Constructible sets in lattice-valued models

dc.contributor.advisorZambrano Ramírez, Pedro Hernán
dc.contributor.authorMoncayo Vega, Jose Ricardo
dc.contributor.researchgroupInteracciones Entre Teoría de Modelos, Teoría de Conjuntos, Categorías, Análisis y Geometríaspa
dc.date.accessioned2023-05-19T16:26:35Z
dc.date.available2023-05-19T16:26:35Z
dc.date.issued2023
dc.description.abstractWe investigate different set-theoretic constructions in Residuated Logic based on Fitting’s work on Intuitionistic Kripke models of Set Theory. Firstly, we consider constructable sets within valued models of Set Theory. We present two distinct constructions of the constructable universe: L B and L B , and prove that the they are isomorphic to V (von Neumann universe) and L (Gödel’s constructible universe), respectively. Secondly, we generalize Fitting’s work on Intuitionistic Kripke models of Set Theory using Ono and Komori’s Residuated Kripke models. Based on these models, we provide a general- ization of the von Neumann hierarchy in the context of Modal Residuated Logic and prove a translation of formulas between it and a suited Heyting valued model. We also propose a notion of universe of constructable sets in Modal Residuated Logic and discuss some aspects of it.eng
dc.description.abstractInvestigamos diferentes construcciones de la teoría de conjuntos en Lógica Residual basados en el trabajo de Fitting sobre los modelos intuicionistas de Kripke de la Teoría de Conjuntos. En primer lugar, consideramos conjuntos construibles dentro de modelos valuados de la Teoría de Conjuntos. Presentamos dos construcciones distintas del universo construible: L B y L B , y demostramos que son isomorfos a V (universo von Neumann) y L (universo construible de Gödel), respectivamente. En segundo lugar, generalizamos el trabajo de Fitting sobre los modelos intuicionistas de Kripke de la teoría de conjuntos utilizando los modelos residuados de Kripke de Ono y Komori. Con base en estos modelos, proporcionamos una generalización de la jerarquía de von Neumann en el contexto de la Lógica Modal Residuada y demostramos una traducción de fórmulas entre ella y un modelo Heyting valuado adecuado. También proponemos una noción de universo de conjuntos construibles en Lógica Modal Residuada y discutimos algunos aspectos de la misma. (Texto tomado de la fuente)spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Matemáticasspa
dc.description.researchareaLógica matemática, teoría de conjuntosspa
dc.format.extentxviii, 166 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83833
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Matemáticasspa
dc.relation.referencesGerard Allwein and Wendy MacCaull, A Kripke Semantics for the Logic of Gelfand Quantales, Studia Logica 68 (2001), no. 2, 173–228.spa
dc.relation.referencesGerard Allwein and Wendy MacCaull, A Kripke Semantics for the Logic of Gelfand Quantales, Studia Logica 68 (2001), no. 2, 173–228.spa
dc.relation.referencesRadim Belohlavek, Joseph W. Dauben, and George J. Klir, Fuzzy Logic and Mathematics: A Historical Perspective, 1 ed., Oxford University Press, New York, 2017 (eng).spa
dc.relation.referencesJohn L. Bell, Set Theory: Boolean-Valued Models and Independence Proofs, 3 ed., Oxford University Press UK, 2005.spa
dc.relation.referencesJohn Benavides N., La independencia de la hipótesis del continuo sobre un modelo fibrado para la teoría de conjuntos., 2004.spa
dc.relation.referencesWim J. Blok and Don L. Pigozzi, Algebraizable Logics, vol. 77, American Math- ematical Society, Providence, 1989.spa
dc.relation.referencesDumitru Buşneag and Dana Piciu, Some types of filters in residuated lattices, Soft Computing - A Fusion of Foundations, Methodologies and Applications 18 (2014), no. 5, 825–837.spa
dc.relation.referencesXavier Caicedo, Lógica de los haces de estructuras., Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales XIX (1995), no. 74, 569– 585.spa
dc.relation.referencesChen C. Chang, Sets constructible using Lκ,κ, Axiomatic Set Theory (Proc. Sym- pos. Pure Math. Vol. XIII (1971), 1–8.spa
dc.relation.referencesRobert P. Dilworth, Non-Commutative Residuated Lattices, Transactions of the American Mathematical Society 46 (1939), no. 3, 426–444.spa
dc.relation.referencesBrian A. Davey and Hilary A. Priestley, Introduction to Lattices and Order, 2 ed., Cambridge University Press, 2002.spa
dc.relation.referencesMichael Dummett, A Propositional Calculus with Denumerable Matrix, The Jour- nal of Symbolic Logic 24 (1959), no. 2, 97–106.spa
dc.relation.referencesFrancesc Esteva and Lluís Godo, Monoidal t-norm Based Logic: Towards a Logic for Left-continuous t-norms., Fuzzy Sets and Systems 124 (2001), 271–288.spa
dc.relation.referencesMichael P. Fourman and Martin E. Hyland, Sheaf models for analysis, Appli- cations of Sheaves: Proceedings of the Research Symposium on Applications of Sheaf Theory to Logic, Algebra, and Analysis, Durham, July 9–21, 1977 (Michael Fourman, Christopher Mulvey, and Dana Scott, eds.), Springer Berlin Heidelberg, Berlin, Heidelberg, 1979, pp. 280–301.spa
dc.relation.referencesMelvin Fitting, Intuitionistic Logic, Model Theory and Forcing, 1 ed., North- Holland Pub. Co, Amsterdam, 1969.spa
dc.relation.references_______, Intuitionistic Model Theory and the Cohen Independence Proofs, Studies in Logic and the Foundations of Mathematics 60 (1970), no. C, 219–226.spa
dc.relation.referencesNikolaos Galatos, Peter Jipsen, Tomasz Kowalski, and Hiroakira Ono, Residuated lattices : an algebraic glimpse at substructural logics, 1 ed., vol. 151, Elsevier, Amsterdam, 2007.spa
dc.relation.referencesKurt Gödel, Zum intuitionistischen aussagenkalkül, Anzeiger der Akademie der Wissenschaften in Wien, Mathematisch-naturwissenschaftliche Klasse 69 (1932), 65–66.spa
dc.relation.references_______, The Consistency of the Axiom of Choice and of the Generalized Continuum-Hypothesis, Proceedings of the National Academy of Sciences of the United States of America 24 (1938), no. 12, 556–557.spa
dc.relation.referencesRobin J. Grayson, Heyting-valued models for intuitionistic set theory, Applica- tions of Sheaves: Proceedings of the Research Symposium on Applications of Sheaf Theory to Logic, Algebra, and Analysis, Springer Berlin Heidelberg, 1979, pp. 402–414.spa
dc.relation.referencesPetr Hájek, Basic fuzzy logic and BL-algebras, Soft Computing 2 (1998), no. 3, 124–128.spa
dc.relation.references_____, Metamathematics of Fuzzy Logic, Trends in Logic, vol. 4, Springer Netherlands, Dordrecht, 1998.spa
dc.relation.referencesPetr Hájek and Zuzana Haniková, A set theory within fuzzy logic, Proceedings of The International Symposium on Multiple-Valued Logic (2001), 319–323.spa
dc.relation.references______, A Development of Set Theory in Fuzzy Logic, Beyond Two: Theory and Applications of Multiple-Valued Logic, vol. 114, Physica Heidelberg, 1 ed., 2003, pp. 273–285.spa
dc.relation.referencesUlrich Höhle, Monoidal Logic, Fuzzy-Systems in Computer Science, Vieweg+Teubner Verlag, 1994, pp. 233–243.spa
dc.relation.references______, Commutative, residuated 1—monoids, Non-Classical Logics and their Applications to Fuzzy Subsets, Springer Netherlands, 1995, pp. 53–106.spa
dc.relation.referencesThomas Jech, Set Theory, Springer Monographs in Mathematics, Springer Berlin Heidelberg, Berlin, Heidelberg, 2003.spa
dc.relation.referencesJuliette Kennedy, Menachem Magidor, and Jouko Väänänen, Inner Models from Extended Logics: Part 1, Avalaible at https://arxiv.org/pdf/2007.10764.pdf (2020).spa
dc.relation.referencesSaul A. Kripke, A completeness theorem in modal logic, Journal of Symbolic Logic 24 (1959), no. 1, 1–14.spa
dc.relation.references______, Semantical Analysis of Intuitionistic Logic I, Formal Systems and Re- cursive Functions: Proceedings of the Eighth Logic Colloquium, Oxford July 1963 (Michael Dummett and John Crossley, eds.), no. 2, North Holland, 1963, pp. 92–130.spa
dc.relation.references_____, Semantical Analysis of Modal Logic I. Normal Propositional Calculi, Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 9 (1963), no. 5-6, 67–96.spa
dc.relation.referencesWolfgang Krull, Axiomatische Begründung der allgemeinen Ideal theorie, Sitzungsberichte der physikalisch medizinischen Societäd der Erlangen 56 (1924), 47–63.spa
dc.relation.referencesKenneth Kunen, Set theory, College Publications, 2011.spa
dc.relation.referencesKevin C. Lano, Fuzzy sets and residuated logic, Fuzzy Sets and Systems 47 (1992), no. 2, 203 – 220.spa
dc.relation.references_____, Set theoretic foundations for fuzzy set theory, and their applications, Log- ical Foundations of Computer Science — Tver ’92 (Berlin, Heidelberg) (Nerode Anil and Mikhail Taitslin, eds.), Springer Berlin Heidelberg, 1992, pp. 258–268.spa
dc.relation.referencesWendy MacCaull, A note on Kripke semantics for residuated logic, Fuzzy Sets and Systems 77 (1996), no. 2, 229–234.spa
dc.relation.referencesChristopher Mulvey, &, Rendiconti del Circolo Matematico di Palermo 12 (1986), no. 2, 99–104.spa
dc.relation.referencesHiroakira Ono and Yuichi Komori, Logics without the contraction rule, The Jour- nal of Symbolic Logic 50 (1985), no. 1, 169–201.spa
dc.relation.referencesHiroakira Ono, Semantical analysis of predicate logics without the contraction rule, Studia Logica 44 (1985), no. 2, 187–196.spa
dc.relation.references______, Substructural Logics and Residuated Lattices — an Introduction, Trends in Logic: 50 Years of Studia Logica, vol. 21, Springer, Dordrecht, 1 ed., 2003, pp. 193–228.spa
dc.relation.referencesMitsuhiro Okada and Kazushige Terui, The finite model property for various fragments of intuitionistic linear logic, Journal of Symbolic Logic 64 (1999), no. 2, 790–802.spa
dc.relation.referencesKimmo I. Rosenthal, Quantales and their applications, Longman Scientific & Technical, Essex, England, 1990.spa
dc.relation.referencesHelena Rasiowa and Roman Sikorski, The Mathematics of Metamathematics, Journal of Symbolic Logic 32 (1963), no. 2, 274–275.spa
dc.relation.referencesDana Scott and John Myhill, Ordinal Definability, Axiomatic Set Theory: Pro- ceedings of Symposia in Pure Mathematics Vol. XIII (1971), 271–278.spa
dc.relation.referencesDana Scott and Robert Solovay, Boolean-Valued Models for Set Theory, Mimeographed notes for the 1967 American Mathematical Society Symposium on axiomatic set theory, 1967.spa
dc.relation.referencesParvin Safari and Saeed Salehi, Kripke semantics for fuzzy logics, Soft Computing 22 (2018), no. 3, 839–844.spa
dc.relation.referencesDirk van Dalen, Logic and Structure, 4 ed., Springer Berlin, Heidelberg, 2004.spa
dc.relation.referencesMorgan Ward, Structure Residuation, Annals of Mathematics 39 (1938), no. 3, 558–568.spa
dc.relation.referencesMorgan Ward and Robert P. Dilworth, Residuated Lattices, Proceedings of the National Academy of Sciences of the United States of America 24 (1938), no. 3, 162–164.spa
dc.relation.referencesFrank Wolter and Michael Zakharyaschev, On the Blok-Esakia Theorem, Leo Esakia on Duality in Modal and Intuitionistic Logics, vol. 4, Springer, Dordrecht, 2014, pp. 99–118.spa
dc.relation.referencesLotfi A. Zadeh, Fuzzy sets, Information and Control 8 (1965), no. 3, 338–353.spa
dc.relation.referencesErnest Zermelo, Über Grenzzahlen und Mengenbereiche, Fundamenta Mathemat- icae 16 (1930), no. 1, 29–47 (ger).spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc510 - Matemáticasspa
dc.subject.lembTeoría de conjuntos
dc.subject.lembSet theory
dc.subject.lembFunciones de conjuntos
dc.subject.lembSet Functions
dc.subject.lembAlgebra abstracta
dc.subject.lembAlgebra, abstract
dc.subject.proposalValued modelseng
dc.subject.proposalAbstract logicseng
dc.subject.proposalResiduated latticeseng
dc.subject.proposalKripke modelseng
dc.subject.proposalConstructible setseng
dc.subject.proposalModelos valuadosspa
dc.subject.proposalLógicas abstractasspa
dc.subject.proposalRetículos residualesspa
dc.subject.proposalModelos de Kripkespa
dc.subject.proposalConjuntos construiblesspa
dc.titleConstructible sets in lattice-valued modelseng
dc.title.translatedConjuntos construibles en modelos valuados en retículosspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1014286254.2023 - Jose Ricardo Moncayo Vega.pdf
Tamaño:
866.41 KB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Matemáticas

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: