Symmetries and reductions of Dirac-Jacobi structures

dc.contributor.advisorMartínez Alba, Nicolás
dc.contributor.authorYela Rosero, Darlyn Yamid
dc.date.accessioned2021-10-06T19:34:26Z
dc.date.available2021-10-06T19:34:26Z
dc.date.issued2021-10-04
dc.description.abstractIn this manuscript we study reductions of Dirac-Jacobi structures on a smooth manifold under the presence of symmetries given by the action of a connected Lie group. The main tools we used are the called "homogenization trick" and the well known reduction of Dirac structures. We show two particular cases, namely, reduction by moment map and the case when the base manifold is endowed with a contact 1-form.eng
dc.description.abstractEn el presente texto se estudia la reducción de estructuras Dirac-Jacobi sobre una variedad diferenciable bajo la presencia de simetrías dadas por la acción de un grupo de Lie conexo. La herramienta principal que se usa es el llamado "truco de homogenización" y las reducciones de Dirac ya conocidas. Se muestran dos casos particulares de reducción Dirac-Jacobi; cuando hay presencia de una aplicación momento y el caso cuando la variedad base está dotada de una 1-forma de contacto. (Texto tomado de la fuente).spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Matemáticasspa
dc.description.researchareaGeometría diferencialspa
dc.format.extent71 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80403
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Matemáticasspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Matemáticasspa
dc.relation.referencesA. A. Belavin and V. G. Drinfeld, Solutions of the classical Yang–Baxter equa- tion for simple Lie algebras, Funktsional’nyi Analiz i ego Prilozheniya, 16 (1982), pp. 1–29.spa
dc.relation.referencesH. Bursztyn, A brief introduction to Dirac manifolds, Geometric and topological methods for quantum field theory, (2013), pp. 4–38.spa
dc.relation.referencesH. Bursztyn, G. R. Cavalcanti, and M. Gualtieri, Reduction of Courant algebroids and generalized complex structures, Advances in Mathematics, 211 (2007), pp. 726–765.spa
dc.relation.referencesJ. Costa and F. Petalidou, Twisted Jacobi manifolds, twisted Dirac-Jacobi structures and quasi-Jacobi bialgebroids, Journal of Physics. A, Mathematical and General, 39 (2006).spa
dc.relation.referencesT. J. Courant, Dirac manifolds, Transactions of the American Mathematical Society, 319 (1990), pp. 631–661.spa
dc.relation.referencesM. Gualtieri, Generalized complex geometry, PhD thesis, University of Oxford, 2003.spa
dc.relation.referencesD. Iglesias-Ponte and J. C. Marrero, Lie algebroid foliations and E1(m)-Dirac structures, Journal of Physics A: Mathematical and General, 35 (2002), p. 4085.spa
dc.relation.referencesD. Iglesias-Ponte and A. Wade, Contact manifolds and generalized complex structures, Journal of Geometry and Physics, 53 (2005), pp. 249–258.spa
dc.relation.referencesD. Iglesias-Ponte and A. Wade, Integration of Dirac–Jacobi structures, Journal of Physics A: Mathematical and General, 39 (2006), p. 4181.spa
dc.relation.referencesJ. M. Lee, Introduction to smooth manifolds, Graduate Texts in Mathematics, 218 (2003).spa
dc.relation.referencesK. C. Mackenzie and P. Xu, Lie bialgebroids and Poisson groupoids, Duke Math- ematical Journal, 73 (1994), pp. 415–452.spa
dc.relation.referencesM. A. Salazar and D. Sepe, Contact isotropic realisations of Jacobi manifolds via Spencer operators, SIGMA, 13 (2017), p. 033.spa
dc.relation.referencesL. Vitagliano, Dirac–Jacobi bundles, Journal of Symplectic Geometry, 16 (2018), pp. 485–561.spa
dc.relation.referencesA. Wade, Conformal Dirac structures, Letters in Mathematical Physics, 53 (2000), pp. 331–348.spa
dc.relation.referencesA. Weinstein, M. Zambon, C. Molitor-Braun, N. Poncin, and M. Schlichenmaier, Variations on prequantization, Travaux math´ematiques, (2005), pp. 187–219.spa
dc.relation.referencesM. Zambon and C. Zhu, On the geometry of prequantization spaces, Journal of Geometry and Physics, 57 (2007), pp. 2372–2397.spa
dc.relation.referencesC. Zapata-Carratala, Landscape of Hamiltonian phase spaces: on the foundations and generalizations of one of the most powerful ideas of modern science, PhD thesis, The University of Edinburgh, 2019.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc510 - Matemáticas::516 - Geometríaspa
dc.subject.lembPhysicseng
dc.subject.lembFísicaspa
dc.subject.lembQuantum theoryeng
dc.subject.lembTeoría cuánticaspa
dc.subject.proposalDirac-Jacobi structureseng
dc.subject.proposalDirac structureseng
dc.subject.proposalDirac-ization trickeng
dc.subject.proposalHomogenization trickeng
dc.subject.proposalEstructuras Dirac-Jacobispa
dc.subject.proposalEstructuras Diracspa
dc.subject.proposalReductioneng
dc.subject.proposalTruco de homogenizaciónspa
dc.subject.proposalTruco de Dirac-izaciónspa
dc.subject.proposalReducciónspa
dc.subject.unescoGeometríaspa
dc.subject.unescoGeometryeng
dc.titleSymmetries and reductions of Dirac-Jacobi structureseng
dc.title.translatedSimetrías y reducciones de estructuras Dirac-Jacobispa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1088731960.2021.pdf
Tamaño:
538.01 KB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Matemáticas

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: