Vegetación, fuego y novedad ecológica en los Andes colombianos durante el Holoceno

dc.contributor.advisorArmenteras, Dolors
dc.contributor.authorGarcía Espinoza, Ismael
dc.contributor.refereeBerrío, Juan Carlos
dc.contributor.researchgroupEcología del Paisaje y Modelación de Ecosistemasspa
dc.contributor.subjectmatterexpertFranco Gaviria, Juan Felipe
dc.contributor.subjectmatterexpertUrrego, Dunia H.
dc.date.accessioned2022-03-14T15:10:50Z
dc.date.available2022-03-14T15:10:50Z
dc.date.issued2021
dc.descriptionilustraciones, gráficas, mapas, tablasspa
dc.description.abstractUna comprensión detallada de las relaciones en el largo plazo entre los ecosistemas y su entorno es vital para estimar las respuestas de la biodiversidad ante el cambio climático. En las décadas por venir, múltiples cambios ecológicos como respuesta al aumento abrupto de la temperatura y la expansión de las actividades humanas son esperados. Sin embargo, el grado en que las variables ambientales y el fuego pueden modular los ecosistemas Altoandinos en Colombia en el largo plazo, sigue siendo una pregunta abierta. Atendiendo a ese interrogante, esta investigación tiene como objetivo estudiar el pasado de estos ecosistemas para entender mejor su presente y futuro. Para ello, busca: (i) reconstruir las dinámicas de la vegetación del Holoceno de los ecosistemas Altoandinos, (ii) evaluar la importancia de la actividad del fuego como agente de disturbio en el largo plazo y, (iii) dar una idea de la novedad ecológica de estas comunidades biológicas. Se presentan aquí datos de polen y material vegetal carbonizado organizados estratigráficamente, provenientes de la zona de transición entre el bosque Altoandino y el Páramo en el flanco oriental de la Cordillera Oriental colombiana a casi 3000 msnm. La historia de la vegetación reveló la interacción de numerosos grupos ecológicos, con transiciones de composición en 8700, 5700, 4100 y 440 AP. El páramo fue reemplazado gradualmente por el Subpáramo a partir de 8700 a. C. cuando la temperatura aumentó. Las condiciones más secas y cálidas del Holoceno Medio favorecieron fuegos más frecuentes e intensos, los cuales aumentaron drásticamente durante los últimos cuatro milenios. Como consecuencia, comunidades composicionalmente novedosas se establecieron en Monquentiva. Este cambio probablemente estuvo asociado con el inicio de la actividad moderna de ENOS, y posteriormente fue agudizado por las actividades humanas después de ca. 3800 AP. Aunque la sensibilidad climática de estos ecosistemas explicó la mayoría de los cambios regionales en la vegetación de la Cordillera Oriental colombiana, nuestro estudio dio una idea de la relevancia del fuego, la distribución heterogénea de las variables climáticas y las actividades humanas a lo largo del Holoceno. Esta nueva evidencia ayuda a dilucidar cuán sensibles han sido los ecosistemas Altoandinos a las presiones externas y la importancia del fuego como agente de disturbio en escalas temporales amplias. (Texto tomado de la fuente).spa
dc.description.abstractA detailed understanding of how environment-ecosystem feedback occurs is vital to estimating biodiversity responses under climate change scenarios where abrupt warming, increased anthropogenic activities and ecological shifts are expected. However, how environmental gradients and fire activity has changed Colombian High Andean ecosystems over the last thousands of years remains an open question. This research aims to (i) reconstruct the Holocene vegetation dynamics of High Andean ecosystems, (ii) assess the importance of fire activity as a disturbance agent and (iii) give insights into the ecological novelty of these biological communities. We present pollen and charcoal time-series data from the ecotone between High Andean Forest and Páramo on the eastern flank of the Colombian Cordillera Oriental at almost 3000 m.a.s.l. Past vegetation dynamics revealed the interplay of numerous ecological groups, with compositional transitions at 8700, 5700, 4100 and 440 BP. Páramo was gradually replaced by Subpáramo vegetation from 8700 BP when the temperature rose. Mid-Holocene drier and warmer conditions also favoured more frequent and intense fire events, which rose sharply during the last four millennia. As a consequence, compositionally novel communities were established in Monquentiva. This shift was likely associated with the onset of modern ENSO activity, which was subsequently deepened by human activities after ca. 3800 BP. Although high climatic responsiveness explained most regional changes in the Colombian High Andes, our study gave insights into the relevance of fire events, uneven climate variables distribution and human activities through the Holocene. This new evidence helped elucidate how sensitive High Andean ecosystems are to external pressures and the importance of fire as a disturbance agent over broad temporal scales.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Geografíaspa
dc.description.researchareaPaleoecologíaspa
dc.description.sponsorshipNatural Environment Research Council (NERC) y el Arts and Humanities Research Council (AHRC) bajo el programa Newton-Caldas Colombia-Bio (NE/R017980/1)spa
dc.format.extentxvi, 72 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81199
dc.language.isospaspa
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Geografíaspa
dc.publisher.facultyFacultad de Ciencias Humanasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias Humanas - Maestría en Geografíaspa
dc.relation.referencesAceituno, F. J., Loaiza, N., Delgado-Burbano, M. E., & Barrientos, G. (2013). The initial human settlement of Northwest South America during the Pleistocene/Holocene transition: Synthesis and perspectives. Quaternary International, 301, 23–33. https://doi.org/10.1016/j.quaint.2012.05.017spa
dc.relation.referencesArchibald, S., Lehmann, C. E. R., Belcher, C. M., Bond, W. J., Bradstock, R. A., Daniau, A. L., Dexter, K. G., Forrestel, E. J., Greve, M., He, T., Higgins, S. I., Hoffmann, W. A., Lamont, B. B., McGlinn, D. J., Moncrieff, G. R., Osborne, C. P., Pausas, J. G., Price, O., Ripley, B. S., … Zanne, A. E. (2018). Biological and geophysical feedbacks with fire in the Earth system. Environmental Research Letters, 13(3). https://doi.org/10.1088/1748-9326/aa9eadspa
dc.relation.referencesArchila, S., Groot, A. M., Ospina, J. P., Mejía, M., & Zorro, C. (2021). Dwelling the hill: Traces of increasing sedentism in hunter-gatherers societies at Checua site, Colombia (9500-5052 cal BP). Quaternary International, 578(18), 102–119. https://doi.org/10.1016/j.quaint.2020.07.040spa
dc.relation.referencesArmenteras, D., Schneider, L., & Dávalos, L. M. (2019). Fires in protected areas reveal unforeseen costs of Colombian peace. Nature Ecology & Evolution, 3(1), 20–23. https://doi.org/10.1038/s41559-018-0727-8spa
dc.relation.referencesArmenteras, D., Sebastian Barreto, J., Tabor, K., Molowny-Horas, R., & Retana, J. (2017). Changing patterns of fire occurrence in proximity to forest edges, roads and rivers between NW Amazonian countries. Biogeosciences, 14(11), 2755–2765. https://doi.org/10.5194/bg-14-2755-2017spa
dc.relation.referencesAvella-M, A., Torres-R, S., Gómez-A, W., & Pardo-P, M. (2014). Los páramos y bosques altoandinos del pantano de Monquentiva o pantano de Martos (Guatavita, Cundinamarca, Colombia): caracterización ecológica y estado de conservación. Biota Colombiana, 15(1), 3–39.spa
dc.relation.referencesBaker, P. A., Seltzer, G. O., Fritz, S. C., Dunbar, R., Grove, M., Tapia, P. M., Cross, S., Rowe, H., & Broda, J. (2001). The History of South American Tropical Precipitation for the Past 25,000 Years. Science, 291(5504), 640–643. https://doi.org/10.1126/science.291.5504.640spa
dc.relation.referencesBarthlott, W., Rafiqpoor, D., Kier, G., & Kreft, H. (2005). Global Centers of Vascular Plant Diversity. Nova Acta Leopoldina, 92(342), 61–83.spa
dc.relation.referencesBennett, K. D., & Willis, K. J. (2001). Pollen. In J. P. Smol, H. J. B. Birks, & W. M. Last (Eds.), Tracking Environmental Change Using Lake Sediments. Volume 3: Terrestrial, Algal, and Siliceous Indicators. (Vol. 3, pp. 5–32). Kluwer Academic Publishers.spa
dc.relation.referencesBernal, R., Gradstein, S. R., & Celis, M. (2015). Catálogo de plantas y líquenes de Colombia. http://catalogoplantasdecolombia.unal.edu.co/en/spa
dc.relation.referencesBerrío, J. C., Hooghiemstra, H., Marchant, R., & Rangel, O. (2002). Late-glacial and Holocene history of the dry forest area in the south. Journal of Quaternary Science, 17(7), 667–682. https://doi.org/10.1002/jqs.701spa
dc.relation.referencesBird, B. W., Rudloff, O., Escobar, J., Gilhooly, W. P., Correa-Metrio, A., Vélez, M., & Polissar, P. J. (2017). Paleoclimate support for a persistent dry island effect in the Colombian Andes during the last 4700 years. The Holocene, 28(2), 217–228. https://doi.org/10.1177/0959683617721324spa
dc.relation.referencesBirks, H. J. B., & Birks, H. H. (1980). Quaternary Palaeoecology. The Blackburn Press.spa
dc.relation.referencesBlaauw, M. (2010). Methods and code for “classical” age-modelling of radiocarbon sequences. Quaternary Geochronology, 5(5), 512–518. https://doi.org/10.1016/j.quageo.2010.01.002spa
dc.relation.referencesBlaauw, M., & Christeny, J. A. (2011). Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis, 6(3), 457–474. https://doi.org/10.1214/11-BA618spa
dc.relation.referencesBlaauw, M., & Christeny, J. A. (2011). Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis, 6(3), 457–474. https://doi.org/10.1214/11-BA618spa
dc.relation.referencesBogotá-A, R. G., Groot, M. H. M., Hooghiemstra, H., Lourens, L. J., Linden, M. Van Der, & Berrio, J. C. (2011). Rapid climate change from north Andean Lake Fúquene pollen records driven by obliquity : implications for a basin-wide biostratigraphic zonation for the last 284 ka. Quaternary Science Reviews, 30(23–24), 3321–3337. https://doi.org/10.1016/j.quascirev.2011.08.003spa
dc.relation.referencesBond, W. J., & Keeley, J. E. (2005). Fire as a global ‘ herbivore ’: the ecology and evolution of flammable ecosystems. 20(7). https://doi.org/10.1016/j.tree.2005.04.025spa
dc.relation.referencesBoom, A., Marchant, R., Hooghiemstra, H., & Sinninghe Damsté, J. S. (2002). CO2- and temperature-controlled altitudinal shifts of C4- and C3-dominated grasslands allow reconstruction of palaeoatmospheric pCO2. Palaeogeography, Palaeoclimatology, Palaeoecology, 177(1–2), 151–168. https://doi.org/10.1016/S0031-0182(01)00357-1spa
dc.relation.referencesBush, M. B. (2002). Distributional change and conservation on the Andean flank: A palaeoecological perspective. Global Ecology and Biogeography, 11(6), 463–473. https://doi.org/10.1046/j.1466-822X.2002.00305.xspa
dc.relation.referencesCAR. (2007). Elaboración del Diagnostico, Prospectiva y Formulación Cuenca Hidrográfica del Río Gacheta Subcuenca Río Monquentiva.spa
dc.relation.referencesCAR. (2011). Estudios básicos para establecer la factibilidad de declarar el Páramo de Monquentiva (Municipio de Guatavita) como nueva área natural protegida.spa
dc.relation.referencesCardale, M. (1987). En busca de los primeros agricultores del altiplano cundiboyacense. Maguaré, 5, 6.spa
dc.relation.referencesCincotta, R. P., Wisnewski, J., & Engelman, R. (2000). Human population in the biodiversity hotspots. Nature, 404(6781), 990–992. https://doi.org/10.1038/35010105spa
dc.relation.referencesClark, J. S. (1988). Particle motion and the theory of charcoal analysis: Source area, transport, deposition, and sampling. Quaternary Research, 30(1), 67–80. https://doi.org/10.1016/0033-5894(88)90088-9spa
dc.relation.referencesClark, J. S., & Hussey, T. C. (1996). Estimating the mass flux of charcoal from sedimentary records: Effects of particle size, morphology, and orientation. Holocene, 6(2), 129–144. https://doi.org/10.1177/095968369600600201spa
dc.relation.referencesClark, J. S., Lynch, J., Stocks, B. J., & Goldammer, J. G. (1998). Relationships between charcoal particles in air and sediments in west-central Siberia. Holocene, 8(1), 19–29. https://doi.org/10.1191/095968398672501165spa
dc.relation.referencesColinvaux, P., De Oliveira, P. E., & Moreno, E. (1999). Amazon Pollen manual and Atlas (1er ed.). Harwood Academic Publishers.spa
dc.relation.referencesCONDESAN. (2012). 20 years of sustainable mountain development in the Andes - from Rio 1992 to 2012 and beyond- (C. Devenish & C. Gianella (Eds.)). http://www.mountainpartnership.org/publications/publication-detail/en/c/170308/spa
dc.relation.referencesCorrea-Metrio, A., Dechnik, Y., Lozano-García, S., & Caballero, M. (2014). Detrended correspondence analysis: A useful tool to quantify ecological changes from fossil data sets. Boletin de La Sociedad Geologica Mexicana, 66(1), 135–143. https://doi.org/10.18268/BSGM2014v66n1a10spa
dc.relation.referencesCorreal, G. (1989). Aguazuque: evidencias de cazadores, recolectores y plantadores en la altiplanicie de la Cordillera Oriental. Fundacion de Investigaciones Arqueologicas Nacionales. Banco de La República., 271.spa
dc.relation.referencesCorreal, G., van der Hammen, T., & Hurt, W. (1976). La ecología y tecnología de los abrigos rocosos en El Abra, Sabana de Bogotá, Colombia. Boletín de La Sociedad Geográfica Colombiana, XXX(109), 76–99.spa
dc.relation.referencesCorreal, G., van der Hammen, T., & Hurt, W. (1976). La ecología y tecnología de los abrigos rocosos en El Abra, Sabana de Bogotá, Colombia. Boletín de La Sociedad Geográfica Colombiana, XXX(109), 76–99.spa
dc.relation.referencesCorredor, V. E., & Terraza, R. (2015). Geología de la Plancha 228 Bogotá Noreste. In Memoria técnica.spa
dc.relation.referencesCronk, J. K., & Fennessy, M. S. (2001). Wetland Plants: Biology and Ecology. In Delta (1st ed.). CRC Pressspa
dc.relation.referencesCuatrecasas, J. (1958). Aspectos de la vegetación natural de Colombia. Parte I. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 40, 221–264. https://doi.org/10.18257/raccefyn.570spa
dc.relation.referencesDelcourt, H. R., Delcourt, P. A., & Webb III, T. (1983). Dynamic Plant Ecology: The Spectrum of Vegetational Change in Space and Time. Quaternary Science Reviews, 1, 153–175.spa
dc.relation.referencesDelgado, M. (2012). Mid and Late Holocene population changes at the Sabana de Bogotá (Northern South America) inferred from skeletal morphology and radiocarbon chronology. Quaternary International, 256, 2–11. https://doi.org/10.1016/j.quaint.2011.10.035spa
dc.relation.referencesDelgado, M. (2018). Stable isotope evidence for dietary and cultural change over the Holocene at the Sabana de Bogotá region, Northern South America. Archaeological and Anthropological Sciences, 10(4), 817–832. https://doi.org/10.1007/s12520-016-0403-3spa
dc.relation.referencesEtter, Andres, McAlpine, C., & Possingham, H. (2008). Historical Patterns and Drivers of Landscape Change in Colombia Since 1500: A Regionalized Spatial Approach. Annals of the Association of American Geographers, 98(1), 2–23. https://doi.org/10.1080/00045600701733911spa
dc.relation.referencesEtter, Andrés, & van Wyngaarden, W. (2000). Patterns of Landscape Transformation in Colombia, with Emphasis in the Andean Region. AMBIO: A Journal of the Human Environment, 29(7), 432–439. https://doi.org/10.1579/0044-7447-29.7.432spa
dc.relation.referencesFaegri, K., & Iversen, J. (1964). Textbook of Pollen Analysis (Segunda Ed). Hafner Publishing Cospa
dc.relation.referencesFlantua, S. G. A., O’Dea, A., Onstein, R. E., Giraldo, C., & Hooghiemstra, H. (2019). The flickering connectivity system of the north Andean páramos. Journal of Biogeography, 46(8), 1808–1825. https://doi.org/10.1111/jbi.13607spa
dc.relation.referencesGagan, M. K., Hendy, E. J., Haberle, S. G., & Hantoro, W. S. (2004). Post-glacial evolution of the Indo-Pacific Warm Pool and El Niño-Southern oscillation. Quaternary International, 118–119, 127–143. https://doi.org/10.1016/S1040-6182(03)00134-4spa
dc.relation.referencesGardner, J. J., & Whitlock, C. (2001). Charcoal accumulation following a recent fire in the Cascade Range, northwestern USA, and its relevance for fire-history studies. Holocene, 11(5), 541–549. https://doi.org/10.1191/095968301680223495spa
dc.relation.referencesGedye, S. J., Jones, R. T., Tinner, W., Ammann, B., & Oldfield, F. (2000). The use of mineral magnetism in the reconstruction of fire history: A case study from Lago di Origlio, Swiss Alps. Palaeogeography, Palaeoclimatology, Palaeoecology, 164(1–4), 101–110. https://doi.org/10.1016/S0031-0182(00)00178-4spa
dc.relation.referencesGentry, A. H. (1992). Tropical Forest Biodiversity: Distributional Patterns and Their Conservational Significance. Oikos, 63(1), 19. https://doi.org/10.2307/3545512spa
dc.relation.referencesGnecco, C. (2003). Against ecological reductionism: Late Pleistocene hunter-gatherers in the tropical forests of northern South America. Quaternary International, 109–110, 13–21. https://doi.org/10.1016/S1040-6182(02)00199-4spa
dc.relation.referencesGnecco, C., & Mora, S. (1997). Late Pleistocene/early Holocene tropical forest occupations at San Isidro and Peña Roja, Colombia. Antiquity, 71(273), 683–690. https://doi.org/10.1017/S0003598X00085409spa
dc.relation.referencesGómez, A., Berrío, J. C., Hooghiemstra, H., Becerra, M., & Marchant, R. (2007). A Holocene pollen record of vegetation change and human impact from Pantano de Vargas, an intra-Andean basin of Duitama, Colombia. Review of Palaeobotany and Palynology, 145(1–2), 143–157. https://doi.org/10.1016/j.revpalbo.2006.10.002spa
dc.relation.referencesGomez, B., Carter, L., Trustrum, N. A., Palmer, A. S., & Roberts, A. P. (2004). El Nino-Southern Oscillation signal associated with middle Holocene climate change in intercorrelated terrestrial and marine sediment cores, North Island, New Zealand. Geology, 32(8), 653–656. https://doi.org/10.1130/G20720.1spa
dc.relation.referencesGonzález-Carranza, Z., Hooghiemstra, H., & Vélez, M. I. (2012). Major altitudinal shifts in Andean vegetation on the Amazonian flank show temporary loss of biota in the Holocene. Holocene, 22(11), 1227–1241. https://doi.org/10.1177/0959683612451183spa
dc.relation.referencesGornitz, V. (Ed.). (2008). Encyclopedia of paleoclimatology and Ancient Environments. Springerspa
dc.relation.referencesGrimm, E. C. (1987). CONISS : A FORTRAN 77 PROGRAM FOR STRATIGRAPHICALLY CONSTRAINED CLUSTER ANALYSIS BY THE METHOD OF INCREMENTAL SUM OF SQUARES *. Computers & Geosciences, 13(I), 13–35. https://doi.org/10.1016/0098-3004(87)90022-7spa
dc.relation.referencesGroot, M. H. M., Bogotá, R. G., Lourens, L. J., Hooghiemstra, H., Vriend, M., Berrio, J. C., Tuenter, E., Van Der Plicht, J., Van Geel, B., Ziegler, M., Weber, S. L., Betancourt, A., Contreras, L., Gaviria, S., Giraldo, C., González, N., Jansen, J. H. F., Konert, M., Ortega, D., … Westerhoff, W. (2011). Ultra-high resolution pollen record from the northern Andes reveals rapid shifts in montane climates within the last two glacial cycles. Climate of the Past, 7(1), 299–316. https://doi.org/10.5194/cp-7-299-2011spa
dc.relation.referencesHagemans, K., Nooren, K., de Haas, T., Córdova, M., Hennekam, R., Stekelenburg, M. C. A., Rodbell, D. T., Middelkoop, H., & Donders, T. H. (2021). Patterns of alluvial deposition in Andean lake consistent with ENSO trigger. Quaternary Science Reviews, 259. https://doi.org/10.1016/j.quascirev.2021.106900spa
dc.relation.referencesHagemans, K., Tóth, C. D., Ormaza, M., Gosling, W. D., Urrego, D. H., León-Yánez, S., Wagner-Cremer, F., & Donders, T. H. (2019). Modern pollen-vegetation relationships along a steep temperature gradient in the tropical andes of Ecuador. Quaternary Research (United States), 92(1), 1–13. https://doi.org/10.1017/qua.2019.4spa
dc.relation.referencesHaug, G. H., Hughen, K. A., Sigman, D. M., Peterson, L. C., & Röhl, U. (2001). Southward migration of the intertropical convergence zone through the holocene. Science, 293(5533), 1304–1308. https://doi.org/10.1126/science.1059725spa
dc.relation.referencesHill, M. O., & Gauch, H. G. J. (1980). Detrended Correspondence Analysis : An Improved Ordination Technique. Vegetatio, 42(1), 47–58. https://doi.org/10.2307/20145789spa
dc.relation.referencesHooghiemstra, H. (2006). Immigration of Oak into Northern South America: a Paleo-Ecological Document. In Ecology and Conservation of Neotropical Montane Oak Forests (Vol. 185, pp. 17–28). https://doi.org/10.1007/3-540-28909-7_2spa
dc.relation.referencesHooghiemstra, Henry. (1984). Vegetation and climatic history of the High Plain of Bogotá: A continuous record of the last 3.5 million years (J. Cramer Vaduz (Ed.)). Dissertationes Botanicae, Vol. 79.spa
dc.relation.referencesHooghiemstra, Henry, & Flantua, S. G. A. (2019). Colombia in the Quaternary: An Overview of Environmental and Climatic Change. 4(September).spa
dc.relation.referencesHooghiemstra, Henry, & van der Hammen, T. (1993). Late quaternary vegetation history and paleoecology of Laguna Pedro Palo (subandean forest belt, Eastern Cordillera, Colombia). Review of Palaeobotany and Palynology, 77(3–4), 235–262. https://doi.org/10.1016/0034-6667(93)90006-Gspa
dc.relation.referencesHoorn, C., Wesselingh, F. P., ter Steege, H., Bermudez, M. A., Mora, A., Sevink, J., Sanmartín, I., Sanchez-Meseguer, A., Anderson, C. L., Figueiredo, J. P., Jaramillo, C., Riff, D., Negri, F. R., Hooghiemstra, H., Lundberg, J., Stadler, T., Särkinen, T., & Antonelli, A. (2010). Amazonia Through Time : Andean Uplift, Climate Change, Landscape Evolution, and Biodiversity. Science, 330(November), 927–931.spa
dc.relation.referencesHorn, S. P., & Kappelle, M. (2009). Fire in the páramo ecosystems of Central and South America. In Tropical Fire Ecology (1st ed., Issue January, pp. 505–539). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-77381-8_18spa
dc.relation.referencesIAvH. (2012). Informe técnico de avance. In Formulación de un sistema de monitoreo participativo del Pantano de Martos.spa
dc.relation.referencesIglesias, V., Yospin, G. I., & Whitlock, C. (2015). Reconstruction of fire regimes through integrated Paleoecological proxy data and ecological modeling. Frontiers in Plant Science, 5(JAN), 1–12. https://doi.org/10.3389/fpls.2014.00785spa
dc.relation.referencesMartin, G. (2005). The Age of Exploration. In All possible Worlds (Fourth, p. 537). Oxford University Pressspa
dc.relation.referencesJosse, C., Cuesta, F., Barrena, V., Cabrera, E., Chacón-Moreno, E., Ferreira, W., Peralvo, M., Saito, J., & Tovar, A. (2009). Ecosistemas de los del Norte y Andes Centro. Bolivia, Colombia, Ecuador, Perú y Venezuela. Secretaría General de la Comunidad Andina, Programa Regional ECOBONA-Intercooperation, CONDESAN-Proyecto Páramo Andino, Programa BioAndes, EcoCiencia, NatureServe, IAvH, LTA-UNALM,ICAE-ULA, CDC-UNALM, RUMBOL SRL.spa
dc.relation.referencesJuggins, S. (2007). C2 user guide: Software for ecological and palaeoecological data analysis and visualization. University of Newcastle, Newcastle upon Tyne, UK, 1–73. http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:C2+Software+for+ecological+and+palaeoecological+data+analysis+and+visualisation#0spa
dc.relation.referencesKershaw, A. (1997). A modification of the Troels-Smith system of sediment description and portrayal. Quaternary Australasia, 15(2), 63–68. http://giantsstudio.com/aqua1/wp-content/uploads/2012/06/QA_Vol-15_No-2_1997.pdf#page=66spa
dc.relation.referencesKrassilov, V. a. (2003). Terrestrial Paleoecology and Global Ghange. Pensoftspa
dc.relation.referencesKrukowski, S. T. (1988). Sodium metatungstate: a new heavy-mineral separation medium for the extraction of conodonts from insoluble residues. Journal of Paleontology, 62(2), 314–316. https://doi.org/10.1017/S0022336000030018spa
dc.relation.referencesKuhry, P., Hooghiemstra, H., van Geel, B., & van der Hammen, T. (1993). The El Abra stadlal in the Eastern Cordillera of Colombia (South America). Quaternary Science Reviews, 12(5), 333–343. https://doi.org/10.1016/0277-3791(93)90041-Jspa
dc.relation.referencesLangebaek, C. H. (2019). Los Muiscas: la historia milenaria de un pueblo chibcha (Primera). Penguin Random House Grupo Editorial S.A.S.spa
dc.relation.referencesLast, W. M., & Smol, J. P. (2002). Tracking Environmental Change Using Lake Sediments Volume 1: Basin Analysis, Coring, and Chronological Techniques. In Developments in Paleoenvironmental Research (Vol. 1). Kluwer Academic Publishers. https://doi.org/10.1007/978-1-4020-5725-0_3spa
dc.relation.referencesMaher, B. A. (1998). Magnetic properties of modern soils and quaternary loessic paleosols: Paleoclimatic implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 137(1–2), 25–54. https://doi.org/10.1016/S0031-0182(97)00103-Xspa
dc.relation.referencesMaher, B. A., & Thompson, R. (Eds.). (1999). Quaternary Climates, Environments and Magnetism. Cambridge University Press. http://dx.doi.org/10.1016/j.jsames.2011.03.003spa
dc.relation.referencesMarchant, R., Behling, H., Berrio, J. C., Cleef, A., Duivenvoorden, J., Hooghiemstra, H., Kuhry, P., Melief, B., Geel, B. Van, Hammen, T. Van der, Reenen, G. Van, & Wille, M. (2001). Mid- to Late-Holocene pollen-based biome reconstructions for Colombia. Quaternary Science Reviews, 20(12), 1289–1308. https://doi.org/10.1016/S0277-3791(00)00182-7spa
dc.relation.referencesMarkgraf, V. (1980). Pollen dispersal in a mountain area. Grana, 19(2), 127–146. https://doi.org/10.1080/00173138009424995spa
dc.relation.referencesMarkgraf, V. (1993). Younger Dryas in southernmost south America — An update. Quaternary Science Reviews, 12(5), 351–355. https://doi.org/10.1016/0277-3791(93)90043-Lspa
dc.relation.referencesMartin, L., Bertaux, J., Corrège, T., Ledru, M. P., Mourguiart, P., Sifeddine, A., Soubiès, F., Wirrmann, D., Suguio, K., & Turcq, B. (1997). Astronomical forcing of contrasting rainfall changes in tropical South America between 12,400 and 8800 cal yr B.P. Quaternary Research, 47(1), 117–122. https://doi.org/10.1006/qres.1996.1866spa
dc.relation.referencesMillspaugh, S. H., & Whitlock, C. (1995). A 750-year fire history based on lake sediment records in central Yellowstone National Park, USA. Holocene, 5(3), 283–292. https://doi.org/10.1177/095968369500500303spa
dc.relation.referencesMoore, P. D. (1989). The ecology of peat-forming processes: a review. International Journal of Coal Geology, 12, 89–103.spa
dc.relation.referencesMora, A., Parra, M., Strecker, M. R., Sobel, E. R., Hooghiemstra, H., Torres, V., & Jaramillo, J. V. (2008). Climatic forcing of asymmetric orogenic evolution in the Eastern Cordillera of Colombia. Bulletin of the Geological Society of America, 120(7–8), 930–949. https://doi.org/10.1130/B26186.1spa
dc.relation.referencesMoy, C. M., Seltzer, G. O., Rodbell, D. T., & Anderson, D. M. (2002). Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch. Nature, 420(6912), 162–165. https://doi.org/10.1038/nature01194spa
dc.relation.referencesMuñoz, P., Gorin, G., Parra, N., Velásquez, C., Lemus, D., Monsalve, M. C., & Jojoa, M. (2017). Holocene climatic variations in the Western Cordillera of Colombia: A multiproxy high-resolution record unravels the dual influence of ENSO and ITCZ. Quaternary Science Reviews, 155, 159–178. https://doi.org/10.1016/j.quascirev.2016.11.021spa
dc.relation.referencesMustaphi, C. J. C., & Pisaric, M. F. J. (2014). A classification for macroscopic charcoal morphologies found in Holocene lacustrine sediments. Progress in Physical Geography, 38(6), 734–754. https://doi.org/10.1177/0309133314548886spa
dc.relation.referencesMyers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403(6772), 853–858. https://doi.org/10.1038/35002501spa
dc.relation.referencesOhlson, M., & Tryterud, E. (2000). Interpretation of the charcoal record in forest soils: Forest fires and their production and deposition of macroscopic charcoal. Holocene, 10(4), 519–525. https://doi.org/10.1191/095968300667442551spa
dc.relation.referencesOlivera-Moscol, M., Duivenvoorden, J. F., & Hooghiemstra, H. (2009). Pollen rain and pollen representation across a forest-páramo ecotone in northern Ecuador. Review of Palaeobotany and Palynology, 157(3–4), 285–300. https://doi.org/10.1016/j.revpalbo.2009.05.008spa
dc.relation.referencesPabón, J. D., Eslava, J. A., & Gómez, R. E. (2001). Generalidades de la distribución espacial y temporal de la temperatura del aire y de la precipitación en Colombia. Meteorología Colombiana, 4, 47–59.spa
dc.relation.referencesPausas, J. G., & Keeley, J. E. (2009). A Burning Story: The Role of Fire in the History of Life. BioScience, 59(7), 593–601. https://doi.org/10.1525/bio.2009.59.7.10spa
dc.relation.referencesPoveda, G., Mesa, O. J., Salazar, L. F., Arias, P. A., Moreno, H. A., Vieira, S. C., Agudelo, P. A., Toro, V. G., & Alvarez, J. F. (2005). The Diurnal Cycle of Precipitation in the Tropical Andes of Colombia. Monthly Weather Review, 133(1), 228–240. https://doi.org/10.1175/MWR-2853.1spa
dc.relation.referencesPoveda, G., Waylen, P. R., & Pulwarty, R. S. (2006). Annual and inter-annual variability of the present climate in northern South America and southern Mesoamerica. Palaeogeography, Palaeoclimatology, Palaeoecology, 234(1), 3–27. https://doi.org/10.1016/j.palaeo.2005.10.031spa
dc.relation.referencesPower, M. J., Bush, M., Behling, H., Horn, S., Mayle, F., & Urrego, D. (2010). Paleofire activity in tropical America during the last 21 ka: A regional synthesis based on sedimentary charcoal. PAGES News, 18(2), 73–75. https://doi.org/10.22498/pages.18.2.73spa
dc.relation.referencesPrentice, C. (1988). Records of vegetation in time and space: the principles of pollen analysis. In B. Huntley & T. I. Webb (Eds.), Vegetation history (pp. 17–42). Kluwer Academic Publishers. https://doi.org/10.1007/978-94-009-3081-0_2spa
dc.relation.referencesR Core Team. (2020). A Language and Environment for Statistical Computing (4.0.0; p. https://www.R-project.org). R Statistical Foundation for Statistical Computing. http://www.r-project.orgspa
dc.relation.referencesRafter, T. A., & Fergusson, G. J. (1957). “Atom bomb effect” - Recent increase of carbon-14 content of the atmosphere and biosphere. Science, 126(3273), 557–558. https://doi.org/10.1126/science.126.3273.557spa
dc.relation.referencesRamsay, P. M. (2014). Giant rosette plant morphology as an indicator of recent fire history in Andean páramo grasslands. Ecological Indicators, 45, 37–44. https://doi.org/10.1016/j.ecolind.2014.03.003spa
dc.relation.referencesRangel-Ch., J. O. (2015). La biodiversidad de Colombia: significado y distribución regional. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 39(51), 176. https://doi.org/10.18257/raccefyn.136spa
dc.relation.referencesRangel-Ch, J. O., Lowy-C, P. D., & Aguilar-P, M. (1997). Distribucion de los tipos de Vegetación en las regiones. In Colombia Diversidad Biotica II Tipos de vegetación en Colombia: Vol. II (1st ed., pp. 383–402). Instituto de Ciencias Naturales, Universidad Nacional de Colombia.spa
dc.relation.referencesRangel-Ch, O. (2000). La región paramuna y franja aledaña en Colombia. In O. Rangel-Ch (Ed.), Colombia Diversidad Biótica III. La región de vida paramuna (pp. 1–23).spa
dc.relation.referencesReimer, P. J., Austin, W. E. N., Bard, E., Bayliss, A., Blackwell, P. G., Bronk Ramsey, C., Butzin, M., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G., Hughen, K. A., Kromer, B., Manning, S. W., Muscheler, R., … Talamo, S. (2020). The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0-55 cal kBP). Radiocarbon, 62(4), 725–757. https://doi.org/10.1017/RDC.2020.41spa
dc.relation.referencesRodríguez Eraso, N., Armenteras-Pascual, D., & Alumbreros, J. R. (2013). Land use and land cover change in the Colombian Andes: dynamics and future scenarios. Journal of Land Use Science, 8(2), 154–174. https://doi.org/10.1080/1747423X.2011.650228spa
dc.relation.referencesRosenbaum, J. G., Reynolds, R. L., Adam, D. P., Drexler, J., Sarna-Wojcicki, A. M., & Whitney, G. C. (1996). Record of middle Pleistocene climate change from Buck Lake, Cascade Range, southern Oregon - Evidence from sediment magnetism, trace-element geochemistry, and pollen. Bulletin of the Geological Society of America, 108(10), 1328–1341. https://doi.org/10.1130/0016-7606(1996)108<1328:ROMPCC>2.3.CO;2spa
dc.relation.referencesRothhammer, F., & Dillehay, T. D. (2009). The late pleistocene colonization of South America: An interdisciplinary perspective. Annals of Human Genetics, 73(5), 540–549. https://doi.org/10.1111/j.1469-1809.2009.00537.xspa
dc.relation.referencesSalazar, N., Meza, M. C., Espelta, J. M., & Armenteras, D. (2020). Post-fire responses of Quercus humboldtii mediated by some functional traits in the forests of the tropical Andes. Global Ecology and Conservation, 22(March), e01021. https://doi.org/10.1016/j.gecco.2020.e01021spa
dc.relation.referencesSandgren, P., & Snowball, I. (2001). Application of Mineral Magnetic Techniques to Paleolimnology. In Tracking Environmental Change Using Lake Sediments. Volume 2: Physical and Geochemical Methods (Vol. 2, pp. 217–237). Kluwer Academic Publishers. https://doi.org/10.1007/0-306-47670-3_8spa
dc.relation.referencesSarmiento, G., Gaviria, S., Hooghiemstra, H., Berrio, J. C., & Van der Hammen, T. (2008). Landscape evolution and origin of Lake Fúquene ( Colombia): Tectonics , erosion and sedimentation processes during the Pleistocene. Geomorphology, 100(3–4), 563–575. https://doi.org/10.1016/j.geomorph.2008.02.006spa
dc.relation.referencesSaylor, J. E., Mora, A., Horton, B. K., & Nie, J. (2009). Controls on the isotopic composition of surface water and precipitation in the Northern Andes, Colombian Eastern Cordillera. Geochimica et Cosmochimica Acta, 73(23), 6999–7018. https://doi.org/10.1016/j.gca.2009.08.030spa
dc.relation.referencesScheffer, M., Carpenter, S., Foley, J. A., Folke, C., & Walker, B. (2001). Catastrophic shifts in ecosystems. Nature, 413(6856), 591–596. https://doi.org/10.1038/35098000spa
dc.relation.referencesSeddon, A. W. R., Mackay, A. W., Baker, A. G., Birks, H. J. B., Breman, E., Buck, C. E., Ellis, E. C., Froyd, C. A., Gill, J. L., Gillson, L., Johnson, E. A., Jones, V. J., Juggins, S., Macias-Fauria, M., Mills, K., Morris, J. L., Nogués-Bravo, D., Punyasena, S. W., Roland, T. P., … Witkowski, A. (2014). Looking forward through the past: Identification of 50 priority research questions in palaeoecology. Journal of Ecology, 102(1), 256–267. https://doi.org/10.1111/1365-2745.12195spa
dc.relation.referencesSeppä, H. (2013). Pollen Analysis, Principles. In Encyclopedia of Quaternary Science: Second Edition (2nd ed., Issue December 2013). Elsevier B.V. https://doi.org/10.1016/B978-0-444-53643-3.00171-0spa
dc.relation.referencesSmol, J., Birks, J., & Last, W. (Eds.). (2002). Tracking environmental change using lake sediments. Volume 3. Terrestrial, Algal and Siliceous Indicators. Kluwer Academic Publishers.spa
dc.relation.referencesStuiver, M., & Quay, Pa. D. (1980). Changes in Atmospheric Carbon-14 Attributed to a Variable Sun. Science, 207(4426), 11–19.spa
dc.relation.referencesTaylor, Z., Horn, S., & Finkelstein, D. (2013). Maize pollen concentrations in Neotropical lake sediments as an indicator of the scale of prehistoric agriculture. The Holocene, 23(1), 78–84. https://doi.org/10.1177/0959683612450201spa
dc.relation.referencesThompson, L. G., Davis, M. E., E., M.-T., Sowers, T. A., Henderson, K. A., Zagorodnov, V. S., Lin, P. N., Mikhalenko, V. N., Campen, R. K., Bolzan, J. F., Cole-Dai, J., & Francou, B. (1998). A 25,000-Year Tropical Climate History from Bolivian Ice Cores. Science, 282(5395), 1858–1864. https://doi.org/10.1126/science.282.5395.1858spa
dc.relation.referencesThompson, L. G., Mosley-Thompson, E., Davis, M. E., Lin, P.-N., Henderson, K. A., Cole-Dai, J., Bolzan, J. F., & Liu, K. -b. (1995). Late Glacial Stage and Holocene Tropical Ice Core Records from Huascaran, Peru. Science, 269(5220), 46–50. https://doi.org/10.1126/science.269.5220.46spa
dc.relation.referencesThompson, R., & Oldfield, F. (1986). Environmental magnetism. Allen & Unwin Ltd.spa
dc.relation.referencesTorres, V., Vandenberghe, J., & Hooghiemstra, H. (2005). An environmental reconstruction of the sediment infill of the Bogotá basin (Colombia) during the last 3 million years from abiotic and biotic proxies. Palaeogeography, Palaeoclimatology, Palaeoecology, 226(1–2), 127–148. https://doi.org/10.1016/j.palaeo.2005.05.005spa
dc.relation.referencesToth, L. T., Aronson, R. B., Vollmer, S. V., Hobbs, J. W., Urrego, D. H., Cheng, H., Enochs, I. C., Combosch, D. J., Van Woesik, R., & Macintyre, I. G. (2012). ENSO drove 2500-year collapse of Eastern Pacific coral reefs. Science, 336(6090), 81–84. https://doi.org/10.1126/science.1221168spa
dc.relation.referencesTraverse, A. (2007). Paleopalynology.spa
dc.relation.referencesUrrego, D. H., Bush, M. B., & Silman, M. R. (2010). A long history of cloud and forest migration from Lake Consuelo, Peru. Quaternary Research, 73(2), 364–373. https://doi.org/10.1016/j.yqres.2009.10.005spa
dc.relation.referencesUrrego, D. H., Hooghiemstra, H., Rama-Corredor, O., Martrat, B., Grimalt, J. O., Thompson, L., Bush, M. B., González-Carranza, Z., Hanselman, J., Valencia, B., & Velásquez-Ruiz, C. (2016). Millennial-scale vegetation changes in the tropical Andes using ecological grouping and ordination methods. Climate of the Past, 12(3), 697–711. https://doi.org/10.5194/cp-12-697-2016spa
dc.relation.referencesvan’t Veer, R., Islebe, G. A., & Hooghiemstra, H. (2000). Climatic change during the Younger Dryas chron in northern South America: A test of the evidence. Quaternary Science Reviews, 19(17–18), 1821–1835. https://doi.org/10.1016/S0277-3791(00)00093-7spa
dc.relation.referencesvan Boxel, J. H., González-Carranza, Z., Hooghiemstra, H., Bierkens, M., & Vélez, M. I. (2014). Reconstructing past precipitation from lake levels and inverse modelling for Andean Lake La Cocha. Journal of Paleolimnology, 51(1), 63–77. https://doi.org/10.1007/s10933-013-9755-1spa
dc.relation.referencesvan der Hammen, T. (1974). The Pleistocene Changes of Vegetation and Climate in Tropical South America. Journal of Biogeography, 1(1), 3. https://doi.org/10.2307/3038066spa
dc.relation.referencesvan der Hammen, T., Correal, G., & van Klinken, G. J. (1990). Isotopos estables y dieta del hombre prehistórico en la Sabana de Bogotá (un estudio inicial). Boletín de Arqueología, 5(2), 1–10. http://publicaciones.banrepcultural.org/index.php/fian/article/view/5282%0Ahttp://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:No+Title#0spa
dc.relation.referencesVan der Hammen, T., & González, E. (1965). A pollen diagram from “Laguna de la Herrera” (Sabana de Bogotá). Leidse Geologische Mededelingen, 32, 183–191.spa
dc.relation.referencesvan der Hammen, T., & Hooghiemstra, H. (1995). The El Abra stadial, a younger dryas equivalent in Colombia. Quaternary Science Reviews, 14(9), 841–851. https://doi.org/10.1016/0277-3791(95)00066-6spa
dc.relation.referencesvan Geel, B., & van der Hammen, T. (1973). Upper quaternary vegetational and climatic sequence of the fuquene area (Eastern Cordillera, Colombia). Palaeogeography, Palaeoclimatology, Palaeoecology, 14(1), 9–92. https://doi.org/10.1016/0031-0182(73)90064-3spa
dc.relation.referencesVelásquez, C. (1999). Atlas palinologico de la flora vascular paramuna de colombia: Angiospermae. Colciencias, 1–2.spa
dc.relation.referencesVélez, M. I., Hooghiemstra, H., Metcalfe, S., Wille, M., & Berrío, J. C. (2006). Late Glacial and Holocene environmental and climatic changes from a limnological transect through Colombia, northern South America. Palaeogeography, Palaeoclimatology, Palaeoecology, 234(1), 81–96. https://doi.org/10.1016/j.palaeo.2005.10.020spa
dc.relation.referencesWalker, M., Head, M. J., Berkelhammer, M., Björck, S., Cheng, H., Cwynar, L., Fisher, D., Gkinis, V., Long, A., Lowe, J., Newnham, R., Rasmussen, S. O., & Weiss, H. (2018). Formal ratification of the subdivision of the Holocene Series/ Epoch (Quaternary System/Period): Two new Global Boundary Stratotype Sections and Points (GSSPs) and three new stages/ subseries. Episodes, 41(4), 213–223. https://doi.org/10.18814/epiiugs/2018/018016spa
dc.relation.referencesWeng, C., Bush, M. B., & Chepstow-Lusty, A. J. (2004). Holocene changes of Andean alder (Alnus acuminata) in highland Ecuador and Peru. Journal of Quaternary Science, 19(7), 685–691. https://doi.org/10.1002/jqs.882spa
dc.relation.referencesWhitlock, C., & Larsen, C. (2001). Charcoal as a Fire Proxy. In J. P. Smol, H. J. B. Birks, & W. M. Last (Eds.), Tracking Environmental Change Using Lake Sediments. Volume 3: Terrestrial, Algal, and Siliceous Indicators (Vol. 3, pp. 75–97). Kluwer Academic Publishers. https://doi.org/10.1007/0-306-47668-1_5spa
dc.relation.referencesWilliams, J. W., & Jackson, S. T. (2007). Novel climates, no-analog communities, and ecological surprises. Frontiers in Ecology and the Environment, 5(9), 475–482. https://doi.org/10.1890/070037spa
dc.relation.referencesWilliams, J. W., Jackson, S. T., & Kutzbach, J. E. (2007). Projected distributions of novel and disappearing climates by 2100 AD. Proceedings of the National Academy of Sciences of the United States of America, 104(14), 5738–5742. https://doi.org/10.1073/pnas.0606292104spa
dc.relation.referencesRobinson, P. J., & Handerson-Sellers, A. (1999). Contemporary climatology (2nd ed.). Routledge. http://dx.doi.org/10.1016/j.jsames.2011.03.003spa
dc.relation.referencesWillis, K. J., & Birks, H. J. B. (2006). What Is Natural? The Need for a Long-Term Perspective in Biodiversity Conservation. Science, 314(5803), 1261–1265. https://doi.org/10.1126/science.1122667spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc500 - Ciencias naturales y matemáticas::508 - Historia naturalspa
dc.subject.lembLos Andes (Cordillera)
dc.subject.lembGeological time
dc.subject.lembCronología geológica
dc.subject.lembVegetation dynamics
dc.subject.lembDinámica vegetal
dc.subject.lembPaleocology
dc.subject.lembPaleoecología
dc.subject.proposalEcosistemas Altoandinosspa
dc.subject.proposalHolocenospa
dc.subject.proposalColombiaspa
dc.subject.proposalPaleoecologíaspa
dc.subject.proposalFuegospa
dc.subject.proposalEcosistemas novedososspa
dc.subject.proposalHigh Andean Ecosystemseng
dc.subject.proposalHoloceneeng
dc.subject.proposalPaleoecologyeng
dc.subject.proposalFireeng
dc.subject.proposalNovel Ecosystemseng
dc.titleVegetación, fuego y novedad ecológica en los Andes colombianos durante el Holocenospa
dc.title.translatedVegetation, fire and ecological novelty in the colombian Andes throughout the Holoceneeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleBioResilience: Biodiversity Resilience and Ecosystem services in post-conflict socio-ecological systemsspa
oaire.fundernameNatural Environment Research Council (NERC)spa
oaire.fundernameArts and Humanities Research Council (AHRC)spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1014248661.2022.pdf
Tamaño:
1.65 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Geografía

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: