Operator theory in dynamical network systems

dc.contributor.advisorMojica Nava, Eduardo Alirio
dc.contributor.advisorSofrony, Jorge
dc.contributor.authorTéllez Castro, Duván Andrés
dc.contributor.researchgroupPrograma de Investigacion sobre Adquisicion y Analisis de Señales Paas-Unspa
dc.date.accessioned2022-08-26T20:46:28Z
dc.date.available2022-08-26T20:46:28Z
dc.date.issued2022-08-25
dc.descriptiongráficas, ilustraciones, tablasspa
dc.description.abstractWe provide a data-driven synthesis framework for some complex systems. The proposed fra- mework relies on the linear operator theory involving the Koopman operator. Our first results employ Koopman-based lifting for the identification of linear models from the data both un- der the controlled and uncontrolled settings. Spectral analysis of Koopman and its adjoint Perron-Frobenius operator helps us identify the invariant structure and dominant modes for the reduced-order representation from the data. Our second result is a design methodology of a model-free and decentralized control strategy for interconnected systems. We provi- de a predictive control for decoupling the systems using the linear operator. Additionally, we address a distributed output regulation algorithm for the leader-follower heterogeneous multi-agent system with unknown leader dynamics. The leader modeling is learned through the Koopman operator and the regulator is developed using optimal control theory. Finally, we develop a technique using the Koopman operator to obtain a data-driven continuous-time optimization algorithm for solving constrained optimization problems using its connection with dynamical systems for numerical algorithms. (Text taken from source)eng
dc.description.abstractEn esta tesis proporcionamos un marco de síntesis basado en datos para algunos sistemas complejos. El marco propuesto se basa en la teoría del operador lineal que involucra al operador de Koopman. Nuestros primeros resultados emplean el espacio Koopman-lifted para la identificación de modelos lineales a partir de los datos, tanto en entornos controlados como no controlados. El análisis espectral de Koopman y su operador adjunto Perron-Frobenius nos ayuda a identificar la estructura invariante y los modos dominantes para la representación de orden reducido a partir de los datos. Nuestro segundo resultado es una metodología de diseño de una estrategia de control descentralizada y sin modelo para sistemas interconectados. Proporcionamos un control predictivo para el desacoplamiento de los sistemas mediante el operador lineal. Además, abordamos un algoritmo de regulación de salida distribuida para el sistema heterogéneo de múltiples agentes tipo líder-seguidor con una dinámica de líder desconocida. El modelo de líder se aprende a través del operador de Koopman y el regulador se desarrolla utilizando la teoría de control óptimo. Finalmente, desarrollamos una técnica utilizando el operador de Koopman para obtener un algoritmo de optimización de tiempo continuo basado en datos para resolver problemas de optimización restringida usando su conexión con sistemas dinámicos para algoritmos numéricos.spa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.description.researchareaControl Distribuidospa
dc.format.extentxi, 99 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82146
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería Eléctrica y Electrónicaspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Eléctricaspa
dc.relation.references[1] Alvarado, Ignacio ; Limon, Daniel ; De La Pen ̃a, D M. ; Maestre, Jos ́e M. ; Ridao, MA ; Scheu, H ; Marquardt, W ; Negenborn, RR ; De Schutter, B ; Valencia, F ; Espinosa, J: A comparative analysis of distributed MPC techniques applied to the HD-MPC four-tank benchmark. En: Journal of Process Control 21 (2011), Nr. 5, p. 800–815spa
dc.relation.references[2] Arbabi, Hassan ; Mezic, Igor: Ergodic theory, dynamic mode decomposition, and computation of spectral properties of the Koopman operator. En: SIAM Journal on Applied Dynamical Systems 16 (2017), Nr. 4, p. 2096–2126spa
dc.relation.references[3] Arrow, Kenneth J. ; Azawa, Hirofumi ; Hurwicz, Leonid ; Uzawa, Hirofumi: Studies in linear and non-linear programming. Vol. 2. First Edition. Stanford University Press, 1958spa
dc.relation.references[4] Asaro, RJ ; Tiller, WA: Interface morphology development during stress corrosion cracking: Part I. Via surface diffusion. En: Metallurgical and Materials Transactions B 3 (1972), Nr. 7, p. 1789–1796spa
dc.relation.references[5] Bach, Francis ; Jordan, Michael: Learning spectral clustering. En: Advances in neural information processing systems 16 (2004), Nr. 2, p. 305–312spa
dc.relation.references[6] Baggio, Giacomo ; Bassett, Danielle S. ; Pasqualetti, Fabio: Data-driven control of complex networks. En: Nature communications 12 (2021), Nr. 1, p. 1–13spa
dc.relation.references[7] Bakker, Craig ; Rosenthal, Steven ; Nowak, Kathleen E.: Koopman Representa- tions of Dynamic Systems with Control. En: arXiv preprint arXiv:1908.02233 (2019)spa
dc.relation.references[8] Baldi, Simone ; Frasca, Paolo: Adaptive synchronization of unknown heterogeneous agents: An adaptive virtual model reference approach. En: Journal of the Franklin Institute (2018). – ISSN 0016–0032spa
dc.relation.references[9] Bertsekas, Dimitri ; Nedic, Angelia ; Ozdaglar, Asuman: Convex Analysis and Optimization. First Edition. Athena scientific Belmont, 2003. – ISBN 2002092168spa
dc.relation.references[10] Bevanda, Petar ; Sosnowski, Stefan ; Hirche, Sandra. Koopman Operator Dynami- cal Models: Learning, Analysis and Control. 2021spa
dc.relation.references[11] Bittracher, Andreas ; Koltai, P ́eter ; Klus, Stefan ; Banisch, Ralf ; Dellnitz, Michael ; Schu ̈tte, Christof: Transition manifolds of complex metastable systems. En: Journal of nonlinear science 28 (2018), Nr. 2, p. 471–512spa
dc.relation.references[12] Bollt, Erik M. ; Santitissadeekorn, Naratip: Applied and computational measura- ble dynamics. First Edition. SIAM, 2013spa
dc.relation.references[13] Brunton, Steven L. ; Brunton, Bingni W. ; Proctor, Joshua L. ; Kutz, J N.: Koopman invariant subspaces and finite linear representations of nonlinear dynamical systems for control. En: PloS one 11 (2016), Nr. 2, p. e0150171spa
dc.relation.references[14] Brunton, Steven L. ; Brunton, Bingni W. ; Proctor, Joshua L. ; Kutz, J. N.: Koopman invariant subspaces and finite linear representations of nonlinear dynamical systems for control. En: PLoS ONE 11 (2016), Nr. 2. – ISSN 19326203spa
dc.relation.references[15] Brunton, Steven L. ; Kutz, J N.: Methods for data-driven multiscale model discovery for materials. En: Journal of Physics: Materials 2 (2019), Nr. 4, p. 044002spa
dc.relation.references[16] Budiˇsic ́, Marko ; Mohr, Ryan ; Mezic ́, Igor: Applied Koopmanism. En: Chaos: An Interdisciplinary Journal of Nonlinear Science 22 (2012), Nr. 4, p. 047510spa
dc.relation.references[17] Budiˇsic ́, Marko ; Mohr, Ryan ; Mezic ́, Igor: Applied koopmanism. En: Chaos: An Interdisciplinary Journal of Nonlinear Science 22 (2012), Nr. 4, p. 047510spa
dc.relation.references[18] Budi ̊A¡iA ̈‡, Marko ; MeziA ̈‡, Igor: An approximate parametrization of the ergodic partition using time averaged observables. En: Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference, 2009, p. 3162–3168spa
dc.relation.references[19] Burbano Lombana, Daniel A. ; Di Bernardo, Mario: Synchronization and lo- cal convergence analysis of networks with dynamic diffusive coupling. En: Chaos: An Interdisciplinary Journal of Nonlinear Science 26 (2016), Nr. 11, p. 116308spa
dc.relation.references[20] Cahn, John W. ; Hilliard, John E.: Free energy of a nonuniform system. I. Interfacial free energy. En: The Journal of chemical physics 28 (1958), Nr. 2, p. 258–267spa
dc.relation.references[21] Cai, He ; Lewis, Frank L. ; Hu, Guoqiang ; Huang, Jie: The adaptive distributed observer approach to the cooperative output regulation of linear multi-agent systems. En: Automatica (2017)spa
dc.relation.references[22] Cherukuri, Ashish ; Gharesifard, Bahman ; Cortes, Jorge: Saddle-point dyna- mics: conditions for asymptotic stability of saddle points. En: SIAM Journal on Control and Optimization 55 (2017), Nr. 1, p. 486–511spa
dc.relation.references[23] Cherukuri, Ashish ; Mallada, Enrique ; Low, Steven ; Cortes, Jorge: The Role of Convexity in Saddle-Point Dynamics: Lyapunov Function and Robustness. En: IEEE Transactions on Automatic Control 63 (2018), Nr. 8, p. 2449–2464spa
dc.relation.references[24] Dietrich, Felix ; Thiem, Thomas N. ; Kevrekidis, Ioannis G.: On the Koopman operator of algorithms. En: SIAM Journal on Applied Dynamical Systems 19 (2020), Nr. 2, p. 860–885spa
dc.relation.references[25] Dogra, Akshunna S. ; Redman, William: Optimizing Neural Networks via Koopman Operator Theory. En: Larochelle, H. (Ed.) ; Ranzato, M. (Ed.) ; Hadsell, R. (Ed.) ; Balcan, M. F. (Ed.) ; Lin, H. (Ed.): Advances in Neural Information Processing Systems Vol. 33, Curran Associates, Inc., 2020, p. 2087–2097spa
dc.relation.references[26] Dutra, Max S. ; de Pina Filho, Armando C. ; Romano, Vitor F.: Modeling of a bipedal locomotor using coupled nonlinear oscillators of Van der Pol. En: Biological Cybernetics 88 (2003), Nr. 4, p. 286–292spa
dc.relation.references[27] Ferreau, Hans J. ; Kirches, Christian ; Potschka, Andreas ; Bock, Hans G. ; Diehl, Moritz: qpOASES: A parametric active-set algorithm for quadratic program- ming. En: Mathematical Programming Computation 6 (2014), Nr. 4, p. 327–363spa
dc.relation.references[28] Garcia-Tenorio, Camilo ; Delansnay, Gilles ; Mojica-Nava, Eduardo ; Van- de Wouwer, Alain: Trigonometric Embeddings in Polynomial Extended Mode De- composition -Experimental Application to an Inverted Pendulum. En: Mathematics 9 (2021), Nr. 10, p. 1119spa
dc.relation.references[29] Giraldo, Jairo ; Mojica-Nava, Eduardo ; Quijano, Nicanor: Synchronization of isolated microgrids with a communication infrastructure using energy storage systems. En: International Journal of Electrical Power & Energy Systems 63 (2014), p. 71–82spa
dc.relation.references[30] Gladkikh, AA ; Malinetskii, GG: Study of dynamical systems from the viewpoint of complexity and computational capabilities. En: Differential Equations 52 (2016), Nr. 7, p. 897–905spa
dc.relation.references[31] Gutie ́rrez, Manuel S. ; Lucarini, Valerio ; Chekroun, Micka ̈el D ; Ghil, Michael: Reduced-Order Models for Coupled Dynamical Systems: Koopman Operator and Data- driven Methods. En: arXiv preprint arXiv:2012.01068 (2020)spa
dc.relation.references[32] Heersink, Byron ; Warren, Michael A. ; Hoffmann, Heiko: Dynamic mode de- composition for interconnected control systems. En: arXiv preprint arXiv:1709.02883 (2017)spa
dc.relation.references[33] Helmke, Uwe ; Moore, John B.: Optimization and dynamical systems. First Edition. Springer Science & Business Media, 2012spa
dc.relation.references[34] Hohenberg, P. C. ; Halperin, B. I.: Theory of dynamic critical phenomena. En: Rev. Mod. Phys. 49 (1977), Jul, p. 435–479spa
dc.relation.references[35] Hu, Jiangping ; Hong, Yiguang: Leader-following coordination of multi-agent systems with coupling time delays. En: Physica A: Statistical Mechanics and its Applications (2007)spa
dc.relation.references[36] Huang, Bowen ; Ma, Xu ; Vaidya, Umesh: Data-Driven Nonlinear Stabilization Using Koopman Operator. En: arXiv preprint arXiv:1901.07678 (2019)spa
dc.relation.references[37] Huang, Jie: Nonlinear output regulation: theory and applications. 1. Society for Industrial and Applied Mathematics, 2004 (Advances in design and control). – ISBN 9780898715620,0898715628spa
dc.relation.references[38] Isidori, Alberto ; Byrnes, Christopher I.: Output regulation of nonlinear systems. En: IEEE transactions on Automatic Control 35 (1990), Nr. 2, p. 131–140spa
dc.relation.references[39] Jain, Sandeep ; Khorrami, Farshad: Decentralized adaptive control of a class of large- scale interconnected nonlinear systems. En: IEEE Transactions on Automatic Control 42 (1997), Nr. 2, p. 136–154spa
dc.relation.references[40] Jiang, Yu ; Jiang, Zhong-Ping: Computational adaptive optimal control for continuous-time linear systems with completely unknown dynamics. En: Automatica 48 (2012), Nr. 10, p. 2699–2704spa
dc.relation.references[41] Khalil, Hassan K.: Nonlinear systems. Vol. 3. First Edition. Prentice hall Upper Saddle River, NJ, 2002spa
dc.relation.references[42] Klus, Stefan ; Koltai, P ́eter ; Schu ̈tte, Christof: On the numerical approximation of the Perron-Frobenius and Koopman operator. En: arXiv preprint arXiv:1512.05997 (2015)spa
dc.relation.references[43] Klus, Stefan ; Nu ̈ske, Feliks ; Peitz, Sebastian ; Niemann, Jan-Hendrik ; Clementi, Cecilia ; Schu ̈tte, Christof: Data-driven approximation of the Koopman generator: Model reduction, system identification, and control. En: Physica D: Nonlinear Pheno- mena 406 (2020), p. 132416spa
dc.relation.references[44] Klus, Stefan ; Schuster, Ingmar ; Muandet, Krikamol: Eigendecompositions of transfer operators in reproducing kernel Hilbert spaces. En: Journal of Nonlinear Scien- ce 30 (2020), Nr. 1, p. 283–315spa
dc.relation.references[45] Koopman, Bernard O.: Hamiltonian systems and transformation in Hilbert space. En: Proceedings of the national academy of sciences of the united states of america 17 (1931), Nr. 5, p. 315spa
dc.relation.references[46] Korda, Milan ; Mezic ́, Igor: Linear predictors for nonlinear dynamical systems: Koopman operator meets model predictive control. En: Automatica 93 (2018), p. 149–160spa
dc.relation.references[47] Korda, Milan ; Mezic ́, Igor: Linear predictors for nonlinear dynamical systems: Koop- man operator meets model predictive control. En: Automatica 93 (2018), p. 149–160spa
dc.relation.references[48] Korda, Milan ; MeziA ̈‡, Igor: Optimal Construction of Koopman Eigenfunctions for Prediction and Control. En: IEEE Transactions on Automatic Control 65 (2020), Nr. 12, p. 5114–5129spa
dc.relation.references[49] Kose, T: Solutions of saddle value problems by differential equations. En: Econome- trica, Journal of the Econometric Society (1956), p. 59–70spa
dc.relation.references[50] Kutz, J N. ; Brunton, Steven L. ; Brunton, Bingni W. ; Proctor, Joshua L.: Dynamic mode decomposition: data-driven modeling of complex systems. First Edition. SIAM, 2016spa
dc.relation.references[51] Langer, James S.: Instabilities and pattern formation in crystal growth. En: Reviews of modern physics 52 (1980), Nr. 1, p. 1spa
dc.relation.references[52] Lasota, Andrzej ; Mackey, Michael C.: Chaos, fractals, and noise: stochastic aspects of dynamics. Vol. 97. First Edition. Springer Science & Business Media, 2013spa
dc.relation.references[53] Levine, Sergey ; Pastor, Peter ; Krizhevsky, Alex ; Ibarz, Julian ; Quillen, Deirdre: Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection. En: The International Journal of Robotics Research 37 (2018), Nr. 4-5, p. 421–436spa
dc.relation.references[54] Li, Shaoyuan ; Zheng, Yi: Distributed model predictive control for plant-wide systems. 1. John Wiley & Sons, 2016spa
dc.relation.references[55] Liu, Zhiyuan ; Kundu, Soumya ; Chen, Lijun ; Yeung, Enoch: Decomposition of nonlinear dynamical systems using koopman gramians. En: 2018 Annual American Control Conference (ACC) IEEE, 2018, p. 4811–4818spa
dc.relation.references[56] Lymperopoulos, Georgios ; Ioannou, Petros: Model reference adaptive control for networked distributed systems with strong interconnections and communication delays. En: Journal of Systems Science and Complexity 31 (2018), Nr. 1, p. 38–68spa
dc.relation.references[57] Mauroy, Alexandre ; Goncalves, Jorge: Koopman-based lifting techniques for non- linear systems identification. En: IEEE Transactions on Automatic Control (2019)spa
dc.relation.references[58] Mauroy, Alexandre ; Goncalves, Jorge: Koopman-based lifting techniques for non- linear systems identification. En: IEEE Transactions on Automatic Control 65 (2019), Nr. 6, p. 2550–2565spa
dc.relation.references[59] Mauroy, Alexandre ; Hendrickx, Julien: Spectral identification of networks using sparse measurements. En: SIAM Journal on Applied Dynamical Systems 16 (2017), Nr. 1, p. 479–513spa
dc.relation.references[60] Mauroy, Alexandre ; Mezic ́, Igor: Global stability analysis using the eigenfunctions of the Koopman operator. En: IEEE Transactions on Automatic Control 61 (2016), Nr. 11, p. 3356–3369spa
dc.relation.references[61] Mauroy, Alexandre ; Mezic ́, Igor ; Susuki, Yoshihiko: The Koopman Operator in Sys- tems and Control: Concepts, Methodologies, and Applications. Vol. 484. First Edition. Springer Nature, 2020spa
dc.relation.references[62] Mezic ́, Igor: Spectral properties of dynamical systems, model reduction and decompo- sitions. En: Nonlinear Dynamics 41 (2005), Nr. 1, p. 309–325spa
dc.relation.references[63] Mezic ́, Igor: Koopman Operator, Geometry, and Learning of Dynamical Systems. En: Notices of the American Mathematical Society 68 (2021), Nr. 7, p. 1087–1105spa
dc.relation.references[64] Modares, H. ; Lewis, F. L.: Linear Quadratic Tracking Control of Partially-Unknown Continuous-Time Systems Using Reinforcement Learning. En: IEEE Transactions on Automatic Control 59 (2014), Nr. 11, p. 3051–3056. – ISSN 0018–9286spa
dc.relation.references[65] Modares, Hamidreza ; Lewis, Frank L. ; Kang, Wei ; Davoudi, Ali: Optimal Syn- chronization of Heterogeneous Nonlinear Systems With Unknown Dynamics. En: IEEE Transactions on Automatic Control 63 (2018), Nr. 1, p. 117–131spa
dc.relation.references[66] Modares, Hamidreza ; Nageshrao, Subramanya P. ; Lopes, Gabriel A D. ; Ba- buˇska, Robert ; Lewis, Frank L.: Optimal model-free output synchronization of hete- rogeneous systems using off-policy reinforcement learning. En: Automatica 71 (2016), p. 334–341spa
dc.relation.references[67] Molnar, Ferenc ; Nishikawa, Takashi ; Motter, Adilson E.: Asymmetry underlies stability in power grids. En: Nature communications 12 (2021), Nr. 1, p. 1–9spa
dc.relation.references[68] Mullins, W. W.: Two-Dimensional Motion of Idealized Grain Boundaries. En: J. App. Phys. 27 (1956), Nr. 8, p. 900–904spa
dc.relation.references[69] Nandanoori, Sai P. ; Sinha, Subhrajit ; Yeung, Enoch: Data-driven operator theo- retic methods for global phase space learning. En: 2020 American Control Conference (ACC) IEEE, 2020, p. 4551–4557spa
dc.relation.references[70] Ng, Andrew Y. ; Jordan, Michael I. ; Weiss, Yair: On spectral clustering: Analysis and an algorithm. En: Advances in neural information processing systems, 2002, p. 849–856spa
dc.relation.references[71] Niemann, Jan-Hendrik ; Klus, Stefan ; Schu ̈tte, Christof: Data-driven model re- duction of agent-based systems using the Koopman generator. En: PloS one 16 (2021), Nr. 5, p. e0250970spa
dc.relation.references[72] Novick-Cohen, Amy ; Segel, Lee A.: Nonlinear aspects of the Cahn-Hilliard equa- tion. En: Physica D: Nonlinear Phenomena 10 (1984), Nr. 3, p. 277–298spa
dc.relation.references[73] Otto, Samuel E. ; Rowley, Clarence W.: Koopman operators for estimation and control of dynamical systems. En: Annual Review of Control, Robotics, and Autonomous Systems 4 (2021), p. 59–87spa
dc.relation.references[74] Proctor, Joshua L. ; Brunton, Steven L. ; Kutz, J N.: Generalizing Koopman theory to allow for inputs and control. En: SIAM Journal on Applied Dynamical Systems 17 (2018), Nr. 1, p. 909–930spa
dc.relation.references[75] Rabben, Robert J. ; Ray, Sourav ; Weber, Marcus: ISOKANN: Invariant subspaces of Koopman operators learned by a neural network. En: The Journal of Chemical Physics 153 (2020), Nr. 11, p. 114109spa
dc.relation.references[76] Raghunathan, Arvind ; Vaidya, Umesh: Optimal stabilization using lyapunov mea- sures. En: IEEE Transactions on Automatic Control 59 (2013), Nr. 5, p. 1316–1321spa
dc.relation.references[77] Santos Gutie ́rrez, Manuel ; Lucarini, Valerio ; Chekroun, Micka ̈el D ; Ghil, Michael: Reduced-order models for coupled dynamical systems: Data-driven methods and the Koopman operator. En: Chaos: An Interdisciplinary Journal of Nonlinear Science 31 (2021), Nr. 5, p. 053116spa
dc.relation.references[78] Sarsilmaz, S. B. ; Yucelen, T.: On Control of Heterogeneous Multiagent Systems: A Dynamic Measurement Output Feedback Approach. En: 2018 Annual American Control Conference (ACC), 2018. – ISSN 2378–5861, p. 1268–1273spa
dc.relation.references[79] Sarsilmaz, S B. ; Yucelen, Tansel: On control of heterogeneous multiagent sys- tems with unknown leader dynamics. En: ASME 2017 Dynamic Systems and Control Conference, 2017spa
dc.relation.references[80] Sinha, Subhrajit ; Huang, Bowen ; Vaidya, Umesh: Robust approximation of koop- man operator and prediction in random dynamical systems. En: 2018 Annual American Control Conference (ACC) IEEE, 2018, p. 5491–5496spa
dc.relation.references[81] Sinha, Subhrajit ; Nandanoori, Sai P. ; Yeung, Enoch: Computationally Efficient Learning of Large Scale Dynamical Systems: A Koopman Theoretic Approach. En: arXiv preprint arXiv:2007.00835 (2020)spa
dc.relation.references[82] Spooner, Jeffrey T. ; Passino, Kevin M.: Decentralized adaptive control of nonli- near systems using radial basis neural networks. En: IEEE Transactions on Automatic Control 44 (1999), Nr. 11, p. 2050–2057spa
dc.relation.references[83] Su, Youfeng ; Huang, Jie: Cooperative adaptive output regulation for a class of non- linear uncertain multi-agent systems with unknown leader. En: Systems & Control Letters 62 (2013), Nr. 6, p. 461 – 467. – ISSN 0167–6911spa
dc.relation.references[84] Von Luxburg, Ulrike: A tutorial on spectral clustering. En: Statistics and computing 17 (2007), Nr. 4, p. 395–416spa
dc.relation.references[85] Williams, Matthew O. ; Kevrekidis, Ioannis G. ; Rowley, Clarence W.: A Data- Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decom- position. En: Journal of Nonlinear Science 25 (2015), Nr. 6, p. 1307–1346. – ISSN 14321467spa
dc.relation.references[86] Williams, Matthew O. ; Kevrekidis, Ioannis G. ; Rowley, Clarence W.: A data– driven approximation of the koopman operator: Extending dynamic mode decomposi- tion. En: Journal of Nonlinear Science 25 (2015), Nr. 6, p. 1307–1346spa
dc.relation.references[87] Xie, Tian ; France-Lanord, Arthur ; Wang, Yanming ; Shao-Horn, Yang ; Gross- man, Jeffrey C.: Graph dynamical networks for unsupervised learning of atomic scale dynamics in materials. En: Nature communications 10 (2019), Nr. 1, p. 1–9spa
dc.relation.references[88] Yi, Bowen ; Manchester, Ian R.: On the equivalence of contraction and Koopman approaches for nonlinear stability and control. En: arXiv preprint arXiv:2103.15033 (2021)spa
dc.relation.references[89] Yosida, Kˆosaku: Functional analysis. First Edition. Springer Berlin Heidelberg, 1971spa
dc.relation.references[90] Zuo, Shan ; Song, Yongduan ; Lewis, Frank L. ; Davoudi, Ali: Adaptive output containment control of heterogeneous multi-agent systems with unknown leaders. En: Automatica 92 (2018), p. 235 – 239. – ISSN 0005–1098spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generalesspa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.lembProcesamiento de datosspa
dc.subject.lembData processingeng
dc.subject.lembAnálisis de sistemasspa
dc.subject.lembSystem analysiseng
dc.subject.lembEquationseng
dc.subject.lembEcuacionesspa
dc.subject.proposalData-Driven Controleng
dc.subject.proposalKoopman Operatoreng
dc.subject.proposalOptimizationeng
dc.subject.proposalControl con datosspa
dc.subject.proposalOperador de koopmanspa
dc.subject.proposaloptimizaciónspa
dc.titleOperator theory in dynamical network systemseng
dc.title.translatedTeoría de operadores en sistemas dinámicos en redspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameCOLCIENCIASspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1018427055.2022.pdf
Tamaño:
3.28 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería Eléctrica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: