Evaluación de un sistema multienzimático inmovilizado para la producción de galacto-oligosacáridos a partir de lactosuero

dc.contributor.advisorSerrato Bermúdez, Juan Carlosspa
dc.contributor.authorOliveros Pineda, Danielspa
dc.contributor.orcidOliveros Pineda, Daniel [0000-0002-2222-1598]spa
dc.contributor.researchgroupGrupo de Investigación en Procesos Químicos y Bioquímicosspa
dc.date.accessioned2024-05-09T20:19:28Z
dc.date.available2024-05-09T20:19:28Z
dc.date.issued2024
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstractEl lactosuero es un subproducto de la industria láctea que, debido a su elevada carga orgánica, puede emplearse como materia prima para la obtención de sustancias de alto valor agregado. En este trabajo se aprovechó su contenido de lactosa para la síntesis enzimática de galacto-oligosacáridos (GOS), compuestos prebióticos destinados al mercado de alimentos funcionales. La síntesis de los GOS se realizó con β-galactosidasas aisladas de Aspergillus oryzae y Aspergillus niger; ésta es de naturaleza reversible y se inhibe por la acumulación de glucosa en el medio. Para reducir dicha inhibición se evaluó la adición de glucosa oxidasa (GOx), logrando un menor contenido final de monosacáridos, la obtención de ácido glucónico y un rendimiento incrementado de prebióticos, que alcanzó los 128 g/L. Considerando el alto costo que representan estos catalizadores respecto al lactosuero, también se estudiaron métodos de inmovilización mono y multienzimáticos con el fin de reutilizarlos en múltiples ciclos de reacción. Para esto, se evaluó el atrapamiento en esferas de alginato y la formación de agregados enzimáticos entrecruzados. La inmovilización individual de β-gal por entrecruzamiento redujo el rendimiento de GOS a 22.8% (91 g/L), pero permitió su uso por 20 veces sin una degradación considerable de las enzimas. Por otra parte, los sistemas multienzimáticos co-inmovilizados aumentaron el rendimiento hasta en un 36%, consiguiendo 125 gGOS/L en el primer uso. De igual forma, generaron concentraciones de prebióticos superiores a los sistemas monoenzimáticos hasta por 13 ciclos de reacción, aunque con menor estabilidad en usos posteriores. (Texto tomado de la fuente).spa
dc.description.abstractWhey is a by-product of the dairy industry that, due to its high organic load, can be used as a raw material for obtaining high value-added substances. In this work, its lactose content was used for the enzymatic synthesis of galacto-oligosaccharides (GOS), prebiotic compounds targeted to the functional food market. The synthesis of GOS was carried out with β-galactosidases isolated from Aspergillus oryzae and Aspergillus niger; this is a reversible process and is inhibited by the accumulation of glucose in the medium. To reduce such inhibition, the addition of glucose oxidase (Gox) was evaluated, achieving a lower final content of monosaccharides, obtaining gluconic acid and an increased yield of prebiotics, which reached 128 g/L. Considering the high cost of these catalysts compared to whey, mono- and multi-enzymatic immobilization methods were also evaluated, in order to reuse them in multiple reaction cycles. For this purpose, the entrapment in alginate spheres and the formation of crosslinked enzyme aggregates were evaluated. Individual immobilization of β-gal by crosslinking reduced the yield of GOS to 22.8% (91 g/L), but allowed its use for 20 times without considerable enzyme degradation. On the other hand, co-immobilized multienzyme systems (β-gal+Gox) increased the yield by up to 36%, achieving 125 gGOS/L on the first use. Furthermore, they generated higher concentrations of prebiotics compared to the mono-enzymatic systems for up to 13 reaction cycles, although with lower stability in subsequent uses.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Químicaspa
dc.description.researchareaBioprocesosspa
dc.format.extentxvi, 128 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86065
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Químicaspa
dc.relation.referencesAlnadari, F., Xue, Y., Almakas, A., Mohedein, A., Samie, A., Abdel‐Shafi, M., & Abdin, M. (2021). Large batch production of Galactooligosaccharides using β‐glucosidase immobilized on chitosan‐functionalized magnetic nanoparticle. Journal of Food Biochemistry, 45(2). https://doi.org/10.1111/jfbc.13589spa
dc.relation.referencesAmmam, M., & Fransaer, J. (2010). Two-enzyme lactose biosensor based on βgalactosidase and glucose oxidase deposited by AC-electrophoresis: Characteristics and performance for lactose determination in milk. Sensors and Actuators B: Chemical, 148(2), 583–589. https://doi.org/10.1016/j.snb.2010.05.027spa
dc.relation.referencesAOAC, I. (2002). Official Methods of Analysis of AOAC International (17th ed.).spa
dc.relation.referencesArana-Peña, S., Carballares, D., Morellon-Sterlling, R., Berenguer-Murcia, Á., Alcántara, A. R., Rodrigues, R. C., & Fernandez-Lafuente, R. (2021). Enzyme coimmobilization: Always the biocatalyst designers’ choice…or not? Biotechnology Advances, 51, 107584. https://doi.org/10.1016/j.biotechadv.2020.107584spa
dc.relation.referencesAraya, E., Urrutia, P., Romero, O., Illanes, A., & Wilson, L. (2019). Design of combined crosslinked enzyme aggregates (combi-CLEAs) of β-galactosidase and glucose isomerase for the one-pot production of fructose syrup from lactose. Food Chemistry, 288, 102–107. https://doi.org/10.1016/j.foodchem.2019.02.024spa
dc.relation.referencesArgenta, A. B., Nogueira, A., & de P. Scheer, A. (2021). Hydrolysis of whey lactose: Kluyveromyces lactis β-galactosidase immobilisation and integrated process hydrolysis-ultrafiltration. International Dairy Journal, 117, 105007. https://doi.org/10.1016/j.idairyj.2021.105007spa
dc.relation.referencesAyhan, F., & Ispirli, Y. (2011). Cross- Linked Glucose Oxidase Aggregates: Synthesis and Characterization. Hacettepe J. Biol. & Chem, 39(3), 241–251.spa
dc.relation.referencesAzcarate-Peril, M. A., Ritter, A. J., Savaiano, D., Monteagudo-Mera, A., Anderson, C., Magness, S. T., & Klaenhammer, T. R. (2017). Impact of short-chain galactooligosaccharides on the gut microbiome of lactose-intolerant individuals. Proceedings of the National Academy of Sciences, 114(3). https://doi.org/10.1073/pnas.1606722113spa
dc.relation.referencesBarile, D., & Rastall, R. A. (2013). Human milk and related oligosaccharides as prebiotics. Current Opinion in Biotechnology, 24(2), 214–219. https://doi.org/10.1016/j.copbio.2013.01.008spa
dc.relation.referencesBauer, J. A., Zámocká, M., Majtán, J., & Bauerová-Hlinková, V. (2022). Glucose Oxidase, an Enzyme “Ferrari”: Its Structure, Function, Production and Properties in the Light of Various Industrial and Biotechnological Applications. Biomolecules, 12(3), 472. https://doi.org/10.3390/biom12030472spa
dc.relation.referencesBenavides, J., & Palomares, M. (2017). Aqueous two-phase systems for bioprocess development for the recovery of biological products. Springer Science+Business Media.spa
dc.relation.referencesBensadoun, A., & Weinstein, D. (1976). Assay of proteins in the presence of interfering materials. Analytical Biochemistry, 70(1), 241–250. https://doi.org/10.1016/S00032697(76)80064-4spa
dc.relation.referencesBernal, C., Marciello, M., Mesa, M., Sierra, L., Fernandez-Lorente, G., Mateo, C., & Guisan, J. M. (2013). Immobilisation and stabilisation of β-galactosidase from Kluyveromyces lactis using a glyoxyl support. International Dairy Journal, 28(2), 76–82. https://doi.org/10.1016/j.idairyj.2012.08.009spa
dc.relation.referencesBilal, M., & Iqbal, H. M. N. (2019). Sustainable bioconversion of food waste into highvalue products by immobilized enzymes to meet bio-economy challenges and opportunities – A review. Food Research International, 123, 226–240. https://doi.org/10.1016/j.foodres.2019.04.066spa
dc.relation.referencesBIOCON. (2021). PRODUCCIÓN Y CONTROL DE LECHE DESLACTOSADA. https://biocon.es/wp-content/uploads/2017/01/Leche-deslactosada.pdfspa
dc.relation.referencesBlandino, A., Macı ́ as, M., & Cantero, D. (2001). Immobilization of glucose oxidase within calcium alginate gel capsules. Process Biochemistry, 36(7), 601–606. https://doi.org/10.1016/S0032-9592(00)00240-5spa
dc.relation.referencesotvynko, A., Bednářová, A., Henke, S., Shakhno, N., & Čurda, L. (2019). Production of galactooligosaccharides using various combinations of the commercial βgalactosidases. Biochemical and Biophysical Research Communications, 517(4), 762–766. https://doi.org/10.1016/j.bbrc.2019.08.001spa
dc.relation.referencesBradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254. https://doi.org/10.1016/0003-2697(76)90527-3spa
dc.relation.referencesBrás, N. F., Moura-Tamames, S. A., Fernandes, P. A., & Ramos, M. J. (2008). Mechanistic studies on the formation of glycosidase-substrate and glycosidaseinhibitor covalent intermediates. Journal of Computational Chemistry, 29(15), 2565–2574. https://doi.org/10.1002/jcc.21013spa
dc.relation.referencesBrena, B., González-Pombo, P., & Batista-Viera, F. (2013). Immobilization of Enzymes: A Literature Survey. In J. M. Guisan (Ed.), Immobilization of Enzymes and Cells (Vol. 1051, pp. 15–31). Humana Press. https://doi.org/10.1007/978-1-62703-5507_2spa
dc.relation.referencesCardelle-Cobas, A., Olano, A., Irazoqui, G., Giacomini, C., Batista-Viera, F., Corzo, N., & Corzo-Martínez, M. (2016). Synthesis of Oligosaccharides Derived from Lactulose (OsLu) Using Soluble and Immobilized Aspergillus oryzae β-Galactosidase. Frontiers in Bioengineering and Biotechnology, 4. https://doi.org/10.3389/fbioe.2016.00021spa
dc.relation.referencesCarvalho, F., Prazeres, A. R., & Rivas, J. (2013). Cheese whey wastewater: Characterization and treatment. Science of The Total Environment, 445–446, 385–396. https://doi.org/10.1016/j.scitotenv.2012.12.038spa
dc.relation.referencesCastro, G. (2020). Evaluación de un proceso de producción-separación de galactooligosacáridos mediante un sistema acuoso de dos fases asistido pormicroondas. Universidad Nacional de Colombia.spa
dc.relation.referencesCatenza, K. F., & Donkor, K. K. (2021). Recent approaches for the quantitative analysis of functional oligosaccharides used in the food industry: A review. Food Chemistry, 355, 129416. https://doi.org/10.1016/j.foodchem.2021.129416spa
dc.relation.referencesChanfrau, P., Núñez, J., Lara, M., & Rivera LM. (2017). Milk-Whey From a problematicbyproduct to a source of valuable products for health and industry: An overview from biotechnology. La Prensa Medica, 103(4). https://doi.org/10.4172/lpma.1000257spa
dc.relation.referencesCharalampopoulos, D., & Rastall, R. A. (2012). Prebiotics in foods. Current Opinion in Biotechnology, 23(2), 187–191. https://doi.org/10.1016/j.copbio.2011.12.028spa
dc.relation.referencesChen, T.-L., & Weng, H.-S. (1986). A method for the determination of the activity and optimal pH of glucose oxidase in an unbuffered solution. Biotechnology and Bioengineering, 28, 107–109.spa
dc.relation.referencesChmura, A., Rustler, S., Paravidino, M., Van Rantwijk, F., Stolz, A., & Sheldon, R. A. (2013). The combi-CLEA approach: Enzymatic cascade synthesis of enantiomerically pure (S)-mandelic acid. Tetrahedron: Asymmetry, 24(19), 1225– 1232. https://doi.org/10.1016/j.tetasy.2013.08.013spa
dc.relation.referencesChourasia, R., Phukon, L. C., Abedin, M. M., Padhi, S., Singh, S. P., & Rai, A. K. (2022). Whey valorization by microbial and enzymatic bioprocesses for the production of nutraceuticals and value-added products. Bioresource Technology Reports, 19, 101144. https://doi.org/10.1016/j.biteb.2022.101144spa
dc.relation.referencesCorral, J. M., Bañuelos, O., Adrio, J. L., & Velasco, J. (2006). Cloning and characterization of a β-galactosidase encoding region in Lactobacillus coryniformis CECT 5711. Applied Microbiology and Biotechnology, 73(3), 640–646. https://doi.org/10.1007/s00253-006-0510-7spa
dc.relation.referencesCrittenden, R. G., & Playne, M. J. (1996). Production, properties and applications of foodgrade oligosaccharides. Trends in Food Science & Technology, 7(11), 353–361. https://doi.org/10.1016/S0924-2244(96)10038-8spa
dc.relation.referencesDamin, B. I. S., Kovalski, F. C., Fischer, J., Piccin, J. S., & Dettmer, A. (2021). Challenges and perspectives of the β-galactosidase enzyme. Applied Microbiology and Biotechnology, 105(13), 5281–5298. https://doi.org/10.1007/s00253-021-11423-7spa
dc.relation.referencesde Albuquerque, T. L., de Sousa, M., Gomes e Silva, N. C., Girão Neto, C. A. C., Gonçalves, L. R. B., Fernandez-Lafuente, R., & Rocha, M. V. P. (2021). βGalactosidase from Kluyveromyces lactis: Characterization, production, immobilization and applications - A review. International Journal of Biological Macromolecules, 191, 881–898. https://doi.org/10.1016/j.ijbiomac.2021.09.133spa
dc.relation.referencesDekker, P. J. T. (2019). Enzymes Exogenous to Milk in Dairy Technology: β-dGalactosidase. In Reference Module in Food Science (p. B9780081005965007435). Elsevier. https://doi.org/10.1016/B978-0-08-1005965.00743-5spa
dc.relation.referencesDeng, C., Chen, J., Nie, Z., & Si, S. (2010). A sensitive and stable biosensor based on the direct electrochemistry of glucose oxidase assembled layer-by-layer at the multiwall carbon nanotube-modified electrode. Biosensors and Bioelectronics, 26(1), 213–219. https://doi.org/10.1016/j.bios.2010.06.013spa
dc.relation.referencesDing, H., Zhou, L., Zeng, Q., Yu, Y., & Chen, B. (2018). Heterologous Expression of a Thermostable β-1,3-Galactosidase and Its Potential in Synthesis of Galactooligosaccharides. Marine Drugs, 16(11), 415. https://doi.org/10.3390/md16110415spa
dc.relation.referencesDubey, M. K., Zehra, A., Aamir, M., Meena, M., Ahirwal, L., Singh, S., Shukla, S., Upadhyay, R. S., Bueno-Mari, R., & Bajpai, V. K. (2017). Improvement Strategies, Cost Effective Production, and Potential Applications of Fungal Glucose Oxidase (GOD): Current Updates. Frontiers in Microbiology, 8, 1032. https://doi.org/10.3389/fmicb.2017.01032spa
dc.relation.referencesDunnill, P. (1979). Immobilized enzymes—Research and development. Biochemical Education, 7(3), 73. https://doi.org/10.1016/0307-4412(79)90055-4spa
dc.relation.referencesErazo, R., & Cárdenas, J. (2001). DETERMINACIÓN EXPERIMENTAL DEL COEFICIENTE DE TRANSFERENCIA DE OXÍGENO (kLa) EN UN BIORREACTOR BATCH. Rev. Per. Qufm. Ing. Qufm., VoL 4(2), 22–27.spa
dc.relation.referencesFarias, D. de P., de Araújo, F. F., Neri-Numa, I. A., & Pastore, G. M. (2019). Prebiotics: Trends in food, health and technological applications. Trends in Food Science & Technology, 93, 23–35. https://doi.org/10.1016/j.tifs.2019.09.004spa
dc.relation.referencesFEDEGAN. (2022). Cifras del sector ganadero: Producción y acopio de leche en Colombia. https://www.fedegan.org.co/estadisticas/produccion-0spa
dc.relation.referencesFINAGRO. (2023). Crecimiento del sector agropecuario y Agroexpo 2023. https://www.finagro.com.co/noticias/articulos/crecimiento-del-sector-agropecuarioagroexpo-2023-reto-desarrollo-del-campo-0spa
dc.relation.referencesFischer, C., & Kleinschmidt, T. (2015). Synthesis of galactooligosaccharides using sweet and acid whey as a substrate. International Dairy Journal, 48, 15–22. https://doi.org/10.1016/j.idairyj.2015.01.003spa
dc.relation.referencesFischer, C., & Kleinschmidt, T. (2018a). Combination of two β-galactosidases during the synthesis of galactooligosaccharides may enhance yield and structural diversity. Biochemical and Biophysical Research Communications, 506(1), 211–215. https://doi.org/10.1016/j.bbrc.2018.10.091spa
dc.relation.referencesFischer, C., & Kleinschmidt, T. (2018b). Synthesis of Galactooligosaccharides in Milk and Whey: A Review: Synthesis of galactooligosaccharides…. Comprehensive Reviews in Food Science and Food Safety, 17(3), 678–697. https://doi.org/10.1111/1541-4337.12344spa
dc.relation.referencesFischer, C., & Kleinschmidt, T. (2019). Effect of glucose depletion during the synthesis of galactooligosaccharides using a trienzymatic system. Enzyme and Microbial Technology, 121, 45–50. https://doi.org/10.1016/j.enzmictec.2018.10.009spa
dc.relation.referencesFischer, C., & Kleinschmidt, T. (2021). Synthesis of galactooligosaccharides by Cryptococcus laurentii and Aspergillus oryzae using different kinds of acid whey. International Dairy Journal, 112, 104867. https://doi.org/10.1016/j.idairyj.2020.104867spa
dc.relation.referencesFrenzel, M., Zerge, K., Clawin-Rädecker, I., & Lorenzen, P. Chr. (2015). Comparison of the galacto-oligosaccharide forming activity of different β-galactosidases. LWT - Food Science and Technology, 60(2), 1068–1071. https://doi.org/10.1016/j.lwt.2014.10.064spa
dc.relation.referencesFüreder, V., Rodriguez-Colinas, B., Cervantes, F. V., Fernandez-Arrojo, L., Poveda, A., Jimenez-Barbero, J., Ballesteros, A. O., & Plou, F. J. (2020). Selective Synthesis of Galactooligosaccharides Containing β(1→3) Linkages with β-Galactosidase from Bifidobacterium bifidum (Saphera). Journal of Agricultural and Food Chemistry, 68(17), 4930–4938. https://doi.org/10.1021/acs.jafc.0c00997spa
dc.relation.referencesGao, X., Wu, J., & Wu, D. (2019). Rational design of the beta-galactosidase from Aspergillus oryzae to improve galactooligosaccharide production. Food Chemistry, 286, 362–367. https://doi.org/10.1016/j.foodchem.2019.01.212spa
dc.relation.referencesGarcia-Cruz, C. H., Foggetti, U., & Silva, A. N. D. (2008). Alginato bacteriano: Aspectos tecnológicos, características e produção. Química Nova, 31(7), 1800–1806. https://doi.org/10.1590/S0100-40422008000700035spa
dc.relation.referencesGargova, S., Pishtijski, I., & Stoilova, I. (1995). Purification and Properties of βGalactosidase from Aspergillus Oryzae. Biotechnology & Biotechnological Equipment, 9(4), 47–51. https://doi.org/10.1080/13102818.1995.10818861spa
dc.relation.referencesGennari, A., Mobayed, F. H., Volpato, G., & De Souza, C. F. V. (2018). Chelation by collagen in the immobilization of Aspergillus oryzae β-galactosidase: A potential biocatalyst to hydrolyze lactose by batch processes. International Journal of Biological Macromolecules, 109, 303–310. https://doi.org/10.1016/j.ijbiomac.2017.12.088spa
dc.relation.referencesGöktuğ, T., Sezgintürk, M. K., & Dinçkaya, E. (2005). Glucose oxidase-β-galactosidase hybrid biosensor based on glassy carbon electrode modified with mercury for lactose determination. Analytica Chimica Acta, 551(1–2), 51–56. https://doi.org/10.1016/j.aca.2005.07.021spa
dc.relation.referencesGómez Soto, J. A., & Sánchez Toro, Ó. J. (2022). Producción de galactooligosacáridos: Alternativa para el aprovechamiento del lactosuero. Una revisión. Ingeniería y Desarrollo, 37(01), 129–158. https://doi.org/10.14482/inde.37.1.637spa
dc.relation.referencesGosling, A., Stevens, G. W., Barber, A. R., Kentish, S. E., & Gras, S. L. (2010). Recent advances refining galactooligosaccharide production from lactose. Food Chemistry, 121(2), 307–318. https://doi.org/10.1016/j.foodchem.2009.12.063spa
dc.relation.referencesGouda, M. D., Singh, S. A., Rao, A. G. A., Thakur, M. S., & Karanth, N. G. (2003). Thermal Inactivation of Glucose Oxidase. Journal of Biological Chemistry, 278(27), 24324–24333. https://doi.org/10.1074/jbc.M208711200spa
dc.relation.referencesGrosová, Z., Rosenberg, M., & Rebroš, M. (2008). Perspectives and applications of immobilised β-galactosidase in food industry – a review. Czech Journal of Food Sciences, 26(No. 1), 1–14. https://doi.org/10.17221/1134-CJFSspa
dc.relation.referencesGuerrero, C., Aburto, C., Suárez, S., Vera, C., & Illanes, A. (2018). Effect of the type of immobilization of β-galactosidase on the yield and selectivity of synthesis of transgalactosylated oligosaccharides. Biocatalysis and Agricultural Biotechnology, 16, 353–363. https://doi.org/10.1016/j.bcab.2018.08.021spa
dc.relation.referencesGuerrero, C., Aburto, C., Súarez, S., Vera, C., & Illanes, A. (2020). Improvements in the production of Aspergillus oryzae β-galactosidase crosslinked aggregates and their use in repeated-batch synthesis of lactulose. International Journal of Biological Macromolecules, 142, 452–462. https://doi.org/10.1016/j.ijbiomac.2019.09.117spa
dc.relation.referencesGuerrero, C., Vera, C., Conejeros, R., & Illanes, A. (2015). Transgalactosylation and hydrolytic activities of commercial preparations of β-galactosidase for the synthesis of prebiotic carbohydrates. Enzyme and Microbial Technology, 70, 9–17. https://doi.org/10.1016/j.enzmictec.2014.12.006spa
dc.relation.referencesGuerrero, C., Vera, C., Serna, N., & Illanes, A. (2017). Immobilization of Aspergillus oryzae β-galactosidase in an agarose matrix functionalized by four different methods and application to the synthesis of lactulose. Bioresource Technology, 232, 53–63. https://doi.org/10.1016/j.biortech.2017.02.003spa
dc.relation.referencesGuío, A. F. (2014). EVALUACIÓN DE LA PRODUCCIÓN DE GALACTOOLIGOSACÁRIDOS A PARTIR DE MATERIAS PRIMAS LÁCTEAS CON BETA-GALACTOSIDASA INMOVILIZADA. Universidad Nacional de Colombia.spa
dc.relation.referencesGuisán, JoséM. (1988). Aldehyde-agarose gels as activated supports for immobilizationstabilization of enzymes. Enzyme and Microbial Technology, 10(6), 375–382. https://doi.org/10.1016/0141-0229(88)90018-Xspa
dc.relation.referencesHackenhaar, C. R., Spolidoro, L. S., Flores, E. E. E., Klein, M. P., & Hertz, P. F. (2021). Batch synthesis of galactooligosaccharides from co-products of milk processing using immobilized β-galactosidase from Bacillus circulans. Biocatalysis and Agricultural Biotechnology, 36, 102136. https://doi.org/10.1016/j.bcab.2021.102136spa
dc.relation.referencesHernandez, K., Berenguer-Murcia, A., C. Rodrigues, R., & Fernandez-Lafuente, R. (2012). Hydrogen Peroxide in Biocatalysis. A Dangerous Liaison. Current Organic Chemistry, 16(22), 2652–2672. https://doi.org/10.2174/138527212804004526spa
dc.relation.referencesHetrick, E. M., Sperry, D. C., Nguyen, H. K., & Strege, M. A. (2014). Characterization of a Novel Cross-Linked Lipase: Impact of Cross-Linking on Solubility and Release from Drug Product. Molecular Pharmaceutics, 11(4), 1189–1200. https://doi.org/10.1021/mp4006529spa
dc.relation.referencesHuerta, L. M., Vera, C., Guerrero, C., Wilson, L., & Illanes, A. (2011). Synthesis of galacto-oligosaccharides at very high lactose concentrations with immobilized βgalactosidases from Aspergillus oryzae. Process Biochemistry, 46(1), 245–252. https://doi.org/10.1016/j.procbio.2010.08.018spa
dc.relation.referencesain, M., Gote, M., Dubey, A. K., Narayanan, S., Krishnappa, H., Kumar, D. S., Ravi, G., Vijayasarathi, S., & Shankar, S. (2018). Safety evaluation of fructooligosaccharide (FOSSENCE TM ): Acute, 14-day, and subchronic oral toxicity study in Wistar rats. Toxicology Research and Application, 2, 239784731878775. https://doi.org/10.1177/2397847318787750spa
dc.relation.referencesasti, L. S., Dola, S. R., Fadnavis, N. W., Addepally, U., Daniels, S., & Ponrathnam, S. (2014). Co-immobilized glucose oxidase and β-galactosidase on bovine serum albumin coated allyl glycidyl ether (AGE)–ethylene glycol dimethacrylate (EGDM) opolymer as a biosensor for lactose determination in milk. Enzyme and Microbial Technology, 64–65, 67–73. https://doi.org/10.1016/j.enzmictec.2014.07.005spa
dc.relation.referencesKatrolia, P., Liu, X., Li, G., & Kopparapu, N. K. (2019). Enhanced Properties and Lactose Hydrolysis Efficiencies of Food-Grade β-Galactosidases Immobilized on Various Supports: A Comparative Approach. Applied Biochemistry and Biotechnology, 188(2), 410–423. https://doi.org/10.1007/s12010-018-2927-8spa
dc.relation.referencesLadero, M., Santos, A., Garcı ́ a, J. L., Carrascosa, A. V., Pessela, B. C. C., & Garcı Ochoa, F. (2002). Studies on the activity and the stability of β-galactosidases from Thermus sp strain T2 and from Kluyveromyces fragilis. Enzyme and Microbial Technology, 30(3), 392–405. https://doi.org/10.1016/S0141-0229(01)00506-3spa
dc.relation.referencesLiu, H., Li, H., Ying, T., Sun, K., Qin, Y., & Qi, D. (1998). Amperometric biosensor sensitive to glucose and lactose based on co-immobilization of ferrocene, glucose oxidase, β-galactosidase and mutarotase in β-cyclodextrin polymer. Analytica Chimica Acta, 358(2), 137–144. https://doi.org/10.1016/S0003-2670(97)00576-Xspa
dc.relation.referencesLoğoğlu, E., Sungur, S., & Yildiz, Y. (2006). Development of Lactose Biosensor Based on β‐Galactosidase and Glucose Oxidase Immobilized into Gelatin. Journal of Macromolecular Science, Part A, 43(3), 525–533. https://doi.org/10.1080/10601320600575256spa
dc.relation.referencesLong, J., Pan, T., Xie, Z., Xu, X., & Jin, Z. (2020). Co-immobilization of βfructofuranosidase and glucose oxidase improves the stability of Bi-enzymes and the production of lactosucrose. LWT, 128, 109460. https://doi.org/10.1016/j.lwt.2020.109460spa
dc.relation.referencesLorenzen, P. Chr., Breiter, J., Clawin‐Rädecker, I., & Dau, A. (2013). A novel bi‐enzymatic system for lactose conversion. International Journal of Food Science & Technology, 48(7), 1396–1403. https://doi.org/10.1111/ijfs.12101spa
dc.relation.referencesLu, L., Guo, L., Wang, K., Liu, Y., & Xiao, M. (2020). β-Galactosidases: A great tool for synthesizing galactose-containing carbohydrates. Biotechnology Advances, 39, 107465. https://doi.org/10.1016/j.biotechadv.2019.107465spa
dc.relation.referencesLu, L., Xu, S., Zhao, R., Zhang, D., Li, Z., Li, Y., & Xiao, M. (2012). Synthesis of galactooligosaccharides by CBD fusion β-galactosidase immobilized on cellulose. Bioresource Technology, 116, 327–333. https://doi.org/10.1016/j.biortech.2012.03.108spa
dc.relation.referencesMano, N. (2019). Engineering glucose oxidase for bioelectrochemical applications. Bioelectrochemistry, 128, 218–240. https://doi.org/10.1016/j.bioelechem.2019.04.015spa
dc.relation.referencesMarilho, I. (2016). Degradation of Calcium Gels of alginate and Periodate Oxidised Alginate [Norwegian University of Science and technology]. https://ntnuopen.ntnu.no/ntnuxmlui/bitstream/handle/11250/2441304/16008_FULLTEXT.pdf?sequence=1spa
dc.relation.referencesMartínez-Villaluenga, C., Cardelle-Cobas, A., Corzo, N., & Olano, A. (2008). Study of galactooligosaccharide composition in commercial fermented milks. Journal of Food Composition and Analysis, 21(7), 540–544. https://doi.org/10.1016/j.jfca.2008.05.008spa
dc.relation.referencesMegazyme. (2023). Megazyme: Beta-galactosidase from Aspergillus niger. https://www.megazyme.com/documents/Data_Sheet/E-BGLAN_DATA.pdfspa
dc.relation.referencesMINAGRICULTURA. (2022). Plan de ordenamiento productivo de la cadena láctea.spa
dc.relation.referencesMinisterio de Salud. (2007). Resolución 2997.spa
dc.relation.referencesMordor Intelligence. (2023). Global Feed Prebiotics Market 2017-2029.spa
dc.relation.referencesMovahedpour, A., Ahmadi, N., Ghalamfarsa, F., Ghesmati, Z., Khalifeh, M., Maleksabet, A., Shabaninejad, Z., Taheri‐Anganeh, M., & Savardashtaki, A. (2021). β‐ Galactosidase: From its source and applications to its recombinant form. Biotechnology and Applied Biochemistry, bab.2137. https://doi.org/10.1002/bab.2137spa
dc.relation.referencesMuset, G., & Castells, L. (2017). VALORIZACIÓN Colección TRANSFERENCIA TECNOLÓGICA Suma valor a un país de ideas.spa
dc.relation.referencesNakano, H., Takenishi, S., & Watanabe, Y. (1987). Substrate Specificity of Several β Galactosidases toward a Series of β -1,4-Linked Galactooligosaccharides. Agricultural and Biological Chemistry, 51(8), 2267–2269. https://doi.org/10.1080/00021369.1987.10868356spa
dc.relation.referencesNeri, D. F. M., Balcão, V. M., Dourado, F. O. Q., Oliveira, J. M. B., Carvalho, L. B., & Teixeira, J. A. (2009). Galactooligosaccharides production by β-galactosidase immobilized onto magnetic polysiloxane–polyaniline particles. Reactive and Functional Polymers, 69(4), 246–251. https://doi.org/10.1016/j.reactfunctpolym.2009.01.002spa
dc.relation.referencesNguyen, V. D., Styevkó, G., Madaras, E., Haktanirlar, G., Tran, A. T. M., Bujna, E., Dam, M. S., & Nguyen, Q. D. (2019). Immobilization of β-galactosidase on chitosancoated magnetic nanoparticles and its application for synthesis of lactulose-based galactooligosaccharides. Process Biochemistry, 84, 30–38. https://doi.org/10.1016/j.procbio.2019.05.021spa
dc.relation.referencesÖlçücü, G., Krauss, U., Jaeger, K.-E., & Pietruszka, J. (2023). Carrier‐Free Enzyme Immobilizates for Flow Chemistry. Chemie Ingenieur Technik, 95(4), 531–542. https://doi.org/10.1002/cite.202200167spa
dc.relation.referencesOspina-Corral, S., Cardona Alzate, C. A., & Orrego Alzate, C. E. (2019). Prebiotics in Beverages: From Health Impact to Preservation. In Preservatives and Preservation Approaches in Beverages (pp. 339–373). Elsevier. https://doi.org/10.1016/B978-0-12-816685-7.00011-2spa
dc.relation.referencesPanesar, P. S., Kumari, S., & Panesar, R. (2010). Potential Applications of Immobilized β -Galactosidase in Food Processing Industries. Enzyme Research, 2010, 1–16. https://doi.org/10.4061/2010/473137spa
dc.relation.referencesParashar, A., Jin, Y., Mason, B., Chae, M., & Bressler, D. (2016). Incorporation of whey permeate, a dairy effluent, in ethanol fermentation to provide a zero waste solution for the dairy industry. Journal of Dairy Science, 99(3), 18591867. https://doi.org/10.3168/jds.2015-10059spa
dc.relation.referencesPawlak-Szukalska, A., Wanarska, M., Popinigis, A. T., & Kur, J. (2014). A novel coldactive β-d-galactosidase with transglycosylation activity from the Antarctic Arthrobacter sp. 32cB – Gene cloning, purification and characterization. Process Biochemistry, 49(12), 2122–2133. https://doi.org/10.1016/j.procbio.2014.09.018spa
dc.relation.referencesPeirce, S., Virgen-Ortíz, J. J., Tacias-Pascacio, V. G., Rueda, N., Bartolome-Cabrero, R., Fernandez-Lopez, L., Russo, M. E., Marzocchella, A., & Fernandez-Lafuente, R. (2016). Development of simple protocols to solve the problems of enzyme coimmobilization. Application to coimmobilize a lipase and a β-galactosidase. RSC Advances, 6(66), 61707–61715. https://doi.org/10.1039/C6RA10906Cspa
dc.relation.referencesPereira-Rodríguez, Á., Fernández-Leiro, R., González-Siso, M. I., Cerdán, M. E., Becerra, M., & Sanz-Aparicio, J. (2012). Structural basis of specificity in tetrameric Kluyveromyces lactis β-galactosidase. Journal of Structural Biology, 177(2), 392– 401. https://doi.org/10.1016/j.jsb.2011.11.031spa
dc.relation.referencesRastall, R. A. (2010). Functional Oligosaccharides: Application and Manufacture. Annual Review of Food Science and Technology, 1(1), 305–339. https://doi.org/10.1146/annurev.food.080708.100746spa
dc.relation.referencesRen, S., Li, C., Jiao, X., Jia, S., Jiang, Y., Bilal, M., & Cui, J. (2019). Recent progress in multienzymes co-immobilization and multienzyme system applications. Chemical Engineering Journal, 373, 1254–1278. https://doi.org/10.1016/j.cej.2019.05.141spa
dc.relation.referencesRico‐Díaz, A., Ramírez‐Escudero, M., Vizoso‐Vázquez, Á., Cerdán, M. E., Becerra, M., & Sanz‐Aparicio, J. (2017). Structural features of Aspergillus niger β‐galactosidase define its activity against glycoside linkages. The FEBS Journal, 284(12), 1815– 1829. https://doi.org/10.1111/febs.14083spa
dc.relation.referencesRico-Rodríguez, F. (2018). Evaluación de un sistema mixto de enzimas para la producción de galactooligosacáridos y ácido glucónico a partir de lactosuero como fuente de lactosa. Universidad Nacional de Colombia.spa
dc.relation.referencesRico-Rodríguez, F., Noriega, M. A., Lancheros, R., & Serrato-Bermúdez, J. C. (2021). Kinetics of galactooligosaccharide (GOS) production with two β-galactosidases combined: Mathematical model and raw material effects. International Dairy Journal, 118, 105015. https://doi.org/10.1016/j.idairyj.2021.105015spa
dc.relation.referencesRico-Rodríguez, F., Villamiel, M., Ruiz-Aceituno, L., Serrato, J. C., & Montilla, A. (2020). Effect of the lactose source on the ultrasound-assisted enzymatic production of galactooligosaccharides and gluconic acid. Ultrasonics Sonochemistry, 67, 104945. https://doi.org/10.1016/j.ultsonch.2019.104945spa
dc.relation.referencesRoberfroid, M. (2007). Prebiotics: The Concept Revisited. The Journal of Nutrition, 137(3), 830S-837S. https://doi.org/10.1093/jn/137.3.830Sspa
dc.relation.referencesRodrigues, R. C., Ortiz, C., Berenguer-Murcia, Á., Torres, R., & Fernández-Lafuente, R. (2013). Modifying enzyme activity and selectivity by immobilization. Chem. Soc. Rev., 42(15), 6290–6307. https://doi.org/10.1039/C2CS35231Aspa
dc.relation.referencesRodriguez, C., Lavandera, I., & Gotor, V. (2012). Recent Advances in Cofactor Regeneration Systems Applied to Biocatalyzed Oxidative Processes. Current Organic Chemistry, 16(21), 2525–2541. https://doi.org/10.2174/138527212804004643spa
dc.relation.referencesRoy, I., Mukherjee, J., & Gupta, M. N. (2017). Cross-Linked Enzyme Aggregates for Applications in Aqueous and Nonaqueous Media. In S. D. Minteer (Ed.), Enzyme Stabilization and Immobilization (Vol. 1504, pp. 109–123). Springer New York. https://doi.org/10.1007/978-1-4939-6499-4_9spa
dc.relation.referencesSaqib, S., Akram, A., Halim, S. A., & Tassaduq, R. (2017). Sources of β-galactosidase and its applications in food industry. 3 Biotech, 7(1), 79. https://doi.org/10.1007/s13205-017-0645-5spa
dc.relation.referencesSegel, I. H. (1993). Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and SteadyState Enzyme Systems. John Wiley & Sons, Inc.spa
dc.relation.referencesSerey, M., Vera, C., Guerrero, C., & Illanes, A. (2021). Immobilization of Aspergillus oryzae β-galactosidase in cation functionalized agarose matrix and its application in the synthesis of lactulose. International Journal of Biological Macromolecules, 167, 1564–1574. https://doi.org/10.1016/j.ijbiomac.2020.11.110spa
dc.relation.referencesShahriari, D., Koffler, J., Lynam, D. A., Tuszynski, M. H., & Sakamoto, J. S. (2016). Characterizing the degradation of alginate hydrogel for use in multilumen scaffolds for spinal cord repair. Journal of Biomedical Materials Research Part A, 104(3), 611–619. https://doi.org/10.1002/jbm.a.35600spa
dc.relation.referencesSrisimarat, W., & Pongsawasdi, P. (2008). Enhancement of the oligosaccharide synthetic activity of β-galactosidase in organic solvents by cyclodextrin. Enzyme and Microbial Technology, 43(6), 436–441. https://doi.org/10.1016/j.enzmictec.2008.06.007spa
dc.relation.referencesSuperintendencia de Industria y comercio. (2020). EStudios económicos sectoriales. Análisis del sector lácteo en Colombia. Eviencia para el período 2010-2020.spa
dc.relation.referencesankeshwar, A. (2023). ONPG: β-galactosidase Test. https://microbeonline.com/onpgtest-galactosidase-principle-procedure-results/spa
dc.relation.referencesTerrasan, C. R. F., de Morais Junior, W. G., & Contesini, F. J. (2019). Enzyme Immobilization for Oligosaccharide Production. In Encyclopedia of Food Chemistry (pp. 415–423). Elsevier. https://doi.org/10.1016/B978-0-08-100596-5.22444-Xspa
dc.relation.referencesTodea, A., Benea, I. C., Bîtcan, I., Péter, F., Klébert, S., Feczkó, T., Károly, Z., & Biró, E. (2021). One-pot biocatalytic conversion of lactose to gluconic acid and galactooligosaccharides using immobilized β-galactosidase and glucose oxidase. Catalysis Today, 366, 202–211. https://doi.org/10.1016/j.cattod.2020.06.090spa
dc.relation.referencesTorres, D. P. M., Gonçalves, M. do P. F., Teixeira, J. A., & Rodrigues, L. R. (2010). Galacto-Oligosaccharides: Production, Properties, Applications, and Significance as Prebiotics. Comprehensive Reviews in Food Science and Food Safety, 9(5), 438–454. https://doi.org/10.1111/j.1541-4337.2010.00119.xspa
dc.relation.referencesTrademap. (2020). Cheese whey. https://www.trademap.org/Country_SelProductCountry_TS.aspx?nvpm=1%7c414 %7c%7c%7c%7c0401%7c%7c%7c4%7c1%7c1%7c2%7c2%7c1%7c2%7c1%7c %7c1spa
dc.relation.referencesTreid. (2022). Exportaciones colombianas de quesos en los primeros 9 meses de 2020, 2021 y 2022. https://www.treid.co/post/exportaciones-colombianas-de-quesos-enlos-primeros-9-meses-de-2020-2021-y2022#:~:text=En%20Colombia%20la%20producci%C3%B3n%20promedio,est%C 3%A1%20el%20queso%20fresco%20%C3%A1cidospa
dc.relation.referencesTrobo, L. (2018). Co-inmovilización y estabilización de enzimas y cofactores: Glicosilación regioselectiva de compuestos bioactivos catalizada por glicosiltransfeasas. Universidad Autónoma de Madrid.spa
dc.relation.referencesTzortzis, G., & Vulevic, J. (2009). Galacto-Oligosaccharide Prebiotics. In D. Charalampopoulos & R. A. Rastall (Eds.), Prebiotics and Probiotics Science and Technology (pp. 207–244). Springer New York. https://doi.org/10.1007/978-0-38779058-9_7spa
dc.relation.referencesUrrutia, P., Mateo, C., Guisan, J. M., Wilson, L., & Illanes, A. (2013). Immobilization of Bacillus circulans β-galactosidase and its application in the synthesis of galactooligosaccharides under repeated-batch operation. Biochemical Engineering Journal, 77, 41–48. https://doi.org/10.1016/j.bej.2013.04.015spa
dc.relation.referencesVarnam, A. H., & Sutherland, J. P. (2001). Milk and milk products: Technology, chemistry and microbiology. Aspen Publishers.spa
dc.relation.referencesVera, C., Córdova, A., Aburto, C., Guerrero, C., Suárez, S., & Illanes, A. (2016). Synthesis and purification of galacto-oligosaccharides: State of the art. World Journal of Microbiology and Biotechnology, 32(12), 197. https://doi.org/10.1007/s11274-016-2159-4spa
dc.relation.referencesVera, C., Guerrero, C., Aburto, C., Cordova, A., & Illanes, A. (2020). Conventional and non-conventional applications of β-galactosidases. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1868(1), 140271. https://doi.org/10.1016/j.bbapap.2019.140271spa
dc.relation.referencesVera, C., Guerrero, C., Conejeros, R., & Illanes, A. (2012). Synthesis of galactooligosaccharides by β-galactosidase from Aspergillus oryzae using partially dissolved and supersaturated solution of lactose. Enzyme and Microbial Technology, 50(3), 188–194. https://doi.org/10.1016/j.enzmictec.2011.12.003spa
dc.relation.referencesVera, C., Guerrero, C., & Illanes, A. (2011). Determination of the transgalactosylation activity of Aspergillus oryzae β-galactosidase: Effect of pH, temperature, and galactose and glucose concentrations. Carbohydrate Research, 346(6), 745–752. https://doi.org/10.1016/j.carres.2011.01.030spa
dc.relation.referencesWang, G., Wang, H., Chen, Y., Pei, X., Sun, W., Liu, L., Wang, F., Umar Yaqoob, M., Tao, W., Xiao, Z., Jin, Y., Yang, S.-T., Lin, D., & Wang, M. (2021). Optimization and comparison of the production of galactooligosaccharides using free or immobilized Aspergillus oryzae β-galactosidase, followed by purification using silica gel. Food Chemistry, 362, 130195. https://doi.org/10.1016/j.foodchem.2021.130195spa
dc.relation.referencesWang, G., Zhu, J., Liu, L., Yaqoob, M. U., Pei, X., Tao, W., Xiao, Z., Sun, W., & Wang, M. (2020). Optimization for galactooligosaccharides synthesis: A potential alternative for gut health and immunity. Life Sciences, 245, 117353. https://doi.org/10.1016/j.lfs.2020.117353spa
dc.relation.referencesWolf, M., Gasparin, B. C., & Paulino, A. T. (2018). Hydrolysis of lactose using β-dgalactosidase immobilized in a modified Arabic gum-based hydrogel for the production of lactose-free/low-lactose milk. International Journal of Biological Macromolecules, 115, 157–164. https://doi.org/10.1016/j.ijbiomac.2018.04.058spa
dc.relation.referencesXavier, J. R., Ramana, K. V., & Sharma, R. K. (2018). β-galactosidase: Biotechnological applications in food processing. Journal of Food Biochemistry, 42(5), e12564. https://doi.org/10.1111/jfbc.12564spa
dc.relation.referencesYañez-Ñeco, C. V., Cervantes, F. V., Amaya-Delgado, L., Ballesteros, A. O., Plou, F. J., & Arrizon, J. (2021). Synthesis of β(1 → 3) and β(1 → 6) galactooligosaccharides from lactose and whey using a recombinant β-galactosidase from Pantoea anthophila. Electronic Journal of Biotechnology, 49, 14–21. https://doi.org/10.1016/j.ejbt.2020.10.004spa
dc.relation.referencesYang, G., Wu, J., Xu, G., & Yang, L. (2010). Comparative study of properties of immobilized lipase onto glutaraldehyde-activated amino-silica gel via different methods. Colloids and Surfaces B: Biointerfaces, 78(2), 351–356. https://doi.org/10.1016/j.colsurfb.2010.03.022spa
dc.relation.referencesYin, H., Bultema, J. B., Dijkhuizen, L., & van Leeuwen, S. S. (2017). Reaction kinetics and galactooligosaccharide product profiles of the β-galactosidases from Bacillus circulans, Kluyveromyces lactis and Aspergillus oryzae. Food Chemistry, 225, 230–238. https://doi.org/10.1016/j.foodchem.2017.01.030spa
dc.relation.referencesYin, H., Dijkhuizen, L., & van Leeuwen, S. S. (2018). Synthesis of galactooligosaccharides derived from lactulose by wild-type and mutant β-galactosidase enzymes from Bacillus circulans ATCC 31382. Carbohydrate Research, 465, 58– 65. https://doi.org/10.1016/j.carres.2018.06.009spa
dc.relation.referencesZamora, H. (2008). MÉTODOS SELECTOS DE BIOQUIMICA EXPERIMENTAL. Universidad Nacional de Colombia.spa
dc.relation.referencesZhang, H., Ding, X., Chen, X., Ma, Y., Wang, Z., & Zhao, X. (2015). A new method of utilizing rice husk: Consecutively preparing d-xylose, organosolv lignin, ethanol and amorphous superfine silica. Journal of Hazardous Materials, 291, 65–73. https://doi.org/10.1016/j.jhazmat.2015.03.003spa
dc.relation.referencesFAO. (2006). Specific methods, Enzyme preparations. http://www.fao.org/docrep/009/a0691e/A0691E07.htmspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.agrovocOligosacáridosspa
dc.subject.agrovocoligosaccharideseng
dc.subject.agrovocLactosuerospa
dc.subject.agrovocwheyeng
dc.subject.agrovocEnzimasspa
dc.subject.agrovocenzymeseng
dc.subject.ddc660 - Ingeniería química::664 - Tecnología de alimentosspa
dc.subject.proposalGalacto-oligosacáridosspa
dc.subject.proposalGalacto-oligosaccharideseng
dc.subject.proposalBeta-galactosidasaspa
dc.subject.proposalGlucosa oxidasaeng
dc.subject.proposalAgregados enzimáticosspa
dc.subject.proposalÁcido glucónicospa
dc.subject.proposalInmovilización enzimáticaspa
dc.subject.proposalLactosuerospa
dc.subject.proposalBeta-galactosidaseeng
dc.subject.proposalGlucose oxidaseeng
dc.subject.proposalEnzyme aggregateseng
dc.subject.proposalGluconic acideng
dc.subject.proposalEnzyme immobilizationeng
dc.subject.proposalWheyeng
dc.titleEvaluación de un sistema multienzimático inmovilizado para la producción de galacto-oligosacáridos a partir de lactosuerospa
dc.title.translatedEvaluation of an immobilized multienzyme system for the production of galactooligosaccharides (GOS) from wheyeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentAdministradoresspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentConsejerosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentGrupos comunitariosspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentMedios de comunicaciónspa
dcterms.audience.professionaldevelopmentPadres y familiasspa
dcterms.audience.professionaldevelopmentPersonal de apoyo escolarspa
dcterms.audience.professionaldevelopmentProveedores de ayuda financiera para estudiantesspa
dcterms.audience.professionaldevelopmentPúblico generalspa
dcterms.audience.professionaldevelopmentReceptores de fondos federales y solicitantesspa
dcterms.audience.professionaldevelopmentResponsables políticosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameUniversidad Nacional de Colombiaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1053850718.2024.pdf
Tamaño:
2.96 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: