Modelamiento espacio temporal de los desembarcos pesqueros en el Pacífico colombiano usando datos funcionales

dc.contributor.advisorArunachalam, Viswanathan
dc.contributor.authorRamirez Yara, Yessica Natalia
dc.contributor.cvlacRAMIREZ YARA, YESSICA NATALIA [0000094819]spa
dc.contributor.orcidRamirez Yara, Yessica Natalia [0000000196345406]spa
dc.contributor.researchgateRamirez Yara, Yessica [Yessica-Ramirez-Yara]spa
dc.date.accessioned2024-05-08T21:24:35Z
dc.date.available2024-05-08T21:24:35Z
dc.date.issued2023-05-24
dc.descriptionilustraciones, diagramasspa
dc.description.abstractEl documento a continuación tiene como objetivo estimar modelos estocásticos de series de tiempo ARIMA para las toneladas de especies de peces más importantes a nivel social y económico en el Pacífico colombiano, capturadas por medio de pesca. Se pretende usar como covariables de los modelos de producción por especie, las curvas de salinidad y temperatura medidas a -0.5, -41 y -86 metros bajo la superficie del océano, las cuales fueron calculadas usando herramientas de análisis espacial y análisis de datos funcionales, tomando como referencia para cada especie, el área formada por los pixeles con los valores más altos de probabilidad del ráster de presencia de especies y los archivos NetCDF del Pacífico de temperatura y salinidad para distintas profundidades; con el fin de explicar el comportamiento de la producción de desembarcos por especie en función de los cambios de las variables oceanográficas. (Texto tomado de la fuente)spa
dc.description.abstractThe following document aims to estimate stochastic ARIMA time series models for the production in tons of fishing landings of the most socially and economically important fish species in the Colombian Pacific. It is intended to use as covariates of the production models by species, the salinity and temperature curves measured at -0.5, -41 and -86 meters under the ocean surface, which were calculated using spatial analysis tools and functional data analysis, taking as a reference for each species, the area formed by the pixels with the highest probability values of the species presence raster and the Pacific NetCDF files of temperature and salinity for different depths; in order to be able to explain the behavior of the production of landings by species as a function of changes in oceanographic variables.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Estadísticaspa
dc.description.researchareaAnálisis espacial, Series de tiempo, Datos funcionalesspa
dc.format.extentxiv, 74 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86057
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Estadísticaspa
dc.relation.references[Aguilera and Aguilera-Morillo, 2013] Aguilera, A. and Aguilera-Morillo, M. (2013). Comparative study of different b-spline approaches for functional data. Mathematical and Computer Modelling, 58(7):1568–1579.spa
dc.relation.references[Bohn, 2005] Bohn, M. (2005). Univariate time series analysis;arima models. Econometrics 2.spa
dc.relation.references[Boh´orquez et al., 2016] Boh´orquez, M., Giraldo, R., and Mateu, J. (2016). Optimal sampling for spatial prediction of functional data. Statistical Methods & Applications, 25(1):39–54.spa
dc.relation.references[Box et al., 2015] Box, G., Jenkins, G., Reinsel, G., and Ljung, G. (2015). Time Series Analysis: Forecasting and Control. Wiley Series in Probability and Statistics. Wiley.spa
dc.relation.references[Brockwell and Davis, 1996] Brockwell, P. J. and Davis, R. A. (1996). Introduction to time series and forecasting / Peter J. Brockwell and Richard A. Davis. Springer New York.spa
dc.relation.references[Campos et al., 2016] Campos, R., Cremona, M., Pini, A., Chiaromonte, F., and Makova, K. (2016). Integration and fixation preferences of human and mouse endogenous retroviruses uncovered with functional data analysis. . PLoS Comput Biol, 12(6).spa
dc.relation.references[de Rivera, 1989] de Rivera, D. (1989). Estad´ıstica: Modelos y M´etodos. Alianza Universidad Textos Series. Alianza Editorial, S. A.spa
dc.relation.references[FAO, 2017] FAO (2017). Food and agriculture organization of the united nations.spa
dc.relation.references[Fortin, 2015] Fortin, D. (2015). Contributions to modeling spatially indexed functional data using a reproducing kernel Hilbert space framework. Tesis de doctorado, Iowa State University.spa
dc.relation.references[Ghose, 2018] Ghose, R. (2018). 1.29 - defining public participation gis. In Huang, B., editor, Comprehensive Geographic Information Systems, pages 431–437. Elsevier, Oxford.spa
dc.relation.references[Goodchild, 2009] Goodchild, M. (2009). Geographic information systems and science: Today and tomorrow. Procedia Earth and Planetary Science, 1:1037–1043.spa
dc.relation.references[Hamza et al., 2021] Hamza, F., Valsala, V., Mallissery, A., and George, G. (2021). Climate impacts on the landings of indian oil sardine over the south-eastern arabian sea. Fish and Fisheries, 22(1):175–193.spa
dc.relation.references[Herrera Montiel et al., 2019] Herrera Montiel, S. A., Coronado-Franco, K. V., and Selvaraj, J. J. (2019). Predicted changes in the potential distribution of seerfish (scomberomorus sierra) under multiple climate change scenarios in the colombian pacific ocean. Ecological Informatics, 53:100985.spa
dc.relation.references[Hormann et al., 2015] Hormann, S., Kidzinski, L., and Hallin, M. (2015). Dynamic functional principal components. Journal of the Royal Statistical Society: Series B: Statistical Methodology, 319-348.spa
dc.relation.references[Horv´ath and Kokoszka, 2012] Horv´ath, L. and Kokoszka, P. (2012). Inference for Functional Data with Applications. Springer Series in Statistics. Springer New York.spa
dc.relation.references[Hyndman and Ullah, 2007] Hyndman, R. and Ullah, M. (2007). Robust forecasting of mortality and fertility rates: A functional data approach. Computational Statistics & Data Analysis, 51(10):4942–4956.spa
dc.relation.references[Kuenzer et al., 2021] Kuenzer, T., H¨ormann, S., and Kokoszka, P. (2021). Principal component analysis of spatially indexed functions. Journal of the American Statistical Association, 116(535), 1444-1456.spa
dc.relation.references[Lewis, 1980] Lewis, E. (1980). The practical salinity scale 1978 and its antecedents. IEEE J. Ocean. Eng, OE-5(1): 3-8.spa
dc.relation.references[Liu et al., 2016] Liu, C., Ray, S., and Hooker, G. (2016). Functional principal component analysis of spatially correlated data. Statistics and Computing, 1:1–16.spa
dc.relation.references[Makridakis et al., 1983] Makridakis, S., Wheelwright, S., and McGee, V. (1983). Forecasting: Methods and Applications. Wiley series in management. Wiley.spa
dc.relation.references[Marco et al., 2021] Marco, J., Valderrama, D., and Rueda, M. (2021). Evaluating management reforms in a colombian shrimp fishery using fisheries performance indicators. Marine Policy, 125:104258.spa
dc.relation.references[Martínez, 2020] Martínez, E. (2020). Un modelo estocástico para analizar los efectos de la variación de la temperatura sobre la captura pesquera a lo largo de la costa del Pacífico Colombiano. Master’s thesis, Universidad Nacional de Colombia.spa
dc.relation.references[Montgomery et al., 2015] Montgomery, D. C., Jennings, C. L., and Kulahci, M. (2015). Introduction to time series analysis and forecasting. John Wiley & Sons.spa
dc.relation.references[Moriarity et al., 2020] Moriarity, R. J., Liberda, E. N., and Tsuji, L. J. (2020). Using a geographic information system to assess local scale methylmercury exposure from fish in nine communities of the eeyou istchee territory (james bay, quebec, canada). Environmental Research, 191:110147.spa
dc.relation.references[Nieto and Mélin, 2017] Nieto, K. and Mélin, F. (2017). Variability of chlorophyll-a concentration in the gulf of guinea and its relation to physical oceanographic variables. Progress in Oceanography, 151:97–115.spa
dc.relation.references[Ojeda and Arias, 2000] Ojeda, L. and Arias, R. (2000). Informe nacional sobre la gestión de agua en colombia (recursos hídricos, agua potable y saneamiento). Ministerio de Medio Ambiente, Santafé de Bogotá, page 137.spa
dc.relation.references[Pawlowicz, 2013] Pawlowicz, R. (2013). Key physical variables in the ocean: Temperature, salinity, and density. Nature Education Knowledge, 4(4):13.spa
dc.relation.references[Ramsay, 2006] Ramsay, J. (2006). Functional data analysis. Springer New York.spa
dc.relation.references[Ramsay and Silverman, 2005] Ramsay, J. and Silverman, B. (2005). Functional Data Analysis. Springer Series in Statistics. Springer.spa
dc.relation.references[Santos et al., 2020] Santos, E. F., Barbosa, A. L., and Duarte-Neto, P. J. (2020). Global correlation matrix spectra of the surface temperature of the oceans from random matrix theory to poisson fluctuations. Physics Letters A, 384(27):126689.spa
dc.relation.references[Selvaraj et al., 2017] Selvaraj, J., Coronado-Franco, K., and Guzm´an, A. (2017). Caracterización espacial y temporal de la salinidad y temperatura en bancos de pesca del océano pacífico colombiano. Congreso Latinoamericano de Ciencias del Mar - COLACMAR 2017.spa
dc.relation.references[Selvaraj et al., 2018] Selvaraj, J., Coronado-Franco, K., and Guzmán, A. (2018). Projected sea surface temperature changes in the fishing areas of the colombian pacific under climate change scenarios. 4th International symposium: The effects of climate change on the World´s Oceans.spa
dc.relation.references[Selvaraj et al., 2020] Selvaraj, J. J., Arunachalam, V., Coronado-Franco, K. V., RomeroOrjuela, L. V., and Ramírez-Yara, Y. N. (2020). Time-series modeling of fishery landings in the colombian pacific ocean using an arima model. Regional Studies in Marine Science, 39:101477.spa
dc.relation.references[Shang and Kearney, 2022] Shang, H. L. and Kearney, F. (2022). Dynamic functional timeseries forecasts of foreign exchange implied volatility surfaces. International Journal of Forecasting, 38(3):1025–1049.spa
dc.relation.references[Van den Bossche et al., 2007] Van den Bossche, F., Wets, G., and Brijs, T. (2007). A regression model with arima errors to investigate the frequency and severity of road traffic accidents.spa
dc.relation.references[Venkatramanan et al., 2019] Venkatramanan, S., Prasanna, M., and Chung, S. (2019). GIS and Geostatistical Techniques for Groundwater Science. Elsevier.spa
dc.relation.references[Wang et al., 2016] Wang, J., Chiou, J., and M¨uller, H. (2016). Functional data analysis. Annual Review of Statistics and Its Application, 3(1):257–295.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc510 - Matemáticas::519 - Probabilidades y matemáticas aplicadasspa
dc.subject.lembANALISIS FUNCIONAL
dc.subject.lembFunctional analysis
dc.subject.proposalDatos funcionalesspa
dc.subject.proposalAnálisis espacialspa
dc.subject.proposalDesembarcos pesquerosspa
dc.subject.proposalSeries de tiempospa
dc.subject.proposalModelos ARIMA con covariablesspa
dc.subject.proposalFunctional data analysiseng
dc.subject.proposalSpatial analysiseng
dc.subject.proposalFish landingseng
dc.subject.proposalTime serieseng
dc.subject.proposalARIMA models with covariateseng
dc.titleModelamiento espacio temporal de los desembarcos pesqueros en el Pacífico colombiano usando datos funcionalesspa
dc.title.translatedSpatiotemporal modeling of fishing landings in the Colombian Pacific using functional dataeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis_MSc_UNAL_Final_YessicaRamirez.pdf
Tamaño:
4.7 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Estadística

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: