Evaluación de la eficacia de formulaciones de anfotericina B encapsulada en micelas poliméricas como opción terapéutica en un modelo de Candidiasis en larvas de Galleria mellonella.
| dc.contributor.advisor | Pérez Pérez, León Darío | spa |
| dc.contributor.advisor | Parra Giraldo, Claudia Marcela | spa |
| dc.contributor.author | Villamil Poveda, Jean Carlos | spa |
| dc.contributor.researchgroup | Grupo de Investigación en Macromoléculas / Laboratorio de micosis humanas y proteómica | spa |
| dc.date.accessioned | 2020-03-05T22:10:08Z | spa |
| dc.date.available | 2020-03-05T22:10:08Z | spa |
| dc.date.issued | 2019-06-01 | spa |
| dc.description.abstract | Amphotericin B (AMB) is a broad-spectrum antifungal drug. It is commonly used to treat systemic fungal infections and has few reports of fungal resistance. However, its widespread use is limited by its toxicity. When polymeric micelles are used not only increases the solubility of AMB in aqueous media, but also decreases its toxicity. However, polymeric micelles have low AMB encapsulation performance since they interact weakly with the drug, which is an amphiphilic and amphoteric molecule. In this work, the effect of the conjugation of PEG-b-PCL with cholesterol was investigated. PEG-b-PCL is a biocompatible and biodegradable diblock copolymer that is commonly used to encapsulate medications. The results indicate that the presence of cholesterol increased encapsulation efficiency and AMB loading capacity in polymeric micelles; in turn, improves the ability to release it in a controlled manner. Compared to Fungizone®, which was taken as a reference, polymeric micelles loaded with AMB showed lower in vitro efficacy against Candida albicans SC5314, this was evidenced in the increase in the minimum inhibitory concentration. However, in vivo evaluation of antifungal activity using Galleria mellonella's invertebrate model showed comparable efficacy. The cytotoxicity of AMB against L929 fibroblasts and red blood cells decreased for micellar formulations with respect to the reference. The results indicate that PEG-b-PCL copolymers are promising vehicles in the development of AMB micellar formulations.. | spa |
| dc.description.abstract | La anfotericina B (AMB) es un fármaco antifúngico de amplio espectro de acción. Es comúnmente utilizado para tratar micosis sistemicas y presenta pocos reportes de resistencia fúngica. Sin embargo, su uso generalizado se ve limitado por su toxicidad. Cuando se emplean micelas poliméricas no solo aumenta la disolución de AMB en medios acuosos, sino que también disminuye su toxicidad. Sin embargo, las micelas poliméricas tienen un bajo rendimiento de encapsulación de AMB ya que interactúan débilmente con el fármaco, que es una molécula anfifílica y anfótera. En este trabajo, se investigó el efecto de la conjugación de PEG-b-PCL con colesterol. El PEG-b-PCL es un copolímero dibloque biocompatible y biodegradable que se usa comúnmente para encapsular fármacos. Los resultados indican que la presencia de colesterol aumentó la eficiencia de encapsulación y la capacidad de carga de AMB en las micelas poliméricas; a su vez, mejora la capacidad de liberarla de manera controlada. En comparación con Fungizone®, el cual se tomó como referencia, las micelas poliméricas cargadas con AMB presentaron una eficacia in vitro más baja contra Candida albicans SC5314, esto se evidenció en el aumento de la concentración mínima inhibitoria. Sin embargo, la evaluación in vivo de la actividad antifúngica utilizando el modelo invertebrado de Galleria mellonella mostró una eficacia comparable. La citotoxicidad de AMB frente a fibroblastos L929 y glóbulos rojos disminuyó para las micelas cargadas con AMB respecto al control. Los resultados indican que copolímeros PEG-b-PCL son vehículos promisorios para encapsular y liberar AMB. | spa |
| dc.description.degreelevel | Maestría | spa |
| dc.format.extent | 80 | spa |
| dc.format.mimetype | application/pdf | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/75903 | |
| dc.language.iso | spa | spa |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
| dc.publisher.department | Instituto de Biotecnología | spa |
| dc.relation.references | 1. Enoch DA, Yang H, Aliyu SH, Micallef C. The Changing Epidemiology of Invasive Fungal Infections. In: Lion T, editor. Human Fungal Pathogen Identification: Methods and Protocols [Internet]. New York, NY: Springer New York; 2017. p. 17–65. Available from: http://dx.doi.org/10.1007/978-1-4939-6515-1_2 | spa |
| dc.relation.references | 2. Cortés JA, Reyes P, Gómez CH, Cuervo SI, Rivas P, Casas CA, et al. Clinical and epidemiological characteristics and risk factors for mortality in patients with candidemia in hospitals from Bogot??, Colombia. Brazilian J Infect Dis [Internet]. 2014;18(6):631–7. Available from: http://dx.doi.org/10.1016/j.bjid.2014.06.009 | spa |
| dc.relation.references | 3. Nucci M, Queiroz-Telles F, Alvarado-Matute T, Tiraboschi IN, Cortes J, Zurita J, et al. Epidemiology of Candidemia in Latin America: A Laboratory-Based Survey. PLoS One. 2013;8(3). | spa |
| dc.relation.references | 4. Ortíz Ruiz G, Osorio J, Valderrama S, Álvarez D, Elías Díaz R, Calderón J, et al. Risk factors for candidemia in non-neutropenic critical patients in Colombia. Med Intensiva [Internet]. 2015;40(3). Available from: http://www.sciencedirect.com/science/article/pii/S0210569115001941 | spa |
| dc.relation.references | 5. Yamasaki M, Harada E, Tamura Y, Lim SY, Ohsuga T, Yokoyama N, et al. In vitro and in vivo safety and efficacy studies of amphotericin B on Babesia gibsoni. Vet Parasitol [Internet]. 2014;205(3–4):424–33. Available from: http://dx.doi.org/10.1016/j.vetpar.2014.09.005 | spa |
| dc.relation.references | 6. Mpakosi A, Siopi M, Falaina V, Siafakas N, Roilides E, Kimouli M, et al. Successful therapy of Candida pulcherrima fungemia in a premature newborn with liposomal amphotericin B and micafungin. Med Mycol Case Rep [Internet]. 2016;12:24–7. Available from: http://www.sciencedirect.com/science/article/pii/S2211753916300434 | spa |
| dc.relation.references | 7. Yamasaki M, Harada E, Tamura Y, Lim SY, Ohsuga T, Yokoyama N, et al. In vitro and in vivo safety and efficacy studies of amphotericin B on Babesia gibsoni. Vet Parasitol. 2014;205(3–4):424–33. | spa |
| dc.relation.references | 8. Ruiz HK, Serrano DR, Dea-Ayuela MA, Bilbao-Ramos PE, Bolás-Fernández F, Torrado JJ, et al. New amphotericin B-gamma cyclodextrin formulation for topical use with synergistic activity against diverse fungal species and Leishmania spp. Int J Pharm [Internet]. 2014;473(1–2):148–57. Available from: http://dx.doi.org/10.1016/j.ijpharm.2014.07.004 | spa |
| dc.relation.references | 9. Meiring S, Fortuin-de Smidt M, Kularatne R, Dawood H, Govender NP. Prevalence and Hospital Management of Amphotericin B Deoxycholate-Related Toxicities during Treatment of HIV-Associated Cryptococcal Meningitis in South Africa. PLoS Negl Trop Dis. 2016;10(7):1–14. | spa |
| dc.relation.references | 10. Wong-Beringer a, Jacobs R a, Guglielmo BJ. Lipid formulations of amphotericin B: clinical efficacy and toxicities. Clin Infect Dis [Internet]. 1998;27(3):603–18. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9770163 | spa |
| dc.relation.references | 11. Autor *, Pasquali RC, Chiappetta DA, Bregni C. Los Copolímeros en Bloques Anfifílicos y sus Aplicaciones Farmacéuticas. acta Farm Bonaer. 2005;24(4). | spa |
| dc.relation.references | 12. Falci DR, Da Rosa FB, Pasqualotto AC. Comparison of nephrotoxicity associated to different lipid formulations of amphotericin B: A real-life study. Mycoses. 2015;58(2):104–12. | spa |
| dc.relation.references | 13. Jee JP, McCoy A, Mecozzi S. Encapsulation and release of amphotericin B from an ABC triblock fluorous copolymer. Pharm Res. 2012;29(1):69–82. | spa |
| dc.relation.references | 14. Adams ML, Kwon GS. Relative aggregation state and hemolytic activity of amphotericin B encapsulated by poly(ethylene oxide)-block-poly(N-hexyl-L-aspartamide)-acyl conjugate micelles: Effects of acyl chain length. J Control Release. 2003;87(1–3):23–32. | spa |
| dc.relation.references | 15. Sobel JD. Seminar Vulvovaginal candidosis. Lancet. 2007;369:1961–71. | spa |
| dc.relation.references | 16. Almirante B, Rodríguez D, Park BJ, Cuenca-Estrella M, Planes AM, Almela M, Mensa J, Sanchez F, Ayats J, Gimenez M, Saballs P, Fridkin SK, Morgan J, Rodriguez-Tudela JL, Warnock DW PA. Epidemiology and predictors of mortality in cases of Candida bloodstream infection: results from population-based surveillance, barcelona, Spain, from 2002 to 2003. J Clin Microbiol. 2005;43(4):1829–35. | spa |
| dc.relation.references | 17. Pemán J, Salavert M. Epidemiología general de la enfermedad fúngica invasora. Enferm Infecc Microbiol Clin. 2012;30(2):90–8. | spa |
| dc.relation.references | 18. Amalia del Palacio JV y AA. Epidemiología de las candidiasis invasoras en población pediátrica y adulta. Rev Iberoam Micol [Internet]. 2009;26(1):2–7. Available from: http://dx.doi.org/10.1016/S1130-1406(09)70002-6 | spa |
| dc.relation.references | 19. Gow NAR, Yadav B. Microbe profile: Candida albicans: A shape-changing, opportunistic pathogenic fungus of humans. Microbiol (United Kingdom). 2017;163(8):1145–7. | spa |
| dc.relation.references | 20. Gow NAR, Hube B. Importance of the Candida albicans cell wall during commensalism and infection. Curr Opin Microbiol [Internet]. 2012;15(4):406– 12. Available from: http://dx.doi.org/10.1016/j.mib.2012.04.005 | spa |
| dc.relation.references | 21. Tsai PW, Chen YT, Hsu PC, Lan CY. Study of Candida albicans and its interactions with the host: A mini review. Biomed [Internet]. 2013;3(1):51–64. Available from: http://dx.doi.org/10.1016/j.biomed.2012.12.004 | spa |
| dc.relation.references | 22. Patel M, Shackleton JT, Coogan MM. Effect of antifungal treatment on the prevalence of yeasts in HIV-infected subjects. J Med Microbiol. 2006;55(9):1279–84. | spa |
| dc.relation.references | 23. Volmer AA, Szpilman AM, Carreira EM. Synthesis and biological evaluation of amphotericin B derivatives. Nat Prod Rep. 2010;27(9):1329–49. | spa |
| dc.relation.references | 24. J.J. TORRADO, R. ESPADA, M.P. BALLESTEROS ST-S. Amphotericin B Formulations and Drug Targeting. J Pharm Sci. 2007;97(10):2405–25. | spa |
| dc.relation.references | 25. Arango ACM. Papel del estrés oxidativo en el mecanismo de acción de la anfotericina B y evaluación de la virulencia de hongos patógenos y de la eficacia de antifúngicos en Galleria mellonella. 2014. | spa |
| dc.relation.references | 26. Laniado-Laborín R, Cabrales-Vargas MN. Amphotericin B: side effects and toxicity. Rev Iberoam Micol. 2009;26(4):223–7. | spa |
| dc.relation.references | 27. Hamill RJ. Amphotericin B formulations: A comparative review of efficacy and toxicity. Drugs. 2013;73(9):919–34. | spa |
| dc.relation.references | 28. Arendrup MC, Boekhout T, Akova M, Meis JF, Cornely OA, Lortholary O, et al. ESCMID and ECMM joint clinical guidelines for the diagnosis and management of rare invasive yeast infections. Clin Microbiol Infect. 2014;20(S3):76–98. | spa |
| dc.relation.references | 29. Vogelsinger H, Weiler S, Djanani A, Kountchev J, Bellmann-Weiler R, Wiedermann CJ, et al. Amphotericin B tissue distribution in autopsy material after treatment with liposomal amphotericin B and amphotericin B colloidal dispersion. J Antimicrob Chemother. 2006;57(6):1153–60. | spa |
| dc.relation.references | 30. Alvarez C, Shin DH, Kwon GS. Reformulation of Fungizone by PEG-DSPE Micelles: Deaggregation and Detoxification of Amphotericin B. Pharm Res [Internet]. 2016;33(9):2098–106. Available from: http://dx.doi.org/10.1007/s11095-016-1948-7 | spa |
| dc.relation.references | 31. JOANNA BARWICZ, SYLVIE CHRISTIAN AIG. Effects of the aggregation state of amphotericin B on its toxicity to mice. Antimicrob Agents Chemother. 1992;36(10):2310–5. | spa |
| dc.relation.references | 32. Daele R Van, Spriet I, Wauters J, Maertens J, Mercier T, Hecke S Van, et al. Antifungal drugs: What brings the future? Med Mycol. 2019;57:328–43. | spa |
| dc.relation.references | 33. Kasai Y, Matsumori N, Ueno H, Nonomura K, Yano S, Michio M, et al. Synthesis of 6-F-ergosterol and its influence on membrane-permeabilization of amphotericin B and amphidinol 3. Org Biomol Chem. 2011;9(5):1437–42. | spa |
| dc.relation.references | 34. Nakagawa Y, Umegawa Y, Nonomura K, Matsushita N, Takano T, Tsuchikawa H, et al. Axial hydrogen at C7 position and bumpy tetracyclic core markedly reduce sterol’s affinity to amphotericin B in membrane. Biochemistry. 2015;54(2):303–12. | spa |
| dc.relation.references | 35. Grudzinski W, Sagan J, Welc R, Luchowski R, Gruszecki WI. Molecular organization, localization and orientation of antifungal antibiotic amphotericin B in a single lipid bilayer. Sci Rep. 2016;6(May):1–11. | spa |
| dc.relation.references | 36. Mouri R, Konoki K, Matsumori N, Oishi T, Murata M. Complex Formation of Amphotericin B in Sterol-Containing Membranes As Evidenced by Surface Plasmon Resonance. Biochemistry. 2008;47:7807–15. | spa |
| dc.relation.references | 37. Zielińska J, Wieczór M, Baczek T, Gruszecki M, Czub J. Thermodynamics and kinetics of amphotericin B self-association in aqueous solution characterized in molecular detail. Sci Rep. 2016;6(August 2015):1–11. | spa |
| dc.relation.references | 38. Barwicz J, Tancrède P. The effect of aggregation state of amphotericin-B on its interactions with cholesterol- or ergo sterol-containing phosphatidylcholine monolayers. Chem Phys Lipids. 1997;85(2):145–55. | spa |
| dc.relation.references | 39. Chen MC, Sonaje K, Chen KJ, Sung HW. A review of the prospects for polymeric nanoparticle platforms in oral insulin delivery. Biomaterials. 2011;32(36):9826–38. | spa |
| dc.relation.references | 40. Caballero-George C, Marin, Briceño. Critical evaluation of biodegradable polymers used in nanodrugs. Int J Nanomedicine. 2013;3071. | spa |
| dc.relation.references | 41. Wojda I. Immunity of the greater wax moth Galleria mellonella. Insect Sci. 2017;24(3):342–57. | spa |
| dc.relation.references | 42. Fuchs BB, Mylonakis E. Using non-mammalian hosts to study fungal virulence and host defense. Curr Opin Microbiol. 2006;9(4):346–51. | spa |
| dc.relation.references | 43. Scorzoni L, de Lucas MP, Mesa-Arango AC, Fusco-Almeida AM, Lozano E, Cuenca-Estrella M, et al. Antifungal Efficacy during Candida krusei Infection in Non-Conventional Models Correlates with the Yeast In Vitro Susceptibility Profile. PLoS One. 2013;8(3). | spa |
| dc.relation.references | 44. Fatima Kamal, Danielle L. Peters JGM, Gary B. Dunphy and JJD. Use of Greater Wax Moth Larvae (Galleria mellonella) as an Alternative Animal Infection Model for Analysis of Bacterial Pathogenesis. Bacteriophages Methods Protoc. 2019;1898:235–50. | spa |
| dc.relation.references | 45. Song Y, Tian Q, Huang Z, Fan D, She Z, Liu X, et al. Self-assembled micelles of novel amphiphilic copolymer cholesterol-coupled F68 containing cabazitaxel as a drug delivery system. Int J Nanomedicine. 2014;9(1):2307–17. | spa |
| dc.relation.references | 46. Paquet MJ, Fournier I, Barwicz J, Tancrède P, Auger M. The effects of amphotericin B on pure and ergosterol- or cholesterol-containing dipalmitoylphosphatidylcholine bilayers as viewed by 2H NMR. Chem Phys Lipids. 2002;119(1–2):1–11. | spa |
| dc.relation.references | 47. Evans BC, Nelson CE, Yu SS, Beavers KR, Kim AJ, Li H, et al. Ex vivo red blood cell hemolysis assay for the evaluation of pH-responsive endosomolytic agents for cytosolic delivery of biomacromolecular drugs. J Vis Exp. 2013;(73):7–11. | spa |
| dc.relation.references | 48. Rao JP, Geckeler KE. Polymer nanoparticles: Preparation techniques and size-control parameters. Prog Polym Sci [Internet]. 2011;36(7):887–913. Available from: http://dx.doi.org/10.1016/j.progpolymsci.2011.01.001 | spa |
| dc.relation.references | 49. MC Arendrup1 (Chairman, Denmark), S Arikan-Akdagli8 (Turkey), F Barchiesi9 (Italy) M, Castanheira10 (USA), E Chryssanthou11 (Sweden), J Guinea7 (Scientific Secretary, Spain) PH (Steering, Committee, Czech Republic), H Järv12 (Estonia), N Klimko13 (Russia), P Koukila-Kähkölä14 (Finland) OK, (Germany), K. Lagrou5 (Steering Committee, Belgium), C Lass-Flörl16 (Austria), M Mares17 (Romania) T, Matos18 (Slovenia), J Meletiadis2, 3 (Scientific Data Coordinator, Greece), C Moore19 (UK), JW Mouton3 4, (EUCAST Steering Committee representative), K Muehlethaler20 (Switzerland) TR (Ireland). EUCAST DEFINITIVE DOCUMENT E.DEF 7.3.1. EUCAST Defin Doc EDEF 731 [Internet]. 2017;(January):1–21. Available from: http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/AFST/Files/EUCAST_E_Def_7_3_1_Yeast_testing__definitive.pdf | spa |
| dc.relation.references | 50. Usman F, Khalil R, Ul-Haq Z, Nakpheng T, Srichana T. Bioactivity, Safety, and Efficacy of Amphotericin B Nanomicellar Aerosols Using Sodium Deoxycholate Sulfate as the Lipid Carrier. AAPS PharmSciTech. 2018;19(5):2077–86. | spa |
| dc.relation.references | 51. Pozzi D, Colapicchioni V, Caracciolo G, Piovesana S, Capriotti AL, Palchetti S, et al. Effect of polyethyleneglycol (PEG) chain length on the bio-nano- interactions between PEGylated lipid nanoparticles and biological fluids: From nanostructure to uptake in cancer cells. Nanoscale. 2014;6(5):2782–92. | spa |
| dc.relation.references | 52. Ding J, Chen L, Xiao C, Chen L, Zhuang X, Chen X. Noncovalent interaction-assisted polymeric micelles for controlled drug delivery. Chem Commun [Internet]. 2014;50(77):11274–90. Available from: http://dx.doi.org/10.1039/C4CC03153A | spa |
| dc.relation.references | 53. Watamoto T, Samaranayake LP, Jayatilake JAMS, Egusa H, Yatani H, Seneviratne CJ. Effect of filamentation and mode of growth on antifungal susceptibility of Candida albicans. Int J Antimicrob Agents. 2009;34(4):333–9. | spa |
| dc.relation.references | 54. Irshad M, Shreaz S, Manzoor N, Khan LA, Rizvi MMA. Anticandidal activity of Cassia fistula and its effect on ergosterol biosynthesis. Pharm Biol. 2011;49(7):727–33. | spa |
| dc.relation.references | 55. Yang X, Zhu B, Dong T, Pan P, Shuai X, Inoue Y. Interactions between an anticancer drug and polymeric micelles based on biodegradable polyesters. Macromol Biosci. 2008;8(12):1116–25. | spa |
| dc.relation.references | 56. Boughter CT, Monje-Galvan V, Im W, Klauda JB. Influence of cholesterol on phospholipid bilayer structure and dynamics. J Phys Chem B. 2016;120(45):11761–72. | spa |
| dc.relation.references | 57. Bates ADW, Su L, Yu DT, Chertow GM, Seger DL, Gomes DRJ, et al. Mortality and Costs of Acute Renal Fail Assocated with Amphoteridn B Therapy. 2016;32(5):686–93. | spa |
| dc.relation.references | 58. Lavasanifar A, Samuel J, Kwon GS. The effect of fatty acid substitution on the in vitro release of amphotericin B from micelles composed of poly(ethylene oxide)-block-poly(N-hexyl stearate-L-aspartamide). J Control Release. 2002;79(1–3):165–72. | spa |
| dc.relation.references | 59. Yang X, Li L, Wang Y, Tan Y. Preparation, pharmacokinetics and tissue distribution of micelles made of reverse thermo-responsive polymers. Int J Pharm. 2009;370(1–2):210–5. | spa |
| dc.relation.references | 60. Xiangyang X, Ling L, Jianping Z, Shiyue L, Jie Y, Xiaojin Y, et al. Preparation and characterization of N-succinyl-N′-octyl chitosan micelles as doxorubicin carriers for effective anti-tumor activity. Colloids Surfaces B Biointerfaces. 2007;55(2):222–8. | spa |
| dc.relation.references | 61. Vakil R, Kwon GS. Effect of cholesterol on the release of amphotericin B from PEG-phospholipid micelles. Mol Pharm. 2008;5(1):98–104. | spa |
| dc.relation.references | 62. Diezi TA, Kwon G. Amphotericin B/sterol co-loaded PEG-phospholipid micelles: effects of sterols on aggregation state and hemolytic activity of amphotericin B. Pharm Res. 2012;29(7):1737–44. | spa |
| dc.relation.references | 63. Kavanagh K, Sheehan G. The Use of Galleria mellonella Larvae to Identify Novel Antimicrobial Agents against Fungal Species of Medical Interest. J Fungi. 2018;4(3):113. | spa |
| dc.relation.references | 64. Desalermos A, Fuchs BB, Mylonakis E. Selecting an Invertebrate Model Host for the Study of Fungal Pathogenesis. PLoS Pathog. 2012;8(2):e1002451. | spa |
| dc.relation.references | 65. Li D-D, Deng L, Hu G-H, Zhao L-X, Hu D-D, Jiang Y-Y, et al. Using Galleria mellonella-Candida albicans infection model to evaluate antifungal agents. Biol Pharm Bull [Internet]. 2013;36(9):1482–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23995660 | spa |
| dc.rights | Derechos reservados - Universidad Nacional de Colombia | spa |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
| dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
| dc.rights.spa | Acceso abierto | spa |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
| dc.subject.proposal | Amphotericin B | eng |
| dc.subject.proposal | anfotericina B | spa |
| dc.subject.proposal | infecciones fúngicas | spa |
| dc.subject.proposal | fungal infections | eng |
| dc.subject.proposal | micellar systems | eng |
| dc.subject.proposal | sistemas micelares | spa |
| dc.subject.proposal | colesterol | spa |
| dc.subject.proposal | cholesterol | eng |
| dc.title | Evaluación de la eficacia de formulaciones de anfotericina B encapsulada en micelas poliméricas como opción terapéutica en un modelo de Candidiasis en larvas de Galleria mellonella. | spa |
| dc.type | Trabajo de grado - Maestría | spa |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
| dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
| dc.type.content | Text | spa |
| dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
| dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |

