Caracterización de cepas bacterianas obtenidas de trips (Thysanoptera: Thripidae) que afectan cultivos de aguacate (Persea americana Mill) en Antioquia: Actividad antagonista y Quorum Sensing.

dc.contributor.advisorMoreno Herrera, Claudia Ximena
dc.contributor.advisorArango Isaza, Rafael Eduardo
dc.contributor.authorPereira Bazurdo, Angie Natalia
dc.contributor.researchgroupMicrobiodiversidad y Bioprospecciónspa
dc.coverage.cityAntioquia, Colombia
dc.date.accessioned2021-10-12T13:09:30Z
dc.date.available2021-10-12T13:09:30Z
dc.date.issued2021
dc.descriptionilustraciones, tablasspa
dc.description.abstractEl control de plagas y enfermedades del aguacate depende en gran medida del uso de pesticidas. Nuevas alternativas de control, tales como el uso de sustancias bioactivas inhibidoras contra fitopatógenos producidas por microorganismos, brindan una opción viable para contrarrestar las pérdidas por plagas y enfermedades. La exploración de nuevas fuentes de microorganismos se ha ampliado a especies que no habían sido consideradas. El presente estudio tuvo como objetivo caracterizar la capacidad antagonista in vitro contra microorganismos fitopatógenos y la producción de moléculas de señalización ‘Quórum Sensing’ (QS) en cepas bacterianas aisladas de trips de aguacate. La actividad antagonista de diez aislados bacterianos fueron seleccionadas y evaluadas contra siete fitopatógenos (hongos, oomiceto y bacterias) por cultivo dual, difusión y ensayo en placa; las moléculas de señalización (QS) producidas por las cepas Gram negativas se detectaron a través de bioensayo con placas de cromatografía fina (TLC) y biosensores bacterianos específicos (psB401, psB1142 y pqsA-lux). Las pruebas de cultivo dual mostraron que cuatro cepas pertenecientes a los géneros Bacillus, Pantoea, y Serratia, antagonizaron la mayoría de los hongos y el oomiceto, limitando el normal crecimiento de las colonias y generando zonas de inhibición. Adicionalmente, a través de biosensores se detectaron moléculas AHL y AHQ como 3-Oxo-C12-HSL(OdDHL), 3-Oxo-C6-HSL (OHHL) y 2-heptil-4-quinolona (HHQ). Trazas de OdDHL y HHQ, y el hallazgo de dos ciclopéptidos Ciclo(L-Phe-L-Pro) y Ciclo(L-Pro-L-Tyr) por Cromatografía Líquida de Ultra Alto Rendimiento y Espectrometría de Masas (UHPLC/MS) en los extractos de las cepas Gram negativas, podrían explicar la actividad antifúngica detectada en las dos cepas de Pantoea sp., y Serratia sp., ya que estas moléculas se caracterizan por estar relacionadas con los sistemas de QS y poseen una variedad amplia de actividad biológica. Hasta donde sabemos, este sería uno de los primeros reportes sobre el potencial antagonista y la detección de moléculas de señalización QS en cepas aisladas de trips de aguacate. (Texto tomado de la fuente)spa
dc.description.abstractThe control of avocado pests and diseases depends largely on the use of various types of pesticides, most of which are either strictly monitored or not accepted internationally. New alternatives such as inhibitory bioactive substances against phytopathogens produced by microorganisms provide an excellent alternative for the biocontrol of pests and diseases, and the exploration of new sources of these microorganisms has been extended to organisms previously not considered. This study aims to characterize the antagonistic capacity in vitro against phytopathogenic microorganisms and the production of Quorum Sensing (QS) signaling molecules from bacterial strains isolated from avocado thrips. The antagonist activity of ten bacterial isolates of thrips was evaluated against seven phytopathogens (fungi, oomycetes, and bacteria) by dual culture, diffusion, and plate assay; signaling molecules (QS) produced by Gram negative strains were detected through bioassay with fine chromatography plates (TLC) and specific bacterial biosensors (psB401, psB1142 and pqsA-lux). Dual culture tests showed that four strains belonging to the genera Bacillus sp., Pantoea sp., and Serratia sp., antagonized most of the fungi and the oomycete, limiting the normal growth of the hyphae and generating zones of inhibition. Additionally, AHL and AHQ molecules such as 3-Oxo-C12-HSL (OdDHL), 3-Oxo-C6-HSL (OHHL), and 2-heptyl-4-quinolone (HHQ) were detected through biosensors. Traces of OdDHL and HHQ, and the finding of two cyclopeptides Cycle(L-Phe-L-Pro) and Cycle(L-Pro-L-Tyr) by Ultra-High-Performance Liquid Chromatography and Mass Spectrometry (UHPLC / MS) in the extracts of the Gram negative strains could explain the antifungal activity detected in the two strains of Pantoea sp., and Serratia sp., since these molecules are characterized by being related to QS systems and possess a variety of biological activities including antimicrobial. To our knowledge, this would be one of the first reports on the antagonistic potential and the detection of QS signaling molecules in isolated strains of avocado thrips.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Biotecnologíaspa
dc.description.researchareaBioprospecciónspa
dc.format.extent96 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80505
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentEscuela de biocienciasspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Biotecnologíaspa
dc.relation.referencesAlcaraz, M. L., & Hormaza, J. I. (2007). Molecular characterization and genetic diversity in an avocado collection of cultivars and local Spanish genotypes using SSRs. Hereditas, 144(6), 244–253. https://doi.org/10.1111/j.2007.0018-0661.02019xspa
dc.relation.referencesAmaíz, L., Vargas, R., Medina, L., Izzeddin, N., & Valbuena, O. (2015). Evaluación del efecto antagonista de un consorcio bacteriano sobre Rhizoctonia solani Kühn en cultivos de arroz. Revista Latinoamericana de Biotecnología Ambiental y Algal, 6(1), 1–12.spa
dc.relation.referencesAraújo, R. G., Rodriguez-Jasso, R. M., Ruiz, H. A., Pintado, M. M. E., & Aguilar, C. N. (2018). Avocado by-products: Nutritional and functional properties. Trends in Food Science & Technology, 80, 51–60. https://doi.org/https://doi.org/10.1016/j.tifs.2018.07.027spa
dc.relation.referencesArévalo, P., Quintero, F., & Correa, L. (2003). Survey of thrips (Insecta: Thysanoptera) in flower crops at three localities of the municipality of Medellín, Antioquia (Colombia). Revista Colombiana de Entomología, 29(2), 169–175.spa
dc.relation.referencesArmbruster, C. E., Hong, W., Pang, B., Weimer, K. E. D., Juneau, R. A., Turner, J., & Edward Swords, W. (2010). Indirect pathogenicity of Haemophilus influenzae and Moraxella catarrhalis in Polymicrobial Otitis media occurs via interspecies quorum signaling. MBio, 1(3), 1–9. https://doi.org/10.1128/mBio.00102-10spa
dc.relation.referencesArrebola, E., Jacobs, R., & Korsten, L. (2010). Iturin A is the principal inhibitor in the biocontrol activity of Bacillus amyloliquefaciens PPCB004 against postharvest fungal pathogens. Journal of Applied Microbiology, 108(2), 386–395. https://doi.org/10.1111/j.1365-2672.2009.04438.xspa
dc.relation.referencesBaumann, P. (2005). Biology of Bacteriocyte-Associated Endosymbionts of Plant Sap-Sucking Insects. Annual Review of Microbiology, 59(1), 155–189. https://doi.org/10.1146/annurev.micro.59.030804.121041spa
dc.relation.referencesBorthwick, A. D. (2012). 2,5-diketopiperazines: Synthesis, reactions, medicinal chemistry, and bioactive natural products. Chemical Reviews, 112(7), 3641–3716. https://doi.org/10.1021/cr200398yspa
dc.relation.referencesBoyen, F., Eeckhaut, V., Van Immerseel, F., Pasmans, F., Ducatelle, R., & Haesebrouck, F. (2009). Quorum sensing in veterinary pathogens: mechanisms, clinical importance and future perspectives. Veterinary Microbiology, 135(3–4), 187–195spa
dc.relation.referencesBuckman, R. S., Mound, L. A., & Whiting, M. F. (2012). Phylogeny of thrips (Insecta: Thysanoptera) based on five molecular loci. Systematic Entomology, 38(1), 123–133. https://doi.org/10.1111/j.1365-3113.2012.00650.xspa
dc.relation.referencesCabra, T., Rodriguez, C. A., & Villota, C. P. (2014). Capacidad antagónica y quitinolítica de microorganismos aislados de residuos de higuerilla (ricinus communis). Biotecnología En El Sector Agropecuario y Agroindustrial, 12(1), 56–61.spa
dc.relation.referencesCamara de Comercio de Medellín. (2012). Cadena del aguacate en Antioquia. Informes de Estudios Economicos, 104. Retrieved from http://www.camaramedellin.com.co/site/Portals/0/Documentos/2017/Publicaciones regionales/1 Aguacates_Oct19.pdf%0Ahttp://www.camaramedellin.com.co/site/Portals/0/Documentos/2017/Publicaciones regionales/6 Cacao_Oct19.pdfspa
dc.relation.referencesCampbell, J., Lin, Q., Geske, G. D., & Blackwell, H. E. (2009). New and unexpected insights into the modulation of LuxR-type quorum sensing by cyclic dipeptides. ACS Chemical Biology, 4(12), 1051–1059. https://doi.org/10.1021/cb900165yspa
dc.relation.referencesCano Calle, D. (2020). Caracterización Molecular de trips (Thysanoptera: Thripidae) procedentes de cultivos comerciales de aguacate (Persea americana Mill) del oriente antioqueño y estudio de la diversidad microbiana asociada. Universidad Nacional de Colombia.spa
dc.relation.referencesCano Calle, D., Saldamando Benjumea, C. I., Vivero Gómez, R. J., Moreno Herrera, C. X., & Arango Isaza, R. E. (2021). Two New Strains of Wolbachia Affecting Natural Avocado Thrips. Indian Journal of Microbiology, 61, 348–354.spa
dc.relation.referencesCarmona-Hernandez, S., Reyes-Pérez, J. J., Chiquito-Contreras, R. G., Rincon-Enriquez, G., Cerdan-Cabrera, C. R., & Hernandez-Montiel, L. G. (2019). Biocontrol of postharvest fruit fungal diseases by bacterial antagonists: A review. Agronomy, 9(3). https://doi.org/10.3390/agronomy9030121spa
dc.relation.referencesChalupowicz, L., Manulis-Sasson, S., Itkin, M., Sacher, A., Sessa, G., & Barash, I. (2008). Quorum-sensing system affects gall development incited by Pantoea agglomerans pv. gypsophilae. Molecular Plant-Microbe Interactions, 21(8), 1094–1105.spa
dc.relation.referencesChaudhary, D. K., & Kim, J. (2017). Sphingomonas olei sp. nov., with the ability to degrade aliphatic hydrocarbons, isolated from oil-contaminated soil. International Journal of Systematic and Evolutionary Microbiology, 67(8), 2731–2738. https://doi.org/10.1099/ijsem.0.002010spa
dc.relation.referencesChen, X., Zhang, Y., Fu, X., Li, Y., & Wang, Q. (2016). Isolation and characterization of Bacillus amyloliquefaciens PG12 for the biological control of apple ring rot. Postharvest Biology and Technology, 115, 113–121. https://doi.org/10.1016/j.postharvbio.2015.12.021spa
dc.relation.referencesCimmino, A., Puopolo, G., Perazzolli, M., Andolfi, A., Melck, D., Pertot, I., & Evidente, A. (2014). Cyclo(L-Pro-L-Tyr), the fungicide isolated from Lysobacter capsici AZ78: A structure-activity relationship study. Chemistry of Heterocyclic Compounds, 50(2), 290–295. https://doi.org/10.1007/s10593-014-1475-6spa
dc.relation.referencesDagher, F., Olishevska, S., Philion, V., Zheng, J., & Déziel, E. (2020). Development of a novel biological control agent targeting the phytopathogen Erwinia amylovora. Heliyon, 6(10). https://doi.org/10.1016/j.heliyon.2020.e05222spa
dc.relation.referencesDas, B., & Patra, S. (2017). Chapter 1 - Antimicrobials: Meeting the Challenges of Antibiotic Resistance Through Nanotechnology. In A. Ficai & A. M. B. T.-N. for A. T. Grumezescu (Eds.), Micro and Nano Technologies (pp. 1–22). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-323-46152-8.00001-9spa
dc.relation.referencesDe Almeida, L. G., De Moraes, L. A. B., Trigo, J. R., Omoto, C., & Cônsoli, F. L. (2017). The gut microbiota of insecticide-resistant insects houses insecticide-degrading bacteria: A potential source for biotechnological exploitation. PLoS ONE, 12(3), 1–19. https://doi.org/10.1371/journal.pone.0174754spa
dc.relation.referencesde Kievit, T. R., & Iglewski, B. H. (2002). Bacterial Quorum Sensing in Pathogenic Relationships. Infection and Immunity, 68(9), 4839–4849. https://doi.org/10.1128/iai.68.9.4839-4849.2000spa
dc.relation.referencesde la Luz Sánchez-Pérez, J. (1999). Recursos genéticos de aguacate (Persea americana Mill.) y especies afines en México. Revista Chapingo Serie Horticultura, 5, 7–18.spa
dc.relation.referencesde Pedro-Jové, R., Puigvert, M., Sebastià, P., Macho, A. P., Monteiro, J. S., Coll, N. S., … Valls, M. (2021). Dynamic expression of Ralstonia solanacearum virulence factors and metabolism-controlling genes during plant infection. BMC Genomics, 22(1), 1–18. https://doi.org/10.1186/s12864-021-07457-wspa
dc.relation.referencesde Vries, E. J., van der Wurff, A. W. G., Jacobs, G., & Breeuwer, J. A. J. (2008). Onion Thrips, Thrips tabaci , Have Gut Bacteria That are Closely Related to the Symbionts of the Western Flower Thrips, Frankliniella occidentalis. Journal of Insect Science, 8(23), 1–11. https://doi.org/10.1673/031.008.2301spa
dc.relation.referencesDegrassi, G., Aguilar, C., Bosco, M., Zahariev, S., Pongor, S., & Venturi, V. (2002). Plant growth-promoting Pseudomonas putida WCS358 produces and secretes four cyclic dipeptides: Cross-talk with quorum sensing bacterial sensors. Current Microbiology, 45(4), 250–254. https://doi.org/10.1007/s00284-002-3704-yspa
dc.relation.referencesDickey, A. M., Trease, A. J., Jara-Cavieres, A., Kumar, V., Christenson, M. K., Potluri, La.-P., … Davis, P. H. (2014). Estimating bacterial diversity in Scirtothrips dorsalis (Thysanoptera: Thripidae) via next generation sequencing. The Florida Entomologist, 97(2), 362.spa
dc.relation.referencesDukare, A. S., Paul, S., Nambi, V. E., Gupta, R. K., Singh, R., Sharma, K., & Vishwakarma, R. K. (2019). Exploitation of microbial antagonists for the control of postharvest diseases of fruits: a review. Critical Reviews in Food Science and Nutrition, 59(9), 1498–1513. https://doi.org/10.1080/10408398.2017.1417235spa
dc.relation.referencesEcheverri Florez, F., Loaiza Marín, C., & Cano Ortíz, M. del P. (2004). Reconocimiento e identificacion de trips fitofagos (Thysanoptera: thripidae) y depredadores (Thysanoptera: phlaeothripidae) asociados a cultivos comerciales de aguacate persea spp. en los departamentos de caldas y risaralda (Colombia). Revista Facultad Nacional de Agronomía.spa
dc.relation.referencesEl-Sayed, A. K., Hothersall, J., & Thomas, C. M. (2001). Quorum-sensing-dependent regulation of biosynthesis of the polyketide antiobiotic mupirocin in Pseudomonas fluorescens NCIMB 10586. Microbiology, 147(8), 2127–2139. https://doi.org/10.1099/00221287-147-8-2127spa
dc.relation.referencesEl-Wakeil, N., Saleh, M., & Abu-hashim, M. (2020). Cottage Industry of Biocontrol Agents and Their Applications. Cottage Industry of Biocontrol Agents and Their Applications. https://doi.org/10.1007/978-3-030-33161-0spa
dc.relation.referencesEngel, P., & Moran, N. A. (2013). The gut microbiota of insects - diversity in structure and function. FEMS Microbiology Reviews, 37(5), 699–735. https://doi.org/10.1111/1574-6976.12025spa
dc.relation.referencesEnomoto, S., Chari, A., Dale, C., & City, S. L. (2017). Quorum sensing attenuates virulence in Sodalis praecaptivus. Cell Host & Microbe, 21(5), 629–636. https://doi.org/10.1016/j.chom.2017.04.003.Quorumspa
dc.relation.referencesFAO (Food and Agriculture Organization of the United Nations). (2021). FAOSTAT Statistics Database. Retrieved August 20, 2004, from http://www.fao.org/faostat/en/#homespa
dc.relation.referencesFletcher, M. P., Diggle, S. P., Cámara, M., & Williams, P. (2007). Biosensor-based assays for PQS, HHQ and related 2-alkyl-4-quinolone quorum sensing signal molecules. Nature Protocols, 2(5), 1254.spa
dc.relation.referencesFuqua, W. C., Winans, S. C., & Greenberg, E. P. (1994). Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. Journal of Bacteriology, 176(2), 269–275. https://doi.org/10.1128/jb.176.2.269-275.1994spa
dc.relation.referencesGañán, L., Álvarez, E., & Castaño Zapata, J. (2015). Identificación genética de aislamientos de Colletotrichum spp. causantes de antracnosis en frutos de aguacate, banano, mango y tomate de árbol. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 39(152), 339. https://doi.org/10.18257/raccefyn.192spa
dc.relation.referencesGil, J. G. R., Sánchez, D. A. C., & Osorio, J. G. M. (2014). Estudios etiológicos de la marchitez del aguacate en Antioquia-Colombia. Revista Ceres, 61(1), 50–61. https://doi.org/10.1590/S0034-737X2014000100007spa
dc.relation.referencesGolonka, R., Yeoh, B. S., & Vijay-Kumar, M. (2019). The Iron Tug-of-War between Bacterial Siderophores and Innate Immunity. Journal of Innate Immunity, 11(3), 249–262. https://doi.org/10.1159/000494627spa
dc.relation.referencesGuerrero-Barajas, C., Constantino-Salinas, E. A., Amora-Lazcano, E., Tlalapango-Ángeles, D., Mendoza-Figueroa, J. S., Cruz-Maya, J. A., & Jan-Roblero, J. (2020). Bacillus mycoides A1 and Bacillus tequilensis A3 inhibit the growth of a member of the phytopathogen Colletotrichum gloeosporioides species complex in avocado. Journal of the Science of Food and Agriculture, 100(10), 4049–4056. https://doi.org/10.1002/jsfa.10450spa
dc.relation.referencesGuevara-Avendaño, E., Carrillo, J. D., Ndinga-Muniania, C., Moreno, K., Méndez-Bravo, A., Guerrero-Analco, J. A., Reverchon, F. (2018). Antifungal activity of avocado rhizobacteria against Fusarium euwallaceae and Graphium spp., associated with Euwallacea spp. nr. fornicatus, and Phytophthora cinnamomi. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, 111(4), 563–572. https://doi.org/10.1007/s10482-017-0977-5spa
dc.relation.referencesHameeda, B., Rupela, O. P., Reddy, G., & Satyavani, K. (2006). Application of plant growth-promoting bacteria associated with composts and macrofauna for growth promotion of Pearl millet (Pennisetum glaucum L.). Biology and Fertility of Soils, 43(2), 221–227.spa
dc.relation.referencesHernández-Lauzardo, A. N., Bautista-Baños, S., Velázquez-del Valle, M. G., & Hernández-Rodríguez, A. (2007). Uso de microorganismos antagonistas en el control de enfermedades postcosecha en frutos. Revista Mexicana de Fitopatología, 25(1), 66–74.spa
dc.relation.referencesHolden, M. T. G., Chhabra, S. R., De Nys, R., Stead, P., Bainton, N. J., Hill, P. J., … Williams, P. (1999). Quorum-sensing cross talk: Isolation and chemical characterization of cyclic dipeptides from Pseudomonas aeruginosa and other Gram-negative bacteria. Molecular Microbiology, 33(6), 1254–1266. https://doi.org/10.1046/j.1365-2958.1999.01577.xspa
dc.relation.referencesHorinouchi, S., Ueda, K., Nakayama, J., & Ikeda, T. (2010). Cell-to-cell communications among microorganisms. Comprehensive Natural Products II: Chemistry and Biology, 4, 283–337. https://doi.org/10.1016/b978-008045382-8.00098-8spa
dc.relation.referencesHuang, J., Shi, Y., Zeng, G., Gu, Y., Chen, G., Shi, L., … Zhou, J. (2016). Acyl-homoserine lactone-based quorum sensing and quorum quenching hold promise to determine the performance of biological wastewater treatments: An overview. Chemosphere, 157, 137–151. https://doi.org/10.1016/j.chemosphere.2016.05.032spa
dc.relation.referencesHurtado F, E., Fernández, A., & Carrasco, A. (2018). Avocado fruit—Persea americana. In S. Rodrigues, E. de Oliveira Silva, & E. S. B. T.-E. F. de Brito (Eds.) (pp. 37–48). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-803138-4.00001-0spa
dc.relation.referencesInam-Ul-Haq, M., Gowen, S. R., Javed, N., Shahina, F., Izhar-Ul-Haq, M., Humayoon, N., & Pembroke, B. (2007). Antagonistic potential of bacterial isolates associated with entomopathogenic nematodes against tomato wilt caused by Fusarium oxysporum f.sp., lycopersici under greenhouse conditions. Pakistan Journal of Botany, 39(1), 279–283.spa
dc.relation.referencesIndiragandhi, P., Anandham, R., Madhaiyan, M., & Sa, T. M. (2008). Characterization of plant growth-promoting traits of bacteria isolated from larval guts of Diamondback moth Plutella xylostella (Lepidoptera: Plutellidae). Current Microbiology, 56(4), 327–333. https://doi.org/10.1007/s00284-007-9086-4spa
dc.relation.referencesInstituto Colombiano de Agricultura (ICA). (2012). Manejo fitosanitario del cultivo del aguacate (Persea americana Mill.). Medidas para la temporada invernal. LLinea Agrícola. Instituto Colombiano Agropecuario ICA Bogotá DC, Colombia.spa
dc.relation.referencesJaenike, J., Unckless, R., Cockburn, S. N., Boelio, L. M., & Perlman, S. J. (2010). Adaptation via symbiosis: Recent spread of a drosophila defensive symbiont. Science, 329(5988), 212–215. https://doi.org/10.1126/science.1188235spa
dc.relation.referencesJiang, J., Wu, S., Wang, J., & Feng, Y. (2015). AHL-type quorum sensing and its regulation on symplasmata formation in Pantoea agglomerans YS19. Journal of Basic Microbiology, 55(5), 607–616. https://doi.org/10.1002/jobm.201400472spa
dc.relation.referencesKalbe, C., Marten, P., & Berg, G. (1996). Strains of the genus Serratia as beneficial rhizobacteria of oilseed rape with antifungal properties. Microbiological Research, 151(4), 433–439. https://doi.org/10.1016/S0944-5013(96)80014-0spa
dc.relation.referencesKalia, V. C., & Purohit, H. J. (2011). Quenching the quorum sensing system: Potential antibacterial drug targets. Critical Reviews in Microbiology, 37(2), 121–140. https://doi.org/10.3109/1040841X.2010.53247spa
dc.relation.referencesKhrueayu, D., & Pilantanapak, Apiradee. (2012). Antifungal activity of bioactive compound from endophytic fungi isolated from mangrove leaves. 1st Mae Fah Luang University International Conference, 7, 1–25.spa
dc.relation.referencesKim, S.-R., & Yeon, K.-M. (2018). Quorum Sensing as Language of Chemical Signals. In Comprehensive Analytical Chemistry (Vol. 81, pp. 57–94). Elsevier.spa
dc.relation.referencesKim, S. R., & Yeon, K. M. (2018). Quorum Sensing as Language of Chemical Signals. Comprehensive Analytical Chemistry (1st ed., Vol. 81). Elsevier B.V. https://doi.org/10.1016/bs.coac.2018.03.010spa
dc.relation.referencesKong, Q., Shan, S., Liu, Q., Wang, X., & Yu, F. (2010). Biocontrol of Aspergillus flavus on peanut kernels by use of a strain of marine Bacillus megaterium. International Journal of Food Microbiology, 139(1–2), 31–35. https://doi.org/10.1016/j.ijfoodmicro.2010.01.036spa
dc.relation.referencesKoolivand, A., Abtahi, H., Parhamfar, M., Didehdar, M., Saeedi, R., & Fahimirad, S. (2019). Biodegradation of high concentrations of petroleum compounds by using indigenous bacteria isolated from petroleum hydrocarbons-rich sludge: Effective scale-up from liquid medium to composting process. Journal of Environmental Management, 248(July), 109228. https://doi.org/10.1016/j.jenvman.2019.06.129spa
dc.relation.referencesLabbate, M., Queck, S. Y., Koh, K. S., Rice, S. A., Givskov, M., & Kjelleberg, S. (2004). Quorum Sensing-Controlled Biofilm Development in Serratia liquefaciens MG1. Journal of Bacteriology, 186(3), 692–698. https://doi.org/10.1128/JB.186.3.692-698.2004spa
dc.relation.referencesLeyton, A., Urrutia, H., Vidal, J. M., de la Fuente, M., Alarcón, M., Aroca, G., Sossa, K. (2015). Actividad inhibitoria del sobrenadante de la bacteria Antartica Pseudomonas sp. M19B en la formación de biopeliculas de Flavobacterium psychrophilum 19749. Revista de Biologia Marina y Oceanografia, 50(2), 375–381. https://doi.org/10.4067/S0718-19572015000300016spa
dc.relation.referencesLi, S. Bin, Fang, M., Zhou, R. C., & Huang, J. (2012). Characterization and evaluation of the endophyte Bacillus B014 as a potential biocontrol agent for the control of Xanthomonas axonopodis pv. dieffenbachiae - Induced blight of Anthurium. Biological Control, 63(1), 9–16. https://doi.org/10.1016/j.biocontrol.2012.06.002spa
dc.relation.referencesLi, Y. H., & Tian, X. (2012). Quorum sensing and bacterial social interactions in biofilms. Sensors, 12(3), 2519–2538. https://doi.org/10.3390/s120302519spa
dc.relation.referencesLim, S. M., Yoon, M. Y., Choi, G. J., Choi, Y. H., Jang, K. S., Shin, T. S., Kim, J. C. (2017). Diffusible and volatile antifungal compounds produced by an antagonistic Bacillus velezensis G341 against various phytopathogenic fungi. Plant Pathology Journal, 33(5), 488–498. https://doi.org/10.5423/PPJ.OA.04.2017.0073spa
dc.relation.referencesLima, É. F. B., & Mound, L. A. (2016). Systematic relationships of the Thripidae subfamily Sericothripinae (Insecta: Thysanoptera). Zoologischer Anzeiger - A Journal of Comparative Zoology, 263, 24–32. https://doi.org/https://doi.org/10.1016/j.jcz.2016.03.001spa
dc.relation.referencesLopes, L. P., Oliveira Jr, A. G., Beranger, J. P. O., Góis, C. G., Vasconcellos, F. C. S., Martin, J. A. B. S., … Andrade, G. (2012). Activity of extracellular compounds of Pseudomonas sp. against Xanthomonas axonopodis in vitro and bacterial leaf blight in eucalyptus . Tropical Plant Pathology . scielo .spa
dc.relation.referencesMarch Rosselló, G. A., & Eiros Bouza, J. M. (2013). Quorum sensing en bacterias y levaduras. Medicina Clinica, 141(8), 353–357. https://doi.org/10.1016/j.medcli.2013.02.031spa
dc.relation.referencesMarinas, M., Sa, E., Rojas, M. M., Moalem, M., Urbano, F. J., Guillou, C., & Rallo, L. (2010). A nuclear magnetic resonance ( 1 H and 13 C ) and isotope ratio mass spectrometry ( d 13 C , d 2 H and d 18 O ) study of Andalusian olive oils. Rapid Communications in Mass Spectrometry, 24, 1457–1466. https://doi.org/10.1002/rcmspa
dc.relation.referencesMartín del campo, C., Gómez, H., & Alaníz, R. (2008). Bacterias ácido lácticas con capacidad antagónica y actividad bacteriocinogénica aisladas de quesos frescos. E-Gnosis, 6, 1–17.spa
dc.relation.referencesMiller, C., & Gilmore, J. (2020). Detection of quorum-sensing molecules for pathogenic molecules using cell-based and cell-free biosensors. Antibiotics, 9(5). https://doi.org/10.3390/antibiotics9050259spa
dc.relation.referencesMishra, A. K., Choi, J., Choi, S. J., & Baek, K. H. (2017). Cyclodipeptides: An overview of their biosynthesis and biological activity. Molecules, 22(10), 1–13. https://doi.org/10.3390/molecules22101796spa
dc.relation.referencesMohammadi, P., Tozlu, E., Kotan, R., & Şenol Kotan, M. (2017). Potential of some bacteria for biological control of postharvest citrus green mould caused by Penicillium digitatum. Plant Protection Science, 53(3), 134–143. https://doi.org/10.17221/55/2016-PPSspa
dc.relation.referencesMound, L., & Morris, D. (2007). The insect Order Thysanoptera: Classification versus Systematics. Zootaxa (Vol. 1668).spa
dc.relation.referencesMyo, E. M., Liu, B., Ma, J., Shi, L., Jiang, M., Zhang, K., & Ge, B. (2019). Evaluation of Bacillus velezensis NKG-2 for bio-control activities against fungal diseases and potential plant growth promotion. Biological Control, 134(December 2018), 23–31. https://doi.org/10.1016/j.biocontrol.2019.03.017spa
dc.relation.referencesNealson, K. H., Platt, T., & Hastings, J. W. (1970). Cellular control of the synthesis and activity of the bacterial luminescent system. Journal of Bacteriology, 104(1), 313–322.spa
dc.relation.referencesNwuche, C. O. (2013). Isolation of Bacteriocin – Producing Lactic Acid Bacteria from ‘ Ugba ’ and ‘ Okpiye ’ , Two Locally Fermented Nigerian Food Condiments ., 56(February), 101–106.spa
dc.relation.referencesObservatory of Economic Complexity, (OEC). (2019). Aguacate Fescos o Secos. Retrieved from https://oec.world/es/visualize/tree_map/hs92/export/col/all/20804/2019/spa
dc.relation.referencesOliver, K. M., Moran, N. A., & Hunter, M. S. (2005). Variation in resistance to parasitism in aphids is due to symbionts not host genotype. Proceedings of the National Academy of Sciences of the United States of America, 102(36), 12795–12800. https://doi.org/10.1073/pnas.0506131102spa
dc.relation.referencesOrtiz Castro, R., Campos García, J., & López Bucio, J. (2012). Comunicación planta-bacteria basada en ciclodipéptidos de origen microbiano con actividad auxínica, (56), 59–74. Retrieved from https://www.cic.cn.umich.mx/index.php/cn/article/viewFile/110/33spa
dc.relation.referencesOrtori, C. A., Dubern, J.-F., Chhabra, S. R., Cámara, M., Hardie, K., Williams, P., & Barrett, D. A. (2011). Simultaneous quantitative profiling of N-acyl-L-homoserine lactone and 2-alkyl-4 (1H)-quinolone families of quorum-sensing signaling molecules using LC-MS/MS. Analytical and Bioanalytical Chemistry, 399(2), 839–850.spa
dc.relation.referencesOrtori, C. A., Halliday, N., Cámara, M., Williams, P., & Barrett, D. A. (2014). LC-MS/MS quantitative analysis of quorum sensing signal molecules. In Pseudomonas Methods and Protocols (pp. 255–270). Springer.spa
dc.relation.referencesPark, D. K., Lee, K. E., Baek, C. H., Kim, I. H., Kwon, J. H., Lee, W. K., … Kim, K. S. (2006). Cyclo(Phe-Pro) modulates the expression of ompU in Vibrio spp. Journal of Bacteriology, 188(6), 2214–2221. https://doi.org/10.1128/JB.188.6.2214-2221.2006spa
dc.relation.referencesPérez, R., Terrón, T. S., & Muñoz-Rojas, J. (2014). Antagonismo microbiano asociado a cepas bacterianas provenientes de jitomate (Lycopersicum esculentum Mill) y maíz (Zea Mays). Revista Iberoamericana Dde Ciencias.spa
dc.relation.referencesPesci, E. C., Milbank, J. B. J., Pearson, J. P., Mcknight, S., Kende, A. S., Greenberg, E. P., & Iglewski, B. H. (1999). Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences of the United States of America, 96(20), 11229–11234. https://doi.org/10.1073/pnas.96.20.11229spa
dc.relation.referencesPomini, A. M., Paccola-Meirelles, L. D., & Marsaioli, A. J. (2007). Acyl-homoserine lactones produced by Pantoea sp. Isolated from the “maize white spot” foliar disease. Journal of Agricultural and Food Chemistry, 55(4), 1200–1204. https://doi.org/10.1021/jf063136aspa
dc.relation.referencesPontes, M. H., Babst, M., Lochhead, R., Oakeson, K., Smith, K., & Dale, C. (2008). Quorum sensing primes the oxidative stress response in the insect endosymbiont, Sodalis glossinidius. PLoS ONE, 3(10). https://doi.org/10.1371/journal.pone.0003541spa
dc.relation.referencesPoppe, L., Vanhoutte, S., & Höfte, M. (2003). Modes of action of Pantoea agglomerans CPA-2, an antagonist of postharvest pathogens on fruits. European Journal of Plant Pathology, 109(9), 963–973. https://doi.org/10.1023/B:EJPP.0000003747.41051.9fspa
dc.relation.referencesRabbee, M. F., Sarafat Ali, M., Choi, J., Hwang, B. S., Jeong, S. C., & Baek, K. hyun. (2019). Bacillus velezensis: A valuable member of bioactive molecules within plant microbiomes. Molecules, 24(6), 1–13. https://doi.org/10.3390/molecules24061046spa
dc.relation.referencesReller, L. B., Weinstein, M., Jorgensen, J. H., & Ferraro, M. J. (2009). Antimicrobial susceptibility testing: a review of general principles and contemporary practices. Clinical Infectious Diseases, 49(11), 1749–1755.spa
dc.relation.referencesRetana, A., García, O., Cantu, M., & Carvajal, C. (2010). Thrips (Thysanoptera) of avocado (Persea americana) in Nayarit, Mexico. Revista Colombiana de Entomología, 36(1), 47–51.spa
dc.relation.referencesRIKEN MSn spectral database for phytochemicals(ReSpect). (2008). Cyclo(Pro-Phe). Retrieved from https://mona.fiehnlab.ucdavis.edu/spectra/display/PM014413spa
dc.relation.referencesRotenberg, D., Jacobson, A. L., Schneweis, D. J., & Whitfield, A. E. (2015). Thrips transmission of tospoviruses. Current Opinion in Virology, 15, 80–89.spa
dc.relation.referencesRuttkies, C., Schymanski, E. L., Wolf, S., Hollender, J., & Neumann, S. (2016). MetFrag relaunched : incorporating strategies beyond in silico fragmentation. Journal of Cheminformatics, 1–16. https://doi.org/10.1186/s13321-016-0115-9spa
dc.relation.referencesSaeb, A. T. M. (2016). Presence of Bacterial Virulence Gene Homologues in the dibenzo-p-dioxins degrading bacterium Sphingomonas wittichii. Bioinformation, 12(4), 241–248. https://doi.org/10.6026/97320630012241spa
dc.relation.referencesSanaei, E., Charlat, S., & Engelstädter, J. (2021). Wolbachia host shifts: routes, mechanisms, constraints and evolutionary consequences. Biological Reviews, 96(2), 433–453. https://doi.org/10.1111/brv.12663spa
dc.relation.referencesSansinenea, E., Salazar, F., Jiménez, J., Mendoza, Á., & Ortiz, A. (2016). Diketopiperazines derivatives isolated from Bacillus thuringiensis and Bacillus endophyticus, establishment of their configuration by X-ray and their synthesis. Tetrahedron Letters, 57(24), 2604–2607. https://doi.org/10.1016/j.tetlet.2016.04.117spa
dc.relation.referencesScarborough, C. L., Ferrari, J., & Godfray, H. C. (2005). Aphid Protected from Pathogen. Science, 310(December), 2005. Retrieved from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16357252spa
dc.relation.referencesSchaefer, A. L., Hanzelka, B. L., Parsek, M. R., & Greenberg, E. P. (2000). Detection, purification, and structural elucidation of the acylhomoserine lactone inducer of Vibrio fischeri luminescence and other related molecules. Methods in Enzymology, 305(1995), 288–301. https://doi.org/10.1016/s0076-6879(00)05495-1spa
dc.relation.referencesSenol, M., Nadaroglu, H., Dikbas, N., & Kotan, R. (2014). Purification of Chitinase enzymes from Bacillus subtilis bacteria TV-125, investigation of kinetic properties and antifungal activity against Fusarium culmorum. Annals of Clinical Microbiology and Antimicrobials, 13(1), 1–7. https://doi.org/10.1186/s12941-014-0035-3spa
dc.relation.referencesSharma, D., Kaur, T., Chadha, B. S., & Manhas, R. K. (2011). Antimicrobial activity of actinomycetes against multidrug resistant Staphylococcus aureus, E. coli and various other pathogens. Tropical Journal of Pharmaceutical Research, 10(6), 801–808. https://doi.org/10.4314/tjpr.v10i6.14spa
dc.relation.referencesSingh, D., & Kumar Yadav, D. (2016). Potential of Bacillus amyloliquefaciens for Biocontrol of Bacterial Wilt of Tomato Incited by Ralstonia solanacearum. Journal of Plant Pathology & Microbiology, 07(01). https://doi.org/10.4172/2157-7471.1000327spa
dc.relation.referencesSoto-Rodríguez, G. A., Rodríguez-Arrieta, J. A., González Muñoz, C., Cambero-Campos, J., & Retana-Salazar, A. P. (2017). Clave para la identificación de géneros de Thrips (Insecta: Thysanoptera) comúnmente asociados a plantas ornamentales en Centroamérica. Acta Zoológica Mexicana. scielomx.spa
dc.relation.referencesSteindler, L., & Venturi, V. (2007). Detection of quorum-sensing N-acyl homoserine lactone signal molecules by bacterial biosensors. FEMS Microbiology Letters, 266(1), 1–9. https://doi.org/10.1111/j.1574-6968.2006.00501.xspa
dc.relation.referencesStröm, K., Sjögren, J., Broberg, A., & Schnürer, J. (2002). Lactobacillus plantarum MiLAB 393 produces the antifungal cyclic dipeptides cyclo(L-Phe-L-Pro) and cyclo(L-Phe-trans-4-OH-L-Pro) and 3-phenyllactic acid. Applied and Environmental Microbiology, 68(9), 4322–4327. https://doi.org/10.1128/AEM.68.9.4322-4327.2002spa
dc.relation.referencesTamayo Molano, P. J. (2007). Enfermedades del aguacate. Revista Politécnica, (4), 51–70.spa
dc.relation.referencesTecon, R., & Leveau, J. H. J. (2016). Symplasmata are a clonal, conditional, and reversible type of bacterial multicellularity. Scientific Reports, 6, 1–10. https://doi.org/10.1038/srep31914spa
dc.relation.referencesThissera, B., Alhadrami, H. A., Hassan, M. H. A., Hassan, H. M., Behery, F. A., Bawazeer, M., … Rateb, M. E. (2020). Induction of cryptic antifungal pulicatin derivatives from Pantoea agglomerans by microbial co-culture. Biomolecules, 10(2). https://doi.org/10.3390/biom10020268spa
dc.relation.referencesTremocoldi, M. A., Rosalen, P. L., Franchin, M., Massarioli, A. P., Denny, C., Daiuto, É. R., de Alencar, S. M. (2018). Exploration of avocado by-products as natural sources of bioactive compounds. PloS One, 13(2), e0192577spa
dc.relation.referencesVallejo Pérez, M. R., Téliz Ortiz, D., De La Torre Almaraz, R., López Martinez, J. O., & Nieto Ángel, D. (2017). Avocado sunblotch viroid: Pest risk and potential impact in México. Crop Protection, 99, 118–127. https://doi.org/10.1016/j.cropro.2017.05.015spa
dc.relation.referencesVarón, E. H. (2015). Reconocimiento y manejo de insectos plaga en aguacate (Persea americana), 1–44. Retrieved from http://www.anglogoldashanticolombia.com/wp-content/uploads/2015/11/4-manejo-integrado-de-plagas-de-aguacate3.pdfspa
dc.relation.referencesVorburger, C., Gehrer, L., & Rodriguez, P. (2010). A strain of the bacterial symbiont Regiella insecticola protects aphids against parasitoids. Biology Letters, 6(1), 109–111. https://doi.org/10.1098/rsbl.2009.0642spa
dc.relation.referencesWang, N., Wang, L., Zhu, K., Hou, S., Chen, L., Mi, D., Guo, J. H. (2019). Plant root exudates are involved in Bacillus cereus AR156 mediated biocontrol against Ralstonia solanacearum. Frontiers in Microbiology, 10(JAN), 1–14. https://doi.org/10.3389/fmicb.2019.00098spa
dc.relation.referencesWaters, C. M., & Bassler, B. L. (2005). QUORUM SENSING: Cell-to-Cell Communication in Bacteria. Annual Review of Cell and Developmental Biology, 21(1), 319–346. https://doi.org/10.1146/annurev.cellbio.21.012704.131001spa
dc.relation.referencesWattana-Amorn, P., Charoenwongsa, W., Williams, C., Crump, M. P., & Apichaisataienchote, B. (2016). Antibacterial activity of cyclo(L-Pro-L-Tyr) and cyclo(D-Pro-L-Tyr) from Streptomyces sp. strain 22-4 against phytopathogenic bacteria. Natural Product Research, 30(17), 1980–1983. https://doi.org/10.1080/14786419.2015.1095747spa
dc.relation.referencesWhiley, A. W., Schaffer, B., & Wolstenholme, B. N. (2002). The Avocado: Botany, Production, and Uses. CABI. Retrieved from https://books.google.es/books?id=CxmvpAYkL54Cspa
dc.relation.referencesWinson, M. K., Swift, S., Fish, L., Throup, J. P., Jørgensen, F., Chhabra, S. R., … Stewart, G. S. A. B. (1998). Construction and analysis of luxCDABE-based plasmid sensors for investigating N-acyl homoserine lactone-mediated quorum sensing. FEMS Microbiology Letters, 163(2), 185–192. https://doi.org/10.1016/S0378-1097(98)00172-4spa
dc.relation.referencesWright, S. A. I., Zumoff, C. H., Schneider, L., & Beer, S. V. (2001). Pantoea agglomerans strain-EH318 produces two antibiotics that inhibit Erwinia amylovora in vitro. Applied and Environmental Microbiology, 67(1), 284–292. https://doi.org/10.1128/AEM.67.1.284-292.2001spa
dc.relation.referencesWu, S., Tang, L., Zhang, X., Xing, Z., Lei, Z., & Gao, Y. (2018). A decade of a thrips invasion in China: lessons learned. Ecotoxicology, 27(7), 1032–1038.spa
dc.relation.referencesYang, W., Xu, Q., Liu, H. X., Wang, Y. P., Wang, Y. M., Yang, H. T., & Guo, J. H. (2012). Evaluation of biological control agents against Ralstonia wilt on ginger. Biological Control, 62(3), 144–151. https://doi.org/10.1016/j.biocontrol.2012.05.001spa
dc.relation.referencesYang, X. (2014). Moraxellaceae. Encyclopedia of Food Microbiology: Second Edition, 2, 826–833. https://doi.org/10.1016/B978-0-12-384730-0.00441-9spa
dc.relation.referencesYonezawa, K., Yamada, K., & Kouno, I. (2011). New diketopiperazine derivatives isolated from sea urchin-derived Bacillus sp. Chemical and Pharmaceutical Bulletin, 59(1), 106–108. https://doi.org/10.1248/cpb.59.106spa
dc.relation.referencesZafar, T., & Sidhu, J. S. (2011). Avocado: Production, Quality, and Major Processed Products. In Handbook of Vegetables and Vegetable Processing (pp. 525–543). https://doi.org/10.1002/9780470958346.ch26spa
dc.relation.referencesZhang, H., Mahunu, G. K., Castoria, R., Apaliya, M. T., & Yang, Q. (2017). Augmentation of biocontrol agents with physical methods against postharvest diseases of fruits and vegetables. Trends in Food Science and Technology, 69, 36–45. https://doi.org/10.1016/j.tifs.2017.08.020spa
dc.relation.referencesZhao, J., Quan, C., Jin, L., & Chen, M. (2018). Production, detection and application perspectives of quorum sensing autoinducer-2 in bacteria. Journal of Biotechnology.spa
dc.relation.referencesZhou, J. W., Ruan, L. Y., Chen, H. J., Luo, H. Z., Jiang, H., Wang, J. S., & Jia, A. Q. (2019). Inhibition of Quorum Sensing and Virulence in Serratia marcescens by Hordenine. Journal of Agricultural and Food Chemistry, 67, 784–795. research-article. https://doi.org/10.1021/acs.jafc.8b05922spa
dc.relation.referencesZhu, H., Sun, S. wei, Li, H., Chang, A., Liu, Y. chen, Qian, J., & Shen, Y. ling. (2019). Significantly improved production of Welan gum by Sphingomonas sp. WG through a novel quorum-sensing-interfering dipeptide cyclo(L-Pro-L-Phe). International Journal of Biological Macromolecules, 126, 118–122. https://doi.org/10.1016/j.ijbiomac.2018.12.189spa
dc.relation.referencesZientz, E., Dandekar, T., & Gross, R. (2004). Metabolic Interdependence of Obligate Intracellular Bacteria and Their Insect Hosts. Microbiology and Molecular Biology Reviews, 68(4), 745 LP – 770. https://doi.org/10.1128/MMBR.68.4.745-770.2004spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc580 - Plantasspa
dc.subject.ddc660 - Ingeniería químicaspa
dc.subject.lembAguacate - Enfermedades y plagas
dc.subject.lembBacteria, phytopathogenic
dc.subject.lembBacterias fitopatógenas
dc.subject.lembPatología vegetal
dc.subject.proposalActividad antifúngica,spa
dc.subject.proposalActividad antibacterianaspa
dc.subject.proposalAHLsspa
dc.subject.proposalDiketopiperazinasspa
dc.subject.proposalAntifungal activityeng
dc.subject.proposalAntibacterial activityeng
dc.subject.proposalDiketopiperazineseng
dc.titleCaracterización de cepas bacterianas obtenidas de trips (Thysanoptera: Thripidae) que afectan cultivos de aguacate (Persea americana Mill) en Antioquia: Actividad antagonista y Quorum Sensing.spa
dc.title.translatedCharacterization of bacterial strains obtained from thrips (Thysanoptera: Thripidae) that affect avocado crops (Persea americana Mill) in Antioquia: Antagonist activity and Quorum Sensing.fra
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameUniversidad Nacional de Colombiaspa
oaire.fundernameColcienciasspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1019088590.2021.pdf
Tamaño:
2.23 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Biotecnología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: