Estudio de la bioprecipitación de plomo mediado por bacterias ureolíticas y su potencial aplicación en suelo agrícola

dc.contributor.advisorde Brito Brandão, Pedro Filipespa
dc.contributor.authorPineda Fernández, Laura Sofíaspa
dc.contributor.researchgroupGrupo de Estudios para la Remediación y Mitigación de Impactos Negativos al Ambiente Germinaspa
dc.coverage.countryColombiaspa
dc.coverage.regionSantanderspa
dc.date.accessioned2025-07-10T20:35:50Z
dc.date.available2025-07-10T20:35:50Z
dc.date.issued2025
dc.descriptionilustraciones a color, diagramas, fotografíasspa
dc.description.abstractEl plomo se ha convertido en una problemática ambiental como resultado del aumento en las emisiones por actividades antropogénicas, y representa un riesgo para la salud y el medio ambiente debido a su potencial toxicidad sobre los seres vivos. Para mitigar el impacto negativo que puede tener este metal, recientemente se ha explorado el método de precipitación de carbonatos inducida por microorganismos (MICP) utilizando bacterias ureolíticas para inmovilizar Pb(II) precipitándolo como carbonato poco soluble, reduciendo así su biodisponibilidad para organismos como las plantas en el suelo. Este proyecto tuvo como objetivo evaluar la capacidad de precipitación de carbonatos de bacterias ureolíticas tolerantes al Pb(II) y su desempeño en la inmovilización del metal en suelo agrícola. Los aislados Bacillus sp. 92g2, Serratia sp. 89b, y Serratia sp. 5b fueron seleccionados dada su alta actividad ureolítica y la capacidad de remover más del 90% del Pb(II) en solución. Después de estudiar el aporte de diferentes mecanismos de inmovilización de Pb(II) con estos aislados, se encontró que, para los aislados del género Serratia, la contribución más importante a la remoción total del metal en solución es la biosorción de Pb(II) sobre la biomasa, mientras que para Bacillus sp. 92g2 la contribución más relevante proviene de la coprecipitación del metal con la matriz de carbonatos formada. La capacidad de precipitación de carbonatos fue comprobada para los tres aislados a través del análisis de los precipitados obtenidos, usando las técnicas de IR, DRX y SEM-EDX. Por último, con el ensayo de aplicación en suelo sólo se encontró una disminución del 20% en la fracción intercambiable del metal después de 13 días de haber inoculado Serratia sp. 5b con un medio suplementado con urea y Ca(II), y del 10% después de adicionar solo medio con urea y Ca(II). Sin embargo, esta disminución no se vio reflejada en un aumento en la fracción de Pb(II) unida a carbonatos. Este trabajo permitió determinar que los aislados Bacillus sp. 92g2, Serratia sp. 5b y Serratia sp. 89b tienen una alta capacidad de remoción de Pb(II) en solución a través de mecanismos de biosorción, adsorción, y coprecipitación del metal, aunque bajo las condiciones experimentales trabajadas no resultó efectivo el tratamiento de inmovilización en suelo agrícola (Texto tomado de la fuente).spa
dc.description.abstractLead has become an environmental issue due to increased emissions from anthropogenic activities and represents a health and ecological risk due to its potential toxicity to living organisms. To mitigate the negative impact that this metal can have, the microbiologically induced carbonate precipitation (MICP) method has recently been explored using ureolytic bacteria to immobilize Pb(II) by precipitating it as a poorly soluble carbonate, thus reducing its bioavailability to organisms such as plants. This project aimed to evaluate the carbonate precipitation capacity of Pb(II)-tolerant ureolytic bacteria and their performance in immobilizing the metal in agricultural soil. The isolates Bacillus sp. 92g2, Serratia sp. 89b, and Serratia sp. 5b were selected given their high ureolytic activity and ability to remove more than 90% of Pb(II) in solution. After studying the contribution of different Pb(II) immobilization mechanisms with these isolates, it was found that, for the Serratia isolates the most important contribution to the total removal of the metal in solution is the biosorption of Pb(II) on the biomass. In contrast, for Bacillus sp. 92g2 the most relevant contribution comes from the co-precipitation of the metal with the carbonate matrix formed. The carbonate precipitation capacity was verified for the three isolates through the analysis of the obtained precipitates, using IR, XRD, and SEM-EDX techniques. Finally, with the soil application assay, only a 20% decrease in the metal exchangeable fraction was found after 13 days of inoculating Serratia sp. 5b with medium supplemented with urea and Ca(II), and 10% after adding medium with urea and Ca(II). However, this decrease was not reflected in an increase in the fraction of Pb(II) bound to carbonates. This work allowed us to determine that the isolates Bacillus sp. 92g2, Serratia sp. 5b and Serratia sp. 89b have a high capacity to remove Pb(II) in solution through biosorption, adsorption, and co-precipitation of the metal. However, under the experimental conditions tested, the immobilization treatment in agricultural soil was not effective.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Microbiologíaspa
dc.description.researchareaMicrobiología Ambientalspa
dc.format.extent109 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88325
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Microbiologíaspa
dc.relation.referencesAchal, V., Pan, X., Zhang, D., & Fu, Q. (2012). Bioremediation of Pb-contaminated soil based on microbially induced calcite precipitation. Journal of Microbiology and Biotechnology, 22(2), 244–247. https://doi.org/10.4014/jmb.1108.08033spa
dc.relation.referencesAdarme-Duran, C.A. (2024) Mitigación de Cadmio en suelos cacaoteros mediante bacterias ureolíticas.[Universidad Nacional de Colombia]. Tesis aún no publicada.spa
dc.relation.referencesAdarme-Duran, C.A., Castillo, E., Brandão, P.F.B. (2024) Removal o cadmium by ureolytic bacteria isolated from Theobroma cacao L. rhizosphere soils. World Journal of Microbiology and Biotechnology, in press.spa
dc.relation.referencesAlloway, B. J. (2012). Heavy metals in soils: Trace metals and metalloids in soils and their bioavailability. En Heavy metals in soils (Third Edition). Springer Science & Business Media. https://doi.org/10.1016/s0165-9936(96)90032-1spa
dc.relation.referencesAlvarez, P. J., & Illman, W. A. (2006). Bioremediation and Natural Attenuation. John Wiley and Sons Inc.spa
dc.relation.referencesArévalo-Gardini, E., Arévalo-Hernández, C. O., Baligar, V. C., & He, Z. L. (2017). Heavy metal accumulation in leaves and beans of cacao (Theobroma cacao L.) in major cacao growing regions in Peru. Science of the Total Environment, 605–606(2017), 792–800. https://doi.org/10.1016/j.scitotenv.2017.06.122spa
dc.relation.referencesAshraf, U., Kanu, A. S., Deng, Q., Mo, Z., Pan, S., Tian, H., & Tang, X. (2017). Lead (Pb) toxicity; physio-biochemical mechanisms, grain yield, quality, and Pb distribution proportions in scented rice. Frontiers in Plant Science, 8, 259. https://doi.org/10.3389/fpls.2017.00259spa
dc.relation.referencesAtici, Ö., Aǧar, G., & Battal, P. (2005). Changes in phytohormone contents in chickpea seeds germinating under lead or zinc stress. Biologia Plantarum, 49(2), 215–222. https://doi.org/10.1007/s10535-005-5222-9spa
dc.relation.referencesAzabou, S., Mechichi, T., & Sayadi, S. (2006). Zinc precipitation by heavy-metal tolerant sulfate-reducing bacteria enriched on phosphogypsum as a sulfate source. https://doi.org/10.1016/j.mineng.2006.08.008spa
dc.relation.referencesAzcón, R., del Carmen Perálvarez, M., Roldán, A., & Barea, J. M. (2010). Arbuscular mycorrhizal fungi, Bacillus cereus, and Candida parapsilosis from a multicontaminated soil alleviate metal toxicity in plants. Microbial Ecology, 59(4), 668–677. https://doi.org/10.1007/s00248-009-9618-5spa
dc.relation.referencesAzulay, D. N., Abbasi, R., Ben Simhon Ktorza, I., Remennik, S., Reddy, A. M., & Chai, L. (2018). Biopolymers from a Bacterial Extracellular Matrix Affect the Morphology and Structure of Calcium Carbonate Crystals. En Crystal Growth and Design (Vol. 18, Número 9). https://doi.org/10.1021/acs.cgd.8b00888spa
dc.relation.referencesBai, J., Yang, X., Du, R., Chen, Y., Wang, S., & Qiu, R. (2014). Biosorption mechanisms involved in immobilization of soil Pb by Bacillus subtilis DBM in a multi-metal-contaminated soil. Journal of environmental sciences (China), 26(10), 2056–2064. https://doi.org/10.1016/j.jes.2014.07.015spa
dc.relation.referencesBalali-Mood, M., Naseri, K., Tahergorabi, Z., Khazdair, M. R., & Sadeghi, M. (2021). Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. En Frontiers in Pharmacology (Vol. 12). https://doi.org/10.3389/fphar.2021.643972spa
dc.relation.referencesBlanco, A., Salazar, M. J., Vergara Cid, C., Pignata, M. L., & Rodriguez, J. H. (2017). Accumulation of lead and associated metals (Cu and Zn) at different growth stages of soybean crops in lead-contaminated soils: food security and crop quality implications. En Environmental Earth Sciences (Vol. 76, Número 4). https://doi.org/10.1007/s12665-017-6508-xspa
dc.relation.referencesBravo, D., Pardo-Díaz, S., Benavides-Erazo, J., Rengifo-Estrada, G., Braissant, O., & Leon-Moreno, C. (2018). Cadmium and cadmium-tolerant soil bacteria in cacao crops from northeastern Colombia. Journal of Applied Microbiology, 124(5), 1175–1194. https://doi.org/10.1111/jam.13698spa
dc.relation.referencesBriffa, J., Sinagra, E., & Blundell, R. (2020). Heavy metal pollution in the environment and their toxicological effects on humans. En Heliyon (Vol. 6, Número 9). Elsevier Ltd. https://doi.org/10.1016/j.heliyon.2020.e04691spa
dc.relation.referencesBrink, H. G., Hörstmann, C., & Peens, J. (2020). Microbial Pb(II)-precipitation: the influence of oxygen on Pb(II)-removal from aqueous environment and the resulting precipitate identity. International Journal of Environmental Science and Technology, 17(1), 409–420. https://doi.org/10.1007/s13762-019-02502-4spa
dc.relation.referencesCai, G., Chen, S. F., Liu, L., Jiang, J., Yao, H., Xu, A. W., & Yu, S. H. (2010). 1,3-Diamino-2-hydroxypropane-N,N,N′,N′-tetraacetic acid stabilized amorphous calcium carbonate: Nucleation, transformation and crystal growth. CrystEngComm, 12(1), 234–241. https://doi.org/10.1039/b911426mspa
dc.relation.referencesCao, R., Zhang, Y., Ju, Y., Wang, W., Zhao, Y., Liu, N., Zhang, G., Wang, X., Xie, X., Dai, C., Liu, Y., Yin, H., Shi, K., He, C., Wang, W., Zhao, L., Jeon, C. O., & Hao, L. (2023). Exopolysaccharide-producing bacteria enhanced Pb immobilization and influenced the microbiome composition in rhizosphere soil of pakchoi (Brassica chinensis L.). Frontiers in Microbiology, 14(March), 1–13. https://doi.org/10.3389/fmicb.2023.1117312spa
dc.relation.referencesCastro-Alonso, M. J., Montañez-Hernandez, L. E., Sanchez-Muñoz, M. A., Macias Franco, M. R., Narayanasamy, R., & Balagurusamy, N. (2019). Microbially induced calcium carbonate precipitation (MICP) and its potential in bioconcrete: Microbiological and molecular concepts. Frontiers in Materials, 6(June), 1–15. https://doi.org/10.3389/fmats.2019.00126spa
dc.relation.referencesChakraborty et al. (2017). Metals and their toxic effects, and introduction to noxious elements. En S. Das. & H. Ranjan (Ed.), Handbook of metal-microbe interactions and bioremediation (pp. 3-17). CRC Press, Taylor & Francis Groupspa
dc.relation.referencesChen, H., Xu, J., Tan, W., & Fang, L. (2019). Lead binding to wild metal-resistant bacteria analyzed by ITC and XAFS spectroscopy. Environmental Pollution, 250, 118–126. https://doi.org/10.1016/j.envpol.2019.03.123spa
dc.relation.referencesChen, M., Li, Y., Jiang, X., Zhao, D., Liu, X., Zhou, J., He, Z., Zheng, C., & Pan, X. (2021). Study on soil physical structure after the bioremediation of Pb pollution using microbial-induced carbonate precipitation methodology. Journal of Hazardous Materials, 411(January), 125103. https://doi.org/10.1016/j.jhazmat.2021.125103spa
dc.relation.referencesChen, S., Lian, Z., Li, S., Kim, J., Li, Y., Cao, L., & Liu, Z. (2017). The environmental burdens of lead-acid batteries in China: Insights from an integrated material flow analysis and life cycle assessment of lead. Energies, 10(12). https://doi.org/10.3390/en10121969spa
dc.relation.referencesChen, X., & Achal, V. (2019). Biostimulation of carbonate precipitation process in soil for copper immobilization. Journal of Hazardous Materials, 368(August 2018), 705–713. https://doi.org/10.1016/j.jhazmat.2019.01.108spa
dc.relation.referencesChen, X., Liu, Y. M., Zhao, Q. Y., Cao, W. Q., Chen, X. P., & Zou, C. Q. (2020). Health risk assessment associated with heavy metal accumulation in wheat after long-term phosphorus fertilizer application. Environmental Pollution, 262, 114348. https://doi.org/10.1016/j.envpol.2020.114348spa
dc.relation.referencesCheng, C., Han, H., Wang, Y., He, L., & Sheng, X. (2020). Metal-immobilizing and urease-producing bacteria increase the biomass and reduce metal accumulation in potato tubers under field conditions. Ecotoxicology and Environmental Safety, 203(July), 111017. https://doi.org/10.1016/j.ecoenv.2020.111017spa
dc.relation.referencesCheraghi, M., Lorestani, B., Merrikhpour, H., & Rouniasi, N. (2013). Heavy metal risk assessment for potatoes grown in overused phosphate-fertilized soils. Environmental Monitoring and Assessment, 185(2), 1825–1831. https://doi.org/10.1007/s10661-012-2670-5spa
dc.relation.referencesCheriton, L. W., & Gupta, J. (2005). Building materials. Encyclopedia of Analytical Science, 304–314.spa
dc.relation.referencesChong, K. Y., Chia, C. H., & Zakaria, S. (2014). Polymorphs calcium carbonate on temperature reaction. AIP Conference Proceedings, 1614(September), 52–56. https://doi.org/10.1063/1.4895169spa
dc.relation.referencesChrastný, V., Šillerová, H., Vítková, M., Francová, A., Jehlička, J., Kocourková, J., Aspholm, P. E., Nilsson, L. O., Berglen, T. F., Jensen, H. K. B., & Komárek, M. (2018). Unleaded gasoline as a significant source of Pb emissions in the Subarctic. Chemosphere, 193, 230–236.spa
dc.relation.referencesCoblentz Society Inc. (s/f). Libro del Web de Química del NIST. En P. Linstrom & W. Mallard (Eds.), NIST Chemistry WebBook, NIST Standard Reference Database Number 69. National Institute of Standards and Technology. https://doi.org/10.18434/T4D303spa
dc.relation.referencesCommission Regulation (EU) 2015/1005 of 25 June 2015 amending Regulation (EC) No 1881/2006 as regards maximum levels of lead in certain foodstuffs. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32015R1005&from=ENspa
dc.relation.referencesCorreia, A. A. S., Matos, M. P. S. R., Gomes, A. R., & Rasteiro, M. G. (2020). Immobilization of heavy metals in contaminated soils-performance assessment in conditions similar to a real scenario. Applied Sciences (Switzerland), 10(22), 1–18. https://doi.org/10.3390/app10227950spa
dc.relation.referencesCuaxinque-Flores, G., Aguirre-Noyola, J. L., Hernández-Flores, G., Martínez-Romero, E., Romero-Ramírez, Y., & Talavera-Mendoza, O. (2020). Bioimmobilization of toxic metals by precipitation of carbonates using Sporosarcina luteola: An in vitro study and application to sulfide-bearing tailings. Science of the Total Environment, 724, 138124. https://doi.org/10.1016/j.scitotenv.2020.138124spa
dc.relation.referencesCuaxinque-Flores, G., Talavera-Mendoza, O., Aguirre-Noyola, J. L., Hernández-Flores, G., Martínez-Miranda, V., Rosas-Guerrero, V., & Martínez-Romero, E. (2024). Molecular and geochemical basis of microbially induced carbonate precipitation for treating acid mine drainage: The case of a novel Sporosarcina genomospecies from mine tailings. Journal of Hazardous Materials, 476. https://doi.org/10.1016/j.jhazmat.2024.135005spa
dc.relation.referencesDayton, E. A., Basta, N. T., Payton, M. E., Bradham, K. D., Schroder, J. L., & Lanno, R. P. (2006). Evaluating the contribution of soil properties to modifying lead phytoavailability and phytotoxicity. Environmental Toxicology and Chemistry, 25(3), 719–725. https://doi.org/10.1897/05-307R.1spa
dc.relation.referencesDecree 214/2007 [Ministry of the Environment]. Government Decree on the Assessment of Soil Contamination and Remediation Needs. March 1, 2007.spa
dc.relation.referencesDefarge, N., Spiroux de Vendômois, J., & Séralini, G. E. (2018). Toxicity of formulants and heavy metals in glyphosate-based herbicides and other pesticides. Toxicology Reports, 5, 156–163. https://doi.org/10.1016/j.toxrep.2017.12.025spa
dc.relation.referencesDiez-Marulanda, J. C. (2022). Estudio de la bioprecipitación de cadmio por bacterias ureolíticas aisladas de fincas cacaoteras de Santander, Colombia [Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/84073spa
dc.relation.referencesDiez-Marulanda, J. C., & Brandão, P. F. B. (2023). Isolation of urease-producing bacteria from cocoa farms soils in Santander, Colombia, for cadmium remediation. 3 Biotech, 13(3), 98. https://doi.org/10.1007/s13205-023-03495-1spa
dc.relation.referencesDiez-Marulanda, J. C., & Brandão, P. F. B. (2024). Potential use of two Serratia strains for cadmium remediation based on microbiologically induced carbonate precipitation and their cadmium resistance. Environmental science and pollution research international, 31(4), 5319–5330. https://doi.org/10.1007/s11356-023-31062-xspa
dc.relation.referencesFalster, G., Delean, S., & Tyler, J. (2018). Hydrogen Peroxide Treatment of Natural Lake Sediment Prior to Carbon and Oxygen Stable Isotope Analysis of Calcium Carbonate. Geochemistry, Geophysics, Geosystems, 19(9), 3583–3595. https://doi.org/10.1029/2018GC007575spa
dc.relation.referencesFAO. (2021). Standard operating procedure for soil pH determination. https://doi.org/10.18356/9789210018289c230spa
dc.relation.referencesFashola, M. O., Ngole-Jeme, V. M., & Babalola, O. O. (2020). Heavy Metal Immobilization Potential of Indigenous Bacteria Isolated from Gold Mine Tailings. International Journal of Environmental Research, 14(1), 71–86. https://doi.org/10.1007/s41742-019-00240-6spa
dc.relation.referencesGodelitsas, A., Astilleros, J. M., Hallam, K., Harissopoulos, S., & Putnis, A. (2003). Interaction of calcium carbonates with lead in aqueous solutions. Environmental Science and Technology, 37(15), 3351–3360. https://doi.org/10.1021/es020238ispa
dc.relation.referencesGreipsson, S. (2011). Phytoremediation. Nature Education Knowledge, 3(10):7(January 2011).spa
dc.relation.referencesHassan, A., Periathamby, A., Ahmed, A., Innocent, O., & Hamid, F. S. (2020). Effective bioremediation of heavy metal–contaminated landfill soil through bioaugmentation using consortia of fungi. Journal of Soils and Sediments, 20(1), 66–80. https://doi.org/10.1007/s11368-019-02394-4spa
dc.relation.referencesHuang, D. L., Zeng, G. M., Jiang, X. Y., Feng, C. L., Yu, H. Y., Huang, G. H., & Liu, H. L. (2006). Bioremediation of Pb-contaminated soil by incubating with Phanerochaete chrysosporium and straw. Journal of Hazardous Materials, 134(1–3), 268–276. https://doi.org/10.1016/j.jhazmat.2005.11.021spa
dc.relation.referencesHuang, W. J., & Lo, J. S. (2004). Synthesis and efficiency of a new chemical fixation agent for stabilizing MSWI fly ash. Journal of Hazardous Materials, 112(1–2), 79–86. https://doi.org/10.1016/j.jhazmat.2004.04.006spa
dc.relation.referencesHuang, X., Zhang, R., Cui, M., & Lai, H. (2022). Experimental Investigation on Bioremediation of Heavy Metal Contaminated Solution by Sporosarcina pasteurii under Some Complex Conditions. Water (Switzerland), 14(4). https://doi.org/10.3390/w14040595spa
dc.relation.referencesHunt, A. (2016). Relative bioaccessibility of Pb-based paint in soil. Environmental Geochemistry and Health, 38(4), 1037–1050. https://doi.org/10.1007/s10653-015-9789-6spa
dc.relation.referencesJacobson, A. D., & Wu, L. (2009). Microbial dissolution of calcite at T = 28 °C and ambient pCO2. Geochimica et Cosmochimica Acta, 73(8), 2314–2331. https://doi.org/10.1016/j.gca.2009.01.020spa
dc.relation.referencesJalilvand, N., Akhgar, A., Alikhani, H. A., Rahmani, H. A., & Rejali, F. (2020). Removal of Heavy Metals Zinc, Lead, and Cadmium by Biomineralization of Urease-Producing Bacteria Isolated from Iranian Mine Calcareous Soils. Journal of Soil Science and Plant Nutrition, 20(1), 206–219. https://doi.org/10.1007/s42729-019-00121-zspa
dc.relation.referencesJavier Perez-Vazquez, F., Flores-Ramirez, R., Catalina Ochoa-Martinez, A., Teresa Orta-Garcia, S., Hernandez-Castro, B., Carrizalez-Yañez, L., Pérez-Maldonado, I. N., Perez-Vazquez, F. J., Flores-Ramirez, R., Ochoa-Martinez, A. C., Orta-Garcia, S. T., Carrizalez-Yañez, L., & Pérez-Maldonado, I. N. (2015). Concentrations of persistent organic pollutants (POPs) and heavy metals in soil from San Luis Potosí, México. Environ Monit Assess, 187, 4119. https://doi.org/10.1007/s10661-014-4119-5spa
dc.relation.referencesJiang, N. J., Liu, R., Du, Y. J., & Bi, Y. Z. (2019). Microbial induced carbonate precipitation for immobilizing Pb contaminants: Toxic effects on bacterial activity and immobilization efficiency. Science of the Total Environment, 672, 722–731. https://doi.org/10.1016/j.scitotenv.2019.03.294spa
dc.relation.referencesKandeler, E., Poll, C., Frankenberger, W. T., & Ali Tabatabai, M. (2015). Nitrogen Cycle Enzymes. En R. P. Dick (Ed.), Methods of Soil Enzymology (pp. 211–245). https://doi.org/10.2136/sssabookser9.c10spa
dc.relation.referencesKhadim, H. J., Ammar, S. H., & Ebrahim, S. E. (2019). Biomineralization based remediation of cadmium and nickel contaminated wastewater by ureolytic bacteria isolated from barn horses soil. Environmental Technology and Innovation, 14. https://doi.org/10.1016/j.eti.2019.100315spa
dc.relation.referencesKhan, M. U., Malik, R. N., & Muhammad, S. (2013). Human health risk from Heavy metal via food crops consumption with wastewater irrigation practices in Pakistan. Chemosphere, 93(10), 2230–2238. https://doi.org/10.1016/j.chemosphere.2013.07.067spa
dc.relation.referencesKicińska, A., Pomykała, R., & Izquierdo-Diaz, M. (2022). Changes in soil pH and mobility of heavy metals in contaminated soils. European Journal of Soil Science, 73(1), 1–14. https://doi.org/10.1111/ejss.13203spa
dc.relation.referencesKim, Y., Kwon, S., & Roh, Y. (2021). Effect of Divalent Cations (Cu, Zn, Pb, Cd, and Sr) on Microbially Induced Calcium Carbonate Precipitation and Mineralogical Properties. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.646748spa
dc.relation.referencesKinuthia, G. K., Ngure, V., Beti, D., Lugalia, R., Wangila, A., & Kamau, L. (2020). Levels of heavy metals in wastewater and soil samples from open drainage channels in Nairobi, Kenya: community health implication. Scientific Reports, 10(1), 1–13. https://doi.org/10.1038/s41598-020-65359-5spa
dc.relation.referencesKumar, A., Kumar, A., Cabral-Pinto, M., Chaturvedi, A. K., Shabnam, A. A., Subrahmanyam, G., Mondal, R., Gupta, D. K., Malyan, S. K., Kumar, S. S., Khan, S. A., & Yadav, K. K. (2020). Lead toxicity: Health hazards, influence on food Chain, and sustainable remediation approaches. En International Journal of Environmental Research and Public Health (Vol. 17, Número 7). MDPI AG. https://doi.org/10.3390/ijerph17072179spa
dc.relation.referencesKumar, S., Prasad, S., Yadav, K. K., Shrivastava, M., Gupta, N., Nagar, S., Bach, Q. V., Kamyab, H., Khan, S. A., Yadav, S., & Malav, L. C. (2019). Hazardous heavy metals contamination of vegetables and food chain: Role of sustainable remediation approaches - A review. En Environmental Research (Vol. 179). Academic Press Inc. https://doi.org/10.1016/j.envres.2019.108792spa
dc.relation.referencesKumari, D., Pan, X., Lee, D. J., & Achal, V. (2014). Immobilization of cadmium in soil by microbially induced carbonate precipitation with Exiguobacterium undae at low temperature. International Biodeterioration and Biodegradation, 94, 98–102. https://doi.org/10.1016/j.ibiod.2014.07.007spa
dc.relation.referencesKumari, S., & Das, S. (2019). Expression of metallothionein encoding gene bmtA in biofilm-forming marine bacterium Pseudomonas aeruginosa N6P6 and understanding its involvement in Pb(II) resistance and bioremediation. Environmental Science and Pollution Research, 26(28), 28763–28774. https://doi.org/10.1007/s11356-019-05916-2spa
dc.relation.referencesLafuente, B., Downs, R., Yang, H., & Stone, N. (2015). The power of databases: the RRUFF project. En T. Armbruster & R. Danisi (Eds.), Highlights in Mineralogical Crystallography (pp. 1–30).spa
dc.relation.referencesLai, H. J., Cui, M. J., & Chu, J. (2023). Effect of pH on soil improvement using one-phase-low-pH MICP or EICP biocementation method. Acta Geotechnica, 18(6), 3259–3272. https://doi.org/10.1007/s11440-022-01759-3spa
dc.relation.referencesLi, C., Zhou, K., Qin, W., Tian, C., Qi, M., Yan, X., & Han, W. (2019). A Review on Heavy Metals Contamination in Soil: Effects, Sources, and Remediation Techniques. En Soil and Sediment Contamination (Vol. 28, Número 4, pp. 380–394). Taylor and Francis Inc. https://doi.org/10.1080/15320383.2019.1592108spa
dc.relation.referencesLi, S., Li, M.-Y., Sun, H.-J., Li, H.-B., & Ma, L. (2020). Lead bioavailability in different fractions of mining- and smelting-contaminated soils based on a sequential extraction and mouse kidney model. Environmental Pollution, 262, 114253. https://doi.org/10.1016/j.envpol.2020.114253spa
dc.relation.referencesLi, T., Di, Z., Yang, X., & Sparks, D. L. (2011). Effects of dissolved organic matter from the rhizosphere of the hyperaccumulator Sedum alfredii on sorption of zinc and cadmium by different soils. Journal of Hazardous Materials, 192(3), 1616–1622. https://doi.org/10.1016/j.jhazmat.2011.06.086spa
dc.relation.referencesLi, X., Peng, W., Jia, Y., Lu, L., & Fan, W. (2016). Bioremediation of lead contaminated soil with Rhodobacter sphaeroides. Chemosphere, 156, 228–235. https://doi.org/10.1016/j.chemosphere.2016.04.098spa
dc.relation.referencesLi, Y., Chapman, S. J., Nicol, G. W., & Yao, H. (2017). Nitrification and nitrifiers in acidic soils. https://doi.org/10.1016/j.soilbio.2017.10.023spa
dc.relation.referencesLin, P. Y., Wu, H. M., Hsieh, S. L., Li, J. S., Dong, C., Chen, C. W., & Hsieh, S. (2020). Preparation of vaterite calcium carbonate granules from discarded oyster shells as an adsorbent for heavy metal ions removal. Chemosphere, 254. https://doi.org/10.1016/j.chemosphere.2020.126903spa
dc.relation.referencesLiu, X., Zhang, S., Wu, W., & Liu, H. (2007). Metal sorption on soils as affected by the dissolved organic matter in sewage sludge and the relative calculation of sewage sludge application. Journal of Hazardous Materials, 149(2), 399–407. https://doi.org/10.1016/j.jhazmat.2007.04.003spa
dc.relation.referencesLiu, Y., Tie, B., Li, Y., Lei, M., Wei, X., Liu, X., & Du, H. (2018). Inoculation of soil with cadmium-resistant bacterium Delftia sp. B9 reduces cadmium accumulation in rice (Oryza sativa L.) grains. Ecotoxicology and Environmental Safety, 163(July), 223–229. https://doi.org/10.1016/j.ecoenv.2018.07.081spa
dc.relation.referencesLizarazo, M. F., Herrera, C. D., Celis, C. A., Pombo, L. M., Teherán, A. A., Piñeros, L. G., Forero, S. P., Velandia, J. R., Díaz, F. E., Andrade, W. A., & Rodríguez, O. E. (2020). Contamination of staple crops by heavy metals in Sibaté, Colombia. Heliyon, 6(7). https://doi.org/10.1016/j.heliyon.2020.e04212spa
dc.relation.referencesLu, K., Yang, X., Gielen, G., Bolan, N., Ok, Y. S., Niazi, N. K., Xu, S., Yuan, G., Chen, X., Zhang, X., Liu, D., Song, Z., Liu, X., & Wang, H. (2017). Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil. Journal of Environmental Management, 186, 285–292. https://doi.org/10.1016/j.jenvman.2016.05.068spa
dc.relation.referencesLuo, K., Zhou, J. X., Huang, Z. L., Wang, X. C., Wilde, S. A., Zhou, W., & Tian, L. (2019). New insights into the origin of early Cambrian carbonate-hosted Pb-Zn deposits in South China: A case study of the Maliping Pb-Zn deposit. Gondwana Research, 70, 88–103. https://doi.org/10.1016/J.GR.2018.12.015spa
dc.relation.referencesMahanty, B., Kim, S., & Kim, C. G. (2013). Assessment of a Biostimulated or Bioaugmented Calcification System with Bacillus pasteurii in a Simulated Soil Environment. Microbial Ecology, 65(3), 679–688. https://doi.org/10.1007/s00248-012-0137-4spa
dc.relation.referencesMangayil, R., Santala, V., & Karp, M. (2011). Fermentative hydrogen production from different sugars by Citrobacter sp. CMC-1 in batch culture. International Journal of Hydrogen Energy, 36(23), 15187–15194. https://doi.org/10.1016/j.ijhydene.2011.08.076spa
dc.relation.referencesMansouri, B., Rezaei, A., Sharafi, K., Azadi, N., Pirsaheb, M., Rezaei, M., & Nakhaee, S. (2024). Mixture effects of trace element levels on cardiovascular diseases and type 2 diabetes risk in adults using G-computation analysis. Scientific Reports, 14(1), 5743. https://doi.org/10.1038/s41598-024-56468-6spa
dc.relation.referencesMasindi, V., & Muedi, K. L. (2018). Environmental Contamination by Heavy Metals. En Heavy Metals. InTech. https://doi.org/10.5772/intechopen.76082spa
dc.relation.referencesMcBride, M. B. (2013). Arsenic and lead uptake by vegetable crops grown on historically contaminated orchard soils. Applied and Environmental Soil Science, 2013. https://doi.org/10.1155/2013/283472spa
dc.relation.referencesMclaughlin, M. J., Smolders, E., Degryse, F., & Rietra, R. (2011). Dealing with Contaminated Sites. En Dealing with Contaminated Sites. https://doi.org/10.1007/978-90-481-9757-6spa
dc.relation.referencesMo, T., Jiang, D., Shi, D., Xu, S., Huang, X., & Huang, Z. (2022). Remediation mechanism of “doub -r sis an ” bac ria—Sedum alfredii Hance on Pb- and Cd-contaminated soil. Ecological Processes, 11(1). https://doi.org/10.1186/s13717-021-00347-9spa
dc.relation.referencesMontaño-Salazar, S. M., Lizarazo-Marriaga, J., & Brandão, P. F. B. (2018). Isolation and Potential Biocementation of Calcite Precipitation Inducing Bacteria from Colombian Buildings. Current Microbiology, 75(3), 256–265. https://doi.org/10.1007/S00284-017-1373-0/METRICSspa
dc.relation.referencesMontoya, C., Márquez, M. A., María López, J., & Cuervo, C. (2005). Caracterización de cristales de calcita bioprecipitada por un aislamiento nativo de Bacillus subtilis. Revista Colombiana de Biotecnología.spa
dc.relation.referencesMukhopadhyay, S., Masto, R. E., Tripathi, R. C., & Srivastava, N. K. (2018). Application of Soil Quality Indicators for the Phytorestoration of Mine Spoil Dumps. En Phytomanagement of Polluted Sites: Market Opportunities in Sustainable Phytoremediation. Elsevier Inc. https://doi.org/10.1016/B978-0-12-813912-7.00014-4spa
dc.relation.referencesNaik, M. M., & Dubey, S. K. (2013). Lead resistant bacteria: Lead resistance mechanisms, their applications in lead bioremediation and biomonitoring. Ecotoxicology and Environmental Safety, 98, 1–7. https://doi.org/10.1016/j.ecoenv.2013.09.039spa
dc.relation.referencesOliveira, M. L. S., Valença, G. O., Pinto, D., Moro, L. D., Bodah, B. W., de Vargas Mores, G., Grub, J., Adelodun, B., & Neckel, A. (2023). Hazardous Elements in Sediments Detected in Former Decommissioned Coal Mining Areas in Colombia: A Need for Environmental Recovery. Sustainability (Switzerland), 15(10). https://doi.org/10.3390/su15108361spa
dc.relation.referencesOliveira, R., Hammer, P., Guibal, E., Taulemesse, J. M., & Garcia, O. (2014). Characterization of metal-biomass interactions in the lanthanum(III) biosorption on Sargassum sp. using SEM/EDX, FTIR, and XPS: Preliminary studies. Chemical Engineering Journal, 239, 381–391. https://doi.org/10.1016/j.cej.2013.11.042spa
dc.relation.referencesPeng, D., Qiao, S., Luo, Y., Ma, H., Zhang, L., Hou, S., Wu, B., & Xu, H. (2020). Performance of microbial induced carbonate precipitation for immobilizing Cd in water and soil. Journal of Hazardous Materials, 400(June), 123116. https://doi.org/10.1016/j.jhazmat.2020.123116spa
dc.relation.referencesPeng, J., & Liu, Z. (2019). Influence of temperature on microbially induced calcium carbonate precipitation for soil treatment. PLoS ONE, 14(6). https://doi.org/10.1371/journal.pone.0218396spa
dc.relation.referencesQiao, S., Zeng, G., Wang, X., Dai, C., Sheng, M., Chen, Q., Xu, F., & Xu, H. (2021). Multiple heavy metals immobilization based on microbially induced carbonate precipitation by ureolytic bacteria and the precipitation patterns exploration. Chemosphere, 274. https://doi.org/10.1016/j.chemosphere.2021.129661spa
dc.relation.referencesQin, S., Zhang, H., He, Y., Chen, Z., Yao, L., & Han, H. (2023). Improving radish phosphorus utilization efficiency and inhibiting Cd and Pb uptake by using heavy metal-immobilizing and phosphate-solubilizing bacteria. Science of the Total Environment, 868(November 2022). https://doi.org/10.1016/j.scitotenv.2023.161685spa
dc.relation.referencesRai, P. K., Lee, S. S., Zhang, M., Tsang, Y. F., & Kim, K. H. (2019). Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environment International, 125, 365–385. https://doi.org/10.1016/j.envint.2019.01.067spa
dc.relation.referencesRamos-Zúñiga, J., Gallardo, S., Martínez-Bussenius, C., Norambuena, R., Navarro, C. A., Paradela, A., & Jerez, C. A. (2019). Response of the biomining Acidithiobacillus ferrooxidans to high cadmium concentrations. Journal of Proteomics, 198(September 2018), 132–144. https://doi.org/10.1016/j.jprot.2018.12.013spa
dc.relation.referencesRemick, K. A., & Helmann, J. D. (2023). The elements of life: A biocentric tour of the periodic table. En Advances in Microbial Physiology (Vol. 82, pp. 1–127). https://doi.org/10.1016/bs.ampbs.2022.11.001spa
dc.relation.referencesRigoletto, M., Calza, P., Gaggero, E., Malandrino, M., & Fabbri, D. (2020). Bioremediation methods for the recovery of lead-contaminated soils: A review. En Applied Sciences (Switzerland) (Vol. 10, Número 10, p. 17). https://doi.org/10.3390/app10103528spa
dc.relation.referencesRodriguez-Blanco, J. D., Shaw, S., & Benning, L. G. (2011). The kinetics and mechanisms of amorphous calcium carbonate (ACC) crystallization to calcite, via vaterite. Nanoscale, 3(1), 265–271. https://doi.org/10.1039/c0nr00589dspa
dc.relation.referencesRodriguez-Navarro, C., Rodriguez-Gallego, M., Chekroun, K. Ben, & Gonzalez-Muñoz, M. T. (2003). Conservation of ornamental stone by Myxococcus xanthus-induced carbonate biomineralization. Applied and Environmental Microbiology, 69(4), 2182–2193. https://doi.org/10.1128/AEM.69.4.2182-2193.2003spa
dc.relation.referencesRodríguez, O. E., Hernández, D. R., Andrade, W. A., Celis, C. A., Pombo, L. M., Teherán, A. A., Forero, S. P., Velandia, J. R., & Díaz, F. E. (2022). Effect of Sample Sources on Heavy Metal Concentration Measured in Beta Vulgaris Organs. Journal of Environmental and Public Health, 2022. https://doi.org/10.1155/2022/4968739spa
dc.relation.referencesRucińska-Sobkowiak, R., Nowaczyk, G., Krzesłowska, M., Rabeda, I., & Jurga, S. (2013). Water status and water diffusion transport in lupine roots exposed to lead. Environmental and Experimental Botany, 87, 100–109. https://doi.org/10.1016/j.envexpbot.2012.09.012spa
dc.relation.referencesSalles, F. J., Diaz-Quijano, F. A., Luz, M. S., de Almeida, G. A., Akiba, N., de Oliveira, A. P., Elias, A. de C., Rogero, M. M., & Olympio, K. P. K. (2024). Low levels of potentially toxic elements in workers are associated with self-reported health outcomes. Science of the Total Environment, 947(January), 174510. https://doi.org/10.1016/j.scitotenv.2024.174510spa
dc.relation.referencesSaran, A., Fernandez, L., Cora, F., Savio, M., Thijs, S., Vangronsveld, J., & Merini, L. J. (2020). Phytostabilization of Pb and Cd polluted soils using Helianthus petiolaris as pioneer aromatic plant species. International Journal of Phytoremediation, 22(5), 459–467. https://doi.org/10.1080/15226514.2019.1675140spa
dc.relation.referencesSarwar, N., Imran, M., Shaheen, M. R., Ishaque, W., Kamran, M. A., Matloob, A., Rehim, A., & Hussain, S. (2017). Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives. En Chemosphere (Vol. 171, pp. 710–721). Elsevier Ltd. https://doi.org/10.1016/j.chemosphere.2016.12.116spa
dc.relation.referencesSharma, S., Tiwari, S., Hasan, A., Saxena, V., & Pandey, L. M. (2018). Recent advances in conventional and contemporary methods for remediation of heavy metal-contaminated soils. 3 Biotech, 8(4). https://doi.org/10.1007/s13205-018-1237-8spa
dc.relation.referencesSheng, M., Peng, D., Luo, S., Ni, T., Luo, H., Zhang, R., Wen, Y., & Xu, H. (2022). Micro-dynamic process of cadmium removal by microbial induced carbonate precipitation. Environmental Pollution, 308. https://doi.org/10.1016/j.envpol.2022.119585spa
dc.relation.referencesShi, J., Xu, Q., Zhou, Z., Wu, X., Tong, J., Cai, Q., Wu, Q., & Shi, J. (2021). Controlling Factors and Prediction of Lead Uptake and Accumulation in Various Soil–Pepper Systems. Environmental Toxicology and Chemistry, 40(5), 1443–1451. https://doi.org/10.1002/etc.4997spa
dc.relation.referencesShilpa, O., Anupama, K. P., Antony, A., & Gurushankara, H. P. (2021). Lead (Pb) induced Oxidative Stress as a Mechanism to Cause Neurotoxicity in Drosophila melanogaster. Toxicology, 462(June), 152959. https://doi.org/10.1016/j.tox.2021.152959spa
dc.relation.referencesShu, X., Yin, L. Y., Zhang, Q. F., & Wang, W. B. (2012). Effect of Pb toxicity on leaf growth, antioxidant enzyme activities, and photosynthesis in cuttings and seedlings of Jatropha curcas L. Environmental Science and Pollution Research, 19(3), 893–902. https://doi.org/10.1007/s11356-011-0625-yspa
dc.relation.referencesSim, C. S. F., & Ting, A. S. Y. (2017). Metal removal from multi-metal solutions by metal-tolerant Stenotrophomonas maltophilia isolated from river sediment. Desalination and Water Treatment, 68, 267–273. https://doi.org/10.5004/dwt.2017.20330spa
dc.relation.referencesSkoog, D., West, D., Holler, F., & Crouch, S. (2014). Fundamentals of analytical chemistry (9th ed.). Cengage - Brooks/Cole.spa
dc.relation.referencesSong, M., Ju, T., Meng, Y., Han, S., Lin, L., & Jiang, J. (2022). A review on the applications of microbially induced calcium carbonate precipitation in solid waste treatment and soil remediation. Chemosphere, 290, 133229. https://doi.org/10.1016/j.chemosphere.2021.133229spa
dc.relation.referencesStrock, J. S. (2008). Ammonification. En Encyclopedia of Ecology (pp. 162–165). Elsevier. https://doi.org/10.1016/B978-008045405-4.00256-1spa
dc.relation.referencesSun, S., Chen, J., Wang, Y., Leng, F., Zhao, J., Chen, K., & Zhang, Q.-C. (2021). Molecular mechanisms of heavy metals resistance of Stenotrophomonas rhizophila JC1 by whole genome sequencing. Archives of Microbiology, 203(5), 2699–2709. https://doi.org/10.1007/s00203-021-02271-0spa
dc.relation.referencesSun, Y., Kokko, M., & Vassilev, I. (2023). Anode-assisted electro-fermentation with Bacillus subtilis under oxygen-limited conditions. Biotechnology for Biofuels and Bioproducts, 16(1), 1–12. https://doi.org/10.1186/s13068-022-02253-4spa
dc.relation.referencesSun, Y., Li, Y., Xu, Y., Liang, X., & Wang, L. (2015). In situ stabilization remediation of cadmium (Cd) and lead (Pb) co-contaminated paddy soil using bentonite. Applied Clay Science, 105–106, 200–206. https://doi.org/10.1016/j.clay.2014.12.031spa
dc.relation.referencesTamayo-Figueroa, D. P., Castillo, E., & Brandão, P. F. B. (2019). Metal and metalloid immobilization by microbiologically induced carbonates precipitation. World Journal of Microbiology and Biotechnology, 35(4), 1–10. https://doi.org/10.1007/s11274-019-2626-9spa
dc.relation.referencesTamayo Figueroa, D. P. (2023). Reparación de grietas en materiales base cemento empleando cultivos bacterianos axénicos y mixtos [Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/85319spa
dc.relation.referencesTan, S. C., Zhou, J. X., Li, B., & Zhao, J. X. (2017). In situ Pb and bulk Sr isotope analysis of the Yinchanggou Pb-Zn deposit in Sichuan Province (SW China): Constraints on the origin and evolution of hydrothermal fluids. Ore Geology Reviews, 91(September), 432–443. https://doi.org/10.1016/j.oregeorev.2017.09.012spa
dc.relation.referencesTang, C. S., Yin, L. yang, Jiang, N. jun, Zhu, C., Zeng, H., Li, H., & Shi, B. (2020). Factors affecting the performance of microbial-induced carbonate precipitation (MICP) treated soil: a review. Environmental Earth Sciences, 79(5). https://doi.org/10.1007/S12665-020-8840-9spa
dc.relation.referencesTeng, Z., Shao, W., Zhang, K., Huo, Y., Zhu, J., & Li, M. (2019). Pb biosorption by Leclercia adecarboxylata: Protective and immobilized mechanisms of extracellular polymeric substances. Chemical Engineering Journal, 375(May), 122113. https://doi.org/10.1016/j.cej.2019.122113spa
dc.relation.referencesTessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential Extraction Procedure for the Speciation of Particulate Trace Metals. Analytical Chemistry, 51(7), 844–851. https://doi.org/10.1021/ac50043a017spa
dc.relation.referencesThums, C. R., Farago, M. E., & Thornton, I. (2008). Bioavailability of trace metals in brownfield soils in an urban area in the UK. Environmental Geochemistry and Health, 30(6), 549–563. https://doi.org/10.1007/s10653-008-9185-6spa
dc.relation.referencesTrujillo-González, J. M., Torres-Mora, M. A., Serrano-Gómez, M., Castillo-Monroy, E. F., Ballesta, R. J., & Rodrigo-Comino, J. (2022). Mapping Potential Toxic Elements in Agricultural and Natural Soils of the Piedemonte Llanero in Colombia. Water, Air, and Soil Pollution, 233(4). https://doi.org/10.1007/s11270-022-05550-8spa
dc.relation.referencesTrushina, D. B., Bukreeva, T. V., Kovalchuk, M. V., & Antipina, M. N. (2014). CaCO3 vaterite microparticles for biomedical and personal care applications. Materials Science and Engineering C, 45, 644–658. https://doi.org/10.1016/j.msec.2014.04.050spa
dc.relation.referencesUdovic, M., & Lestan, D. (2009). Pb, Zn and Cd mobility, availability and fractionation in aged soil remediated by EDTA leaching. Chemosphere, 74(10), 1367–1373. https://doi.org/10.1016/j.chemosphere.2008.11.013spa
dc.relation.referencesVázquez, A., & Peña De Ortiz, S. (2004). Lead (Pb+2) impairs long-term memory and blocks learning-induced increases in hippocampal protein kinase C activity. Toxicology and Applied Pharmacology, 200(1), 27–39. https://doi.org/10.1016/j.taap.2004.03.011spa
dc.relation.referencesVeerasingam, S., & Venkatachalapathy, R. (2014). Estimation of carbonate concentration and characterization of marine sediments by Fourier Transform Infrared Spectroscopy. Infrared Physics and Technology, 66, 136–140. https://doi.org/10.1016/j.infrared.2014.06.005spa
dc.relation.referencesVerdouw, H., Van Echteld, C. J. A., & Dekkers, E. M. J. (1978). Ammonia determination based on indophenol formation with sodium salicylate. Water Research, 12(6), 399–402. https://doi.org/10.1016/0043-1354(78)90107-0spa
dc.relation.referencesVimalnath, S., & Subramanian, S. (2018). Studies on the biosorption of Pb(II) ions from aqueous solution using extracellular polymeric substances (EPS) of Pseudomonas aeruginosa. Colloids and Surfaces B: Biointerfaces, 172(August), 60–67. https://doi.org/10.1016/j.colsurfb.2018.08.024spa
dc.relation.referencesWang, C., Lu, J., Zhang, S., Wang, P. F., Hou, J., & Qian, J. (2011). Effects of Pb stress on nutrient uptake and secondary metabolism in submerged macrophyte Vallisneria natans. Ecotoxicology and Environmental Safety, 74(5), 1297–1303. https://doi.org/10.1016/j.ecoenv.2011.03.005spa
dc.relation.referencesWang, L., Yu, K., Li, J. S., Tsang, D. C. W., Poon, C. S., Yoo, J. C., Baek, K., Ding, S., Hou, D., & Dai, J. G. (2018). Low-carbon and low-alkalinity stabilization/solidification of high-Pb contaminated soil. Chemical Engineering Journal, 351(June), 418–427. https://doi.org/10.1016/j.cej.2018.06.118spa
dc.relation.referencesWei, T., Yashir, N., An, F., Imtiaz, S. A., Li, X., & Li, H. (2022). Study on the performance of carbonate-mineralized bacteria combined with eggshell for immobilizing Pb and Cd in water and soil. Environmental Science and Pollution Research, 29(2), 2924–2935. https://doi.org/10.1007/s11356-021-15138-0spa
dc.relation.referencesWong, C. S. C., & Li, X. D. (2004). Pb contamination and isotopic composition of urban soils in Hong Kong. Science of the Total Environment, 319(1–3), 185–195. https://doi.org/10.1016/S0048-9697(03)00403-0spa
dc.relation.referencesWoo, J., Choi, M., & Song, Y. (2023). Spatio-temporal accumulation and sources of anthropogenic Pb in Ulleung Basin sediments, East/Japan Sea, based on stable Pb isotope ratios. Environmental Science and Pollution Research, 30(38), 89442–89458. https://doi.org/10.1007/s11356-023-28773-6spa
dc.relation.referencesWu, Z., Zheng, R., Liu, G., Liu, R., Wu, S., & Sun, C. (2021). Calcium protects bacteria against cadmium stress via reducing nitric oxide production and increasing iron acquisition. Environmental Microbiology, 23(7), 3541–3553.spa
dc.relation.referencesXie, Y. X., Cheng, W. C., Xue, Z. F., Rahman, M. M., & Wang, L. (2024). Deterioration phenomenon of Pb-contaminated aqueous solution remediation and enhancement mechanism of nano-hydroxyapatite-assisted biomineralization. Journal of Hazardous Materials, 470.spa
dc.relation.referencesXue, Z. F., Cheng, W. C., Wang, L., & Hu, W. (2022). Effects of bacterial inoculation and calcium source on microbial-induced carbonate precipitation for lead remediation. Journal of Hazardous Materials, 426.spa
dc.relation.referencesYan, X., Liu, X., Zhang, M., Wang, J., Zhong, J., Ma, D., Tang, C., & Hu, X. (2021). Lab-scale evaluation of the microbial bioremediation of Cr(VI): contributions of biosorption, bioreduction, and biomineralization. Environmental Science and Pollution Research, 28(18), 22359–22371.spa
dc.relation.referencesYang, J., Pan, X., Zhao, C., Mou, S., Achal, V., Al-Misned, F. A., Mortuza, M. G., & Gadd, G. M. (2016). Bioimmobilization of heavy metals in acidic copper mine tailings soil. Geomicrobiology Journal, 33(3–4), 261–266. https://doi.org/10.1080/01490451.2015.1068889spa
dc.relation.referencesYang, Y., Li, G., Min, K., Liu, T., Li, C., Xu, J., Hu, F., & Li, H. (2022). The potential role of fertilizer-derived exogenous bacteria on soil bacterial community assemblage and network formation. Chemosphere, 287(P3), 132338. https://doi.org/10.1016/j.chemosphere.2021.132338spa
dc.relation.referencesYang, Z., Liu, Z., Zhao, F., Yu, L., Yang, W., Si, M., & Liao, Q. (2023). Organic acid, phosphate, sulfate and ammonium co-metabolism releasing insoluble phosphate by Klebsiella aerogenes to simultaneously stabilize lead and cadmium. Journal of Hazardous Materials, 443(November 2022). https://doi.org/10.1016/j.jhazmat.2022.130378spa
dc.relation.referencesYe, J., Zhang, Q., Liu, G., Lin, L., Wang, H., Lin, S., Wang, Y., Wang, Y., Zhang, Q., Jia, X., & He, H. (2022). Relationship of soil pH value and soil Pb bio-availability and Pb enrichment in tea leaves. Journal of the Science of Food and Agriculture, 102(3), 1137–1145. https://doi.org/10.1002/jsfa.11450spa
dc.relation.referencesYu, H., Zhang, G., Cai, Y., & Dong, F. (2021). Altering the substituents of salicylic acid to improve Berthelot reaction for ultrasensitive colorimetric detection of ammonium and atmospheric ammonia. Analytical and Bioanalytical Chemistry, 413(23), 5695–5702. https://doi.org/10.1007/s00216-021-03485-3spa
dc.relation.referencesZagorac, D., Müller, H., Ruehl, S., Zagorac, J., & Rehme, S. (2019). Recent developments in the Inorganic Crystal Structure Database: theoretical crystal structure data and related features. Journal of Applied Crystallography, 52(5), 918–925. https://doi.org/10.1107/S160057671900997Xspa
dc.relation.referencesZeng, Y., Chen, Z., Lyu, Q., Wang, X., Du, Y., Huan, C., Liu, Y., & Yan, Z. (2022). Mechanism of microbiologically induced calcite precipitation for cadmium mineralization. Science of the Total Environment, 852. https://doi.org/10.1016/j.scitotenv.2022.158465spa
dc.relation.referencesZhang, C., Li, X., Lyu, J., & Li, F. (2020). Comparison of carbonate precipitation induced by Curvibacter sp. HJ-1 and Arthrobacter sp. MF-2: Further insight into the biomineralization process. Journal of Structural Biology, 212(2). https://doi.org/10.1016/j.jsb.2020.107609spa
dc.relation.referencesZhang, J., Su, P., & Li, L. (2022). Bioremediation of stainless steel pickling sludge through microbially induced carbonate precipitation. Chemosphere, 298(March), 134213. https://doi.org/10.1016/j.chemosphere.2022.134213spa
dc.relation.referencesZhang, K., Xue, Y., Zhang, J., & Hu, X. (2020b). Removal of lead from acidic wastewater by bio-mineralized bacteria with pH self-regulation. Chemosphere, 241, 125041. https://doi.org/10.1016/j.chemosphere.2019.125041spa
dc.relation.referencesZhang, L., Wang, W., Yue, C., & Si, Y. (2024). Biogenic calcium improved Cd2+ and Pb2+ immobilization in soil using the ureolytic bacteria Bacillus pasteurii. Science of the Total Environment, 921. https://doi.org/10.1016/j.scitotenv.2024.171060spa
dc.relation.referencesZhang, N., Lin, M., Yamada, K., Kano, A., Liu, Q., Yoshida, N., & Matsumoto, R. (2020c). The effect of H2O2 treatment on stable isotope analysis (δ13C, δ18O and Δ47) of various carbonate minerals. Chemical Geology, 532(October 2019), 119352. https://doi.org/10.1016/j.chemgeo.2019.119352spa
dc.relation.referencesZhou, X., Ye, L., & Wu, J. C. (2013). Efficient production of l-lactic acid by newly isolated thermophilic Bacillus coagulans WCP10-4 with high glucose tolerance. Applied Microbiology and Biotechnology, 97(10), 4309–4314. https://doi.org/10.1007/s00253-013-4710-7spa
dc.relation.referencesZhu, T., & Dittrich, M. (2016). Carbonate precipitation through microbial activities in natural environment, and their potential in biotechnology: A review. En Frontiers in Bioengineering and Biotechnology (Vol. 4, Número JAN). https://doi.org/10.3389/fbioe.2016.00004spa
dc.relation.referencesZhu, X., Li, W., Zhan, L., Huang, M., Zhang, Q., & Achal, V. (2016). The large-scale process of microbial carbonate precipitation for nickel remediation from an industrial soil. Environmental Pollution, 219, 149–155. https://doi.org/10.1016/j.envpol.2016.10.047spa
dc.relation.referencesZhu, Z., Wang, J., Liu, X., Yuan, L., Liu, X., & Deng, H. (2021). Comparative study on washing effects of different washing agents and conditions on heavy metal contaminated soil. Surfaces and Interfaces, 27, 101563. https://doi.org/10.1016/J.SURFIN.2021.101563spa
dc.relation.referencesZia, M. H., Codling, E. E., Scheckel, K. G., & Chaney, R. L. (2011). In vitro and in vivo approaches for the measurement of oral bioavailability of lead (Pb) in contaminated soils: A review. Environmental Pollution, 159(10), 2320–2327. https://doi.org/10.1016/j.envpol.2011.04.043spa
dc.relation.referencesZulfiqar, U., Farooq, M., Hussain, S., Maqsood, M., Hussain, M., Ishfaq, M., Ahmad, M., & Anjum, M. Z. (2019). Lead toxicity in plants: Impacts and remediation. Journal of Environmental Management, 250. https://doi.org/10.1016/j.jenvman.2019.109557spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc540 - Química y ciencias afines::543 - Química analíticaspa
dc.subject.ddc570 - Biología::572 - Bioquímicaspa
dc.subject.ddc570 - Biología::579 - Historia natural microorganismos, hongos, algasspa
dc.subject.lembPLOMO-ASPECTOS AMBIENTALESspa
dc.subject.lembLead - Environmental aspectseng
dc.subject.lembCLARIFICADORES DE AGUAS RESIDUALESspa
dc.subject.lembSewage clarifierseng
dc.subject.lembCONTAMINACION DEL AGUAspa
dc.subject.lembWater - pollutioneng
dc.subject.lembTRATAMIENTO TERRESTRE DE AGUAS RESIDUALESspa
dc.subject.lembLand treatment of wastewatereng
dc.subject.lembENZIMAS-APLICACIONES INDUSTRIALESspa
dc.subject.lembEnzymes - industrial applicationseng
dc.subject.lembADSORCIONspa
dc.subject.lembAdsorptioneng
dc.subject.proposalBiorremediaciónspa
dc.subject.proposalPlomospa
dc.subject.proposalMICP
dc.subject.proposalActividad ureolítica
dc.subject.proposalSuelo agrícola
dc.subject.proposalLeadeng
dc.subject.proposalUreolytic activityeng
dc.subject.proposalAgricultural soileng
dc.subject.proposalBioremediationeng
dc.titleEstudio de la bioprecipitación de plomo mediado por bacterias ureolíticas y su potencial aplicación en suelo agrícolaspa
dc.title.translatedStudy of lead bioprecipitation mediated by ureolytic bacteria and its potential application in agricultural soileng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentImagespa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleEvaluación de los mecanismos simultáneos e indicadores fisicoquímicos y biológicos durante la inmovilización de metales tóxicos por precipitación de carbonatos inducida microbiológicamente mediante bacterias ureolíticasspa
oaire.awardtitleViabilidad del uso de microorganismos que precipitan carbonatos como estrategia de biorremediación para inmovilizar metales tóxicos asociados al cultivo de cacaospa
oaire.fundernameMinisterio de Ciencia, Tecnología e Innovación de Colombia (MinCiencias)spa
oaire.fundernameDirección de Investigación y Extensión sede Bogotá (DIEB), Universidad Nacional de Colombiaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032493917.2025.pdf
Tamaño:
2.72 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Microbiología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: