Classification. Boca Raton: Chapman and Hall–CRCspa
dc.relation.referencesMillen D D, Pacheco R D L, Meyer P M, Rodrigues R H M, Arrigoni M D B. 2011. Current outlook and future perspectives of beef production in Brazil. Animal Frontiers 1(2):46–52.spa
dc.relation.referencesMills J. 2008. Return to hardy cattle breeds in the uplands – is it economically sustainable Royal Agricultural Society of England Journal, 169: 1–8.spa
dc.relation.referencesMorgan-Davies C, Waterhouse T, Wilson R. 2012. Characterization of farmer´s responses to policy reforms in Scottish hill farming areas. Small Ruminant Research, 102 (2-3): 96–107.spa
dc.relation.referencesMorgan D J, Morgan D C, Pollock M, Holland J, Waterhouse A. Characterization of extensive beef cattle systems: Disparities between opinions, practice and policy. Land Use Policy. 2014; 38: 707-718spa
dc.relation.referencesNahed J, Castel J M, Mena Y, Caravaca F. 2006. Appraisal of the sustainability of dairy goat systems in Southern Spain according to their degree of intensification. Livestock Science, 101 (1-3): 10–23.spa
dc.relation.referencesNemecek T, Huguenin-Elie O, Dubois D, Gaillard G, Schaller B, Chervet A. 2011. Life cycle assessment of Swiss farming systems, II. Extensive and intensive production. Agricultural Systems, 104 (3): 233–245spa
dc.relation.referencesObidike N. 2011. Rural Farmers' Problems Accessing Agricultural Information: A Case Study of Nsukka Local Government Area of Enugu State Nigeria. Library Philosophy and Practice. Disponible en: http://digitalcommons.unl.edu/libphilprac/660.spa
dc.relation.referencesOladele O I .1999. Analysis of the Institutional Research – Extension – Farmers Linkage System in South Western Nigeria. [Unpublished Ph.D. Thesis]. [Department of Agricultural Extension Services and Rural Development, Nigeria]. University of Ibadan. 161p.spa
dc.relation.referencesOrganización de las Naciones Unidas 2000. Aprobada Resolución 55/2 Declaración del milenio. [Internet]. [Citado 2017 Octubre 16]. Disponible en:www.un.org/spanish/milenio/ares552.pdfspa
dc.relation.referencesOrganización de las Naciones Unidas 2014. Objetivos de desarrollo del milenio, Informe 2014. [Internet]. [Citado 2017 Octubre 16]. Disponible en: www.un.org/es/millenniumgoals/pdf/mdg-report-2014-spanish.pdfspa
dc.relation.referencesOrganización de las Naciones Unidas para la Agricultura y la Alimentación. 2017. Oficina Regional de la FAO para América Latina y el Caribe. Ganadería sostenible y cambio climático en América Latina y el Caribe. [Internet]. [citado 2017 Octubre 16]. Disponible en: http://www.fao.org/americas/perspectivas/ganaderia-sostenible/es/spa
dc.relation.referencesOrganización de las Naciones Unidas para la Agricultura y la Alimentación 2002. Agricultura mundial: hacia los años 2015/2030. Informe resumido. Disponible en:ftp://ftp.fao.org/agl/aglw/ESPIM/CD-ROM/documents/3B_s.pdfspa
dc.relation.referencesOkey, B.W., 1996. Systems approaches and properties, and agroecosystem health. Journal of Environmental Management 48(2): 187-199spa
dc.relation.referencesOrr R J, Tallowin J R B, Griffith B A, Rutter S M. 2014. Effects of livestock breed and rearing experience on foraging behaviour of yearling beef cattle grazing unimproved grasslands. Grass and Forage Science, 69 (1): 90-103.spa
dc.relation.referencesPacín F, Oesterheld M. 2013. In-farm diversity stabilizes return on capital in Argentine agro-ecosystems. Agricultural systems, 124: 51-59spa
dc.relation.referencesParr J F, Papendick R I, Youngberg I G, Meyer R E. 1990. Sustainable agriculture in the United States. En: Edwards, C., et al. (Eds.).et al Sustainable Agricultural Systems, St. Lucie Press, Soil and Water Conservation Society Ankeny, pp. 50–6spa
dc.relation.referencesParsons T. 1991. The Social System. 2th ed. London:Routledge. 448p.spa
dc.relation.referencesPeñuela L, Solano C, Ardila V, Galán S. 2014. Sabana Inundable y ganadería, opción productiva de conservación en la Orinoquia. Serie: Conservación de la biodiversidad en predios productivos 3. 230 p.spa
dc.relation.referencesPeel D, Johnson R, Mathews K. 2010. Cow–calf Beef Production in Mexico. LDP-M-196–01. US Department of Agriculture, Economic Research Service. <http://www.ers.usda.gov/Publications/LDP/2010/10Oct/LDPM19601/>.spa
dc.relation.referencesPilling D, Boerma D, Scherf B, Hoffmann I. 2008. Sustaining livestock biodiversity – from assessment to action. Biodiversity, 9 (1-2): 14-18.spa
dc.relation.referencesPoppi D P, Fordyce G, Panjaitan T, Dahlanuddin, Quigley S P. 2011. Case study 2: developing an integrated production system for Bali cattle in the eastern islands of Indonesia. In Beef Production in Crop-livestock Systems: Simple Approaches for Complex Problems. (Ed W Winter). ACIAR Monograph No. 145. Australian Centre for International Agricultural Research, Canberra.spa
dc.relation.referencesRamanathan R. 2003. An introduction to data envelopment analysis: a tool for performance management. SAGE Publications.spa
dc.relation.referencesRey M, Martins A, Nicolau J, Schulz J. 2007. Abandonment of agricultural land: an overview of drivers and consequences. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources. 057:1-14.spa
dc.relation.referencesRipoll-Bosch R, Joy M, Bernués A. 2013. Role of self-sufficiency, productivity and diversification on the economic sustainability of farming systems with autochtonous sheep breeds in less favoured areas. Animal, 4:1-9.spa
dc.relation.referencesRippstein G, Escobar G, Motta F. 2001. Agroecología y biodiversidad de las sabanas en los Llanos Orientales de Colombia. Ciat. 322. 380p.spa
dc.relation.referencesRocha, C., Mora, J. Y Romero, J. 2016. Metodología para la caracterización y tipificación de sistemas ganaderos. Agron. Mesoam. 27(2):253-264. 2016 ISSN 1021-7444.spa
dc.relation.referencesRodríguez‐Estévez V, Díaz C, Sánchez M. 2010. La Ganadería Ecológica como herramienta de conservación de los Parques Naturales Andaluces. En: Analistas Económicos de Andalucía (Coord.). Informe Anual del Sector Agrario en Andalucía 2009, pp. 417‐429.spa
dc.relation.referencesRodríguez‐Estévez V, Rucabado Palomar T, Mata Moreno C. 2007. La producción ganadera extensiva y la conservación del medio ambiente en Andalucía. En: Rodero, E., Valera, M. (Coord.). La ganadería andaluza en el siglo XXI. Servicio de Publicaciones y Divulgación, Junta de Andalucía, pp. 267‐278.spa
dc.relation.referencesRodríguez‐Estévez V. 2005. Recopilar un conocimiento que se pierde. La Fertilidad de la Tierra, 22: 13‐15.spa
dc.relation.referencesRoep, D., J.D. van der Ploeg, J.S.C Wiskerke. 2003 Managing technical instiutin a design processes: some strategic lessons from environmental cooperaties in the Netherlands. NJAS-Wageningen Journal of Life Sciences 51, 195-217.spa
dc.relation.referencesRomero M, Maldonado J, Bogotá J D, Usama S, Umaña A M, Murillo J, Restrepo S, Álvarez M, Palacios M T, Valbuena S, Mejía S L, Aldana J, Payán E. 2009. Informe sobre el estado de la biodiversidad en Colombia 2007, 2008: piedemonte orinoquense, sabanas y bosques asociados al norte del río Guaviare. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. Bogotá D.C., Colombia. 151 p.spa
dc.relation.referencesRuíz R, Oregui L. 2001. El enfoque sistémico en el análisis de la producción animal: revisión bibliográfica. Invest. Agr. Prod. Sanid. Anim, 16(1): 29-61.spa
dc.relation.referencesSanderson M A, Archer D, Hendrickson J, Kronberg S, Liebig M, Nichols K, Schmer M, Tanaka D, Aguilar J. 2013. Diversification and ecosystem services for conservation agriculture: outcomes from pastures and integrated crop-livestock systems. Renewable Agriculture and Food Systems, 28 (2): 129-144.spa
dc.relation.referencesSchutt K M, Burrow H M, Thompson J M, Bindon B M. 2009. Brahman and Brahman crossbred cattle grown on pasture and in feedlots in subtropical and temperate Australia. 2. Meat quality and palatability. Animal Production Science 49:439–451spa
dc.relation.referencesScimone M, Rook A J, Garel J P, Sahin N. 2007. Effects of livestock breed and grazing intensity on grazing systems: 3. Effects on diversity of vegetation. Grass and Forage Science, 62 (2): 172–184.spa
dc.relation.referencesScoones I, Bishi A, Mapitse N, Moerane R, Penrith M L, Sibanda R, Thomson G, Wolmer W. 2010. Foot-and-mouth disease and market access: challenges for the beef industry in southern Africa. Pastoralism 1:135–164.spa
dc.relation.referencesSebillotte M. 1974. "Agriculture et Agronomie: Essai de'analyse des taches de 1'Agronome". In: Cahier d'ORMSTOM, Serie Bio1.24: 3-25.spa
dc.relation.referencesSeré C. 1983. Primera aproximación a una clasificación de sistemas de producción lechera en el trópico sudamericano. Producción Animal Tropical. 8:110-121.spa
dc.relation.referencesŠilerová E, Lang K. 2006. Information systems tool for changing our future. Agric. Econ. Czech. 52:447–450.spa
dc.relation.referencesSoussana J F, Loiseau P, Vuichard N, Ceschia E, Balesdent J, Chevallier T, Arrouays D. 2004. Carbon cycling and sequestration opportunities in temperate grasslands. Soil Use and Management, 20 (2): 219–230.spa
dc.relation.referencesSpedding C. 1988. An Introduction to Agricultural Systems. 2th ed. London:Elsevier Applied Science. 189p.spa
dc.relation.referencesSteinfeld H, Gerber P, Wassenaar T D, Castel V, Rosales M, de Haan C. 2006. Livestock's Long Shadow: Environmental Issues and Options. FAO 377p.spa
dc.relation.referencesSteinfeld H, Maki•Hokkonen J. 1995. A classification of livestock production systems. World Animal Review. 83-94.spa
dc.relation.referencesSturaro E, Cocca G, Gallo L, Mrad M, Ramanzin M. 2009. Livestock systems and farming styles in Eastern Italian Alps: an on-farm survey. Ital.J.Anim.Sci. 8: 541-554spa
dc.relation.referencesSturaro E, Cocca G, Marchiori E, Ramanzin M. 2011 Geographic Information Systems (GIS) for Livestock Science: applications and case studies. LABcoop. Agroecology sustainability and rural development. [Internet]. [Citado 2017 Octubre 24] Disponible en: http://www.labcoop2012.org/documents/sustainability/GIS.pdfspa
dc.relation.referencesThomas R J, Lascano C E, Sanz J I, Ara M A, Spain J M, Vera R R, Fisher M J. 1992. The role of pastures in production systems. En: Pastures for the tropical lowlands: Centro Internacional de Agricultura Tropical (ClAT). Cali. Colombia. 121•144.spa
dc.relation.referencesTomlinson R. 2008. Pensando en el SIG: Planificación del Sistema de Información Geográfica Dirigida a Gerentes. En: Capítulo 1. SIG: El Panorama Completo. 3a ed. Esri Press.p1-6.spa
dc.relation.referencesTurner, M.G., Gardner, R.H., 1991. Quantitative methods in landscape ecology: an introduction. In: Turner, M.G., Gardner, R.H. (Eds.), Quantitative methods in landscape ecology. Ecological Studies 82, Springer Verlag, New York, USA, pp. 3-14.spa
dc.relation.referencesUNEP. 1992. Convention on biological diversity. United Nations Environmental Programme (UNEP), Nairobi, Kenya.spa
dc.relation.referencesUSDA. 2011 Livestock and Poultry: World Markets and Trade, October 2011. <www.fas.usda.gov/livestock_arc.asp>spa
dc.relation.referencesVergara W. 2012. La revolución pecuaria: del tradicionalismo a la industrialización. Med. Vet. 24: 91-101.spa
dc.relation.referencesVerge X P C, Dyer J A, Desjardins R L, Worth D. 2008. Greenhouse gas emissions from the Canadian beef industry. Agricultural Systems 98(2):126–134.spa
dc.relation.referencesVidanapathirana N. 2012. Agricultural information systems and their applications for development of agriculture and rural community a review study. 35th Information Systems Research Seminar in Scandinavia (IRIS 35). 14pspa
dc.relation.referencesVillanueva B, Sawalha R M, Roughsedge T, Rius-Vilarrasa E, Woolliams J A. 2010. Development of a genetic indicator of biodiversity for farm animals. Livestock Science, 129 (1–3): 200–207.spa
dc.relation.referencesVillanueva C, Sepúlveda C, Ibrahim M. 2011. Manejo agroecológico como ruta para lograr la sostenibilidad de fincas con café y ganadería. Serie Técnica. Informe técnico. Turrialba Costa Rica. CATIE. 387-243.spa
dc.relation.referencesWilson G. 2008. From ‘weak’ to ‘strong’ multifunctionality: Conceptualising farm-leve multifunctional transitional pathways. Journal of Rural Studies 24:367–383spa
dc.relation.referencesWiskerke J.S.C., J.D. van der Ploeg (eds.) 2004. Seeds of Transitin. Essays on novelty production, niches and regimes in agriculture. Van Gorcum, Assen.spa
dc.relation.referencesWolfe J. 1965, “A Computer Program for the Maximum Likelihood Analysis of Types”, Technical Bulletin 65-15, U.S. Naval Personnel Research Activity.spa
dc.relation.referencesAvilez, JP; Escobar, P; Von Fabeck, G; Villagran, K; García, F; Matamoros, R; García Martínez, A. 2010. Caracterización productiva de explotaciones lecheras empleando metodología de análisis multivariado. Universidad de Zulia 20:74-80spa
dc.relation.referencesBermúdez, A. 2005. Los registros y el éxito gerencial. En: Manual de Ganadería Doble propósito. C. González-Stagnaro, E. Soto-Belloso (eds.). Ediciones Astro-Data S.A. ISBN 980-6863-00-3. Maracaibo-Venezuela. Cap II: 10-15spa
dc.relation.referencesBernet T, Thiele G, Zschocke T. 2006. Participatory Market Chain Approach (PMCA) – User Guide. International Potato Center (CIP). Papa Andina, Lima, Peru. 167p.spa
dc.relation.referencesBertalanffy L V. 1976. Teoría general de los sistemas. Fondo de Cultura Económica México D.F.spa
dc.relation.referencesBryden J. 1994. Interaction between farm households and the rural community effects of non-agricultural elements in farm household decision making on farming systems. In: Dent, J B, McGregor M J. (1994), Rural and Farming Analysis: European Perspectives. CAB International, Wallingford, pp. 243–254.spa
dc.relation.referencesCapriles M. 1989. Metodología para el diagnóstico rápido de perfiles productivos y funcionalidad de patrones tecnológicos en sistemas de producción con vacunos. Seminario: La apropiación de tecnología en el contexto de la investigación desarrollo. Unidad interinstitucional de apoyo metodológico. DSA/CIRAD-FONAIAP-FUDECO-UCLA. Barquisimeto. 28pp.spa
dc.relation.referencesCamargo, M. y Colmenares, O. (2009). Caracterización de sistemas de bovinos doble propósito en Veguitas-Corozal y Sabana Seca, Municipio Guanarito, Estado Portuguesa. Rev. Unell. Cienc. Tec. 27: 1 -8 [21 de octubre de 2011] .ISSN 980296672X.spa
dc.relation.referencesCochran W. G. 1977. Sampling techniques (3rd Ed.). New York: John Wiley & Sons.spa
dc.relation.referencesDeming W E. 1989. Calidad, productividad y competitividad: la salida de la crisis. Ediciones Diaz de Santos. Madrid.spa
dc.relation.referencesEscribano A J. 2014. Estudio de la producción bovina ecológica y convencional en sistemas extensivos de dehesas en Extremadura.: Análisis técnico-económico, de sostenibilidad y eficiencia de su sistema productivo. Posibilidades de conversión al modelo de producción ecológica [Doctoral dissertation. Universidad de Extremadura]spa
dc.relation.referencesEwel, J.; Madriz, A. y Tosi, J. (1976). Zonas de vida de Venezuela. Ed. Sucre. Caracas, Venezuela. 260 p.spa
dc.relation.referencesFremond A. 1967. L 'elevage en Normandie. Etude Géographique, Caen, Association des Publications de la Faculté des Lettres et Sciences Humaines de I'Université de Caen. 2 vol., 626 y 316 ppspa
dc.relation.referencesGibon A, Rubino R, Sibbald A, Sørensen J, Flamant J, Lhoste P, Revilla R, 1996. A review of current approaches to livestock farming systems in europe: towards a common understanding. In livestock farming systems. In: Livestock Farming Systems Symposium. Maisons-Alfort: CIRAD-EMVT, 14 p.spa
dc.relation.referencesIshikawa K. 1986. Qué es la Calidad Total?. La Modalidad Japonesa. (Ed.) Norma S.A. Bogotá. Colombia. 209 p.spa
dc.relation.referencesJuran J M. 1990. Juran y la planificación para la calidad (Ed.). Díaz de Santos, S. A. Madrid. España. 299 pp.spa
dc.relation.referencesLalonde L G, Sukigara T. 1997. LDPS2 User's Guide. Food and Agriculture Organization of the United Nations.spa
dc.relation.referencesMcDowell RE. 1996. Sistemas ganaderos de doble propósito: situación actual y prioridades para el futuro. En, Memorias del Curso de actualización: aspectos nutricionales del ganado de doble propósito en el trópico. Tlapacoyan, Ver. México. pp. 1-14spa
dc.relation.referencesNardone A. 2002. Evolution of livestock production and quality of animal products. Proc. 39th Annual Meeting of the Brazilian Society of Animal Science Brazil, 29th July–2nd August, pp. 486–513.spa
dc.relation.referencesOsorio AMM, Segura CJC. 1999. Análisis preliminar del crecimiento de becerros de un sistema de doble propósito en el trópico. En Memorias XII Reunión Científica Tecnoló- gica Forestal y Agropecuaria Tabasco 99. Villahermosa, Tabasco. México. pp. 162-164spa
dc.relation.referencesPáez, L. y Jiménez, M. (2000). Caracterización estructural y tipologías de fincas de ganadería de doble propósito en la Microregión Acequía-Socopo del estado Barinas. Revista Zootecnia Tropical. Vol. 18 (2): 177-196. ISSN 0798-7269.spa
dc.relation.referencesPeña, M.; Urdaneta, F.; Arteaga, G. y Casanova, A. (1999). Características personales y actitudinales del productor gerente de empresas de ganadería de doble propósito en los municipios Rosario y Machiques de Perijá. Revista de la Facultad de Agronomía (LUZ) 16 Suplemento 1, 259-264 pp. ISSN 0378-7818.spa
dc.relation.referencesPeña, M. y Materán, M. (2005). El hombre factor clave de los sistemas de producción ganadera. En: Manual de Ganadería Doble propósito. C. GonzálezStagnaro, E. Soto-Belloso (eds). Ediciones Astro-Data S.A. ISBN 980-6863-00-3. Maracaibo-Venezuela. Cap. 10: 55-60spa
dc.relation.referencesPerea, J.; Mata, H.; García, A.; Castaldo, A.; Gómez, A. y Acero, R. (2010). Aspectos técnicos y sociales de las explotaciones ecológicas bovinas lecheras del noroeste de España. Revista Científica. Vol. (XX). Número 6. 633-639. ISSN 0798-2259.spa
dc.relation.referencesPérez-Hernández P, Solarís-Martínez F, García-Winder M, Osorio-Arce M, GallegosSánchez J. 2001. Comportamiento productivo y reproductivo de vacas de doble propó- sito en dos sistemas de amamantamiento en trópico. Arch. Latinoam. Prod. Anim. 9: 79-85.spa
dc.relation.referencesRed ORMET. 2013. Estudio de Perfil Productivo Rural y Urbano del Municipio de Arauca, departamento de Arauca. Ministerio de Trabajo de la Republica de Colombia, PNUD. 85pspa
dc.relation.referencesRíos G, Romero M, Botero M J, Franco G, Pérez J C, Morales J E, Gallego J, Echeverry D I. 2004. Zonificación, caracterización y tipificación de los sistemas de producción de lulo (Solanum quitoense Lam) en el eje cafetero. Revista Corpoica. 5 (1):22-30.spa
dc.relation.referencesSánchez A. 1961: Producciones pecuarias (explotaciones ganaderas), Córdoba, Imprenta Moderna.spa
dc.relation.referencesSteel, R. y Torrie, J. (1998). Bioestadística. Principios y procedimientos. Segunda edición. Mc Graw-Hill Interamericana de México, S.A. ISBN 968-451 -495-6. México. 622 pp Sobrino F, Hernández J, Paz A, Rodríguez M, Zuñiga R, Soria R. 1981. Evolución de los sistemas ganaderos en España. Revista de Estudios Agrosociales. 116:17-90.spa
dc.relation.referencesSotillo J L, Vijil E. 1978. Producción animal. Bases Fisiozootécnicas, León, Editorial Mijares, 531 pp.spa
dc.relation.referencesVelasco, J.; Ortega, L.; Sánchez, E. y Urdaneta F. (201 0). Análisis de sensibilidad del nivel tecnológico adoptado en fincas ganaderas de doble propósito del estado Zulia, Venezuela. Revista Científica. Vol. XX, N°1, 67-73 pp. ISSN 0798-2259.spa
dc.relation.referencesVilaboa, A. J. y R.P. Díaz. (2009). Caracterización socioeconómica y tecnológica de los sistemas ganaderos en siete municipios del estado de Veracruz, México.Zootecnia Tropical 27 (4): 427-436. ISSN 0798-7269spa
dc.relation.referencesVera, Vega A. 1979. Futuro de la explotación ovina en España. Problemas, perspectivas y posibilidades, IV Jornadas de la Sociedad Española de Ovinotécnia, Zaragoza, Universidad de Zaragoza, 329-356.spa
dc.relation.referencesAkaike, H. (1974). A new look at statistical model identification. IEEE Transactions on Automatic Control 19, 716–723.spa
dc.relation.referencesAkaike, H. (1978). A Bayesian analysis of the minimum AIC procedure. Annals of the Institute of Statistical Mathematics, 30(1), 9–14.spa
dc.relation.referencesAmerican Marketing Association, Chicago.pp. 144-147.spa
dc.relation.referencesBanfield JD, Raftery AE. 1993. Model-based gaussian and non-gaussian clustering. Biometrics. 48:803–821.spa
dc.relation.referencesBiernacki, C., G. Celeux, and G. Govaert 2000. Assessing a mixture model for clustering with the integrated classification likelihood. IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 719–725.spa
dc.relation.referencesBlazy J. M., Ozier-Lafontaine, H., Dorè, T., Thomas, A. and Wery, J. (2009). A methodological framework that accounts for farm diversity in the prototyping of crop management systems. Application to banana-based systems in Guadeloupe. Agricultural Systems 101:30–41spa
dc.relation.referencesCuadras, C.M. 2008. Nuevos métodos de análisis multivariante. Barcelona: CMC Editions,spa
dc.relation.referencesDixon J, Gulliver, A & Gibbon, D, 2001. Farming systems and poverty: Improving farmers’ livelihoods in a changing world. FAO (Food and Agriculture Organization), Rome, and World Bank, Washington, DC. 41p.spa
dc.relation.referencesFlynt A, Daepp M. 2015. Diet-related chronic disease in the northeastern United States: a model-based clustering approach. Int J Health Geogr 14:25.spa
dc.relation.referencesFraley C, Raftery A E.2002. Model-based clustering, discriminant analysis and density estimation. J Am Stat Assoc 97(458):611–631.spa
dc.relation.referencesGaspar P, Mesías FJ, Escribano M, Pulido F .2009. Sustainability in Spanish extensive farms (Dehesas): an economic and management indicator-based evaluation. Rangeland Ecology and Management 62: 153-162.spa
dc.relation.referencesGiller,K. E., Tittonell, P., Rufino, M. C., van Wijk, M. T., Zingore, S., Mapfumo, P., Adjei-Nsiah, S., Herrero, M., Chikowo, R., Corbeels, M., Rowe, E. C., Baijukya, F., Mwijage, A., Smith, J., Yeboah, E., van der Burg, W. J., Sanogo, O. M., Misiko, M., de Ridder, N., Karanja, S., Kaizzi, C., K’ungu, J., Mwale, M., Nwaga, D., Pacini, C. and Vanlauwe, B. 2011. Communicating complexity: integrated assessment of trade-offs concerning soil fertility management within African farming systems to support innovation and development. Agricultural Systems 104(2):191–203.spa
dc.relation.referencesIraizoz, B., Gorton, M., Davidova, S., 2007. Segmenting farms for analysing agricultural trajectories: case study of the Navarra region in Spain. Agricultural Systems 93(1–3): 143-169.spa
dc.relation.referencesKendall, M. .1975, Multivariate Analysis, Charles Griffin, Londres.spa
dc.relation.referencesKa Yee Y, Fraley C, Murua A, Raftery A E, Ruzzo W L. 2001. Model-based clustering and data transformations for gene expression data. Bioinformatics 17:977–987.spa
dc.relation.referencesLandais E. 1998. Modelling farm diversity: new approaches to typology building in France. Agricultural systems.58 (4):505-527spa
dc.relation.referencesMadry W, Mena Y, Roszkowska-Madra B, Gozdowski D, Hryniewski R, Castel J, 2013. An overview of farming system typology methodologies and its use in the study of pasture-based farming system: a review. Spanish Journal of Agricultural Research. 11(2): 316-326.spa
dc.relation.referencesMurphy T B, Dean N, Raftery A E. 2010. Variable selection and updating in model-based discriminant analysis for high dimensional data with food authenticity applications. Ann Appl Stat. 4:396–421spa
dc.relation.referencesRaftery A E, Niu X, Hoff P D, Yeung K Y.2012. Fast inference for the latent space network model using a case-control approximate likelihood. J Comp Graph Stat. 21:901–919.spa
dc.relation.referencesRighi, E., Dogliotti, S., Stefanini, F. M. and Pacini, G. C. (2011b). Capturing farm diversity at regional level to up-scale farm level impact assessment of sustainable development options. Agriculture, Ecosystems and Environment 142(1–2):63–74.spa
dc.relation.referencesRousseeuw, P. 1987. Silhouettes, a graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics.spa
dc.relation.referencesRuben, R. and Pender, J. 2004. Rural diversity and heterogeneity in less-favoured areas: the quest for policy targeting. Food Policy 29:303–320spa
dc.relation.referencesSchwarz, G. 1978. Estimating the dimension of a model. The Annals of Statistics 6, 461–464.spa
dc.relation.referencesSheth J. (2011). Multivariate methods for market and survey research. Marketing Classics Press.spa
dc.relation.referencesTesfaye, L. T., Perret, S. and Kirsten, J. F. (2004). Diversity in livelihoods and farmers’ strategies in the Hararghe Highlands, Eastern Ethiopia. International Journal of Agricultural Sustainability 2(2):133–146.spa
dc.relation.referencesTittonell, P., Vanlauwe, B., Leffelaar, P.A., Rowe, E., Giller, K.E., 2005. Exploring diversity in soil fertility management of smallholder farms in western Kenya. I. Heterogeneity at region and farm scale. Agric. Ecosyst. Environ. 110, 149–165.spa
dc.relation.referencesTittonell, P., van Wijk, M. T., Herrero, M., Rufino, M. C., de Ridder, N. and Giller, K. E. (2009). Beyond resource constraints – exploring the physical feasibility of options for the intensification of smallholder crop-livestock systems in Vihiga district, Kenya. Agricultural Systems 101:1–19spa
dc.relation.referencesVan der Ploeg, J.D., Laurent, C., Blondeau, F., Bonnafous, P., 2009. Farm diversity, classification schemes and multifunctionality. J. Environ. Manage. 90 (S2), S124–S131.spa
dc.relation.referencesVilà Baños, R., Rubio Hurtado, M. J., Berlanga Silvente, V., y Torrado Fonseca, M. 2014. Cómo aplicar un clúster jerárquico en SPSS. Revista d’Innovació i Recerca en Educació, 7(1), 113-127spa
dc.relation.referencesZingore, S., H.K. Murwira, R.J. Delve, and K.E. Giller. 2007. “Soil Type, Management History and Current Resource Allocation: Three Dimensions Regulating Variability in Crop Productivity on African Smallholder Farms.” Field Crops Research 101(3):296– 305.spa
dc.relation.referencesZimmermann, A., Heckelei, T. and Pérez Domínguez, I. (2009). Modelling farm structural change for integrated ex-ante assessment: review of methods and determinants. Environmental Science and Policy 12(5):601–618spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc590 - Animalesspa
dc.subject.proposalCow-calf systemseng
dc.subject.proposalBovinosspa
dc.subject.proposalCattleeng
dc.subject.proposalsabanas inundablesspa
dc.subject.proposalFloodes savannaseng
dc.subject.proposalAnálisis estructuralspa
dc.subject.proposalAnálisis funcionalspa
dc.subject.proposalStructural analysiseng
dc.subject.proposalFunctional analysiseng
dc.subject.proposalSistemas de producción de críaspa
dc.subject.proposalTipificaciónspa
dc.subject.proposalTypificationeng
dc.subject.proposalGroupingeng
dc.subject.proposalAgrupamientosspa
dc.titleCaracterización y tipificación de sistemas de ganadería de cría en la sabana inundable del departamento de Araucaspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
60263334.2020.pdf
Tamaño:
2.11 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Salud y Producción Animal

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: