En 3 día(s), 7 hora(s) y 30 minuto(s): El Repositorio Institucional UNAL informa a la comunidad universitaria que, con motivo del periodo de vacaciones colectivas, el servicio de publicación estará suspendido: Periodo de cierre: Del 20 de diciembre al 18 de enero de 2026. Sobre los depósitos: Durante este tiempo, los usuarios podrán continuar realizando el depósito respectivo de sus trabajos en la plataforma. Reanudación: Una vez reiniciadas las actividades administrativas, los documentos serán revisados y publicados en orden de llegada.

Aplicaciones de biocarbonizados en la agricultura : evaluación de la capacidad de retención y liberación de nutrientes y herbicidas

dc.contributor.advisorMartínez Cordón, María José
dc.contributor.authorBautista Manrique, Wendy Natalia
dc.contributor.researchgroupResidualidad y Destino Ambiental de Plaguicidas en Sistemas Agricolasspa
dc.date.accessioned2025-04-08T13:48:15Z
dc.date.available2025-04-08T13:48:15Z
dc.date.issued2024
dc.descriptionilustraciones, diagramas, fotografías, gráficas, tablasspa
dc.description.abstractLa alta dependencia por los insumos agroquímicos para la producción agrícola y la baja eficiencia cuando son aplicados al suelo han llevado al deterioro de la calidad de aguas superficiales y subterráneas. Frente a los retos por aumentar la fertilidad de los cultivos, garantizar la protección de los cultivos y minimizar los impactos ambientales, en esta investigación se evaluaron biocarbonizados con propiedades potenciales como medio de soporte para la retención y liberación de fertilizantes y herbicidas. Se caracterizaron las propiedades fisicoquímicas de tres biocarbonizados producidos de plantas invasoras de retamo espinoso (ReB), carbonero (CaB) y acacia negra (AcB), se evaluó la capacidad de adsorción-desorción de los nutrientes N, P, K, Ca y Mg y de los herbicidas ametrina y atrazina a partir del método de “batch equilibrium”. Por último, se prepararon formulaciones con los biocarbonizados y se probaron en ensayos de liberación y lixiviación en columnas de suelo (en condiciones de laboratorio). Los resultados muestran mayor capacidad de adsorción de compuestos orgánicos como los herbicidas (ametrina y atrazina) que de compuestos inorgánicos como los nutrientes (N, P, Ca2+, Mg2+, K+). Lo que demuestra la ventaja de este material como alternativa para la remoción de herbicidas y material de filtración para tratamiento de aguas. Por otro lado, no se encontraron relaciones estadísticamente significativas (p>0,05) entre las propiedades fisicoquímicas de los tres biocarbonizados y la capacidad de adsorción, dadas las ligeras diferencias en las propiedades y las mismas condiciones de pirólisis. Los ensayos de lixiviación de los nutrientes N, P, K y Mg mostraron bajas tasas de lixiviación en los tratamientos con fertilización convencional y con ReB, CaB y AcB. La aplicación de los biocarbonizados no tuvo un efecto significativo en el movimiento de los dos herbicidas en comparación con el tratamiento control, indicando la importancia de la dosis y la forma de aplicación de biocarbonizados, que pueden ser más efectivos para la disminución del riesgo de lixiviación de ametrina y atrazina en el suelo. (Texto tomado de la fuente)spa
dc.description.abstractThe high dependence on agrochemical for agricultural production and the low efficiency when applied to the soil have led to the deterioration of surface and groundwater quality. Faced with the challenges of increasing crop fertility, ensuring crop protection, and minimizing environmental impacts, this research evaluated biochars with characteristics as carrier media for the sorption and release of fertilizers and herbicides. The physicochemical properties of three biochars produced from invasive plants as thorny broom (ReB), calliandra (CaB) and black acacia (AcB) were characterized, and the adsorption-desorption capacity of the nutrients N, P, K, Ca and Mg and the herbicides ametryn and atrazine was evaluated using the batch equilibrium method. Finally, formulations with the biochars were prepared and tested in release and leaching experiments in soil columns (under laboratory conditions). The results showed higher adsorption capacity for organic compounds such as herbicides (ametryn and atrazine) than for inorganic compounds such as nutrients (N, P, Ca2+, Mg2+, K+). This shows the advantage of this material as an alternative for the removal of herbicides and filtration material for water treatment. On the other hand, no statistically significant relationships (p>0,05) were found among the physicochemical properties of the three biochars and the adsorption capacity, given the slight differences in properties and the same pyrolysis conditions. Leaching test for the nutrients N, P, K, and Mg showed low leaching rates in the treatments with conventional fertilization and with ReB, CaB and AcB. The application of biochars had no significant effect on the movement of the two herbicides compared to the control treatment, indicating the importance of the dose and application way of the biochar, which may be more effective in decreasing the risk of leaching of ametryn and atrazine in the soil.eng
dc.description.curricularareaQuímica.Sede Bogotáspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ciencias Químicaspa
dc.description.methodsEl proyecto de investigación se desarrolló en el Laboratorio de Química Agrícola, en el Laboratorio de análisis de residuos de plaguicidas-LARP y el en Laboratorio de Investigación en Combustibles y Energía – LICE del Departamento de Química de la Universidad Nacional de Colombia, sede Bogotá. De acuerdo con los objetivos formulados la metodología desarrollada fue: 1) Biocarbonizados y caracterización 2) Estudio de la capacidad de retención de nutrientes y herbicidas 3) Ensayos de lixiviación de nutrientes y herbicidas en columnas de suelospa
dc.description.researchareaQuímica agrícolaspa
dc.format.extentxx, 210 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87883
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Químicaspa
dc.relation.indexedN/Aspa
dc.relation.referencesAl‐wabel, M. I., Hussain, Q., Usman, A. R. A., Ahmad, M., Abduljabbar, A., Sallam, A. S., & Ok, Y. S. (2017). Impact of biochar properties on soil conditions and agricultural sustainability: A review. Land Degrad Dev, 1–38. https://doi.org/10.1002/ldr.2829spa
dc.relation.referencesCampos, E. V. R., de Oliveira, J. L., & Fraceto, L. F. (2014). Applications of Controlled Release Systems for Fungicides, Herbicides, Acaricides, Nutrients, and Plant Growth Hormones: A Review. Advanced Science, Engineering and Medicine, 6(4), 373–387. https://doi.org/10.1166/asem.2014.1538spa
dc.relation.referencesChhipa, H. (2017). Nanofertilizers and nanopesticides for agriculture. Environmental Chemistry Letters, 15(1), 15–22. https://doi.org/10.1007/s10311-016-0600-4spa
dc.relation.referencesCho, S., Iglínski, B., & Kumar, G. (2024). Biomass based biochar production approaches and its applications in wastewater treatment, machine learning and microbial sensors. Bioresource Technology, 391(August 2023). https://doi.org/10.1016/j.biortech.2023.129904spa
dc.relation.referencesDavidson, D., & Gu, F. X. (2012). Materials for sustained and controlled release of nutrients and molecules to support plant growth. Journal of Agricultural and Food Chemistry, 60(4), 870–876. https://doi.org/10.1021/jf204092hspa
dc.relation.referencesFAO. (2015a). Chapter 12 Regional assessment of soil changes in Latin America and the Caribbean. In Status of the World’s Soil Resources. http://www.fao.org/3/a-bc601e.pdfspa
dc.relation.referencesFAO. (2015b). World Fertiliser Trends and Outlook to 2018. http://www.fao.org/3/a-i4324e.pdfspa
dc.relation.referencesFAO. (2022). The importance of Ukraine and the Russian Federation for global agricultural markets and the risks associated with the current conflict.spa
dc.relation.referencesGonzález, M. E., Cea, M., Medina, J., González, A., Diez, M. C., Cartes, P., Monreal, C., & Navia, R. (2015). Evaluation of biodegradable polymers as encapsulating agents for the development of a urea controlled-release fertilizer using biochar as support material. Science of the Total Environment, 505, 446–453. https://doi.org/10.1016/j.scitotenv.2014.10.014spa
dc.relation.referencesGonzález, M. E., Gonzaléz, A., Toro, C., Cea, M., Sepúlveda, N., Diez, M. C., & Navia, R. (2012). Controlled-release nitrogen fertlizer using biochar as a renewable support matrix (Patent No. WO 2014/091279 A1)spa
dc.relation.referencesGul, S., Whalen, J. K., Thomas, B. W., & Sachdeva, V. (2015). Physico-chemical properties and microbial responses in biochar-amended soils: Mechanisms and future directions. “Agriculture, Ecosystems and Environment,” 206, 46–59. https://doi.org/https://doi.org/10.1016/j.agee.2015.03.015spa
dc.relation.referencesHavlin, J. L. (2013). Fertility☆. In Reference Module in Earth Systems and Environmental Sciences. Elsevier. https:// doi.org/10.1016/B978-0-12-409548-9.05162-9spa
dc.relation.referencesJiang, S., Nguyen, T. A. H., Rudolph, V., Yang, H., Zhang, D., Ok, Y. S., & Huang, L. (2017). Characterization of hard- and softwood biochars pyrolyzed at high temperature. Environmental Geochemistry and Health, 39(2), 403–415. https://doi.org/10.1007/s10653-016-9873-6spa
dc.relation.referencesJohanna Bär, Bickel, U., Bollmohr, S., Bombardi, L. M., Bourgin, C., Bödeker, W., Brühl, C., Helmut Butscher-Schaden, Henrike von der Decken, D. G., Haffmans, S., Heimrath, J., Hoinkes, C., Holdinghausen, H., Lemken, D., Liebetrau, L., Mertens, M., Nabel, M., Prescher, A., Quijano, I.-I., Satzger, A., Zühlsdorf, A. (2022). PESTICIDES ATLAS Facts and figures about toxic chemicals in agriculture 2022 (L. Tostado, H.-B.-S. E. U. (project Management), & E. C. Dr. Silke Bollmohr (eds.); 2nd ed.). Heinrich-Böll-Stiftung, Berlin, Germany Friends of the Earth Europe, Brussels, Belgium Bund für Umwelt und Naturschutz, Berlin, Germany PAN Europe, Brussels, Belgium. https://eu.boell.org/PesticideAtlasspa
dc.relation.referencesJoshi, E., Kumar, M., Gautam, P., Lal, B., & Lal Jat, A. (2013). Biochar - The Future of Agricultura. Popular Kheti, 1 (1(January-March)), 41–48. https://www.researchgate.net/publication/265378730spa
dc.relation.referencesMADS (Ministerio de Ambiente y Desarrollo Sostenible). (2016). Estrategia Colombia Siembra. Ministerio de Agricultura y Desarrollo Rural. In Ministerio de Agricultura y Desarrollo Rural República de Colombia. https://doi.org/http://207.239.251.110:8080/jspui/handle/11348/6076spa
dc.relation.referencesMalo, M. (2020). Biochar: A Potential Tool for Future Agriculture. Agriculture & Food: E-Newsletter, 2(10), 366–368spa
dc.relation.referencesMandal, A., Singh, N., & Purakayastha, T. J. (2017). Characterization of pesticide sorption behaviour of slow pyrolysis biochars as low cost adsorbent for atrazine and imidacloprid removal. Science of The Total Environment, 577, 376–385. https://doi.org/10.1016/j.scitotenv.2016.10.204spa
dc.relation.referencesMia, S., Dijkstra, F. A., & Singh, B. (2017). Aging Induced Changes in Biochar’s Functionality and Adsorption Behavior for Phosphate and Ammonium. Environ. Sci. Technol., 51(15), 8359–8367. https://doi.org/10.1021/acs.est.7b00647spa
dc.relation.referencesOECD/FAO. (2020). OCDE‑FAO Perspectivas Agrícolas 2020‑2029. https://doi.org/10.1787/a0848ac0-esspa
dc.relation.referencesOur World in Data. (2024a). Food and Agriculture Organization of the United Nations (via World Bank) – processed by Our World in Data. “Fertilizer consumption (kilograms per hectare of arable land)” [dataset]. Food and Agriculture Organization of the United Nations (via World Bank) [Original Data]. https://ourworldindata.org/grapher/fertilizer-use-in-kg-per-hectare-of-arable-land?tab=chart&country=COL~Latin+America+and+Caribbean+%28WB%29spa
dc.relation.referencesOur World in Data. (2024b). Food and Agriculture Organization of the United Nations – processed by Our World in Data. “Pesticide use” [dataset]. Food and Agriculture Organization of the United Nations [Original Data]. https://ourworldindata.org/grapher/pesticide-use-tonnes?tab=chart&region=SouthAmerica&country=BRA~ARG~MEX~COL~OWID_WRL~South+America+%28FAO%29spa
dc.relation.referencesPenuelas, J., Coello, F., & Sardans, J. A. (2023). A better use of fertilizers is needed for global food security and environmental sustainability. Agric & Food Secur, 12, 5. https://doi.org/https://doi.org/10.1186/s40066-023-00409-5spa
dc.relation.referencesPérez Vélez, J. P. (2014). Uso de los fertilizantes y su impacto en la producción agrícola. In Universidad Nacional de Colombia Facultad de Ciencias, Departamento de Biociencias Medellín, Colombia 2014 (Vol. 1). Universidad Nacional de Colombiaspa
dc.relation.referencesRamírez-Morales, D., Pérez-Villanueva, M. E., Chin-Pampillo, J. S., Aguilar-Mora, P., Arias-Mora, V., & Masís-Mora, M. (2021). Pesticide occurrence and water quality assessment from an agriculturally influenced Latin-American tropical region. Chemosphere, 262, 1278511. https://doi.org/10.1016/j.chemosphere.2020.127851spa
dc.relation.referencesRitchie, H., Roser, M., & Rosado, P. (2022). “Pesticides” Published online at OurWorldInData.org. “https://Ourworldindata.Org/Pesticides” [Online Resource]. https://ourworldindata.org/fertilizer-and-pesticides#pesticide-productionspa
dc.relation.referencesSavci, S. (2012). Investigation of Effect of Chemical Fertilizers on Environment. APCBEE Procedia, 287–292. https://doi.org/10.1016/j.apcbee.2012.03.047spa
dc.relation.referencesUN. (2024). Population. https://www.un.org/en/global-issues/populationspa
dc.relation.referencesVan Reeuwijk, L. P. (2002). Procedures for Soil Analysis. Technical Paper 9. In L. P. Van Reeuwijk (Ed.), Procedures for Soil Analysis (6th ed.). https://doi.org/10.1016/j.postcomstud.2006.09.001spa
dc.relation.referencesWeber, K., & Quicker, P. (2018). Properties of biochar. Fuel, 217, 240–261. https://doi.org/10.1016/j.fuel.2017.12.054spa
dc.relation.referencesZhang, H., Chen, C., Gray, E. M., Boyd, S. E., Yang, H., & Zhang, D. (2016). Roles of biochar in improving phosphorus availability in soils: A phosphate adsorbent and a source of available phosphorus. Geoderma, 276, 1–6. https://doi.org/10.1016/j.geoderma.2016.04.020spa
dc.relation.referencesAdekiya, A. O., Olaniran, A. F., Adenusi, T. T., Aremu, C., Ejue, W. S., Iranloye, Y. M., Gbadamosi, A., & Olayanju, A. (2020). Effects of cow dung and wood biochar and green manure on soil fertility and tiger nut (Cyperus esculentus L.) performance on a savanna Alfisol. Scientfic Reports, 10, 21021. https://doi.org/10.1038/s41598-020-78194-5spa
dc.relation.referencesAdelawon, B. O., Latinwo, G. K., Eboibi, B. E., Agbede, O., & Agarry, S. E. (2021). Comparison of the slow, fast, and flash pyrolysis of recycled maize-cob biomass waste, box-benhken process optimization and characterization studies for the thermal fast pyrolysis production of bio-energy. Chemical Engineering Communications. https://doi.org/10.1080/00986445.2021.1957851spa
dc.relation.referencesAgegnehu, G., Srivastava, A. K., & Bird, M. I. (2017). The role of biochar and biochar-compost in improving soil quality and crop performance: A review. Applied Soil Ecology, 119(June), 156–170. https://doi.org/10.1016/j.apsoil.2017.06.008spa
dc.relation.referencesAl‐wabel, M. I., Hussain, Q., Usman, A. R. A., Ahmad, M., Abduljabbar, A., Sallam, A. S., & Ok, Y. S. (2017). Impact of biochar properties on soil conditions and agricultural sustainability: A review. Land Degrad Dev, 1–38. https://doi.org/10.1002/ldr.2829spa
dc.relation.referencesAllohverdi, T., Mohanty, A. K., Roy, P., & Misra, M. (2021). A Review on Current Status of Biochar Uses in Agriculture. Molecules, 26(5584), 1–17. https://doi.org/https://doi.org/10.3390/ molecules26185584 Academicspa
dc.relation.referencesAlvarez-Campos, O., Lang, T. A., Bhadha, J. H., McCray, J. M., Glaz, B., & Daroub, S. H. (2018). Biochar and mill ash improve yields of sugarcane on a sand soil in Florida. Agriculture, Ecosystems and Environment, 253, 122–130. https://doi.org/10.1016/j.agee.2017.11.006spa
dc.relation.referencesAmaral, S. S., Junior, J. A. de C., Costa, M. A. M., Neto, T. G. S., Dellani, R., & Leite, L. H. S. (2014). Comparative study for hardwood and softwood forest biomass: Chemical characterization, combustion phases and gas and particulate matter emissions. Bioresource Technology, 164, 55–63. https://doi.org/10.1016/j.biortech.2014.04.060spa
dc.relation.referencesAmeloot, N., Sleutel, S., Das, K. C., Kanagaratnam, J., & de Neve, S. (2015). Biochar amendment to soils with contrasting organic matter level: effects on N mineralization and biological soil properties. GCB Bioenergy, 7, 135–144. https://doi.org/https://doi.org/10.1111/gcbb.12119spa
dc.relation.referencesASTM D5373-21 (2008). Standard Test Methods for Determination of Carbon, Hydrogen and Nitrogen in Analysis Samples of Coal and Carbon in Analysis Samples of Coal and Coke, ASTM International. (n.d.)spa
dc.relation.referencesASTM 3176-09. Standard Practice for Ultimate Analysis of Coal and Coke, ASTM International. https://compass.astm.org/document/?contentCode=ASTM%7CD3176-24%7Cen-USspa
dc.relation.referencesASTM D6851-20 Standard Test Method for Determination of Contact pH with Activated Carbon, ASTM International. (n.d.). https://www.astm.org/d6851-20.htmlspa
dc.relation.referencesBecerra-Agudelo, E., López, J. E., Betancur-García, H., Carbal-Guerra, J., Torres-Hernández, M., & Saldarriaga, J. F. (2022). Assessment of the application of two amendments (lime and biochar) on the acidification and bioavailability of Ni in Ni-contaminated agricultural soils of northern Colombia. Heliyon, 8(8), e10221. https://doi.org/10.1016/j.heliyon.2022.e10221spa
dc.relation.referencesBen, H., Wu, Z., Han, G., Jiang, W., & Ragauskas, A. (2019). Pyrolytic Behavior of Major Biomass Components in Waste Biomass. Polymers, 11, 324, 1–16. https://doi.org/10.3390/polym11020324spa
dc.relation.referencesBolan, N., Sarmah, A. K., Bordoloi, S., Bolan, S., Padhye, L. P., Zwieten, L. Van, Sooriyakumar, P., Khan, B. A., Ahmad, M., Solaiman, Z. M., Rinklebe, J., Wang, H., Singh, B. P., & Siddique, K. H. M. (2023). Soil acidification and the limig potential of biochar. Environmental Pollution, 317, 120632. https://doi.org/10.1016/j.envpol.2022.120632spa
dc.relation.referencesCai, Y., Qi, H., Liu, Y., & He, X. (2016). Sorption/Desorption Behavior and Mechanism of NH 4+ by Biochar as a Nitrogen Fertilizer Sustained-Release Material. Journal of Agricultural and Food Chemistry, 64, 4958–4964. https://doi.org/10.1021/acs.jafc.6b00109spa
dc.relation.referencesCAR, Corporación Autónoma Regional de Cundinamarca. (2018). PLAN DE PREVENCIÓN , MANEJO Y CONTROL DE LAS POBLACIONES DE Acacia decurrens WILLD EN LA JURISDICCIÓN CAR (p. 58P).spa
dc.relation.referencesCara, I. G., Topa, D., Puiu, I., & Jitareanu, G. (2022). Biochar a Promising Strategy for Pesticide-Contaminated Soils. Agriculture, 12(1579), 1–21. https://doi.org/10.3390/agriculture12101579spa
dc.relation.referencesChen, J., Lü, S., Zhang, Z., Zhao, X., Li, X., Ning, P., & Liu, M. (2018). Environmentally friendly fertilizers: A review of materials used and their effects on the environment. Science of the Total Environment, 613–614, 829–839. https://doi.org/10.1016/j.scitotenv.2017.09.186spa
dc.relation.referencesChowdhury, Z. Z., Limited, I. C., Khalisanni, K., & Detection, H. (2016). Influence of Carbonization Temperature on Physicochemical Properties of Biochar derived from Slow Pyrolysis of Durian Wood (Durio zibethinus ) Sawdust. Bioresources.Com, 11(2), 3356–3372. https://doi.org/10.15376/biores.11.2.3356spa
dc.relation.referencesCisse, I. (2021). Characterization of biochar produced by pyrolysis of biomass and co-pyrolysis of biomass and agricultural mulch film. Rochester Institute of Technologyspa
dc.relation.referencesĆwieląg-Piasecka, I., Medyńska-Juraszek, A., Jerzykiewicz, M., Dębicka, M., Bekier, J., Jamroz, E., & Kawałko, D. (2018). Humic acid and biochar as specific sorbents of pesticides. Journal of Soils and Sediments, 18(8), 2692–2702. https://doi.org/10.1007/s11368-018-1976-5spa
dc.relation.referencesDanesh, P., Niaparast, P., Ghorbannezhad, P., & Ali, I. (2023). Biochar Production: Recent Developments, Applications, and challenges. Fuel, 337, 126889. https://doi.org/10.1016/j.fuel.2022.126889spa
dc.relation.referencesDeborah, A., Santanu, B., & Laird, D. (2017). Modified method for proximate analysis of biochars. Journal of Analytical and Applied Pyrolysis, 124, 335–342. https://doi.org/https://doi.org/10.1016/j.jaap.2017.01.012spa
dc.relation.referencesDomingues, R. R., Trugilho, P. F., Silva, C. A., A, I. C. N. A., Melo, C. A., Magriotis, Z. M., & Sánchez-Monedero, M. A. (2017). Properties of biochar derived from wood and high-nutrient biomasses with the aim of agronomic and environmental benefits. PLoS ONE, 12(5), 1–19. https://doi.org/10.1371/journal.pone.0176884spa
dc.relation.referencesElnour, A. y., Alghyamah, A. A., Shaikh, H. M., Poulose, A. M., Al-Zahrani, S. M., Anis, A., & Al-Wabel, M. I. (2019). Effect of Pyrolysis Temperature on Biochar Microstructural Evolution, Physicochemical Characteristics, and Its Influence on Biochar/Polypropylene Composites. Applied Sciences, 9 (6), 1149. https://doi.org/10.3390/app9061149spa
dc.relation.referencesEscalante Rebolledo, A., Pérez López, G., Hidalgo Moreno, C., López Collado, J., Campo Alves, J., Valtierra Pacheco, E., & Etchevers Barra, J. D. (2016). Biocarbón (biochar) I: Naturaleza, historia, fabricación y uso en el suelo. Terra Latinoamericana, 34, 367–382spa
dc.relation.referencesFeng, Q., Chen, M., Wu, P., Zhang, X., Wang, S., Yu, Z., & Wang, B. (2022). Simultaneous reclaiming phosphate and ammonium from aqueous solutions by calcium alginate-biochar composite: Sorption performance and governing mechanisms. Chemical Engineering Journal, 429, 132166. https://doi.org/10.1016/j.cej.2021.132166spa
dc.relation.referencesFraser, J., Teixeira, W., Falcão, N., Woods, W., Lehmann, J., & Junqueira, A. B. (2011). Anthropogenic soils in the Central Amazon: From categories to a continuum Anthropogenic soils in the Central Amazon: from categories to a continuum. November 2017. https://doi.org/10.1111/j.1475-4762.2011.00999.xspa
dc.relation.referencesGaffar, S. (2020). Production and Characterization of Twelve Different Biochars and Evaluating Their Effects on Soil Health and Plant Growth. Florida International Universityspa
dc.relation.referencesGaffar, S., Dattamudi, S., Baboukani, A. R., Chanda, S., Novak, J. M., Watts, D. W., Wang, C., & Jayachandran, K. (2021). Physiochemical characterization of biochars from six feedstocks and their effects on the sorption of atrazine in an organic soil. Agronomy, 11(4). https://doi.org/10.3390/agronomy11040716spa
dc.relation.referencesGiao Ngo, D. N., Chuang, X., Huang, C., & Hua, L. (2023). Compositional characterization of nine agricultural waste biochars: The relations between alkaline metals and cation exchange capacity with ammonium adsorption capability. Journal of Environmental Chemical Engineering, 11(110003), 2213–3437. https://doi.org/10.1016/j.jece.2023.110003spa
dc.relation.referencesGlaser, B., & Haumaier, L. (2001). The ‘Terra Preta ’ phenomenon : a model for sustainable agriculture in the humid tropics. February. https://doi.org/10.1007/s001140000193spa
dc.relation.referencesHassan, M., Liu, Y., Naidu, R., Parikh, S. J., Du, J., Qi, F., & Willett, I. R. (2020). Influences of feedstock sources and pyrolysis temperature on the properties of biochar and functionality as adsorbents. Science of The Total Environment, 744, 140714. https://doi.org/10.1016/j.scitotenv.2020.140714spa
dc.relation.referencesHe, Z., Cao, H., Liang, J., Hu, Q., Zhang, Y., Nan, X., & Li, Z. (2022). Industrial Crops & Products Effects of biochar particle size on sorption and desorption behavior of. Industrial Crops & Products, 189(23), 115837. https://doi.org/10.1016/j.indcrop.2022.115837spa
dc.relation.referencesInstituto Colombiano de Normas Técnicas, NTC 4467. (1998). Productos químicos industriales carbón activado, Métodos de ensayo (pp. 1–6, 9–10). ICONTECspa
dc.relation.referencesInternational Biochar Initiative, Victor (2014). Comparison of European Biochar Certificate Version 4. 8 and IBI Biochar Standards Version 2.0: Standardized Product Definition and Product Testing Guidelines for Biochar that Is Used in Soil; IBI Biochar Standardsspa
dc.relation.referencesJindo, K., Mizumoto, H., Sawada, Y., Sanchez-Monedero, M. A., & Sonoki, T. (2014). Physical and chemical characterization of biochars derived from different agricultural residues. Biogeosciences, 11(23), 6613–6621. https://doi.org/10.5194/bg-11-6613-2014spa
dc.relation.referencesLee, Y., Park, J., Ryu, C., Gang, K. S., Yang, W., Park, Y.-K., Jung, J., & Hyun, S. (2013). Comparison of Biochar Properties from Biomass Residues Produced by Slow Pyrolysis at 500°C. Bioresource Technology, 148, 196–201. https://doi.org/10.1016/j.biortech.2013.08.135spa
dc.relation.referencesLehmann, J., & Joseph, S. (2009). Biochar for Environmental Management: An Introduction. In Biochar for Environmental Management: Science and Technology (Vol. 1, pp. 1–12). https://doi.org/10.1016/j.forpol.2009.07.001spa
dc.relation.referencesLi, Y., Xing, B., Ding, Y., Han, X., & Wang, S. (2020). A critical review of the production and advanced utilization of biochar via selective pyrolysis of lignocellulosic biomass. Bioresource Technology, 312, 123614. https://doi.org/10.1016/j.biortech.2020.123614spa
dc.relation.referencesLima, J. Z., Ogura, A. P., Menezes da Silva, L. C., Nauerth, I. M. R., Rodrigues, V. G. S., Espíndola, E. L. G., & Marques, J. P. (2022). Biochar-pesticides interactions: An overview and applications of wood feedstock for atrazine contamination. Journal of Environmental Chemical Engineering, 10, 108192. https://doi.org/10.1016/j.jece.2022.108192spa
dc.relation.referencesLiu, Y., Lonappan, L., Brar, S. K., & Yang, S. (2018). Impact of biochar amendment in agricultural soils on the sorption, desorption, and degradation of pesticides: A review. Science of the Total Environment, 645(December), 60–70. https://doi.org/10.1016/j.scitotenv.2018.07.099spa
dc.relation.referencesLozano Baez, S. E., Arango Vallejo, L., Barrera-Cataño, J. I., & García-Rivera, A. del P. (2020). Los ecosistemas bosque altoandino y páramo de la "Perla Norte del Tolima ” amenazados por el retamo espinoso ( Ulex europaeus ). Kumanday, 3(December). https://www.researchgate.net/publication/346961045%0ALosspa
dc.relation.referencesLu, J., Chang, Y., Poon, C., & Lee, D. (2020). Slow pyrolysis of municipal solid waste (MSW): A review. Bioresource Technology, 312(June), 123615. https://doi.org/10.1016/j.biortech.2020.123615spa
dc.relation.referencesMaia, C. M. B. F., Madari, B. E., & Novotny, E. H. (2011). Advances in biochar research in Brazil. Dynamic Soil, Dynamic Plant, 5, 53–58spa
dc.relation.referencesMandal, A., Singh, N., & Purakayastha, T. J. (2017). Characterization of pesticide sorption behaviour of slow pyrolysis biochars as low cost adsorbent for atrazine and imidacloprid removal. Science of The Total Environment, 577, 376–385. https://doi.org/10.1016/j.scitotenv.2016.10.204spa
dc.relation.referencesManna, S., Singh, N., Purakayastha, T. J., & Berns, A. E. (2020). Effect of deashing on physico-chemical properties of wheat and rice straw biochars and potential sorption of pyrazosulfuron-ethyl. Arabian Journal of Chemistry, 13(1), 1247–1258. https://doi.org/10.1016/j.arabjc.2017.10.005spa
dc.relation.referencesManso, E. F., Nartey, E. K., Adjadeh, T. A., Darko, D. A., Lawson, I. Y. D., & Amoatey, C. A. (2019). Use of corn cob and rice husk biochar as liming materials in acid soils. West Afr. J. Appl. Ecol, 27(2), 32–50spa
dc.relation.referencesManyà, J. J., Azuara, M., & Manso, J. A. (2018). Biochar production through slow pyrolysis of di ff erent biomass materials: Seeking the best operating conditions. Biomass and Bioenergy, 117(May), 115–123. https://doi.org/10.1016/j.biombioe.2018.07.019spa
dc.relation.referencesMora-Goyes, M. F., & Barrera-Cataño, J. I. (2015). Catálogo de especies invasoras del territorio CARspa
dc.relation.referencesMukherjee, A., Patra, B. R., Podder, J., & Dalai, A. K. (2022). Synthesis of Biochar from lignocellulosic biomass for diverse industrial applications and energy harvesting: Effects of pyrolysis conditions on the physicochemical properties of biochar. Frontiers in Materials, 9, 870184. https://doi.org/10.3389/fmats.2022.870184spa
dc.relation.referencesMunera-Echeverri, J. L., Martinsen, V., Strand, L. T., Zivanovic, V., Cornelissen, G., & Mulder, J. (2018). Cation exchange capacity of biochar: An urgent method modification. Science of the Total Environment, 642, 190–197. https://doi.org/10.1016/j.scitotenv.2018.06.017spa
dc.relation.referencesMurtaza, G., Usman, M., Iqbal, J., Hyder, S., Solangi, F., Iqbal, R., Okla, M. K., Al-Ghamdi, A. A., Elsalahy, H. H., Tariq, W., & Al-Elwany, O. A. A. I. (2024). Liming potential and characteristics of biochar produced from woody and non-woody biomass at different pyrolysis temperatures. Scientfic Reports, 14, 11469. https://doi.org/10.1038/s41598-024-61974-8spa
dc.relation.referencesNguyen, T. T. N., Xu, C., Tahmasbian, I., Che, R., Xu, Z., Zhou, X., Wallace, H. M., & Hosseini Bai, S. (2017). Effects of biochar on soil available inorganic nitrogen: A review and meta-analysis. Geoderma, 288, 79–96spa
dc.relation.referencesOleszczuk, P., Jośko, I., Futa, B., Pasieczna-Patkowska, S., Pałys, E., & Kraska, P. (2014). Effect of pesticides on microorganisms, enzymatic activity and plant in biochar-amended soil. Geoderma, 214–215, 10–18. https://doi.org/10.1016/j.geoderma.2013.10.010spa
dc.relation.referencesOrrego Restrepo, E. (2021). Cambios estructurales fisicoquímicos de la biomasa durante la pirólisis lenta. Universidad Nacional de Colombiaspa
dc.relation.referencesPahnila, M., Koskela, A., Sulasalmi, P., & Fabritius, T. (2023). A Review of Pyrolysis Technologies and the Effect of Process Parameters on Biocarbon Propertiesspa
dc.relation.referencesPal, D. B., Singh, A., Jha, J. M., Srivastava, N., Hashem, A., Alakeel, M. A., Abd_Allah, E. F., & Gupta, V. K. (2021). Low-cost biochar adsorbents prepared from date and delonix regia seeds for heavy metal sorption. Bioresource Technology, 339(July), 125606. https://doi.org/10.1016/j.biortech.2021.125606spa
dc.relation.referencesPalacios-Hugo, R., Calle-Maravi, J., & Césare-Coral, M. F. (2022). Análisis de estabilidad de biochar de residuos agroforestales. Acta Agronómica, 71(4), 377–387. https://doi.org/10.15446/acag.v71n4.94948spa
dc.relation.referencesPalansooriya, K. N., Fung Wong, J. T., Hashimoto, Y., Huang, L., Rinklebe, J., Chang, S. X., Bolan, N., Wang, H., & Ok, Y. S. (2019). Response of microbial communities to biochar ‑ amended soils: a critical review. Biochar. https://doi.org/10.1007/s42773-019-00009-2spa
dc.relation.referencesPalansooriya, K. N., Ok, Y. S., Awad, Y. M., Lee, S. S., Sung, J., Koutsospyros, A., & Hyun, D. (2019). Impacts of biochar application on upland agriculture: A review. Journal of Environmental Management, 234, 52–64. https://doi.org/10.1016/j.jenvman.2018.12.085spa
dc.relation.referencesPariyar, P., Kumari, K., Jain, M. K., & Jadhao, P. S. (2020). Evaluation of change in biochar properties derived from different feedstock and pyrolysis temperature for environmental and agricultural application. Science of The Total Environment, 713, 136433. https://doi.org/10.1016/j.scitotenv.2019.136433spa
dc.relation.referencesPonnusamy, V. K., Nguyen, D. D., Dharmaraja, J., Shobana, S., Banu, J. R., Saratable, R. G., Chang, S. W., & Kumar, G. (2019). A review on lignin structure, pretreatments, fermentation reactions and biorefinery potential. Bioresource Technology, 271, 462–472. https://doi.org/10.1016/j.biortech.2018.09.070spa
dc.relation.referencesQambrani, N. A., Rahman, M. M., Won, S., Shim, S., & Ra, C. (2017). Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: A review. Renewable and Sustainable Energy Reviews, 79(November 2016), 255–273. https://doi.org/10.1016/j.rser.2017.05.057spa
dc.relation.referencesReza, S., Ahmed, A., Caesarendra, W., Bakar, M. S. A., Shams, S., Saidur, R., Aslfattahi, N., & Azad, A. K. (2019). Acacia Holosericea: An Invasive Species for Bio-char, Bio-oil, and Biogas Production. Bioengineering, 6, 33, 1–16. https://doi.org/10.3390/bioengineering6020033spa
dc.relation.referencesRutherford, D. W., Wershaw, R. L., Rostad, C. E., & Kelly, C. N. (2012). Effect of formation conditions on biochars: Compositional and structural properties of cellulose, lignin, and pine biochars. Biomass & Bioenergy, 46, 693–701. https://doi.org/10.1016/j.biombioe.2012.06.026spa
dc.relation.referencesSánchez, K., Colina, G., Pire, M., Díaz, A., & Carrasquero, S. (2013). Adsorption capacity of activated carbon on total chromium from tannery waste. REv. Téc. Ing. Univ. Zulia, 36(1)spa
dc.relation.referencesSbizzaro, M., César Sampaio, S., Rinaldo dos Reis, R., de Assis Beraldi, F., Medina Rosa, D., Maria Branco de Freitas Maia, C., Saramago de Carvalho Marques dos Santos Cordovil, C., Tillvitz do Nascimento, C., Antonio da Silva, E., & Eduardo Borba, C. (2021). Effect of production temperature in biochar properties from bamboo culm and its influences on atrazine adsorption from aqueous systems. Journal of Molecular Liquids, 343, 117667. https://doi.org/10.1016/j.molliq.2021.117667spa
dc.relation.referencesSchimmelpfennig, S., & Glaser, B. (2012). One Step Forward toward Characterization: Some Important Material Properties to Distinguish Biochars. J. Environ. Qual, 41(4), 1001–1013. https://doi.org/10.2134/jeq2011.0146spa
dc.relation.referencesSegura Chavarría, D. M. (2018). Control de calidad de biocarbón para la producción de Terra Preta. Instituto Tecnológico de Costa Ricaspa
dc.relation.referencesSilvestre, W. P., Galafassi, P. L., Ferreira, S. D., Godinho, M., Fernandes Pauletti, G., & Baldasso, C. (2018). Fodder radish seed cake biochar for soil amendment. Environmental Science and Pollution Research, 25, 25143–25154. https://doi.org/10.1007/s11356-018-2571-4spa
dc.relation.referencesSingh, B., Mei Dolk, M., Shen, Q., & Camps-Arbestain, M. (2017). Biochar pH, electrical conductivity and liming potential. In B. Singh, M. Camps-Arbestain, & J. Lehmann (Eds.), Biochar: A Guide to Analytical Methods (pp. 23–38). CSIROspa
dc.relation.referencesStagno, V., Ricci, S., Longo, S., Verticchio, E., Frasca, F., Siani, A. M., & Capuani, S. (2022). Discrimination between softwood and hardwood based on hemicellulose content obtained with portable nuclear magnetic resonance. Cellulose, 29, 7917–7934. https://doi.org/10.1007/s10570-022-04728-xspa
dc.relation.referencesSuliman, W., Harsh, J. B., Abu-Lail, N. I., Fortuna, A.-M., Dallmeyer, I., & Garcia-Perez, M. (2016). Influence of feedstock source and pyrolysis temperature on biochar bulk and surface properties. Biomass and Bioenergy, 84, 37–48. https://doi.org/10.1016/j.biombioe.2015.11.010spa
dc.relation.referencesSuna, J., Heb, F., Panb, Y., & Zhang, Z. (2017). Effects of pyrolysis temperature and residence time on physicochemical properties of different biochar types. ACTA AGRICULTURAE SCANDINAVICA, SECTION B-SOIL & PLANT SCIENCE, 67(1), 12–22. http://dx.doi.org/10.1080/09064710.2016.1214745spa
dc.relation.referencesTag, A. T., Duman, G., Uçar, S., & Yanik, J. (2016). Effects of Feedstock Type and Pyrolysis Temperature on Potential Applications of Biochar. J Anal Appl Pyrol, 120, 200–206. https://doi.org/10.1016/j.jaap.2016.05.006spa
dc.relation.referencesTakaya, C. A., Fletcher, L. A., Singh, S., Okwuosa, U. C., & Ross, A. B. (2016). Recovery of phosphate with chemically modified biochars. Journal of Environmental Chemical Engineering, 4(1), 1156–1165. https://doi.org/10.1016/j.jece.2016.01.011spa
dc.relation.referencesTan, X., Liu, Y., Zeng, G., Wang, X., Hu, X., Gu, Y., & Yang, Z. (2015). Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere, 125, 70–85. https://doi.org/10.1016/j.chemosphere.2014.12.058spa
dc.relation.referencesTan, Z., Lin, C. S. K., Ji, X., & Rainey, T. J. (2017). Returning biochar to fields: A review. Applied Soil Ecology, 116(April), 1–11. https://doi.org/10.1016/j.apsoil.2017.03.017spa
dc.relation.referencesTomczyk, A., Sokołowska, Z., & Boguta, P. (2020). Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Reviews in Environmental Science and Biotechnology, 19(1), 191–215. https://doi.org/10.1007/s11157-020-09523-3spa
dc.relation.referencesVanegas Chamorro, M., Barranco Meléndez, R., Castellanos, G., & Navarro, C. (2008). Estudio de la combustión de carbones beneficiados provenientes de intercalaciones de las minas de la Jagua de Ibirico-Cesar mediante análisis termogravimétrico. PROSPECTIVA, 6(1), 55–62. http://www.redalyc.org/articulo.oa?id=496250973010spa
dc.relation.referencesWang, S., Gongxin, D., Haiping, Y., & Zhongyang, L. (2017). Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review. Progress in Energy and Combustion Science, 62, 33–86. https://doi.org/10.1016/j.pecs.2017.05.004spa
dc.relation.referencesWeber, K., & Quicker, P. (2018). Properties of biochar. Fuel, 217, 240–261. https://doi.org/10.1016/j.fuel.2017.12.054spa
dc.relation.referencesWei, Y., Chen, W., Liu, C., & Wang, H. (2021). Facial synthesis of adsorbent from hemicelluloses for Cr(VI) adsorption. Molecules, 26, 1443spa
dc.relation.referencesWiedemeier, D. B., Abiven, S., Hockaday, W. C., Keiluweit, M., Kleber, M., Masiello, C. A., McBeath, A. V., Nico, P. S., Pyle, L. A., Schneider, M. P. W., Smernik, R. J., Wiesenberg, G. L. B., & Schmidt, M. W. I. (2015). Aromaticity and degree of aromatic condensation of char. Organic Geochemistry, 78, 135–143. https://doi.org/10.1016/j.orggeochem.2014.10.002spa
dc.relation.referencesWinklerprins, A. M. G. A. (2009). Sweep and Char and the Creation of Amazonian Dark Earths in Homegardens. In W.I. Woods et al (Ed.), Amazonian Dark Earths: Wim Sombroek´s Vision (Springer, pp. 205–211). Springer. https://doi.org/10.1007/978-1-4020-9031-8spa
dc.relation.referencesXiao, X., Chen, Z., & Chen, B. (2016). H/C Atomic Ratio as a Smart Linkage between Pyrolytic Temperatures, Aromatic Clusters and Sorption Properties of Biochars Derived from Diverse Precursory Materials. Sci Rep, 6(22644). https://doi.org/10.1038/srep22644spa
dc.relation.referencesXu, J., Liu, J., Ling, P., Zhang, X., Xu, K., He, L., Wang, Y., Su, S., Hu, S., & Xiang, J. (2020). Raman spectroscopy of biochar from the pyrolysis of three typical Chinese biomasses: A novel method for rapidly evaluating the biochar property. Energy, 202, 117644. https://doi.org/10.1016/j.energy.2020.117644spa
dc.relation.referencesYaashikaa, P. R., Kumar, P. S., Varjani, S., & Saravanan, A. (2019). Advances in production and application of biochar from lignocellulosic feedstocks for remediation of environmental pollutants. Bioresource Technology, 292, 122030. https://doi.org/10.1016/j.biortech.2019.122030spa
dc.relation.referencesAghoghovwia, M. P., Hardie, A. G., & Rozanov, A. B. (2020). Characterisation, adsorption and desorption of ammonium and nitrate of biochar derived from different feedstocks. Environmental Technology, 43(5), 1–38. https://doi.org/10.1080/09593330.2020.1804466spa
dc.relation.referencesAlmanassra, I. W., Mckay, G., Kochkodan, V., Atieh, M. A., & Al-Ansari, T. (2021). A state of the art review on phosphate removal from water by biochars. Chemical Engineering Journal, 409, 128211. https://doi.org/10.1016/j.cej.2020.128211spa
dc.relation.referencesAntón-Herrero, R., García-Delgado, C., Alonso-Izquierdo, M., García-Rodríguez, G., Cuevas, J., & Eymar, E. (2018). Comparative adsorption of tetracyclines on biochars and stevensite: Looking for the most effective adsorbent. Applied Clay Science, 160, 162–172. https://doi.org/10.1016/j.clay.2017.12.023spa
dc.relation.referencesAyawei, N., Ebelegi, A. N., & Wankasi, D. (2017). Modelling and Interpretation of Adsorption Isotherms. 2017spa
dc.relation.referencesBanik, C., Lawrinenko, M., Bakshi, S., & Laird, D. A. (2018). Impact of pyrolysis temperature and feedstock on surface charge and functional group chemistry of biochars. J. Environ. Qual, 47, 452–461. https://doi.org/10.2134/jeq2017.11.0432spa
dc.relation.referencesBarker, A. V., & Pilbeam, D. J. (2015). Handbook of Plant Nutrition (D. J. P. Allen V. Barker (ed.); 2nd ed.). CRC Press.spa
dc.relation.referencesBeltrán-Morales, F. A., Nieto-Garibay, A., Murillo-Chollet, J. S. A., Ruiz-Espinoza, F. H., Troyo-Dieguez, E., Alcala-Jauregui, J. A., & Murillo-Amador, B. (2019). Contenido inorgánico de nitrógeno, fósforo y potasio de abonos de origen natural para su uso en agricultura orgánica. Terra Latinoamericana, 37, 371–378. https://doi.org/10.28940/terra.v37i4.520spa
dc.relation.referencesBerestetskiy, A. (2023). Modern Approaches for the Development of New Herbicides Based on Natural Compounds. Plants (Basel), 12(2), 234. https://doi.org/10.3390/plants12020234spa
dc.relation.referencesBeusch, C., Melzer, D., Cierjacks, A., & Kaupenjohann, M. (2022). Amending a tropical Arenosol : increasing shares of biochar and clay improve the nutrient sorption capacity. Biochar, 4:16, 1–23. https://doi.org/10.1007/s42773-022-00135-4spa
dc.relation.referencesBilias, F., Kalderis, D., Richardson, C., Barbayiannis, N., & Gasparatos, D. (2023). Biochar application as a soil potassium management strategy: A review. Science of The Total Environment, 858(1), 159782. https://doi.org/10.1016/j.scitotenv.2022.159782spa
dc.relation.referencesBornø, M. L., Müller-stöver, D. S., & Liu, F. (2018). Contrasting effects of biochar on phosphorus dynamics and bioavailability in different soil types. Science of the Total Environment, 627, 963–974. https://doi.org/10.1016/j.scitotenv.2018.01.283spa
dc.relation.referencesCai, Y., Qi, H., Liu, Y., & He, X. (2016). Sorption/Desorption Behavior and Mechanism of NH 4+ by Biochar as a Nitrogen Fertilizer Sustained-Release Material. Journal of Agricultural and Food Chemistry, 64, 4958–4964. https://doi.org/10.1021/acs.jafc.6b00109spa
dc.relation.referencesCamps-Arbestain, M., Shen, Q., Wang, T., van Zwieten, L., & Novak, J. (2017). Available nutrients in biochar. In B. Singh, M. Camps-Arbestain, & J. Lehmann (Eds.), Biochar: A Guide to Analytical Methods (pp. 109–125). CSIRO.spa
dc.relation.referencesCara, I. G., & Jitareanu, G. (2015). Application of low-cost adsorbents for pesticide removal. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Agriculture, 72(1). https://doi.org/10.15835/buasvmcn-agr:11182spa
dc.relation.referencesCara, I. G., Topa, D., Puiu, I., & Jitareanu, G. (2022). Biochar a Promising Strategy for Pesticide-Contaminated Soils. Agriculture, 12(1579), 1–21. https://doi.org/10.3390/agriculture12101579spa
dc.relation.referencesCerón Rincón, L. E., & Ancízar Aristizábal Gutiérrez, F. (2012). Dinámica del ciclo del nitrógeno y fósforo en suelos. Revista Colombiana de Biotecnología, 14(1), 285.295. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0123-34752012000100026&lng=en&tlng=esspa
dc.relation.referencesChefetz, B., Bilkis, Y. I., & Polubesova, T. (2004). Sorption-desorption behavior of triazine and phenylurea herbicides in Kishon river sediments. Water Research, 38(20), 4383–4394. https://doi.org/10.1016/j.watres.2004.08.023spa
dc.relation.referencesCheng, H., Zhang, J., Chen, Y., Zhang, W., Ji, R., Song, Y., Li, W., Bian, Y., Jiang, X., Xue, J., & Han, J. (2022). Hierarchical porous biochars with controlled pore structures derived from co-pyrolysis of potassium/calcium carbonate with cotton straw for efficient sorption of diethyl phthalate from aqueous solution. Bioresource Technology, 346, 126604. https://doi.org/10.1016/j.biortech.2021.126604spa
dc.relation.referencesCheng, N., Wang, B., Feng, Q., Zhang, X., & Chen, M. (2021). Co-adsorption performance and mechanism of nitrogen and phosphorus onto eupatorium adenophorum biochar in water. Bioresource Technology, 340, 125696. https://doi.org/10.1016/j.biortech.202.125696spa
dc.relation.referencesChintala, R., Schumacher, T. E., Mcdonald, L. M., Clay, D. E., Malo, D. D., Clay, S. A., & Julson, J. L. (2014). Phosphorus Sorption and Availability from Biochars and Soil / Biochar Mixtures. CLEAN Soil Air Water, 42(5), 626–634. https://doi.org/10.1002/clen.201300089spa
dc.relation.referencesCui, X., Hao, H., Zhang, C., He, Z., & Yang, X. (2016). Capacity and mechanisms of ammonium and cadmium sorption on different wetland-plant derived biochars. Science of the Total Environment, 539, 566–575. https://doi.org/10.1016/j.scitotenv.2015.09.022spa
dc.relation.referencesCurrie, S. j., Vanzomeren, C. M., & Berkowitz, J. F. (2017). Utilizing Wetlands for Phosphorus Reduction in Great Lakes Watersheds : A Review of Available Literature Examining Soil Properties and Phosphorus ERDC / EL SR-17-4 Utilizing Wetlands for Phosphorus Reduction in Great Lakes Watersheds : A Review of Availab (Issue October). U.S. Army Engineer Research and Development Center (ERDC)spa
dc.relation.referencesDelwiche, K. B., Lehmann, J., & Walter, M. T. (2014). Atrazine leaching from biochar-amended soils. Chemosphere, 95, 346–352. https://doi.org/10.1016/j.chemosphere.2013.09.043spa
dc.relation.referencesDeng, H., Feng, D., He, J., Li, F., Yu, H., & Ge, C. (2017). Influence of biochar amendments to soil on the mobility of atrazine using sorption-desorption and soil thin-layer chromatography. 99, 381–390.spa
dc.relation.referencesDey, S., Purakayastha, T. J., Sarkar, B., Rinklebe, J., Kumar, S., Chakraborty, R., Datta, A., Lal, K., & Shivay, Y. S. (2023). Enhancing cation and anion exchange capacity of rice straw biochar by chemical modification for increased plant nutrient retention. Science of the Total Environment, 886, 163681. https://doi.org/10.1016/j.scitotenv.2023.163681spa
dc.relation.referencesDing, Y., Liu, Y., Liu, S., Li, Z., Tan, X., Huang, X., Zeng, G., Zhou, L., & Zheng, B. (2016). Biochar to improve soil fertility. A review. In Agronomy for Sustainable Development. https://doi.org/10.1007/s13593-016-0372-zspa
dc.relation.referencesDotto, G. L., & McKay, G. (2020). Current scenario and challenges in adsorption for water treatment. Journal of Environmental Chemical Engineering, 8(4), 103988. https://doi.org/10.1016/j.jece.2020.103988spa
dc.relation.referencesDoulgeris, C., Kypritidou, Z., Kinigopoulou, V., & Hatzigiannakis, E. (2023). Simulation of Potassium Availability in the Application of Biochar in Agricultural Soil. Agronomy, 13, 784. https://doi.org/10.3390/agronomy13030784spa
dc.relation.referencesDugdug, abdelhafid A., Chang, S. X., Ok, Y. sik, Rajapaksha, A. U., & Anyia, A. (2018). Phosphorus sorption capacity of biochars varies with biochar type and salinity level. Environmental Science and Pollution Research, 25(26), 25799–25812. https://doi.org/10.1007/s11356-018-1368-9spa
dc.relation.referencesEduah, J. O., Henriksen, S. W., Nartey, E. K., Abekoe, M. K., & Andersen, M. N. (2020). Nonlinear sorption of phosphorus onto plant biomass-derived biochars at different pyrolysis temperatures. Environmental Technology & Innovation, 19, 100808. https://doi.org/10.1016/j.eti.2020.100808spa
dc.relation.referencesFageria, N. K., & Baligar, V. C. (2008). Chapter 7 Ameliorating Soil Acidity of Tropical Oxisols by Liming For Sustainable Crop Production. In Advances in Agronomy (Vol. 99, pp. 345–399). Academic Press. https://doi.org/10.1016/S0065-2113(08)00407-0spa
dc.relation.referencesFan, R., Chen, C., Lin, J., Tzeng, J., Huang, C., & Dong, C. (2019). Adsorption characteristics of ammonium ion onto hydrous biochars in dilute aqueous solutions. Bioresource Technology, 272, 465–472. https://doi.org/doi.org/10.1016/j.biortech.2018.10.064spa
dc.relation.referencesFeng, Q., Chen, M., Wu, P., Zhang, X., Wang, S., Yu, Z., & Wang, B. (2022). Simultaneous reclaiming phosphate and ammonium from aqueous solutions by calcium alginate-biochar composite : Sorption performance and governing mechanisms. Chemical Engineering Journal, 429, 132166. https://doi.org/10.1016/j.cej.2021.132166spa
dc.relation.referencesFerraris, G. N., Couretot, L. A., & Toribio, M. (2009). Pérdidas de nitrógeno por volatilización y su implicancia en el rendimiento del cultivo de maíz: efectos de fuente, dosis y uso de inhibidores. Informaciones Agronómicas, 43, 19–22. http://www.ipni.net/publication/ia-lacs.nsf/0/B5B2034B84BF8FF6852579950075F445/$FILE/19.pdfspa
dc.relation.referencesFlebes Díaz, J. M., Gonzáles Calvo, T., Rodríguez Soto, C., Baró Suárez, J. E., Balderas Plata, M. Á., Flebes González, J. M., & García Velasco, E. (2023). Geochemical survey of soil nitrogen and phosphorus in Valle De Bravo-Amanalco Basin, Mexico. Journal of South American Earth Sciences, 127, 104393. https://doi.org/10.1016/j.jsames.2023.104393spa
dc.relation.referencesFoo, K. . Y., & Hameed, B. . H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156, 2–10. https://doi.org/10.1016/j.cej.2009.09.013spa
dc.relation.referencesFood and Agriculture Organization of the United Nations. (2024). with major processing by Our World in Data. "Total pesticide use – FAO” [dataset]. “Land, Inputs and Sustainability: Pesticides Use” [original data]. Retrieved May 24, 2024 from. Food and Agriculture Organization of the United Nations. https://ourworldindata.org/grapher/pesticide-use-tonnesspa
dc.relation.referencesFreitas, Jj. M. A. S., Netto, A. M., Corrêa, M. M., Xavier, B. T. L., & Assis, F. X. (2018). Potassium adsorption in soil cultivated with sugarcane. Anais Da Academia Brasileira de Ciencias, 90(1), 541–555. https://doi.org/10.1590/0001-3765201720160910spa
dc.relation.referencesGaffar, S., Dattamudi, S., Baboukani, A. R., Chanda, S., Novak, J. M., Watts, D. W., Wang, C., & Jayachandran, K. (2021). Physiochemical characterization of biochars from six feedstocks and their effects on the sorption of atrazine in an organic soil. Agronomy, 11(4). https://doi.org/10.3390/agronomy11040716spa
dc.relation.referencesGagneten, A. M. I., Álvarez, M. C. I., & Harte, A. (2021). Aplicaciones y/o usos. In A. Harte (Ed.), Informe técnico-científico sobre el uso e impactos del herbicida atrazina en Argentina (1st ed., p. 42). Ciudad Autónoma de Buenos Aires: Ministerio de Ambiente y Desarrollo Sostenible de la Nación.spa
dc.relation.referencesGai, X., Wang, H., Liu, J., Zhai, L., Liu, S., Ren, T., & Liu, H. (2014). Effects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitrate. PLoS ONE, 9(12), e113888. https://doi.org/10.1371/journal.pone.0113888spa
dc.relation.referencesGautam, R. K., Goswami, M., Mishra, R. K., Chaturvedi, P., Awashthi, M. K., Singh, R. S., Giri, B. S., & Pandey, A. (2021). Biochar for remediation of agrochemicals and synthetic organic dyes from environmental samples: A review. Chemosphere, 272, 129917. https://doi.org/10.1016/j.chemosphere.2021.129917spa
dc.relation.referencesGhodszad, L., Reyhanitabar, A., Maghsoodi, M. R., Lajayer, B. A., & Chang, S. X. (2021). Biochar affects the fate of phosphorus in soil and water : A critical review. Chemosphere, 283, 131176. https://doi.org/10.1016/j.chemosphere.2021.131176spa
dc.relation.referencesGhodszad, L., Reyhanitabar, A., Oustan, S., & Alidokht, L. (2022). Phosphorus sorption and desorption characteristics of soils as affected by biochar. Soil & Tillage Research, 216, 105251. https://doi.org/10.1016/j.still.2021.105251spa
dc.relation.referencesGiao Ngo, D. N., Chuang, X., Huang, C., & Hua, L. (2023). Compositional characterization of nine agricultural waste biochars : The relations between alkaline metals and cation exchange capacity with ammonium adsorption capability. Journal of Environmental Chemical Engineering, 11(110003), 2213–3437. https://doi.org/10.1016/j.jece.2023.110003spa
dc.relation.referencesGillingham, M. D., Gomes, R. L., Ferrari, R., & West, H. M. (2022). Sorption , separation and recycling of ammonium in agricultural soils : A viable application for magnetic biochar ? Science of the Total Environment, 812, 151440. https://doi.org/10.1016/j.scitotenv.2021.151440spa
dc.relation.referencesGómez, V. B. (2014). El calcio y su asimilación por parte de las plantas. Cannabis Magazine, 125, 58–63. dialnet.unirioja.es/servlet/articulo?codigo=4813146spa
dc.relation.referencesGonçalves Junior, A. C., Junior, E. C., Schwantes, D., Kaufmann, V., Braccini, A. L., Silva, T. R. B. da, Aranda, M., & Zimmermann, J. (2023). Atrazine fate in Rhodic Ferralsol grown with corn under high-intensity rainfall conditions. Agricultural Water Management, 276, 108065. https://doi.org/10.1016/j.agwat.2022.108065spa
dc.relation.referencesGonzalez, J. M., Shipitalo, M. J., Smith, D. R., Warnemuende-Pappas, E., & Livingston, S. J. (2016). Atrazine Sorption by Biochar, Tire Chips, and Steel Slag as Media for Blind Inlets: A Kinetic and Isotherm Sorption Approach. Journal of Water Resource and Protection, 08(13), 1266–1282. https://doi.org/10.4236/jwarp.2016.813097spa
dc.relation.referencesGonzález, M. . E., Cea, M., Medina, J., González, A., Diez, M. . C., Cartes, P., Monreal, C., & Navia, R. (2015). Evaluation of biodegradable polymers as encapsulating agents for the development of a urea controlled-release fertilizer using biochar as support material. Science of the Total Environment, 505, 446–453. https://doi.org/10.1016/j.scitotenv.2014.10.014spa
dc.relation.referencesGraber, E. R., Singh, B., Hanley, K., & Lehmann, J. (2017). Dtermination of cation exchange capacity in biochar. In Balwant Singh, M. Camps-Arbestain, & J. Lehmann (Eds.), Biochar: A Guide to Analytical Methods (pp. 74–84). CSIRO.spa
dc.relation.referencesGul, S., & Whalen, J. K. (2016). Biochemical cycling of nitrogen and phosphorus in biochar-amended soils. Soil Biology and Biochemistry, 103, 1–15. https://doi.org/10.1016/j.soilbio.2016.08.001spa
dc.relation.referencesHaddad, K., Jeguirim, M., Jellali, S., Thevenin, N., Ruidavets, L., & Limousy, L. (2021). Biochar production from Cypress sawdust and olive mill wastewater: Agronomic approach. Science of The Total Environment, 752, 141713. https://doi.org/10.1016/j.scitotenv.2020.141713spa
dc.relation.referencesHale, S. E., Alling, V., Martinsen, V., Mulder, J., Breedveld, G. D., & Cornelissen, G. (2013). The sorption and desorption of phosphate-P, ammonium-N and nitrate-N in cacao shell and corn cob biochars. Chemosphere, 91(11), 1612–1619. https://doi.org/10.1016/j.chemosphere.2012.12.057spa
dc.relation.referencesHansen, A. M., Treviño-Quintanilla, L., Gerardo, Márquez-Pacheco, H., Villada-Canela, M., González-Márquez, L. C., Guillén-Garcés, R. A., & Hernández-Antonio, A. (2013). Atrazina: un herbicida polémico. Rev. Int. Contam. Ambie, 29, 65–84spa
dc.relation.referencesHerwig, U., Klumpp, E., Narres, H.-D., & Schwuger, M. J. (2001). Physicochemical interactions between atrazine and clay minerals. Applied Clay Science, 18(5–6), 211–222. https://doi.org/10.1016/S0169-1317(01)00024-2spa
dc.relation.referencesJacomini, A. E., De Camargo, P. B., Avelar, W. E., & Bonato, P. S. (2011). Assessment of ametryn contamination in river water, river sediment, and mollusk bivalves in Sao Paulo state Brazil. Arch. Environ. Contam. Toxicol, 60(3), 452–461. https://doi.org/10.1007/s00244-010-9552-zspa
dc.relation.referencesJiang, D., Amano, Y., & Machida, M. (2017). Removal and recovery of phosphate from water by calcium-silicate composites-novel adsorbents made from waste glass and shells. Environ Sci Pollut Res, 24, 8210–8218. https://doi.org/10.1007/s11356-017-8503-xspa
dc.relation.referencesJung, K. W., Hwang, M. J., Ahn, K. H., & Ok, Y. S. (2015). Kinetic study on phosphate removal from aqueous solution by biochar derived from peanut shell as renewable adsorptive media. Int. J. Environ. Sci. Technol, 12, 3363–3372. https://doi.org/10.1007/s13762-015-0766-5spa
dc.relation.referencesKah, M., & Brown, C. (2006). Adsorption of Ionisable Pesticides in Soils. In G. W. Ware (Ed.), Reviews of Environmental Contamination and Toxicology (Issue 188, pp. 149–217). Springer. https://doi.org/10.1007/978-0-387-32964-2spa
dc.relation.referencesKarunanithi, R., Sik, Y., & Dharmarajan, R. (2017). Environmental Technology & Innovation Sorption , kinetics and thermodynamics of phosphate sorption onto soybean stover derived biochar. 8, 113–125spa
dc.relation.referencesKasozi, G. N., Nkedi-kizza, P., Li, Y., & Zimmerman, A. R. (2012). Sorption of atrazine and ametryn by carbonatic and non-carbonatic soils of varied origin. Environmental Pollution, 169, 12–19. https://doi.org/10.1016/j.envpol.2012.05.002spa
dc.relation.referencesKypritidou, Z., Doulgeris, C., Tziritis, E., Kinigopoulou, V., Jellali, S., & Jeguirim, M. (2022). Geochemical Modelling of Inorganic Nutrients Leaching from an Agricultural Soil Amended with Olive-Mill Waste Biochar. Agronomy, 12, 1–15. https://doi.org/10.3390/ agronomy12020480spa
dc.relation.referencesLarasati, A., Fowler, G. D., & Graham, N. J. D. (2021). Insights into chemical regeneration of activated carbon for water treatment. Journal of Environmental Chemical Engineering, 9(4), 105555. https://doi.org/10.1016/j.jece.2021.105555spa
dc.relation.referencesLarios-González, R. C., García Centeno, L., Ríos, M. J., Avalos Espinoza, C. del S., & Castro Salazar, J. R. (2021). Pérdidas de nitrógeno por volatilización a partir de dos fuentes nitrogenadas y dos métodos de aplicación. Siembra, 8(2), e2475. https://doi.org/10.29166/siembra.v8i2.2475spa
dc.relation.referencesLee, J., Park, S.-M., Jeon, E.-K., & Baek, K. (2017). Selective and irreversible adsorption mechanism of cesium on illite. Applied Geochemistry, 85(Part B), 188–193. https://doi.org/10.1016/j.apgeochem.2017.05.019spa
dc.relation.referencesLei, J., Yin, J., Chen, S., Fenton, O., Liu, R., Chen, Q., Fan, B., & Zhang, S. (2024). Understanding phosphorus mobilization mechanisms in acidic soil amended with calcium-silicon-magnesium-potassium fertilizer. Science of The Total Environment, 916, 170294. https://doi.org/10.1016/j.scitotenv.2024.170294spa
dc.relation.referencesLewis, K. A., Tzilivakis, J., Warner, D., & Green, A. (2016). An international database for pesticide risk assessments and management. Human and Ecological Risk Assessment: An International Journal, 22(4).1050-1064 https://doi.org/10.1080/10807039.2015.1133242 https://sitem.herts.ac.uk/aeru/ppdb/en/Reports/27.htm. Consultado 2024-05-25spa
dc.relation.referencesLewis, K. A., Tzilivakis, J., Warner, D., & Green, A. (2016a). An international database for pesticide risk assessments and management. Human and Ecological Risk Assessment: An International Journal.22(4).1050-1064 https://doi.org/10.1080/10807039.2015.1133242 https://sitem.herts.ac.uk/aeru/ppdb/en/Reports/43.htm. Consultado 2024-05-25spa
dc.relation.referencesLewis, S. E., Silburn, D. M., Kookana, R. S., & Shaw, M. (2016). Pesticide Behavior, Fate, and Effects in the Tropics: An Overview of the Current State of Knowledge. Journal of Agricultural and Food Chemistry, 64(20), 3917–3924. https://doi.org/10.1021/acs.jafc.6b01320spa
dc.relation.referencesLi, H., Dong, X., da Silva, E. B., Oliveira, L. M. De, Chen, Y., & Ma, L. Q. (2017). Mechanisms of metal sorption by biochars : Biochar characteristics and modifications. Chemosphere, 178, 466–478. https://doi.org/10.1016/j.chemosphere.2017.03.072spa
dc.relation.referencesLi, S., Barreto, V., Li, R., Chen, G., & Hsieh, Y. P. (2018). Nitrogen retention of biochar derived from di ff erent feedstocks at variable pyrolysis temperatures. Journal of Analytical and Applied Pyrolysis, 133, 136–146. https://doi.org/10.1016/j.jaap.2018.04.010spa
dc.relation.referencesLi, T., Wang, Z., Wang, C., Huang, J., Feng, Y., Shen, W., Zhou, M., & Yang, L. (2022). Ammonia volatilization mitigation in crop farming : A review of fertilizer amendment technologies and mechanisms. Chemosphere, 303, 134944. https://doi.org/10.1016/j.chemosphere.2022.134944spa
dc.relation.referencesLi, X., Luo, J., Deng, H., Huang, P., Ge, C., Yu, H., & Xu, W. (2018). Effect of cassava waste biochar on sorption and release behavior of atrazine in soil. Science of the Total Environment, 644, 1617–1624. https://doi.org/10.1016/j.scitotenv.2018.07.239spa
dc.relation.referencesLimousin, G., Gaudet, J.-P., Charlet, L., Szenknect, S., Barthés, V., & Krimissa, M. (2007). Sorption isotherms : A review on physical bases , modeling and measurement. Applied Geochemistry, 22, 249–275. https://doi.org/10.1016/j.apgeochem.2006.09.010spa
dc.relation.referencesLimwikran, T., Kheoruenromne, I., Suddhiprakarn, A., Prakongkep, N., & Gilkes, R. J. (2018). Dissolution of K , Ca , and P from biochar grains in tropical soils. Geoderma, 312, 139–150. https://doi.org/10.1016/j.geoderma.2017.10.022spa
dc.relation.referencesLin, S.-L., Zhang, H., Chen, W.-H., Song, M., & Kwon, E. E. (2023). Low-temperature biochar production from torrefaction for wastewater treatment: A review. Bioresource Technology, 387, 129588. https://doi.org/10.1016/j.biortech.2023.129588spa
dc.relation.referencesLiu, N., Charrua, A. B., Weng, C. H., Yuan, X., & Ding, F. (2015). Characterization of biochars derived from agriculture wastes and their adsorptive removal of atrazine from aqueous solution: A comparative study. Bioresource Technology, 198, 55–62. https://doi.org/10.1016/j.biortech.2015.08.129spa
dc.relation.referencesLópez-Hernández, D., Mahia, M. angel, Meléndez, W., & López-Contreras, A. Y. (2021). Fijación de potasio y competencia con amonio en un suelo con arcillas expansivas. Bioagro, 33(3), 229–233. http://www.doi.org/10.51372/bioagro333.9spa
dc.relation.referencesLuo, Z., Yao, B., Yang, X., Wang, L., Xu, Z., Yan, X., Tian, L., Zhou, H., & Zhou, Y. (2022). Novel insights into the adsorption of organic contaminants by biochar: A review. Chemosphere, 287(2), 132113. https://doi.org/10.1016/j.chemosphere.2021.132113spa
dc.relation.referencesMajor, J., Rondon, M., Molina, D., Riha, S. J., & Lehmann, J. (2012). Nutrient leaching in a colombian savanna oxisol amended with biochar. Journal of Environmental Quality, 41(4), 1076–1086. https://doi.org/10.2134/jeq2011.0128spa
dc.relation.referencesMandal, A., Singh, N., & Purakayastha, T. J. (2017). Characterization of pesticide sorption behaviour of slow pyrolysis biochars as low cost adsorbent for atrazine and imidacloprid removal. Science of The Total Environment, 577, 376–385. https://doi.org/10.1016/j.scitotenv.2016.10.204spa
dc.relation.referencesMandal, A., Singh, N., & Nain, L. (2017a). Agro-waste biosorbents: Effect of physico-chemical properties on atrazine and imidacloprid sorption. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 52(9), 671–682. https://doi.org/10.1080/03601234.2017.1331677spa
dc.relation.referencesManolikaki, I. I., Mangolis, A., & Diamadopoulos, E. (2016). The impact of biochars prepared from agricultural residues on phosphorus release and availability in two fertile soils. Journal of Environmental Management, 181, 536–543. https://doi.org/10.1016/j.jenvman.2016.07.012spa
dc.relation.referencesMarshall, J. A., Morton, B. J., Muhlack, R., Chittleborough, D., & Wai, C. (2017). Recovery of phosphate from calcium-containing aqueous solution resulting from biochar-induced calcium phosphate precipitation. Journal of Cleaner Production, 165, 27–35. https://doi.org/10.1016/j.jclepro.2017.07.042spa
dc.relation.referencesMartin, S. M., Kookana, R. S., Van Zwieten, L., & Krull, E. (2012). Marked changes in herbicide sorption-desorption upon ageing of biochars in soil. Journal of Hazardous Materials, 231–232, 70–78. https://doi.org/10.1016/j.jhazmat.2012.06.040spa
dc.relation.referencesMartins, E. C., Melo, V. de F., Bohone, J. B., & Abate, G. (2018). sorption and desorption of atrazine on soils: The effect of different soil fractions. Geoderma, 322, 131–139. https://doi.org/10.1016/j.geoderma.2018.02.028spa
dc.relation.referencesMcGinley, J., O´Driscoll, J. H., Healy, M. G., Ryan, P. C., Mellander, P. E., Morrison, L., Callery, O., & Siggins, A. (2022). An assessment of potential pesticide transmission, considering the combined impact of soil texture and pesticide properties: A meta-analyisis. Soil Use and Management, 0, 1–10. https://doi.org/10.1111/sum.12794spa
dc.relation.referencesMia, S., Dijkstra, F. A., & Singh, B. (2017). Aging Induced Changes in Biochar’s Functionality and Adsorption Behavior for Phosphate and Ammonium. Environ. Sci. Technol., 51(15), 8359–8367. https://doi.org/10.1021/acs.est.7b00647spa
dc.relation.referencesMiao ,Wang, Deliang, Xu, Yonghui, B., Guangsuo, Y., Junxian, Z., Shoujun, Z., Jie, X., Hong, Z., Shu, Z., & Juntao, W. (2023). Dynamic investigation on potassium migration and transformation during biochar combustion and its correlation with combustion reactivity. Fuel, 340(127540). https://doi.org/10.1016/j.fuel.2023.127540spa
dc.relation.referencesMorales, M. M., Comerford, N., Guerrini, I. A., Falcão, N. P. S., & Reeves, J. B. (2013). Sorption and desorption of phosphate on biochar and biochar–soil mixtures. Soil Use and Management, 29. https://doi.org/10.1111/sum.12047spa
dc.relation.referencesMoreno-Rodríguez, D., Jankovic, L., Scholtzová, E., & Tunega, D. (2021). Stability of Atrazine – Smectite Intercalates : Density Functional Theory and Experimental Study. Minerals, 11(554). https://doi.org/10.3390/min11060554spa
dc.relation.referencesMudhoo, A., & Garg, V. K. (2011). Sorption, transport and transformation of atrazine in soils, minerals and compost: A review. PEDOSPHERE, 21(1), 11–25spa
dc.relation.referencesOECD. (2000). OECD 106 Adsorption - Desorption Using a Batch Equilibrium Method. OECD Guideline for the Testing of Chemicals, January, 1–44. http://www.oecd-ilibrary.org/environment/test-no-106-adsorption-desorption-using-a-batch-equilibrium-method_9789264069602-enspa
dc.relation.referencesOginni, O., Yakaboylu, G. A., Singh, K., Sabolsky, E. M., Unal-Tosun, G., Jaisi, D., Khanal, S., & Shah, A. (2020). Phosphorus adsorption behaviors of MgO modified biochars derived from waste woody biomass resources. Journal of Environmental Chemical Engineering, 8(2), 103723. https://doi.org/10.1016/j.jece.2020.103723spa
dc.relation.referencesOgura, A. P., Lima, J. Z., Marques, J. P., Sousa, L. M., Rodrigues, V. C. S., & Espíndola, E. L. G. (2021). A review of pesticides sorption in biochar from maize, rice, and wheat residues: Current status and challenges for soil application. Journal of Environmental Management, 300, 113753. https://doi.org/10.1016/j.jenvman.2021.113753spa
dc.relation.referencesPal, D. B., Singh, A., Jha, J. M., Srivastava, N., Hashem, A., Alakeel, M. A., Abd_Allah, E. F., & Gupta, V. K. (2021). Low-cost biochar adsorbents prepared from date and delonix regia seeds for heavy metal sorption. Bioresource Technology, 339(July), 125606. https://doi.org/10.1016/j.biortech.2021.125606spa
dc.relation.referencesPan, B., Lam, S. K., Mosier, A., Luo, Y., & Chen, D. (2016). Ammonia volatilization from synthetic fertilizers and its mitigation strategies: a global synthesis. Agric. Ecosyst. Environ., 232, 283–289. https://doi.org/10.1016/j.agee.2016.08.019spa
dc.relation.referencesPaula, R. T. De, Abreu, A. B. G. De, De, M. E. L. R., Neves, A. A., Silva, A. A., Paula, R. T. De, Abreu, A. B. G. De, & De, M. E. L. R. (2015). Leaching and persistence of ametryn and atrazine in red – yellow latosol. 1234(November). https://doi.org/10.1080/03601234.2015.1092819spa
dc.relation.referencesPenn, C. J., & Camberato, J. J. (2019). A Critical Review on Soil Chemical Processes that Control How Soil pH Affects Phosphorus Availability to Plants. Agriculture, 9(6), 120. https://doi.org/10.3390/agriculture9060120spa
dc.relation.referencesPetter, F. A., Ferreira, T. S., Sinhorin, A. P., Lima, Larissa Borges de Morais, L. A. de, & Pacheco, L. P. (2016). Sorption and desorption of diuron in Oxisol under biochar application. Bragantia, 75(4), 487–496. https://doi.org/10.1590/1678-4499.420spa
dc.relation.referencesRAFAEL, R. B. A., FERNÁNDEZ-MARCOS, M. L., COCCO, S., RUELLO, M. L., FORNASIER, F., & CORTI, G. (2019). Benefits of Biochars and NPK Fertilizers for Soil Quality and Growth of Cowpea (Vigna unguiculata L. Walp.) in an Acid Arenosol. Pedosphere, 29(3), 311–333. https://doi.org/10.1016/S1002-0160(19)60805-2spa
dc.relation.referencesRamírez-Morales, D., Pérez-Villanueva, M. E., Chin-Pampillo, J. S., Aguilar-Mora, P., Arias-Mora, V., & Masís-Mora, M. (2021). Pesticide occurrence and water quality assessment from an agriculturally influenced Latin-American tropical region. Chemosphere, 262, 1278511. https://doi.org/10.1016/j.chemosphere.2020.127851spa
dc.relation.referencesRamond, J., Jordaan, K., Díez, B., Heinzelmann, S., & Cowan, D. (2022). Microbial Biogeochemical Cycling of Nitrogen in Arid Ecosystems. Microbiol Mol Biol Rev, 86(2), e00109-21. https://doi.org/10.1128/mmbr.00109-21spa
dc.relation.referencesRangabhashiyam, S., Anu, N., Giri Nandagopal, M. S., & Selvaraju, N. (2014). Relevance of isotherm models in biosorption of pollutants by agricultural byproducts. Journal of Environmental Chemical Engineering, 2(1), 398–414. https://doi.org/10.1016/j.jece.2014.01.014spa
dc.relation.referencesRashmi, I., Jha, P., & Biswas, A. K. (2020). Phosphorus Sorption and Desorption in Soils Amended with Subabul Biochar. Agric Res, 9(3), 371–378. https://doi.org/10.1007/s40003-019-00437-3 FULL-LENGTHspa
dc.relation.referencesRasool, S., Rasool, T., & Gani, K. M. (2022). A review of interactions of pesticides within various interfaces of intrinsic and organic residue amended soil environment. Chemical Engineering Journal Advances, 11, 100301. https://doi.org/10.1016/j.ceja.2022.100301spa
dc.relation.referencesREIS GONÇALVES, F. A. (2018). MODOS DE APLICAÇÃO DE FÓSFORO NA CULTURA DA CENOURA E ADSORÇÃO IÔNICA EM BIOCHAR DE BATATA. Universidade Federal de Viçosa.spa
dc.relation.referencesRezaee, M., Gitipour, S., & Sarrafzadeh, M.-H. (2021). Evaluation of phosphate and ammonium adsorption-desorption of slow pyrolyzed wood biochar. Environmental Engineering and Management Journal, 20(2), 217–227. https://doi.org/10.30638/eemj.2021.022spa
dc.relation.referencesRimayi, C., Odusanya, D., Weiss, J. M., Boer, J., Chimuka, L., & Mbajiorgu, F. (2018). Effects of environmentally relevant sub-chronic atrazine concentrations on African clawed frog (Xenopus laevis) survival, growth and male gonad development. Aquat. Toxicol, 199, 1–11. https://doi.org/10.1016/j.aquatox.2018.03.028spa
dc.relation.referencesRodríguez-Estupiñán, P., Erto, A., Giraldo, L., & Moreno-Piraján, J. C. (2017). Adsorption of Cd (II) on Modified Granular Activated Carbons: Isotherm and Column Study. Molecules, 22(12), 2280. https://doi.org/10.3390/molecules22122280spa
dc.relation.referencesRodríguez Aguilar, B. A., Martínez Rivera, Luis Manuel Muñiz-valencia, R., Mercado-silva, N., & Íñiguez Dávalos, Luis Ignacio Peregrina Lucano, A. A. (2022). Pesticide distribution and ecotoxicological risk in the Ayuquila-Armeria river. Revista Internacional de Contaminación Ambiental, 38, 301–315. https://doi.org/10.20937/RICA.54180spa
dc.relation.referencesRoss, M. (2004). Importancia del magnesio para altos rendimientos sostenibles en palma de aceite. Palmas, 25(especial), 98–104. https://publicaciones.fedepalma.org/index.php/palmas/article/view/1071spa
dc.relation.referencesRubio-Bellido, M., Morillo, E., & Villaverde, J. (2016). Effect of addition of HPBCD on diuron adsorption–desorption, transport and mineralization in soils with different properties. Geoderma, 265, 196–203. https://doi.org/10.1016/j.geoderma.2015.11.022 Get rights and contentspa
dc.relation.referencesRuiz Márquez, N. A. (2022). Evaluación del efecto de la aplicación de biochar en suelos agrícolas basado en la migración de nutrientes. Universidad Nacional de Colombiaspa
dc.relation.referencesSaha, A., Bhaduri, D., Pipariya, A., & Ghosh, R. K. (2016). Linear and nonlinear sorption modelling for adsorption of atrazine onto activated peanut husk. Environmental Progress & Sustainable Energy, 36(2), 348–358. https://doi.org/10.1002/ep.12434spa
dc.relation.referencesSaleh, M. E., Mahmoud, A. H., & Mohamed, R. (2012). Peanut biochar as a stable adsorbent for removing NH4-N from wastewater: a preliminary study. In Adv. Environ. Biol (Vol. 6). https://link.gale.com/apps/doc/A304466631/AONE?u=anon~eee05c4e&sid=googleScholar&xid=e5744efd.spa
dc.relation.referencesSharma, A. D., & Lai, D. (2018). Sorption of radiolabelled glyphosate on biochar aged in contrasting soils. Journal of Environmental Science and Health - Part B, 54(1), 49–53. https://doi.org/10.1080/03601234.2018.1531658spa
dc.relation.referencesShattar, S. F. A., Zakaria, N. A., & Foo, K. Y. (2017). Utilization of montmorillonite as a refining solution for the treatment of ametryn, a second generation of pesticide. Journal of Environmental Chemical Engineering, 5(4), 3235–3242. https://doi.org/10.1016/j.jece.2017.06.031spa
dc.relation.referencesSilva, C. R., Gomes, T. F., Andrade, G. C. R. M., Monteiro, S. H., Dias, A. C. R., Zagatto, E. A. G., & Tornisielo, V. L. (2013). Banana peel as an adsorbent for removing atrazine and ametryne from waters. Journal of Agricultural and Food Chemistry, 61(10), 2358–2363. https://doi.org/10.1021/jf304742hspa
dc.relation.referencesSingh, Bijay, & Singh, V. (2020). Role of fertilizer best management practices in improving nitrogen use efficiency in cereals. Indian Journal of Fertilisers, 16(12), 1246–1258. https://www.researchgate.net/publication/347358188_Role_of_fertilizer_best_management_practices_in_improving_nitrogen_use_efficiency_in_cerealsspa
dc.relation.referencesSingh, M., Rano, S., Roy, S., Mukherjee, P., Dalui, S., Gupta, G. K., Kumar, S., & Mondal, M. K. (2022). Characterization of organophosphate pesticide sorption of potato peel biochar as low cost adsorbent for chlorpyrifos removal. Chemosphere, 297, 134112. https://doi.org/10.1016/j.chemosphere.2022.134112spa
dc.relation.referencesSoni, N., Ramon G., L., Erickson, J. E., Ferrell, J. A., & Silveira, M. L. (2015). Biochar decreases Atrazine and Pendimethalin Preemergence Herbicidal Activity. Weed Technology, 29(3), 359–366. https://doi.org/10.1614/WT-D-14-00142.1spa
dc.relation.referencesSuliman, W., Harsh, J. B., Abu-Lail, N. I., Fortuna, A.-M., Dallmeyer, I., & Garcia-Perez, M. (2016). Influence of feedstock source and pyrolysis temperature on biochar bulk and surface properties. Biomass and Bioenergy, 84, 37–48. https://doi.org/10.1016/j.biombioe.2015.11.010spa
dc.relation.referencesSun, J. T., Pan, L. L., Zhan, Y., Tsang, D. C. W., & Zhu, L. Z. (2017). Atrazine contamination in agricultural soils from the Yangtze river delta of China and associated health risk. Environ. Geochem. Hlth., 39(2), 369–378. https://doi.org/10.1007/s10653-016-9853-xspa
dc.relation.referencesSun, K., Qiu, M., Han, L., Jin, J., Wang, Z., Pan, Z., & Xing, B. (2018). Speciation of phosphorus in plant- and manure-derived biochars and its dissolution under various aqueous conditions. Science of the Total Environment, 634, 1300–1307. https://doi.org/10.1016/j.scitotenv.2018.04.099spa
dc.relation.referencesSuo, F., You, X., Ma, Y., & Li, Y. (2019). Rapid removal of triazine pesticides by P doped biochar and the adsorption mechanism. Chemosphere, 235, 918–925. https://doi.org/10.1016/j.chemosphere.2019.06.158spa
dc.relation.referencesTakaya, C. A., Fletcher, L. A., Singh, S., Anyikude, K. U., & Ross, A. B. (2016). Phosphate and ammonium sorption capacity of biochar and hydrochar from different wastes. Chemosphere, 145, 518–527. http://dx.doi.org/10.1016/j.chemosphere.2015.11.052spa
dc.relation.referencesTakaya, C. A., Fletcher, L. A., Singh, S., Okwuosa, U. C., & Ross, A. B. (2016a). Recovery of phosphate with chemically modified biochars. Journal of Environmental Chemical Engineering, 4(1), 1156–1165. https://doi.org/10.1016/j.jece.2016.01.011spa
dc.relation.referencesTan, K. L., & Hameed, B. H. (2017). Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions. Journal of the Taiwan Institute of Chemical Engineers, 74, 25–48. https://doi.org/10.1016/j.jtice.2017.01.024spa
dc.relation.referencesTan, Z., Liu, L., Zhang, L., & Huang, Q. (2017). Mechanistic study of the influence of pyrolysis conditions on potassium speciation in biochar “preparation-application” process. Science of The Total Environment, 599–600, 207–216. https://doi.org/10.1016/j.scitotenv.2017.04.235spa
dc.relation.referencesTan, Z., Yuan, S., Hong, M., Zhang, L., & Huang, Q. (2020). Mechanism of negative surface charge formation on biochar and its effect on the fixation of soil Cd. Journal of Hazardous Materials, 384, 121370. https://doi.org/10.1016/j.jhazmat.2019.121370spa
dc.relation.referencesTesfaye, F., Liu, X., Zheng, J., Cheng, K., Bian, R., & Zhang, X. (2021). Could biochar amendment be a tool to improve soil availability and plant uptake of phosphorus ? A meta-analysis of published experiments. 7, 34108–34120spa
dc.relation.referencesThongsamer, T., Vinitnantharat, S., Pinisakul, A., & Werner, D. (2022). Chitosan impregnation of coconut husk biochar pellets improves their nutrient removal from eutrophic surface water. Sustain Environ Res, 32(39). https://doi.org/10.1186/s42834-022-00150-xspa
dc.relation.referencesTran, H. N. (2022). Improper estimation of thermodynamic parameters in adsorption studies with distribution coefficient Kd (qe/Ce) or Freundlich constant (Kf): Considerations from the derivation of dimensionless thermodynamic equilibrium constant and suggestions. Adsorption Science & Technology. https://doi.org/10.1155/2022/5553212spa
dc.relation.referencesTrazzi, P. A., Leahy, J. . J., Hayes, M. H. B., & Kwapinski, W. (2016). Adsorption and desorption of phosphate on biochars. Journal of Environmental Chemical Engineering, 4, 37–46. http://dx.doi.org/10.1016/j.jece.2015.11.005spa
dc.relation.referencesTuriel, E., Perez-Conde, C., & Martin-Esteban, A. (2003). Assessment of the cross-reactivity and binding sites characterisation of propazine-imprinted polymer using the Langmuir-Freundlich isotherm. Analyst, 128(2), 137–141. https://doi.org/10.1039/C9TA00287Aspa
dc.relation.referencesUrseler, N., Bachetti, R., Morgante, V., Agostini, E., & Morgante, C. (2022). Atrazine behavior in an agricultural soil: adsorption–desorption, leaching, and bioaugmentation with Arthrobacter sp. strain AAC22. Journal of Soils and Sediments, 22(1), 93–108. https://doi.org/10.1007/s11368-021-03045-3spa
dc.relation.referencesUSEPA. (2005). EPA 738-R-05-006. Reregistration eligibility decision (red) for ametryn (2-ethylamino)-4-(isopropylamino)-6-(methylthio)-s-triazine. archive.epa.gov/pesticides/registration/web/pdf/ametryn_red.pdfspa
dc.relation.referencesVan Reeuwijk, L. P. (2002). Procedures for Soil Analysis. Technical Paper 9. In L. P. Van Reeuwijk (Ed.), Procedures for Soil Analysis (6th ed.). https://doi.org/10.1016/j.postcomstud.2006.09.001spa
dc.relation.referencesVargas Delgadillo, D. P. (2013). Preparación, caracterización y funcionalización de materiales carbonosos para la adsorción de CO2. Universidad Nacional de Colombia.spa
dc.relation.referencesVenegas Sepúlveda, A. (2015). Evaluación de la adición de materiales de origen orgánico para la remediación de suelos contaminados con metales pesados [Universitat de Barcelona]. https://www.tdx.cat/handle/10803/292729#page=54spa
dc.relation.referencesVeni, D. K., Kannan, P., Edison, T. N. J. I., & Senthilkumar, A. (2017). Biochar from green waste for phosphate removal with subsequent disposal. Waste Management, 68, 752–759. https://doi.org/10.1016/j.wasman.2017.06.032spa
dc.relation.referencesVillalobos, F. J., & Fereres, E. (2017). Chapter 31 -Application of Herbicides and Other Biotic Control Agents. In F. J. Villalobos & E. Fereres (Eds.), Principles of Agronomy for Sustainable Agriculture (p. 471). Springer International Publishing. https://doi.org/10.1007/978-3-319-46116-8_31spa
dc.relation.referencesWalworth, J. (2013). Nitrogen in the Soil and the Environment (pp. 2–5). College of Agriculture and Life Sciences, University of Arizona. http://hdl.handle.net/10150/267773spa
dc.relation.referencesWang, B., Lehmann, J., Hanley, K., Hestrin, R., & Enders, A. (2015). Adsorption and desorption of ammonium by maple wood biochar as a function of oxidation and pH. Chemosphere, 138, 120–126. https://doi.org/10.1016/j.chemosphere.2015.05.062spa
dc.relation.referencesWang, D., Mukome, F. N. D., Yan, D., Wang, H., Scow, K. M., & Parikh, S. J. (2015). Phenylurea herbicide sorption to biochars and agricultural soil. Journal of Environmental Science and Health - Part B, 50(8), 544–551. https://doi.org/10.1080/03601234.2015.1028830spa
dc.relation.referencesWang, J., & Guo, X. (2020). Adsorption isotherm models: Classification, physical meaning, application and solving method. Chemosphere, 258, 127279. https://doi.org/10.1016/j.chemosphere.2020.127279spa
dc.relation.referencesWang, Q., Xu, L., Guo, D., Wang, G., Song, X., & Ma, Y. (2021). The continuous application of biochar in field: effects on P fraction, P sorption and release. Chemosphere, 263, 128084. https://doi.org/10.1016/j.chemosphere.2020.128084spa
dc.relation.referencesWeber, J. B. (1970). Mechanisms of adsorption of s-triazines by clay colloids and factors affecting plant availability. Residue Rev, 33, 93–129spa
dc.relation.referencesWHO. (2011). Atrazine and its metabolite in drinking water. Background document for development of WHO Guidelines for drinking-water Quality. cdn.who.int/media/docs/default-source/wash-documents/wash-chemicals/antrazine.pdf?sfvrsn=aed2ccc7_4spa
dc.relation.referencesYahaya, S. M., Mahmud, A. A., Abdullahi, M., & Haruna, A. (2023). Recent advances in the chemistry of nitrogen , phosphorus and potassium as fertilizers in soil : A review. PEDOSPHERE, 33(3), 385–406. https://doi.org/10.1016/j.pedsph.2022.07.012spa
dc.relation.referencesYavari, S., Malakahmad, A., & Sapari, N. B. (2015). Biochar efficiency in pesticides sorption as a function of production variables- a review. Environ Sci Pollut Res, 22(18), 13824–13841. https://doi.org/10.1007/s11356-015-5114-2spa
dc.relation.referencesYao, Y., Gao, B., Zhang, M., Inyang, M., & Zimmerman, A. R. (2012). Effect of biochar amendment on sorption and leaching of nitrate , ammonium , and phosphate in a sandy soil. Chemosphere, 89(11), 1467–1471. https://doi.org/10.1016/j.chemosphere.2012.06.002spa
dc.relation.referencesZambon, I., Colosimo, F., Monarca, D., Cecchini, M., Gallucci, F., Proto, A. R., Lord, R., & Colantoni, A. (2016). An Innovative Agro-Forestry Supply Chain for Residual Biomass: Physicochemical Characterisation of Biochar from Olive and Hazelnut Pellets. Energies, 9(7: 526). https://doi.org/10.3390/en9070526spa
dc.relation.referencesZhang, H., Chen, C., Gray, E. M., Boyd, S. E., Yang, H., & Zhang, D. (2016). Roles of biochar in improving phosphorus availability in soils: A phosphate adsorbent and a source of available phosphorus. Geoderma, 276, 1–6. https://doi.org/10.1016/j.geoderma.2016.04.020spa
dc.relation.referencesZhang, M., Riaz, M., Liu, B., Xia, H., El-desouki, Z., & Jiang, C. (2020). Two-year study of biochar: Achieving excellent capability of potassium supply via alter clay mineral composition and potassium-dissolving bacteria activity. Science of The Total Environment, 717. https://doi.org/10.1016/j.scitotenv.2020.137286spa
dc.relation.referencesZhao, Z., Wu, Q., Nie, T., & Zhou, W. (2019). Quantitative evaluation of relationships between adsorption and partition of atrazine in biochar-amended soils with biochar characteristics. RSC Advances, 9(8), 4162–4171. https://doi.org/10.1039/C8RA08544Gspa
dc.relation.referencesZheng, W., Sharma, B. K., & Rajagopalan, N. (2010). Using Biochar as a Soil Amendment for Sustainable Agriculture. https://www.ideals.illinois.edu/items/25668spa
dc.relation.referencesZheng, W., Guo, M., Chow, T., Bennett, D. N., & Rajagopalan, N. (2010a). Sorption properties of greenwaste biochar for two triazine pesticides. Journal of Hazardous Materials, 181, 121–126. https://doi.org/10.1016/j.jhazmat.2010.04.103spa
dc.relation.referencesZhou, M., Li, T., Liu, P., Zhang, S., Liu, Y., An, T., & Zhao, H. (2021). Real-time on-site monitoring of soil ammonia emissions using membrane permeation-based sensing probe. Environ. Pollut, 289, 117850. https://doi.org/10.1016/j.envpol.2021.117850spa
dc.relation.referencesZhu, L., Zhao, N., Tong, L., Lv, Y., & Li, G. (2018). Characterization and evaluation of surface modified materials based on porous biochar and its adsorption properties for 2,4-dichlorophenoxyacetic acid. Chemosphere, 210, 734–744. https://doi.org/10.1016/j.chemosphere.2018.07.090spa
dc.relation.referencesZiarani, G. M., Moradi, R., Lashgari, N., & Kruger, H. G. (2018). Chapter 17 - Triazine Dyes (G. M. Ziarani, R. Moradi, N. Lashgari, & H. G. B. T.-M.-F. S. O. D. Kruger (eds.); pp. 219–222). Elsevier. https://doi.org/10.1016/B978-0-12-815647-6.00017-0spa
dc.relation.referencesAbujabhah, I. S., Doyle, R., Bound, S. A., & Bowman, J. P. (2016). The effect of biochar loading rates on soil fertility, soil biomass, potential nitrification, and soil community metabolic profiles in three different soils. Journal of Soils and Sediments, 16, 2211–2222. https://doi.org/10.1007/s11368-016-1411-8spa
dc.relation.referencesAgegnehu, G., Srivastava, A. K., & Bird, M. I. (2017). The role of biochar and biochar-compost in improving soil quality and crop performance: A review. Applied Soil Ecology, 119(June), 156–170. https://doi.org/10.1016/j.apsoil.2017.06.008spa
dc.relation.referencesAharonov-Nadborny, R., Raviv, M., & Graber, E. R. (2016). Soil spreading of liquid olive mill processing wastes impacts leaching of adsorbed terbuthylazine. Chemosphere, 156, 220–227. https://doi.org/10.1016/j.chemosphere.2016.04.104spa
dc.relation.referencesAhmed, R., Li, Y., Mao, L., Xu, C., Lin, W., Ahmed, S., & Ahmed, W. (2019). Biochar Effects on Mineral Nitrogen Leaching , Moisture Content , and Evapotranspiration after 15 N Urea Fertilization for Vegetable Crop. Agronomy, 9(331), 1–18. https://doi.org/10.3390/agronomy9060331spa
dc.relation.referencesAkyol, N. H., Carroll, K. C., Cortuk, E. C., Gunduz, O. C., & Sahin, N. (2021). Comparison of sorption and solute transport behaviour of several herbicides in a alkaline agricultural soil. International Journal of Environmental Analytical Chemistry. https://doi.org/10.1080/03067319.2021.1969384spa
dc.relation.referencesAldana Castañeda, M. (2020). Lixiviación de plaguicidas (oxadixyl y Tebuconazol) en suelos del Lago de Tota. Universidad Nacional de Colombiaspa
dc.relation.referencesAldana, Gerardo O., Hazlerigg, C., Lopez-Capel, E., & Werner, D. (2021). Agrochemical leaching reduction in biochar‐amended tropical soils of Belize. European Journal of Soil Science, 72, 1243–1255. https://doi.org/10.1111/ejss.13021spa
dc.relation.referencesAldana, Gerardo Ofelio, Lopez-capel, E., & Werner, D. (2024). Effects of Biochar-amended Tropical Soils on Herbicide Pollution : Column Leaching Studies. Journal of Belizean Research, 2(1), 1–7.spa
dc.relation.referencesBakshi, S., Banik, C., Laird, D. A., Smith, R., & Brown, R. C. (2021). Enhancing Biochar as Scaffolding for Slow Release of Nitrogen Fertilizer. ACS Sustainable Chemistry & Engineering, 9, 8222–8231. https://doi.org/10.1021/acssuschemeng.1c02267spa
dc.relation.referencesBarba, V., Marín-benito, J. M., Sánchez-martín, M. J., & Rodríguez-cruz, M. S. (2020). Transport of 14 C-prosulfocarb through soil columns under different amendment , herbicide incubation and irrigation regimes. Science of the Total Environment, 701, 134542. https://doi.org/10.1016/j.scitotenv.2019.134542spa
dc.relation.referencesBedmar, F., Gimenez, D., Costa, J. L., & Daniel, P. E. (2017). Persistence of acetochlor, atrazine, and S-metolachlor in surface and subsurface horizons of 2 typic argiudolls under no-tillage. Environmental Toxicology and Chemistry, 36(11), 3065–3073. https://doi.org/10.1002/etc.3874spa
dc.relation.referencesBeesley, L., Moreno-Jiménez, E., Gomez-Eyles, J. L., Harris, E., Robinson, B., & Sizmur, T. (2011). A review of biochars´potential role in the remediation, revegetation ans restoration of contaminated soils. Environmental Pollution, 159(12), 3269–3282. https://doi.org/10.1016/j.envpol.2011.07.023spa
dc.relation.referencesBeusch, C., Cierjacks, A., Böhm, J., Mertens, J., Bischoff, W.-A., Filho, J. C. D. A., & Kaupenjohann, M. (2019). Biochar vs. clay: Comparison of their effects on nutrient retention of a tropical arenosol. Geoderma, 337, 524–535. https://doi.org/10.1016/j.geoderma.2018.09.043spa
dc.relation.referencesBeusch, C., Melzer, D., Cierjacks, A., & Kaupenjohann, M. (2022). Amending a tropical Arenosol : increasing shares of biochar and clay improve the nutrient sorption capacity. Biochar, 4:16, 1–23. https://doi.org/10.1007/s42773-022-00135-4spa
dc.relation.referencesBilias, F., Kalderis, D., Richardson, C., Barbayiannis, N., & Gasparatos, D. (2023). Biochar application as a soil potassium management strategy: A review. Science of The Total Environment, 858(1), 159782. https://doi.org/10.1016/j.scitotenv.2022.159782spa
dc.relation.referencesBohara, H., Dodla, S., Wang, J. J., Darapuneni, M., Acharya, B. S., Magdi, S., & Pavuluri, K. (2019). Influence of poultry litter and biochar on soil water dynamics and nutrient leaching from a very fine sandy loam soil. Soil and Tillage Research, 189, 44–51. https://doi.org/10.1016/j.still.2019.01.001spa
dc.relation.referencesBornø, M. L., Müller-stöver, D. S., & Liu, F. (2018). Contrasting effects of biochar on phosphorus dynamics and bioavailability in different soil types. Science of the Total Environment, 627, 963–974. https://doi.org/10.1016/j.scitotenv.2018.01.283spa
dc.relation.referencesCabrera, A., Cox, L., Spokas, K., Hermosín, M. C., Cornejo, J., & Koskinen, W. C. (2014). Influence of biochar amendments on the sorption-desorption of aminocyclopyrachlor, bentazone and pyraclostrobin pesticides to an agricultural soil. Science of the Total Environment, 470–471, 438–443. https://doi.org/10.1016/j.scitotenv.2013.09.080spa
dc.relation.referencesCabrera, Alegria, Cox, L., Koskinen, W. C., & Sadowsky, M. J. (2008). Availability of Triazine herbicides in Aged Soils Amended with Olive Oil Mill Waste. Agricultural and Food Chemistry, 56(11), 4112–4119. https://doi.org/10.1021/jf800095tspa
dc.relation.referencesCara, I. G., Topa, D., Puiu, I., & Jitareanu, G. (2022). Biochar a Promising Strategy for Pesticide-Contaminated Soils. Agriculture, 12(1579), 1–21. https://doi.org/10.3390/agriculture12101579spa
dc.relation.referencesChen, J., Lü, S., Zhang, Z., Zhao, X., Li, X., Ning, P., & Liu, M. (2018). Environmentally friendly fertilizers: A review of materials used and their effects on the environment. Science of the Total Environment, 613–614, 829–839. https://doi.org/10.1016/j.scitotenv.2017.09.186spa
dc.relation.referencesChen, Q., Qin, J., Cheng, Z., Huang, L., Sun, P., Chen, L., & Shen, G. (2018). Synthesis of a stable magnesium-impregnated biochar and its reduction of phosphorus leaching from soil. Chemosphere, 199, 402–408. https://doi.org/10.1016/j.chemosphere.2018.02.058spa
dc.relation.referencesCheng, H., Jones, D. L., Hill, P., Bastami, M. S., & Tu, C. L. (2017). Influence of biochar produced from different pyrolysis temperature on nutrient retention and leaching. Archives of Agronomy and Soil Science, 64(6), 850–859. https://doi.org/10.1080/03650340.2017.1384545spa
dc.relation.referencesChintala, R., Schumacher, T. E., Mcdonald, L. M., Clay, D. E., Malo, D. D., Clay, S. A., & Julson, J. L. (2014). Phosphorus Sorption and Availability from Biochars and Soil / Biochar Mixtures. CLEAN Soil Air Water, 42(5), 626–634. https://doi.org/10.1002/clen.201300089spa
dc.relation.referencesCueff, S., Alletto, L., Bourdat-Deschamps, M., Benoit, P., & Pot, V. (2020). Water and pesticide transfers in undisturbed soil columns sampled from a Stagnic Luvisol and a Vermic Umbrisol both cultivated under conventional and conservation agriculture. Geoderma, 377, 114590. https://doi.org/10.1016/j.geoderma.2020.114590spa
dc.relation.referencesĆwieląg-Piasecka, I., Medyńska-Juraszek, A., Jerzykiewicz, M., Dębicka, M., Bekier, J., Jamroz, E., & Kawałko, D. (2018). Humic acid and biochar as specific sorbents of pesticides. Journal of Soils and Sediments, 18(8), 2692–2702. https://doi.org/10.1007/s11368-018-1976-5spa
dc.relation.referencesDelwiche, Kyle B., Lehmann, J., & Walter, M. T. (2014a). Atrazine leaching from biochar-amended soils. Chemosphere, 95, 346–352. https://doi.org/10.1016/j.chemosphere.2013.09.043spa
dc.relation.referencesDelwiche, Kyle B., Lehmann, J., & Walter, M. T. (2014b). Atrazine leaching from biochar-amended soils. Chemosphere, 95, 346–352. https://doi.org/10.1016/j.chemosphere.2013.09.043spa
dc.relation.referencesDelwiche, Kyle Brook. (2012). Atrazine leaching from biochar-amended soils. Cornell University.spa
dc.relation.referencesDeng, H., Feng, D., He, J., Li, F., Yu, H., & Ge, C. (2017). Influence of biochar amendments to soil on the mobility of atrazine using sorption-desorption and soil thin-layer chromatography. 99, 381–390spa
dc.relation.referencesDhuldhaj, U. P., Singh, R., & Singh, V. K. (2023). Pesticide contamination in agro-ecosystems: toxicity, impacts, and bio-based management strategies. Environmental Science and Pollution Research, 30, 9243–9270. https://doi.org/10.1007/s11356-022-24381-yspa
dc.relation.referencesDierksmeier, G., Hernández, R., Ricardo, C., Llanes, M. N., Linares, A. C., & Cárdenas, Z. (2002). Movimiento de algunos plaguicidas en el suelo. Fitosanidad, 6(1), 43–49. http://www.redalyc.org/articulo.oa?id=209118145008%0ACómospa
dc.relation.referencesDotor Robayo, M. (2022). Efecto de la fertilización fosfórica sobre la re-movilización del herbicida glifosato en suelos y riesgo asociado a la interacción con el cultivo del arroz. [online] Universidad Nacional de Colombia Sede Bogotá. Acceso: 05 de Mayo 2023spa
dc.relation.referencesDoulgeris, C., Kypritidou, Z., Kinigopoulou, V., & Hatzigiannakis, E. (2023). Simulation of Potassium Availability in the Application of Biochar in Agricultural Soil. Agronomy, 13, 784. https://doi.org/10.3390/agronomy13030784spa
dc.relation.referencesDousset, S., Thevenot, M., Pot, V., Simunek, J., & Adreux, F. (2007). Evaluating equilibrium and non-equilibrium transport of bromide and isoproturon soil columns. Journal of Contaminant Hydrology, 94(3–4), 261–276spa
dc.relation.referencesEgyir, M., Lawson, I. Y. D., Dodor, D. E., & Luyima, D. (2023). Agro-Industrial Waste Biochar Abated Nitrogen Leaching from Tropical Sandy Soils and Boosted Dry Matter Accumulation in Maize. Journal of Carbon Research, 9(34), 1–14. https://doi.org/10.3390/ c9010034spa
dc.relation.referencesEykelbosh, A. J., Johnson, M. S., Queiroz, E. S. de, Dalmagro, H. J., & Couto, E. G. (2014). Biochar from sugarcane filtercake reduces soil CO2 emissions relative to raw residue and improves water retention and nutrient availability in a highly-weathered tropical soil. PLoS ONE, 9(6), e98523. https://doi.org/10.1371/journal.pone.0098523spa
dc.relation.referencesFeng, Y., Sun, H., Xue, L., Liu, Y., Gao, Q., Lu, K., & Yang, L. (2017). Biochar applied at an appropriate rate can avoid increasing NH3 volatilization dramatically in rice paddy soil. Chemosphere, 168, 1277–1284. https://doi.org/10.1016/j.chemosphere.2016.11.151spa
dc.relation.referencesFenoll, J., Vela, N., Navarro, G., Pérez-Lucas, G., & Navarro, S. (2014). Assessment of agro-industrial and composted organic wastes for reducing the potential leaching of triazine herbicide residues through the soil. Science of The Total Environment, 493, 124–132. https://doi.org/10.1016/j.scitotenv.2014.05.098spa
dc.relation.referencesFernández-Sanjurjo, M. J., Alvarez-Rodríguez, E., Núñez-Delgado, A., Fernández-Marcos, M. L., & Romar-Gasalla, A. (2014). Nitrogen, phosphorus, potassium, calcium and magnesium release from two compressed fertilizers: Column experiments. Solid Earth, 5(2), 1351–1360. https://doi.org/10.5194/se-5-1351-2014spa
dc.relation.referencesGao, S., Xu, P., Zhou, F., Yang, H., Zheng, C., Cao, W., Tao, S., Piao, S., Zhao, Y., Ji, X., Shang, Z., & Chen, M. (2016). Quantifying nitrogen leaching response to fertilizer additions in China´s cropland. Ebvironmental Pollution, 211, 241–251. https://doi.org/10.1016/j.envpol.2016.01.010spa
dc.relation.referencesGhodszad, L., Reyhanitabar, A., Maghsoodi, M. R., Lajayer, B. A., & Chang, S. X. (2021). Biochar affects the fate of phosphorus in soil and water : A critical review. Chemosphere, 283, 131176. https://doi.org/10.1016/j.chemosphere.2021.131176spa
dc.relation.referencesGhosh, R. K., Singh, N., & Singh, S. B. (2016). Effect of fly ash amendment on metolachlor and atrazine degradation and microbial activity in two soils. Environ Monit Assess, 188, 482–492. https://doi.org/10.1007/s10661-016-5486-xspa
dc.relation.referencesGiao Ngo, D. N., Chuang, X., Huang, C., & Hua, L. (2023). Compositional characterization of nine agricultural waste biochars : The relations between alkaline metals and cation exchange capacity with ammonium adsorption capability. Journal of Environmental Chemical Engineering, 11(3), 110003. https://doi.org/10.1016/j.jece.2023.110003spa
dc.relation.referencesGonçalves Junior, A. C., Junior, E. C., Schwantes, D., Kaufmann, V., Braccini, A. L., Silva, T. R. B. da, Aranda, M., & Zimmermann, J. (2023). Atrazine fate in Rhodic Ferralsol grown with corn under high-intensity rainfall conditions. Agricultural Water Management, 276, 108065. https://doi.org/10.1016/j.agwat.2022.108065spa
dc.relation.referencesGuimaraes, A. C. D., Mendes, K. F., Campion, T. F., Christoffoleti, P. J., & Tornisielo, V. L. (2019). Leaching of herbicides commonly applied to sugarcane in five agricultural soils. Planta Daninha, 37, 1–9. https://doi.org/10.1590/S0100-83582019370100029spa
dc.relation.referencesGutiérrez, H. M., Edith, L., & Materón, H. (2007). Movilidad de los plaguicidas carbofuran e imidacloprid en un suelo Typic Humitropept. Agronomía Colombiana, 25(1), 160–167. http://www.redalyc.org/articulo.oa?id=180316240018spa
dc.relation.referencesHale, S. E., Alling, V., Martinsen, V., Mulder, J., Breedveld, G. D., & Cornelissen, G. (2013). The sorption and desorption of phosphate-P, ammonium-N and nitrate-N in cacao shell and corn cob biochars. Chemosphere, 91(11), 1612–1619. https://doi.org/10.1016/j.chemosphere.2012.12.057spa
dc.relation.referencesHossain, Z., Bahar, M., Sarkar, B., Donne, S. W., Ok, Y. S., Palansooriya, K. N., Kirkham, M. B., Chowdhury, S., & Bolan, N. (2020). Biochar and its importance on nutrient dynamics in soil and plant. Biochar, 2, 379–420. https://doi.org/0.1007/s42773-020-00065-zspa
dc.relation.referencesInostroza F., J., & Carillanca, I. (consultado 2023-02-06). IV. Fertilización del cultivo de la papa. biblioteca.inia.cl/bitstream/handle/20.500.14001/7275/NR36479.pdf?sequence=98&isAllowed=yspa
dc.relation.referencesJames, T. K., Ghanizadeh, H., Harrington, K. C., & Bolan, N. S. (2022). The leaching behaviour of herbicides in cropping soils amended with forestry biowastes ☆. Environmental Pollution, 307, 119466. https://doi.org/10.1016/j.envpol.2022.119466spa
dc.relation.referencesJanaki, P. (2023). Organic amendments addition on altering the sorption, vertical movement and leaching behavior of herbicides in soil. International Journal of Plant & Soil Science, 35(5), 18–30. https://doi.org/10.9734/ijpss/2023/v35i52816spa
dc.relation.referencesJílková, V., & Angst, G. (2022). Biochar and compost amendments to a coarse-textured temperate agricultural soil lead to nutrient leaching. Applied Soil Ecology, 173, 104393. https://doi.org/10.1016/j.apsoil.2022.104393spa
dc.relation.referencesJiménez, J. A., Villalba, Ó. A., Luís I, R., Hernández, O., Agámez, Y. Y., & Díaz, J. de J. (2008). Catalizadores de Co, Fe y Ni soportados sobre coque para la licuefacción directa de carbón. Universidad Nacional de Colombia Revistas Electrónicas UN Revista Colombiana de Química, 37(2), 233–242spa
dc.relation.referencesJones, D. L., Edwards-Jones, G., & Murphy, D. V. (2011). Biochar mediated alterations in herbicide breakdown and leaching in soil. Soil Biology and Biochemistry, 43(4), 804–813. https://doi.org/10.1016/j.soilbio.2010.12.015spa
dc.relation.referencesKhalid, S., Shahid, M., Murtaza, B., Bibi, I., Natasha, Asif Naeem, M., & Niazi, N. K. (2020). A critical review of different factors governing the fate of pesticides in soil under biochar application. Science of the Total Environment, 711, 134645. https://doi.org/10.1016/j.scitotenv.2019.134645spa
dc.relation.referencesKolahchi, Z., & Jalali, M. (2006). Simulating leaching of potassium in a sandy soil using simple and complex models. Agricultural Water Management, 85, 85–94. https://doi.org/10.1016/j.agwat.2006.03.011spa
dc.relation.referencesKong, Z., Liaw, S. B., Gao, X., Yu, Y., & Wu, H. (2014). Leaching characteristics of inherent inorganic nutrients in biochars from the slow and fast pyrolysis of mallee biomass. Fuel, 128, 433–441. https://doi.org/10.1016/j.fuel.2014.03.025spa
dc.relation.referencesKuo, Y.-L., Lee, C.-H., & Jien, S.-H. (2020). Reduction of nutrient leaching potential in Coarse-textured soil by using biochar. Water, 12(7), 2012. https://doi.org/10.3390/w12072012spa
dc.relation.referencesLaird, D., Fleming, P., Wang, B., Horton, R., & Karlen, D. (2010). Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma, 158(3–4), 436–442. https://doi.org/10.1016/j.geoderma.2010.05.012spa
dc.relation.referencesLehmann, J, Pereira da Silva, J., Steiner, C., Nehls, T., Zech, W., & Glaser, B. (2003). Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant and Soil, 249, 343–357. https://doi.org/10.1023/A:1022833116184spa
dc.relation.referencesLehmann, Johannes, & Joseph, S. (2009). Biochar for Environmental Management : An Introduction. In Biochar for Environmental Management: Science And Technology (Vol. 1, pp. 1–12). https://doi.org/10.1016/j.forpol.2009.07.001spa
dc.relation.referencesLewis, K. A., Tzilivakis, J., Warner, D., & Green, A. (2016). PPDB-Atrazine An international database for pesticide risk assessments and management. Human and Ecological Risk Assessment: An International Journal. https://doi.org/10.1080/10807039.2015.1133242spa
dc.relation.referencesLewis, S. E., Silburn, D. M., Kookana, R. S., & Shaw, M. (2016). Pesticide Behavior, Fate, and Effects in the Tropics: An Overview of the Current State of Knowledge. Journal of Agricultural and Food Chemistry, 64(20), 3917–3924. https://doi.org/10.1021/acs.jafc.6b01320spa
dc.relation.referencesLi, S., Zhang, Y., Yan, W., & Shangguan, Z. (2018). Effect of biochar application method on nitrogen leaching and hydraulic conductivity in a silty clay soil. Soil and Tillage Research, 183, 100–108. https://doi.org/10.1016/j.still.2018.06.006spa
dc.relation.referencesLiu, X., Zhou, W., Feng, L., Wu, L., Lv, J., & Du, W. (2022). Characteristics and mechanisms of phosphorous adsorption by peanut shell-derived biochar modified with magnesium chloride by ultrasonic-assisted impregnation. ACS Omega, 7(47), 43102–43110. https://doi.org/10.1021/acsomega.2c05474spa
dc.relation.referencesLu, Y., Silveira, M. L., O´Connor, G. A., Vendramini, J. M. B., & Li, Y. C. (2022). Biochar type and application methods affected nitrogen and phosphorus leaching from a sandy soil amended with inorganic fertilizers and biosolids. Agrosystems, Geosciences & Environment, 5, e20236. https://doi.org/10.1002/agg2.20236spa
dc.relation.referencesLuo, D., Wang, L., Nan, H., Cao, Y., Wang, H., Kumar, T. V., & Wang, C. (2023). Phosphorus adsorption by functionalized biochar : a review. Environmental Chemistry Letters, 21(1), 497–524. https://doi.org/10.1007/s10311-022-01519-5spa
dc.relation.referencesMajor, J., Rondon, M., Molina, D., Riha, S. J., & Lehmann, J. (2012). Nutrient leaching in a colombian savanna oxisol amended with biochar. Journal of Environmental Quality, 41(4), 1076–1086. https://doi.org/10.2134/jeq2011.0128spa
dc.relation.referencesMarín-benito, J. M., Herrero-Hernández, E., Ordax, J. M., Sánchez-Martín, M. J., & Rodríguez-Cruz, M. S. (2021). The role of two organic amendments to modify the environmental fate of S-metolachlor in agricultural soils. Environmental Research, 195, 110871. https://doi.org/10.1016/j.envres.2021.110871spa
dc.relation.referencesMarshall, J. A., Morton, B. J., Muhlack, R., Chittleborough, D., & Wai, C. (2017). Recovery of phosphate from calcium-containing aqueous solution resulting from biochar-induced calcium phosphate precipitation. Journal of Cleaner Production, 165, 27–35. https://doi.org/10.1016/j.jclepro.2017.07.042spa
dc.relation.referencesMartínez-Cordón, M. J., Aldana-Castañeda, M. I., & Guerrero Dallos, J. A. (2015). Modelación matemática del transporte de oxadixyl en suelos de cultivo de cebolla. Rev. Ambient. & Água, 10(2), 327–337. https://doi.org/10.4136/ambi-agua.1565spa
dc.relation.referencesMartins, E. C., Melo, V. de F., Bohone, J. B., & Abate, G. (2018). sorption and desorption of atrazine on soils: The effect of different soil fractions. Geoderma, 322, 131–139. https://doi.org/10.1016/j.geoderma.2018.02.028spa
dc.relation.referencesMoreno-Rodríguez, D., Jankovic, L., Scholtzová, E., & Tunega, D. (2021). Stability of Atrazine – Smectite Intercalates : Density Functional Theory and Experimental Study. Minerals, 11(554). https://doi.org/10.3390/min11060554spa
dc.relation.referencesMoura, M. A. M., Oliveira, R., Jonsson, C. M., Domingues, I., Soares, A. M. V. M., & Nogueira, A. J. A. (2018). The sugarcane herbicide ametryn induces oxidative stress and developmental abnormalities in zebrafish embryos. Environ Sci Pollut Res Int, 25(14), 13416–13425. https://doi.org/10.1007/s11356-017-9614-0spa
dc.relation.referencesNaka, A., Yasutaka, T., Sakanakura, H., Kalbe, U., Watanabe, Y., Inoba, S., Takeo, M., Inui, T., Katsumi, T., Fujikawa, T., Sato, K., Higashino, K., & Someya, M. (2016). Column percolation test for contaminated soils: Key factors for standardization. J Hazard Mater, 320, 326–340. https://doi.org/10.1016/j.jhazmat.2016.08.046spa
dc.relation.referencesNavarro, L., Camacho, R., López, J. E., & Saldarriaga, J. F. (2021). Assessment of the potential risk of leaching pesticides in agricultural soils: study case Tibabosa, Boyacá, Colombia. Heliyon, 7(11), e08301. https://doi.org/10.1016/j.heliyon.2021.e08301spa
dc.relation.referencesNguyen, B. T., Phan, B. T., Nguyen, T. X., & Nguyen, V. N. (2019). Contrastive nutrient leaching from two differently textured paddy soils as influenced by biochar addition. Journal of Soils and Sediments. https://doi.org/10.1007/s11368-019-02366-8 SOILSspa
dc.relation.referencesOECD 312. (2004). Leaching in soil columns. In Guidelines for the testing of chemicals (pp. 1–15)spa
dc.relation.referencesOgura, A. P., Lima, J. Z., Marques, J. P., Sousa, L. M., Rodrigues, V. C. S., & Espíndola, E. L. G. (2021). A review of pesticides sorption in biochar from maize, rice, and wheat residues: Current status and challenges for soil application. Journal of Environmental Management, 300, 113753. https://doi.org/10.1016/j.jenvman.2021.113753spa
dc.relation.referencesOuyang, W., Huang, W., Wei, P., Hao, F., & Yu, Y. (2016). Optimization of typical diffuse herbicide pollution control by soil amendment configurations under four levels of rainfall intensities. J Environ Manage, 175, 1–8. https://doi.org/10.1016/j.jenvman.2016.03.026spa
dc.relation.referencesPariyar, P., Kumari, K., Jain, M. K., & Jadhao, P. S. (2020). Evaluation of change in biochar properties derived from different feedstock and pyrolysis temperature for environmental and agricultural application. Science of The Total Environment, 713, 136433. https://doi.org/10.1016/j.scitotenv.2019.136433spa
dc.relation.referencesPaula, R. T. De, Abreu, A. B. G. De, De, M. E. L. R., Neves, A. A., Silva, A. A., Paula, R. T. De, Abreu, A. B. G. De, & De, M. E. L. R. (2015). Leaching and persistence of ametryn and atrazine in red – yellow latosol. 1234(November). https://doi.org/10.1080/03601234.2015.1092819spa
dc.relation.referencesPenn, C. J., & Camberato, J. J. (2019). A Critical Review on Soil Chemical Processes that Control How Soil pH Affects Phosphorus Availability to Plants. Agriculture, 9(6), 120. https://doi.org/https://doi.org/10.3390/agriculture9060120spa
dc.relation.referencesPiash, M. I., Iwabuchi, K., Itoh, T., & Uemura, K. (2021). Release of essential plant nutrients from manure- and wood-based biochars. Geoderma, 397, 115100. https://doi.org/10.1016/j.geoderma.2021.115100spa
dc.relation.referencesPineda, M. E. B. (2014). La solubulización de fosfatos como estrategia microbiana para romover el crecimiento vegetal. Corpoica Cienc. Tecnol. Agropecu., 15(1), 101–113. scielo.org.co/pdf/ccta/v15n1/v15n1a09.pdfspa
dc.relation.referencesProcópio, S. O., Pires, F. R., Werlang, R. C., Silva, A. A., Queiroz, M. E. L. R., Neves, A. A., Mendoca, E. S., Santos, J. B., & Egreja Filho, F. B. (2001). Sorption of herbicide atrazine in organic-mineral complexes. Planta Daninha, 19(3), 391–400. https://doi.org/10.1590/S0100-83582001000300012spa
dc.relation.referencesQian, T., Zhang, X., Hu, J., & Jiang, H. (2013). Effects of environmental conditions on the release of phosphorus from biochar. Chemosphere, 93, 2069–2075. https://doi.org/10.1016/j.chemosphere.2013.07.041spa
dc.relation.referencesRaliya, R., Saharan, V., Dimkpa, C., & Biswas, P. (2017). Nanofertilizer for Precision and Sustainable Agriculture: Current State and Future Perspectives. Journal of Agricultural and Food Chemistry. https://doi.org/10.1021/acs.jafc.7b02178spa
dc.relation.referencesRashmi, I., Shirale, A., Kartikha, K. S., Shinogi, K. C., Meena, B. P., & Kala, S. (2017). Leaching of plant nutrients from agricultural lands. In M. Naeem, A. Ansari, & S. Gill (Eds.), Essential Plant Nutrients. Springer, Cham. https://doi.org/10.1007/978-3-319-58841-4_19spa
dc.relation.referencesRasool, S., Rasool, T., & Gani, K. M. (2022). A review of interactions of pesticides within various interfaces of intrinsic and organic residue amended soil environment. Chemical Engineering Journal Advances, 11, 100301. https://doi.org/10.1016/j.ceja.2022.100301spa
dc.relation.referencesRobayo, M. Y. D. (2021). Efecto de la fertilización fosfórica sobre la re-movilización del herbicida glifosato en suelos y riesgo asociado a la interacción con el cultivo del arroz Efecto de la fertilización fosfórica sobre la re-movilización del herbicida glifosato en suelos y r. Universidad Nacional de Colombiaspa
dc.relation.referencesRodríguez-Jiménez, T. de J., Ojeda-Barrios, D. L., Blanco-Macías, F., Valdez-Cepeda, R. D., & Parra-Quezada, R. (2016). Ureasa y níquel en la fisiología de las plantas. Revista Chapingo. Serie Horticultura, 22(2), 69–82. https://doi.org/10.5154/r.rchsh.2014.11.051spa
dc.relation.referencesRychel, K., Meurer, K. H. E., Getahun, G. T., Bergström, L., Kirchmann, H., & Kätterer, T. (2023). Lysimeter deep N fertilizer placement reduced leaching and improved N use efficiency. Nutr Cycl Agroecosyst, 126, 213–228. https://doi.org/10.1007/s10705-023-10286-wspa
dc.relation.referencesSavci, S. (2012). Investigation of Effect of Chemical Fertilizers on Environment. APCBEE Procedia, 287–292. https://doi.org/10.1016/j.apcbee.2012.03.047spa
dc.relation.referencesSchmidt, H. P., Pandit, B. H., Cornelissen, G., & Kammann, C. I. (2017). Biochar-Based Fertilization with Liquid Nutrient Enrichment: 21 Field Trials Covering 13 Crop Species in Nepal. Land Degradation and Development, 28(8), 2324–2342. https://doi.org/10.1002/ldr.2761spa
dc.relation.referencesSi, Y., Zhang, J., Wang, S., Zhang, L., & Zhou, D. (2006). Influence of organic amendment on the adsorption and leaching of ethamet- sulfuron-methyl in acidic soils in China. Geoderma, 130, 66–76. https://doi.org/10.1016/j.geoderma.2005.01.009spa
dc.relation.referencesSingh, B., & Craswell, E. (2021). Fertilizers and nitrate pollution of surface and ground water: an increasingly pervasive global problem. SN Appl.Sci., 3, 518. https://doi.org/10.1007/s42452-021-04521-8spa
dc.relation.referencesSingh, M., Rano, S., Roy, S., Mukherjee, P., Dalui, S., Gupta, G. K., Kumar, S., & Mondal, M. K. (2022). Characterization of organophosphate pesticide sorption of potato peel biochar as low cost adsorbent for chlorpyrifos removal. Chemosphere, 297, 134112. https://doi.org/10.1016/j.chemosphere.2022.134112spa
dc.relation.referencesSingh, R. P., Ahsan, M., Mishra, D., Pandey, V., Anupama, Yadav, A., & Khare, P. (2022). Ameliorative effects of biochar on persistency, dissipation, and toxicity of atrazine in three contrasting soils. Journal of Environmental Management, 303, 114146. https://doi.org/10.1016/j.jenvman.2021.114146spa
dc.relation.referencesSorrenti, G., & Toselli, M. (2016). Soil leaching as affected by the amendment with biochar and compost. Agriculture, Ecosystems & Environment, 226, 56–64. https://doi.org/10.1016/j.agee.2016.04.024spa
dc.relation.referencesTatarková, V., Hiller, E., & Vaculík, M. (2013). Impact of wheat straw biochar addition to soil on the sorption, leaching, dissipation of the herbicide (4-chloro-2-methylphenoxy) acetic acid and the growth of sunflower (Helianthus annuus L.). Ecotoxicology and Environmental Safety, 92, 215–221. https://doi.org/10.1016/j.ecoenv.2013.02.005spa
dc.relation.referencesTeutscherova, N., Houška, J., Navas, M., Masaguer, A., Benito, M., & Vazquez, E. (2018). Leaching of ammonium and nitrate from Acrisol and Calcisol amended with holm oak biochar: A column study. Geoderma, 323(February), 136–145. https://doi.org/10.1016/j.geoderma.2018.03.004spa
dc.relation.referencesTudi, M., Ruan, H. D., Wang, L., Lyu, J., Sadler, R., Connell, D., Chu, C., & Phung, D. T. (2021). Agriculture development, pesticide application and its impact on the enviroment. Int J Environ Res Public Health, 18(3), 1112. https://doi.org/10.3390/ijerph18031112spa
dc.relation.referencesTuncel, M. E., Yildiz, U., Uras, Y., Akyol, G., Ozkul, C., & Akyol, N. H. (2023). Sorption and transport of atrazine for stable manure-amended agricultural soil from Kahramanmaras, Turkey. Soil and Sediment Contamination: An International Journal, 1–17. https://doi.org/10.1080/15320383.2023.2296527spa
dc.relation.referencesTwagirayezu, G., Cheng, H., Wu, Y., Lu, H., Huang, S., Fang, X., & Irumva, O. (2024). Insights into the influences of biochar on the fate and transport of pesticides in the soil environment: a critical review. Biochar, 6, 9. https://doi.org/10.1007/s42773-024-00301-wspa
dc.relation.referencesUrseler, N., Bachetti, R., Morgante, V., Agostini, E., & Morgante, C. (2022). Atrazine behavior in an agricultural soil: adsorption–desorption, leaching, and bioaugmentation with Arthrobacter sp. strain AAC22. Journal of Soils and Sediments, 22(1), 93–108. https://doi.org/10.1007/s11368-021-03045-3spa
dc.relation.referencesVandecasteele, B., Sinicco, T., D´Hose, T., Nest, T. Vanden, & Mondini, C. (2016). Biochar amendment before or after composting affects compost quality and N losses, but not P plant uptake. Journal of Environmental Management, 168, 200–209. https://doi.org/10.1016/j.jenvman.2015.11.045spa
dc.relation.referencesVentura, M., Sorrenti, G., Panzacchi, P., George, E., & Tonon, G. (2013). Biochar Reduces Short-Term Nitrate Leaching from A Horizon in an Apple Orchard. Journal of Environmental Quality, 42, 76–82. https://doi.org/10.2134/jeq2012.0250spa
dc.relation.referencesVikrant, K., Kim, K., Sik, Y., Tsang, D. C. W., Fai, Y., Shekhar, B., & Sharan, R. (2018). Engineered / designer biochar for the removal of phosphate in water and wastewater. Science of the Total Environment, 616–617, 1242–1260. https://doi.org/10.1016/j.scitotenv.2017.10.193spa
dc.relation.referencesWalker, A., & Mitchell, M. J. (2005). Influence of ageing of residues on the availability of herbicides for leaching. Environmental Pollution, 133, 43–51. https://doi.org/10.1016/j.envpol.2004.04.012spa
dc.relation.referencesWalworth, J. (2013). Nitrogen in the Soil and the Environment (pp. 2–5). College of Agriculture and Life Sciences, University of Arizona. http://hdl.handle.net/10150/267773spa
dc.relation.referencesWeather and Climate Services Division, N. (consultado 2024-01-20). Rainfall Classification : Intensity of Rainfall in 24 Hours. https://www.nchm.gov.bt/attachment/ckfinder/userfiles/files/Rainfall intensity classification.pdf.spa
dc.relation.referencesWidowati, W., Asnah, A., & Utomo, W. H. (2014). The use of biochar to reduce nitrogen and potassium leaching from soil cultivated with maize. Journal of Degraded and Mining Lands Management, 2(1), 211–218. https://doi.org/10.15243/jdmlm.2014.021.211spa
dc.relation.referencesWu, L., & Liu, M. (2008). Preparation and properties of chitosan-coated NPK compound fertilizer with controlled-release and water-retention. Carbohydrate Polymers, 72, 240–247. https://doi.org/10.1016/j.carbpol.2007.08.020spa
dc.relation.referencesXu, M., Sun, Q., Liu, Q., He, G., Wang, C., & He, K. (2023). Biochar decreases fertilizer leaching and promotes Miscanthus growth in saline-alkaline soil. Plants (Basel), 12(20), 3649. https://doi.org/10.3390/plants12203649spa
dc.relation.referencesYang, L., Wu, Y., Wang, Y., An, W., Jin, J., Sun, K., & Wang, X. (2021). Effects of biochar addition on the abundance, speciation, availability, and leaching loss of soil phosphorus. Science of the Total Environment, 758, 143657. https://doi.org/10.1016/j.scitotenv.2020.143657spa
dc.relation.referencesYao, Y., Gao, B., Zhang, M., Inyang, M., & Zimmerman, A. R. (2012). Effect of biochar amendment on sorption and leaching of nitrate , ammonium , and phosphate in a sandy soil. Chemosphere, 89(11), 1467–1471. https://doi.org/10.1016/j.chemosphere.2012.06.002spa
dc.relation.referencesYavari, S., Malakahmad, A., & Sapari, N. B. (2015). Biochar efficiency in pesticides sorption as a function of production variables- a review. Environ Sci Pollut Res, 22(18), 13824–13841. https://doi.org/10.1007/s11356-015-5114-2spa
dc.relation.referencesZonatto, F., Muniz, E. C., Tambourgi, E. B., & Paulino, A. T. (2017). Adsorption and controlled release of potassium, phosphate and ammonia from modified Arabic gum-based hydrogel. International Journal of Biological Macromolecules, 105, 363–369. https://doi.org/10.1016/j.ijbiomac.2017.07.051spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materialesspa
dc.subject.lembNutrientes vegetalesspa
dc.subject.lembPlant nutrientseng
dc.subject.lembHerbicidas-Evaluaciónspa
dc.subject.lembHerbicides - Evaluationeng
dc.subject.lembProductividad del suelospa
dc.subject.lembSoil productivityeng
dc.subject.proposalPlantas invasorasspa
dc.subject.proposalBiocarbonizadospa
dc.subject.proposalNutrientesspa
dc.subject.proposalHerbicidasspa
dc.subject.proposalRetenciónspa
dc.subject.proposalLixiviaciónspa
dc.subject.proposalInvasive plantseng
dc.subject.proposalBiochareng
dc.subject.proposalNutrientseng
dc.subject.proposalHerbicideseng
dc.subject.proposalSorptioneng
dc.subject.proposalLeachingeng
dc.titleAplicaciones de biocarbonizados en la agricultura : evaluación de la capacidad de retención y liberación de nutrientes y herbicidasspa
dc.title.translatedApplications of biochar in agriculture : evaluation of nutrients and herbicides retention and release capacitieseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPersonal de apoyo escolarspa
dcterms.audience.professionaldevelopmentProveedores de ayuda financiera para estudiantesspa
dcterms.audience.professionaldevelopmentResponsables políticosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1020776275.2025.pdf
Tamaño:
4.71 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: