Sistema aplicador de campo electromagnético para el tratamiento del melanoma usando hipertermia local

dc.contributor.advisorAraque Quijano, Javier Leonardospa
dc.contributor.authorDuque Muñoz, José Luisspa
dc.contributor.researchgroupGrupo de Investigación en Electrónica de Alta Frecuencia y Telecomunicaciones (Cmun)spa
dc.date.accessioned2024-07-17T13:55:47Z
dc.date.available2024-07-17T13:55:47Z
dc.date.issued2024
dc.descriptionilustraciones, diagramasspa
dc.description.abstractEl objetivo de este estudio fue diseñar, simular y caracterizar un sistema radiante apropiado para el tratamiento del melanoma con hipertermia a 2.45 GHz. El melanoma es el cáncer de piel con mayor mortalidad, y su principal tratamiento es la cirugía, sin embargo, en casos donde no se pueda realizar, es necesario acudir a otras alternativas como lo es la hipertermia. La hipertermia junto a otros tratamientos como la quimioterapia o radioterapia, ha demostrado mejorar la efectividad de estos. Primeramente, se verificó en estándares internacionales el procedimiento para validar el funcionamiento del aplicador usando la distribución de la tasa de absorción específica (SAR) en un fantoma. Posteriormente, se realizó un montaje experimental siguiendo las indicaciones y procedimientos del estándar IEC/IEEE 62209-1528:2020, además se diseñó y construyó una antena tipo dipolo doblado, para finalmente comparar los resultados de simulación con los resultados de las mediciones experimentales. Se evidenció de las mediciones experimentales, un alto enfoque de la distribución del campo eléctrico y la SAR, lo que sugiere una huella térmica compatible al melanoma. (Texto tomado de la fuente).spa
dc.description.abstractThe goal of the study was to develop, model, and describe a radiant system suitable for treating melanoma at 2.45GHz. The most deadly type of skin cancer is melanoma, and surgery is the primary treatment for it. If it isn’t possible, though, there are other options that must be considered, such hyperthermia. It has been demonstrated that combining hyperthermia with other treatments like radiation or chemotherapy increases their efficacy. First, the distribution of the specific absorption rate (SAR) in a phantom was used to validate the applicator’s operation in accordance with international standards. To ultimately compare the findings of the simulation and the experimental observations, an experimental setup was completed in accordance with the guidelines and protocols of the IEC/IEEE 62209-1528:2020 standard. Additionally, a folded dipole-type antenna was designed and constructed. The experimental observations showed a high focus of the electric field distribution and SAR, indicating a thermal signature consistent with melanoma.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Electrónicaspa
dc.description.researchareaAntenas y propagaciónspa
dc.format.extentxii, 36 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86513
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Electrónicaspa
dc.relation.indexedBiremespa
dc.relation.references“IEC/IEEE International Standard - Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Part 1528: Human models, instrumentation, and procedures (Frequency range of 4 MHz to 10 GHz),” IEC/IEEE 62209-1528:2020, pp. 1–284, 2020.spa
dc.relation.referencesPDQ® Adult Treatment Editorial Board, “Melanoma Treatment,” Bethesda, MD: National Cancer Institute, 2023. [Online]. Available: https://www.cancer.gov/types/skin/patient/melanoma-treatment-pdqspa
dc.relation.referencesD. S. Rigel, J. Russak, and R. Friedman, “The evolution of melanoma diagnosis: 25 years beyond the abcds,” CA: A Cancer Journal for Clinicians, vol. 60, no. 5, pp. 301–316, 2010. [Online]. Available: https://acsjournals.onlinelibrary.wiley.com/doi/abs/10.3322/caac.20074spa
dc.relation.referencesPDQ® Adult Treatment Editorial Board, “PDQ Skin Cancer Treatment,” Bethesda, MD: National Cancer Institute, 2023. [Online]. Available: https://www.cancer.gov/types/skin/patient/skin-treatment-pdqspa
dc.relation.references“Glossary,” International Journal of Hyperthermia, vol. 19, no. 3, pp. 385–390, 2003. [Online]. Available: https://doi.org/10.1080/0265673031000090710spa
dc.relation.referencesA. Januszewski and J. Stebbing, “Hyperthermia in cancer: is it coming of age?” The Lancet Oncology, vol. 15, no. 6, pp. 565–566, 2014. [Online]. Available: https://doi.org/10.1016/S1470-2045(14)70207-4spa
dc.relation.referencesM. H. Falk and R. D. Issels, “Hyperthermia in oncology,” International Journal of Hyperthermia, vol. 17, no. 1, pp. 1–18, 2001. [Online]. Available: https://doi.org/10.1080/02656730118511spa
dc.relation.referencesJ. van der Zee, “Heating the patient: a promising approach?” TAnnals of Oncology, vol. 13, no. 8, pp. 1173–1184, 2002. [Online]. Available: https: //doi.org/10.1093/annonc/mdf280spa
dc.relation.referencesP. Wust, B. Hildebrandt, G. Sreenivasa, B. Rau, J. Gellermann, H. Riess, R. Felix, and P. M. Schlag, “Hyperthermia in combined treatment of cancer,” The Lancet Oncology, vol. 3, no. 8, pp. 487–497, 2002. [Online]. Available: https://doi.org/10.1016/S1470-2045(02)00818-5spa
dc.relation.referencesN. Cihoric, A. Tsikkinis, G. van Rhoon, H. Crezee, D. M. Aebersold, S. Bodis, M. Beck, J. Nadobny, V. Budach, P. Wust, and P. Ghadjar, “Hyperthermia-related clinical trials on cancer treatment within the clinicaltrials.gov registry,” International Journal of Hyperthermia, vol. 31, no. 6, pp. 609–614, 2015. [Online]. Available: https://doi.org/10.3109/02656736.2015.1040471spa
dc.relation.referencesM. B. Lodi, G. Muntoni, A. Ruggeri, A. Fanti, G. Montisci, and G. Mazzarella, “Towards the Robust and Effective Design of Hyperthermic Devices: Case Study of Abdominal Rhabdomyosarcoma with 3D Perfusion,” IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, pp. 1–1, 2020.spa
dc.relation.referencesG. Muntoni, A. Fanti, G. Montisci, and M. Muntoni, “A Blood Perfusion Model of a RMS Tumor in a Local Hyperthermia Multi-Physic Scenario: A Preliminary Study,” IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, vol. 3, no. 1, pp. 71–78, 2019.spa
dc.relation.referencesG. Muntoni, A. Fanti, M. B. Lodi, and G. Montisci, “Optimum Design of Superficial Microwave Hyperthermia Treatment,” in 2019 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO), 2019, pp. 1–3.spa
dc.relation.referencesX. He, W. Geyi, and S. Wang, “A Hexagonal Focused Array for Microwave Hyperthermia: Optimal Design and Experiment,” IEEE Antennas and Wireless Propagation Let ters, vol. 15, pp. 56–59, 2016.spa
dc.relation.referencesG. C. V. Rhoon, P. J. M. Rietveld, and J. V. D. Zee, “A 433 MHz Lucite Cone waveguide applicator for superficial hyperthermia,” International Journal of Hyperthermia, vol. 14, no. 1, pp. 13–27, 1998. [Online]. Available: https://doi.org/10.3109/02656739809018211spa
dc.relation.referencesP. Takook, M. Persson, and H. D. Trefná, “Performance Evaluation of Hyperthermia Applicators to Heat Deep-Seated Brain Tumors,” IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, vol. 2, no. 1, pp. 18–24, 2018.spa
dc.relation.referencesJ. Ferlay, M. Ervik, F. Lam, M. Colombet, L. Mery, M. Piñeros, A. Znaor, I. Soerjomataram, and F. Bray, “Global cancer observatory: Cancer today,” International Agency for Research on Cancer, Lyon, France, 2020. [Online]. Available: https://gco.iarc.fr/todayspa
dc.relation.referencesA. Chichel, J. Skowronek, M. Kubaszewska, and M. Kanikowski, “Hyperthermia – description of a method and a review of clinical applications,” Reports of Practical Oncology & Radiotherapy, vol. 12, no. 5, pp. 267–275, 2007. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S150713671060065Xspa
dc.relation.referencesP. T. Nguyen, A. Abbosh, and S. Crozier, “Three-Dimensional Microwave Hyperthermia for Breast Cancer Treatment in a Realistic Environment Using Particle Swarm Optimization,” IEEE Transactions on Biomedical Engineering, vol. 64, no. 6, pp. 1335–1344, 2017.spa
dc.relation.referencesH. F. Guarnizo Mendez, M. A. Polochè Arango, J. J. Pantoja Acosta, J. F. Coronel Rico, and J. S. Amaya Opayome, “Hyperthermia study in breast cancer treatment using three applicators,” in Applied Computer Sciences in Engineering, J. C. Figueroa-García, M. Duarte-González, S. Jaramillo-Isaza, A. D. Orjuela-Cañon, and Y. Díaz-Gutierrez, Eds. Cham: Springer International Publishing, 2019, pp. 416–427.spa
dc.relation.referencesW. C. Choi, S. Lim, and Y. J. Yoon, “Design of Noninvasive Hyperthermia System Using Transmit-Array Lens Antenna Configuration,” IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 857–860, 2016.spa
dc.relation.referencesK. T. Karathanasis, I. A. Gouzouasis, I. S. Karanasiou, and N. K. Uzunoglu, “Experi mental Study of a Hybrid Microwave Radiometry—Hyperthermia Apparatus With the Use of an Anatomical Head Phantom,” IEEE Transactions on Information Technology in Biomedicine, vol. 16, no. 2, pp. 241–247, 2012.spa
dc.relation.references"IEEE Standard for Validation of Computational Electromagnetics Computer Modeling and Simulations,” IEEE Std 1597.1-2022 (Revision of IEEE Std 1597.1-2008), pp. 1–52, 2022spa
dc.relation.referencesX.-Q. Sheng and W. Song, Finite-Difference Time-Domain Method, 2012, pp. 207–241.spa
dc.relation.references“IEEE Recommended Practice for Measurements and Computations of Electric, Magnetic, and Electromagnetic Fields with Respect to Human Exposure to Such Fields, 0 Hz to 300 GHz,” IEEE Std C95.3-2021 (Revision of IEEE Std C95.3-2002 and IEEE Std C95.3.1-2010), pp. 1–240, 2021.spa
dc.relation.referencesSim4Life por ZMT. [Online]. Available: https://zmt.swiss/spa
dc.relation.referencesCST Studio Suite por 3DS. [Online]. Available: https://www.3ds.com/spa
dc.relation.referencesSEMCAD X por SPEAG. [Online]. Available: https://speag.swiss/spa
dc.relation.referencesXFDTD por REMCOM. [Online]. Available: https://www.remcom.com/spa
dc.relation.referencesK. Yee, “Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media,” IEEE Transactions on Antennas and Propagation, vol. 14, no. 3, pp. 302–307, 1966.spa
dc.relation.referencesX.-Q. Sheng and W. Song, Mathematical Formulations for Electromagnetic Fields, 2012, pp. 1–28.spa
dc.relation.referencesP. A. Hasgall, F. Di Gennaro, C. Baumgartner, E. Neufeld, B. Lloyd, M. C. Gosselin, D. Payne, A. Klingenb¨ock, and N. Kuster, “IT’IS Database for thermal and electromagnetic parameters of biological tissues,” 2022. [Online]. Available: itis.swiss/databasespa
dc.relation.referencesA. Peyman and C. Gabriel, “Dielectric properties of porcine glands, gonads and body fluids,” Physics in Medicine Biology, vol. 57, no. 19, p. N339, sep 2012. [Online]. Available: https://dx.doi.org/10.1088/0031-9155/57/19/N339spa
dc.relation.referencesS. Gabriel, R. W. Lau, and C. Gabriel, “The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues,” Physics in Medicine Biology, vol. 41, no. 11, p. 2271, nov 1996. [Online]. Available: https://dx.doi.org/10.1088/0031-9155/41/11/003spa
dc.relation.referencesG. Hartsgrove, A. Kraszewski, and A. Surowiec, “Simulated Biological Materials for Electromagnetic Radiation Absorption Studies,” Bioelectromagnetics, vol. 5, pp. 29–36, 1984.spa
dc.relation.referencesC. Chou, G. Chen, A. W. Guy, and K. H. Luk, “Formulas for Preparing Phantom Muscle Tissue at Various Radiofrequencies,” Bioelectromagnetics, vol. 5, pp. 435–441, 1984.spa
dc.relation.referencesC. Ianniello, J. A. de Zwart, Q. Duan, C. M. Deniz, L. Alon, J. S. Lee, R. Lattanzi, and R. Brown, “Synthesized tissue-equivalent dielectric phantoms using salt and polyvinylpyrrolidone solutions,” Magnetic Resonance in Medicine, vol. 81, no. 1, pp. 413–9, 2018.spa
dc.relation.referencesL. Farina, K. Sumser, G. van Rhoon, and S. Curto, “Thermal characterization of phantoms used for quality assurance of deep hyperthermia systems,” Sensors, vol. 20, 2020.spa
dc.relation.referencesB. G. Loader, A. P. Gregory, and R. Mouthaan, “Formulation and properties of liquid phantoms, 1 MHz to 10 GHz,” NPL Report, May 2018. [Online]. Available: http://eprintspublications.npl.co.uk/7946/spa
dc.relation.referencesS. Rodríguez, A. Gallego, E. Pineda, J. Vargas, M. Perez, F. Román, and J. Araque, “Low-cost Setup for Electromagnetic SAR Evaluation in a Human Phantom,” in 2022 16th European Conference on Antennas and Propagation (EuCAP), 2022, pp. 1–5.spa
dc.relation.references“Señales de Radio 5G y Salud Humana en el Contexto Colombiano,” Agencia Nacional del Espectro (ANE), 2022. [Online]. Available: https: //www.ane.gov.co/Sliders/archivos/gestionConocimiento/Resultados%20proyectos% 20de%20investigaci%C%B3n/ANE%20Efectos5G%20Salud%20-%20Nov2022.pdfspa
dc.relation.referencesJ. F. González, J. L. Duque, and J. L. Araque, “Low-Cost Freehand System for Measuring the E-Field Spatial Distribution for Antenna Diagnosis in Microwaves,” in Accepted to: 2024 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (USNC-URSI), 2024.spa
dc.relation.referencesA. Gallego, E. Pineda, M. Pérez, F. Román, and J. Araque, “Low-cost system for electromagnetic SAR evaluation in a human phantom,” in 2022 IEEE USNC-URSI Radio Science Meeting (Joint with AP-S Symposium), 2022, pp. 23–24.spa
dc.relation.referencesJ. González, G. Ramírez, and J. Araque, “Isotropic Magnetic Field Probe with ICNIRP 2020 Frequency Shaping in the Band up to 400 MHz,” in 2023 17th European Conference on Antennas and Propagation (EuCAP), Florence, Italy, march 2023.spa
dc.relation.referencesOptiTrack por NaturalPoint. [Online]. Available: https://optitrack.com/spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.ddc530 - Física::537 - Electricidad y electrónicaspa
dc.subject.ddc610 - Medicina y salud::616 - Enfermedadesspa
dc.subject.ddc610 - Medicina y salud::615 - Farmacología y terapéuticaspa
dc.subject.decsMelanoma/terapiaspa
dc.subject.decsMelanoma/therapyeng
dc.subject.decsHipertermiaspa
dc.subject.decsHyperthermiaeng
dc.subject.decsEquipos y Suministros Eléctricosspa
dc.subject.decsElectrical Equipment and Supplieseng
dc.subject.proposalAplicadorspa
dc.subject.proposalFantomaspa
dc.subject.proposalHipertermiaspa
dc.subject.proposalMelanomaspa
dc.subject.proposalApplicatoreng
dc.subject.proposalPhantomeng
dc.subject.proposalHyperthermiaeng
dc.subject.proposalMelanomaeng
dc.subject.proposalSAReng
dc.subject.proposalSARspa
dc.titleSistema aplicador de campo electromagnético para el tratamiento del melanoma usando hipertermia localspa
dc.title.translatedElectromagnetic field applicator system for the treatment of melanoma using local hyperthermiaeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1121950175.2024.pdf
Tamaño:
22.96 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Electrónica

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: