Evaluación de la residualidad de pesticidas en fruta y contaminación por metales pesados en suelo y pulpa de diferentes sistemas productivos de gulupa (Passiflora edulis sim)

dc.contributor.advisorJimenez Cartagena, Claudio
dc.contributor.advisorCastañeda Sánchez, Darío Antonio
dc.contributor.authorOsorio Bermudez, Johanna Marcela
dc.contributor.researchgroupGrupo de investigación aplicada al medio ambiente – GAMAspa
dc.date.accessioned2022-03-15T16:42:41Z
dc.date.available2022-03-15T16:42:41Z
dc.date.issued2019-12
dc.descriptionilustraciones, diagramas, mapas, tablaszho
dc.description.abstractLa gulupa es la tercera fruta tropical de mayor exportación en Colombia, su principal destino la UE, presenta normas de inocuidad estrictas en los LMR de plaguicidas y contenidos de metales. Dada la importancia que tiene la gulupa para el renglón productivo de Colombia, este estudio buscó identificar si el tipo de sistema productivo se relacionaba con la residualidad de plaguicidas y el contenido de metales en el suelo y fruto. Para esto se realizaron visitas y encuestas a 35 productores de gulupa. Los cuales se agruparon a partir de un análisis FAMD. De los grupos más contrastantes se tomaron 10 muestras de fruta para análisis de plaguicidas y 12 de fruta y suelo para análisis de metales tóxicos. Se identificaron tres sistemas productivos: tecnificados de grandes productores en el Suroeste, convencional de pequeños productores en el Oriente y en transición de medianos productores en ambas regiones. El 20% de las muestras no presentaron residuos de plaguicidas, el 50% contenía residuos que sobrepasaba el LMR. El Azoxystrobin y tebuconazole, fueron las sustancias identificadas con mayor frecuencia. El sistema convencional cuya asistencia técnica era recibida por casas comerciales de agroquímicos, se caracterizó por el uso de plaguicidas con mayor nivel de peligrosidad y mayores conflictos con el cumplimiento de los LMR. Se identificaron diferencias significativas mediante un ANOVA de dos vías entre el contenido de metales en suelo y el material litológico. Los suelos de origen aluvial presentaron mayores niveles de Cu, Cr y Cd con respecto a suelos ígneos. Las propiedades fisicoquímicas: pH, materia orgánica y capacidad de intercambio catiónico, no se correlacionaron con mayores contenidos de metales en la fruta. El tipo de sistema productivo se relacionó con altos niveles de residualidad de plaguicidas en fruta, pero no con el contenido de metales. Para futuros estudios se sugiere incrementar los puntos de muestreo. (Texto tomado de la fuente)spa
dc.description.abstractThe passion fruit is the third most exported tropical fruit in Colombia, its main destination in the EU, has strict safety standards in pesticide MRLs and metal content. Given the importance of gulupa for the productive line of Colombia, this study sought to identify if the type of productive system was related to the residuality of pesticides and the content of metals in the soil and fruit. For this, visits and surveys were conducted with 35 gulupa producers. Which were grouped from a FAMD analysis. From the most contrasting groups, 10 fruit samples were taken for pesticide analysis and 12 for fruit and soil for toxic metal analysis. Three productive systems were identified: technified from large producers in the Southwest, conventional from small producers in the East and in transition from medium producers in both regions. 20% of the samples did not present pesticide residues, 50% contained residues that exceeded the MRL. Azoxystrobin and tebuconazole were the most frequently identified substances. The conventional system whose technical assistance was received by commercial houses of agrochemicals, was characterized by the use of pesticides with a higher level of danger and greater conflicts with compliance with the MRLs. Significant differences were identified by a two-way ANOVA between the content of metals in soil and the lithological material. The soils of alluvial origin had higher levels of Cu, Cr and Cd with respect to igneous soils. The physicochemical properties: pH, organic matter and cation exchange capacity, were not correlated with higher metal content in the fruit. The type of production system was related to high levels of pesticide residuality in fruit, but not to the metal content. For future studies it is suggested to increase the sampling points.eng
dc.description.curricularareaÁrea Curricular de Medio Ambientespa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Medio Ambiente y Desarrollospa
dc.description.researchareaContaminación ambientalspa
dc.format.extentxv, 118 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81222
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Geociencias y Medo Ambientespa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Medio Ambiente y Desarrollospa
dc.relation.referencesAERU. (2007). Pesticide Properties Database. Retrieved December 1, 2019, from https://sitem.herts.ac.uk/aeru/footprint/es/index.htmspa
dc.relation.referencesAgronet. (2018). Red de información y comunicación del sector Agropecuario Colombiano. Retrieved December 1, 2019, from http://www.agronet.gov.co/estadistica/Paginas/spa
dc.relation.referencesAhouangninou, C., Fayomi, B. E., & Martin, T. (2011). Assessing health and environmental risks as regards pesticide practices of vegetable growers in the rural city of Tori-Bossito in southern Benin . Cahiers Agricultures, 20(3), 216–222. https://doi.org/10.1684/agr.2011.0485spa
dc.relation.referencesAli, S., Ahmad, M., Ali, T., Shahbaz, B., Khan, G. A., Iftikhar, M., & Nosheen, F. (2013). Role of private sector in promoting IPM practices among farming community in Punjab, Pakistan. Journal of Animal and Plant Sciences, 23(5), 1473–1476.spa
dc.relation.referencesÁngel-Coca, C., Nates-Parra, G., Ospina-Torres, R., Ortiz, C. D. M., & Amaya-Márquez, M. (2011). Biología floral y reproductiva de la gulupa Passiflora edulis sims f. edulis. Caldasia, 33(2), 433–451.spa
dc.relation.referencesAngulo, R. (2009). Gulupa (Passiflora edulis var. edulis). (Bayer CropScience, Ed.). Bogotá. Bagheri, A., Emami, N., Damalas, C. A., & Allahyari, M. S. (2019). Farmers’ knowledge, attitudes, and perceptions of pesticide use in apple farms of northern Iran: impact on safety behavior. Environmental Science and Pollution Research, 26(9), 9343–9351. https://doi.org/10.1007/s11356-019-04330-yspa
dc.relation.referencesBastidas, D. A., Guerrero, J. A., & Wyckhuys, K. (2013). Residuos de plaguicidas en cultivos de pasifloras en regiones de alta producción en Colombia. Revista Colombia Quimica, 42(2), 39–47.spa
dc.relation.referencesCalatayud-Vernich, P., Calatayud, F., Simó, E., & Picó, Y. (2018). Pesticide residues in honey bees, pollen and beeswax: Assessing beehive exposure. Environmental Pollution, 241, 106– 114. https://doi.org/https://doi.org/10.1016/j.envpol.2018.05.062spa
dc.relation.referencesCardona, N., & Pino, L. M. (2016). Exposición laboral a plaguicidas en una muestra de trabajadores de café y gulupa mediante una matriz de tarea-exposición en el municipio de Jericó, Antioquia entre enero y mayo 2016. Universidad de Antioquia.spa
dc.relation.referencesChaney, R. L. (1989). Toxic Element Accumulation in Soils and Crops: Protecting Soil Fertility and Agricultural Food-Chains. Ecological Studies, 140–158. https://doi.org/10.1007/978-3- 642-74451-8_10spa
dc.relation.referencesChen, M., Chen, L., & Huang, P. (2015). Assessment, Composition and Possible Source of Organochlorine Pesticides in Surface Soils from Ürümqi, China. Pedosphere, 25(6), 888– 900. https://doi.org/10.1016/S1002-0160(15)30069-2spa
dc.relation.referencesClaeys, W. L., Schmit, J.-F., Bragard, C., Maghuin-Rogister, G., Pussemier, L., & Schiffers, B. (2011). Exposure of several Belgian consumer groups to pesticide residues through fresh fruit and vegetable consumption. Food Control, 22(3), 508–516. https://doi.org/https://doi.org/10.1016/j.foodcont.2010.09.037spa
dc.relation.referencesCleves, J., & Jarma, A. (2014). Characterization and typification of citrus production systems in the department of Meta. Agronomia Colombiana, 32(1), 113–121. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0- 84901001337&partnerID=40&md5=4aee789f3dc5f353f4cae3f4f9d0794cspa
dc.relation.referencesCodex Alimentarium. Norma general para los contaminantes y las toxinas presentes en los alimentos y piensos (1995). Retrieved from http://www.fao.org/fao-who- codexalimentarius/sh- proxy/es/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex %252FStandards%252FCODEX%2BSTAN%2B193-1995%252FCXS_193s.pdfspa
dc.relation.referencesCollin, B., & Doelsch, E. (2010). Impact of high natural soilborne heavy metal concentrations on the mobility and phytoavailability of these elements for sugarcane. Geoderma, 159(3), 452– 458. https://doi.org/https://doi.org/10.1016/j.geoderma.2010.09.013spa
dc.relation.referencesCollins, C., Martin, I., & Fryer, M. (2006). Evaluation of models for predicting plant uptake of chemicals from soil. Bristol. https://doi.org/978-1-84432-788-1spa
dc.relation.referencesCowan, R., & Gunby, P. (1996). Sprayed to death: path dependence, lock-in and pest control strategies. The Economic Journal, 106(436), 521–542.spa
dc.relation.referencesDœlsch, E., de Kerchove, V. Van, & Macary, H. Saint. (2006). Heavy metal content in soils of Réunion (Indian Ocean). Geoderma, 134(1), 119–134. https://doi.org/https://doi.org/10.1016/j.geoderma.2005.09.003spa
dc.relation.referencesElahi, E., Weijun, C., Zhang, H., & Nazeer, M. (2019). Agricultural intensification and damages to human health in relation to agrochemicals: Application of artificial intelligence. Land Use Policy, 83, 461–474. https://doi.org/10.1016/j.landusepol.2019.02.023spa
dc.relation.referencesEmurotu, J. E., & Onianwa, P. C. (2017). Bioaccumulation of heavy metals in soil and selected food crops cultivated in Kogi State, north central Nigeria. Environmental Systems Research, 6(1), 21. https://doi.org/10.1186/s40068-017-0098-1spa
dc.relation.referencesEPA. (1996). METHOD 3052. California, USA. Retrieved from https://www.epa.gov/sites/production/files/2015-12/documents/3052.pdfspa
dc.relation.referencesEPA. (2018a). Potential Annual Cancer Report 2018.spa
dc.relation.referencesEPA. Regulación 83 FR 22595 (2018). USA. Retrieved from https://www.govinfo.gov/content/pkg/FR-2018-05-16/pdf/2018-10345.pdfspa
dc.relation.referencesEPA. (2019a). CompTox Chemistry Dashboard. Retrieved December 1, 2019, from https://comptox.epa.gov/dashboardspa
dc.relation.referencesEPA. (2019b). ECOTOX Knowledgebase.spa
dc.relation.referencesEscobar, G., & Berdegué, J. (1990). Conceptos y metodología para la tipificación de sistemas de finca: la experiencia de RIMISP. In G. Escobar & J. Berdegué (Eds.), Tipificación de sistemas de producción agricola (p. 282). Santiago de Chile. https://doi.org/ISBN. 956.7110- 01-07.spa
dc.relation.referencesFadigas, F. D. S., Do Amaral Sobrinho, N. M. B., Mazur, N., & Cunha Dos Anjos, L. H. (2006). Estimation of reference values for cadmium, cobalt, chromium, copper, nickel, lead, and zinc in Brazilian soils. Communications in Soil Science and Plant Analysis, 37(7–8), 945–959. https://doi.org/10.1080/00103620600583885spa
dc.relation.referencesFan, J.-J., Wang, S., Tang, J.-P., Zhao, J.-L., Wang, L., Wang, J.-X., ... Yang, Y. (2019). Bioaccumulation of endocrine disrupting compounds in fish with different feeding habits along the largest subtropical river, China. Environmental Pollution, 999–1008. https://doi.org/10.1016/j.envpol.2019.01.113spa
dc.relation.referencesFAO. (2000). Parameters of pesticides that influence processes in the soil. Assessing soil contamination A reference manual. Roma. Retrieved from http://www.fao.org/3/X2570E/X2570E00.htm#TOCspa
dc.relation.referencesFAO. (2001). Sistemas de Producción Agropecuaria y Pobreza. (J. Dixon, A. Gulliver, & D. Gibbon, Eds.).spa
dc.relation.referencesFeola, G., & Binder, C. R. (2010). Identifying and investigating pesticide application types to promote a more sustainable pesticide use. The case of smallholders in Boyacá, Colombia. Crop Protection, 29(6), 612–622. https://doi.org/10.1016/j.cropro.2010.01.008spa
dc.relation.referencesFontes, M. (2013). Behavior of Heavy Metals in Soils: Individual and Multiple Competitive Adsorption. In H. M. Selim (Ed.), Competitive Sorption and Transport of Heavy Metals in Soils and Geological Media (pp. 77–106). Boca Raton.spa
dc.relation.referencesForero, J., Rodríguez, C. S., Gutiérrez, Á., & Nieto, A. (2016). Eficiencia económica de la agricultura familiar colombiana y sus potencialidades para superar la pobreza rural. In El desarrollo equitativo, competitivo y sostenible del sector agropecuario en Colombia (pp. 57– 100). Retrieved from http://repositorio.banrep.gov.co/handle/20.500.12134/9328spa
dc.relation.referencesForget, G. (1991). Pesticides and the third world. Journal of Toxicology and Environmental Health, 32(1), 11–31. https://doi.org/10.1080/15287399109531462spa
dc.relation.referencesFranco, G. (2013). Caracterización fisiológica del fruto de gulupa (Passiflora edulis Sims), en condiciones del Bosque Húmedo Montano Bajo de Colombia. Universidad Nacional de Colombia sede Medellín. Retrieved from http://bdigital.unal.edu.co/11083/1/10253852.2013.pdfspa
dc.relation.referencesGlasbergen, P. (2018). Smallholders do not Eat Certificates Pieter. Ecological Economics Journal, 147, 243–252.spa
dc.relation.referencesGleissy, S., Santos, A. R., Quintão, L., Henriques, S., França, D., Santos, O., ... Scherer, R. (2016). GIS applied to agriclimatological zoning and agrotoxin residue monitoring in tomatoes: A case study in Espírito Santo state, Brazil. Journal of Environmental Management, 166, 429–439. https://doi.org/10.1016/j.jenvman.2015.10.040spa
dc.relation.referencesGökbel, H., Harmankaya, M., & Özcan, M. M. (2015). Determination of metal, non-metal and heavy metal contents of some tropical fruits growing in Indonesia. Quality Assurance and Safety of Crops and Foods, 7(4), 545–549. https://doi.org/10.3920/QAS2014.0397spa
dc.relation.referencesGuerrero, E., Potosí, C., Melgarejo, L. M., & Hoyos, L. (2012). Manejo agronómico de gulupa (Passiflora edulis Sims) en el marco de las Buenas Prácticas Agrícolas (BPA). In L. M. Melgarejo (Ed.), Ecofisiología del cultivo de la gulupa (Passiflora edulis Sims) (pp. 123– 144). Bogotá. Retrieved from http://www.bdigital.unal.edu.co/8547/16/09_Cap07.pdfspa
dc.relation.referencesHao, X., Zhou, D., Wang, Y., Shi, F., & Jiang, P. (2011). Accumulation of Cu, Zn, Pb, and Cd in Edible Parts of Four Commonly Grown Crops in Two Contaminated Soils. International Journal of Phytoremediation, 13(3), 289–301. https://doi.org/10.1080/15226514.2010.483260spa
dc.relation.referencesHjorth, K., Johansen, K., Holen, B., Andersson, A., Christensen, H. B., Siivinen, K., & Toome, M. (2011). Pesticide residues in fruits and vegetables from South America – A Nordic project. Food Control, 22(11), 1701–1706. https://doi.org/https://doi.org/10.1016/j.foodcont.2010.05.017spa
dc.relation.referencesHohl, H., & Varma, A. (2010). Soil: The Living Matrix. In I. Sherameti & A. Varma (Eds.), Soil Heavy Metals (pp. 1–18). London. https://doi.org/10.1007/978-3-642-02436-8spa
dc.relation.referencesIARC, & OMS. (2019). Colombia Source: Globocan 2018. París.spa
dc.relation.referencesIbanez, M., & Blackman, A. (2016). Is Eco-Certification a Win–Win for Developing Country Agriculture? Organic Coffee Certification in Colombia. World Development, 82, 14–27. https://doi.org/10.1016/j.worlddev.2016.01.004spa
dc.relation.referencesICA. (1992). Fertilización de diversos cultivos Quinta Aproximación. Bogotá. Retrieved from https://repository.agrosavia.co/bitstream/handle/20.500.12324/14124/27733_16902.pdf?sequ ence=1&isAllowed=yspa
dc.relation.referencesICA. (2016). Estadísticas de Comercialización de Plaguicidas Químicos de Uso Agrícola 2016. Bogotá. Retrieved from https://www.ica.gov.co/areas/agricola/servicios/regulacion-y-control- de-plaguicidas-quimicos/estadisticas/cartilla-plaguicidas-2016_22-01-18.aspxspa
dc.relation.referencesICA. (2019a). Registros de Venta de Plaguicidas Químicos de Uso Agrícola - Octubre 30 de 2019. Bogotá. Retrieved from https://www.ica.gov.co/areas/agricola/servicios/regulacion-y-control- de-plaguicidas-quimicos/registros-de-venta-feb-28-2017.aspxspa
dc.relation.referencesICA. (2019b). Resgistros Nacionales Septiembre 17 2019. Bogotá. Retrieved from https://www.ica.gov.co/getdoc/d3612ebf-a5a6-4702-8d4b-8427c1cdaeb1/registrosnacionales- pqua-15-04-09.aspxspa
dc.relation.referencesIGAC, I. G. A. C. (n.d.). GUÍA DE MUESTREO. Bogotá.spa
dc.relation.referencesImeri, R., Kullaj, E., Duhani, E., & Millaku, L. (2019). Concentrations of heavy metals of in apple fruits around the industerial area of Mitrovica, Kosovo. Iraqi Journal of Agricultural Sciences, 50(1), 256–266. Retrieved from https://www.scopus.com/inward/record.uri?eid=2- s2.0-85062694403&partnerID=40&md5=7e541a19da7e6de4c7bd853b51a5f73fspa
dc.relation.referencesJafarnejadi, A. R., Sayyad, G., Homaee, M., & Davamei, A. H. (2013). Spatial variability of soil total and DTPA-extractable cadmium caused by long-term application of phosphate fertilizers, crop rotation, and soil characteristics. Environmental Monitoring and Assessment, 185(5), 4087–4096. https://doi.org/10.1007/s10661-012-2851-2spa
dc.relation.referencesJallow, M. F. A., Awadh, D. G., Albaho, M. S., Devi, V. Y., & Thomas, B. M. (2017). Pesticide risk behaviors and factors influencing pesticide use among farmers in Kuwait. Science of the Total Environment, 574, 490–498. https://doi.org/10.1016/j.scitotenv.2016.09.085spa
dc.relation.referencesJiménez C., J., Aranda C., Y., & Darghan, E. (2017). Tipificación de un sistema de producción de tabaco (Nicotiana tabacum) en la provincia de Guanentá, departamento de Santander, Colombia. Agronomia Colombiana, 35(2), 247–255. https://doi.org/10.15446/agron.colomb.v35n2.63972spa
dc.relation.referencesJiménez, J., Carranza, C., & Rodríguez, M. (2009). Cultivo, poscosecha y comercialización de las pasifloráceas en Colombia: maracuyá, granadilla, gulupa y curuba. In D. Miranda, G. Fischer, C. Carranza, S. Magnitskiy, F. Casierra, W. Piedrahíta, & L. Flórez (Eds.), Manejo integrado del cultivo de gulupa (Passiflora edulis Sims). (Vol. 1, pp. 159–191). Bogotá. https://doi.org/10.1017/CBO9781107415324.004spa
dc.relation.referencesJohn, D. A., & Leventhal, J. S. (1995). Bioavailability of metals. In E. du Bray (Ed.), Preliminary compilation of descriptive geoenvironmental mineral deposit models (pp. 10–18). Denver.spa
dc.relation.referencesKabata, A., & Pendias, H. (2001). Trace Elements in Soils and Plants. (K. Alina & H. Pendias, Eds.) (3rd ed.). Boca Raton. https://doi.org/10.1201/b10158-25spa
dc.relation.referencesKamal, S., Prasad, R., & Varma, A. (2010). Soil Microbial Diversity in Relation to Heavy Metals. In I. Sherameti & A. Varma (Eds.), Soil Heavy Metals (19th ed., pp. 31–63). London. https://doi.org/10.1007/978-3-642-02436-8spa
dc.relation.referencesKassambara, A. (2017). STHDA Statical Tools for hifh - throughput data analysis.spa
dc.relation.referencesKhan, M., Mahmood, H. Z., & Damalas, C. A. (2015). Pesticide use and risk perceptions among farmers in the cotton belt of Punjab, Pakistan. Crop Protection, 67(1), 184–190. https://doi.org/10.1016/j.cropro.2014.10.013spa
dc.relation.referencesKudsk, P., Jørgensen, L. N., & Ørum, J. E. (2018). Pesticide Load - A new Danish pesticide risk indicator with multiple applications. Land Use Policy, 70, 384–393. https://doi.org/https://doi.org/10.1016/j.landusepol.2017.11.010spa
dc.relation.referencesLi, W., Xu, B., Song, Q., Liu, X., Xu, J., & Brookes, P. C. (2014). The identification of ‘hotspots’ of heavy metal pollution in soil–rice systems at a regional scale in eastern China. Science of The Total Environment, 472, 407–420. https://doi.org/https://doi.org/10.1016/j.scitotenv.2013.11.046spa
dc.relation.referencesLondoño Franco, L. F., Londoño Muñoz, P. T., & Muñoz Garcia, F. G. (2016). Los Riesgos De Los Metales Pesados En La Salud Humana Y Animal. Biotecnoloía En El Sector Agropecuario y Agroindustrial, 14(2), 145. https://doi.org/10.18684/bsaa(14)145-153spa
dc.relation.referencesMachado Vargas, M. M., Nicholls, C. I., Márquez, S. M., & Turbay, S. (2015). Caracterización de nueve agroecosistemas de café de la cuenca del río Porce, Colombia, con un enfoque agroecológico. Idesia (Arica), 33(1), 69–83. https://doi.org/10.4067/S0718- 34292015000100008spa
dc.relation.referencesMADR, & MinSalud. Resolución Número 2906 DE 2007 (2007). Bogotá. Retrieved from http://www.sical.gov.co/files/notificaciones/xwm1d5nogg- resolucionminproteccion2906plaguicidas.pdfspa
dc.relation.referencesMADR, & MinSalud. Resolución 5897 del 2018 (2018). Bogotá.spa
dc.relation.referencesMao, C., Song, Y., Chen, L., Ji, J., Li, J., Yuan, X., ... Theiss, F. (2019). Human health risks of heavy metals in paddy rice based on transfer characteristics of heavy metals from soil to rice. CATENA, 175, 339–348. https://doi.org/https://doi.org/10.1016/j.catena.2018.12.029spa
dc.relation.referencesMarique, R., & Prager, M. (2001). El enfoque de sistemas: una opción para el análisis de las unidades de producción agrícola.spa
dc.relation.referencesMedina, S., Collado-González, J., Ferreres, F., Londoño-Londoño, J., Jiménez-Cartagena, C., Guy, A., ... Gil-Izquierdo, A. (2017). Quantification of phytoprostanes – bioactive oxylipins – and phenolic compounds of Passiflora edulis Sims shell using UHPLC-QqQ-MS/MS and LC-IT- DAD-MS/MS. Food Chemistry, 229, 1–8. https://doi.org/10.1016/j.foodchem.2017.02.049spa
dc.relation.referencesMelgarejo, L. M. (2012). Ecofisiología del cultivo de la gulupa (Passiflora edulis Sims). (L. M. Melgarejo, Ed.). Bogotá: Universidad Nacional de Colombia.spa
dc.relation.referencesMelgarejo, L. M., & Hernández, M. S. (2011). Poscosecha de la Gulupa (Passiflora edulis Sims). (L. M. Melgarejo & M. S. Hernández, Eds.). Bogotá: Universidad Nacional de Colombia.spa
dc.relation.referencesMinAgricultura. (2018). Red de Información y Comunicación del Sector Agropecuario Colombiano.spa
dc.relation.referencesMinAmbiente. Resolución Número 1207, Pub. L. No. 1207, 9 (2014). Retrieved from http://www.minambiente.gov.co/images/GestionIntegraldelRecursoHidrico/pdf/normativa/Re s_1207_2014.pdfspa
dc.relation.referencesMinAmbiente. Resolución 631 de 2015 (2015). Retrieved from https://docs.supersalud.gov.co/PortalW eb/Juridica/OtraNormativa/R_MADS_0631_2015.pdfspa
dc.relation.referencesMinSalud. (2012). Plan decenal para el control del cáncer en Colombia. Bogotá. Retrieved from https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/IA/INCA/plan-nacional- control-cancer.pdfspa
dc.relation.referencesMinSalud. Resolución 4506 de 2013 (2013). Colombia. Retrieved from https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/DE/DIJ/resolucion- 4506-de-2013.pdfspa
dc.relation.referencesMiranda, D., & Carranza, C. (2010). Caracterización de los sistemas productivos de Pasifloráceas, 59.spa
dc.relation.referencesMiranda, D., Carranza, C., Rojas, C., Jerez, C., Fischer, G., & Zurita, J. (2011). Acumulación de metales pesados en suelo y plantas de cuatro cultivos hortícolas, regados con agua del río Bogotá. Revista Colombiana de Ciencias Hortícolas, 2(2 SE-SECCION DE HORTALIZAS). https://doi.org/10.17584/rcch.2008v2i2.1186spa
dc.relation.referencesMiranda, D., Fischer, G., Carranza, C., Magnitskiy, S., Casierra, F., Piedrahita, W., & Flórez, L. E. (2009). Cultivo , poscosecha y comercialización de las pasifloráceas en Colombia : maracuyá , granadilla , gulupa y curuba. (D. Miranda, G. Fischer, C. Carranza, S. Magnitskiy, F. Casierra, W. Piedrahita, & L. E. Flórez, Eds.). Bogotá: Sociedad Colombiana de Ciencias Hortículas.spa
dc.relation.referencesMora, T. M., & Muñoz, J. C. (2008). Concentración de la propiedad de la tierra y producto agrícola en Antioquia. 1995-2004. Ecos de Economía: A Latin American Journal of Applied Economics, 12(26), 71–108. Retrieved from http://publicaciones.eafit.edu.co/index.php/ecos- economia/article/view/714spa
dc.relation.referencesMorton, J. F. (1987). Fruits of Warm Climates. Fruits of Warm Climates.spa
dc.relation.referencesNaqvi, G.-Z., Shoaib, N., & Ali, A. M. (2017). Pesticides impact on protein in fish (Oreochromis mossambicus) tissues. Indian Journal of Geo-Marine Sciences, 46(9), 1864–1868. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0- 85027409257&partnerID=40&md5=42ff9adbd51f2a0c617d758625aaef29spa
dc.relation.referencesNavarro Aviñó, E., & Alonso, A. (2007). Asociación Española de Ecología Terrestre Aspectos bioquímicos y genéticos de la tolerancia y acumulación de metales pesados en plantas. Ecosistemas: Revista Científica y Técnica de Ecología y Medio Ambiente, 16(2), 1–17. Retrieved from http://www.revistaecosistemas.net/articulo.asp?Id=488&Id_Categoria=1&tipo=portadaspa
dc.relation.referencesNicholson, F. A., Smith, S. R., Alloway, B. J., Carlton-Smith, C., & Chambers, B. J. (2003). An inventory of heavy metals inputs to agricultural soils in England and Wales. Science of the Total Environment, 311(1–3), 205–219. https://doi.org/10.1016/S0048-9697(03)00139-6spa
dc.relation.referencesNorton, R. (2017). Colombia: A Strategic Assessment of National Crop Competitiveness. In The Competitiveness of Tropical Agriculture (pp. 87–145). https://doi.org/10.1017/CBO9781107298002.004spa
dc.relation.referencesOcampo, J. (2013). Diversity and Distribution of Passifloraceae in the Department of Huila in Colombia / Diversidad y distribución de las passifloraceae en el departamento del huila en colombia. Acta Biológica Colombiana, 18(3), 511–516. Retrieved from http://www.revista.unal.edu.co/index.php/actabiol/article/download/38500/42437spa
dc.relation.referencesOcampo, J., Marin, C., López, C., & Casas, A. (2012). Manejo del cultivo de la Gulupa. In J. Ocampo & K. Wyckhuys (Eds.), Tecnología para el cultivo de la Gulupa en Colombia (pp. 38–43).spa
dc.relation.referencesOcampo, J., Marin, C., Posada, P., López, N., & Solano, R. (2012). Establecimiento y zonas productoras del cultivo de la Gulupa. In J. Ocampo & K. Wyckhuys (Eds.), Tecnología para el cultivo de la Gulupa en Colombia (pp. 33–43). Bogotá.spa
dc.relation.referencesOcampo, J., Melo, D., Rendón, J., Arias, J., & Marín, V. (2012). Aspectos fisiológicos de la Gulupa (Passiflora edulis f. edulis Sims). In J. Ocampo & K. Wyckhuys (Eds.), Tecnología para el cultivo de la Gulupa en Colombia (pp. 13–15). Bogotá.spa
dc.relation.referencesOcampo, J., & Morales, L. (2012). Aspectos generales de la Gulupa. In J. Ocampo & K. Wyckhuys (Eds.), Tecnología para el cultivo de la Gulupa en Colombia (pp. 7–12). Bogotá.spa
dc.relation.referencesOcampo, J., & Posada, P. (2012). Ecología del cultivo de la Gulupa. In J. Ocampo & K. Wyckhuys (Eds.), Tecnología para el cultivo de la Gulupa en Colombia (pp. 29–32). Bogotá.spa
dc.relation.referencesOcampo, & Wyckhuys. (2012). Tecnología para el cultivo de la gulupa (Passiflora edulis f. edulis Sims) en Colombia.spa
dc.relation.referencesOMS. (2009). The WHO Recommended Classification of Pesticides by Hazard. Stuttgart.spa
dc.relation.referencesONU, & FAO. (2019). Productos Químicos del Anexo III. Retrieved November 29, 2019, from http://www.pic.int/ElConvenio/ProductosQuímicos/AnexoIII/tabid/2031/language/es- CO/Default.aspxspa
dc.relation.referencesOrjuela Baquero, N. M., Pérez Martínez, L. V., Flórez, L. M., Hernández, M. S., & Melgarejo, L. M. (2011). Propuesta de Norma Técnica Colombiana, Frutas Frescas, Gulupa, Especificaciones. In Poscosecha de la gulupa (Passiflora edulis Sims) (pp. 45–58). Retrieved from http://www.bdigital.unal.edu.co/8532/7/06_Cap04.pdfspa
dc.relation.referencesOrtega-Olvera, J. M., Winkler, R., Quitanilla-Vega, B., Shibayama, M., Chávez-Munguía, B., Martín-Tapia, D., ... González-Mariscal, L. (2018). The organophosphate pesticide methamidophos opens the blood-testis barrier and covalently binds to ZO-2 in mice. Toxicology and Applied Pharmacology, 360, 257–272. https://doi.org/10.1016/j.taap.2018.10.003spa
dc.relation.referencesOtsuki, T., Wilson, J. S., & Sewadeh, M. (2001). Saving two in a billion: Quantifying the trade effect of European food safety standards on African exports. Food Policy, 26(5), 495–514. https://doi.org/10.1016/S0306-9192(01)00018-5spa
dc.relation.referencesPagès J. (2004). Analyse factorielle de données mixtes. REVUE DE STATISTIQUE APPLIQUÉE, 4, 93–111. Retrieved from http://www.numdam.org/article/RSA_2004__52_4_93_0.pdfspa
dc.relation.referencesPAN. (2018). PAN International List of Highly Hazardous Pesticides. Hamburg.spa
dc.relation.referencesPerez Martinez, L. V., Melgarejo, L. M., Florez Gutierrez, L. M., Cruz Aguilar, M., Hernandez, M. S., Hoyos Carvajal, L. M., ... Medina, J. (2012). Caracterización ecofisiológica de la gulupa (Passiflora edulis Sims) bajo tres condiciones ambientales en el departamento de Cundinamarca. In L. M. Melgarejo (Ed.), Ecofisiologia del cultivo de la gulupa (Passiflora edulis Sims) (pp. 11–32). Bo. Retrieved from http://www.bdigital.unal.edu.co/8547/spa
dc.relation.referencesPiechowicz, B., Szpyrka, E., Zaręba, L., Podbielska, M., & Grodzicki, P. (2018). Transfer of the Active Ingredients of Some Plant Protection Products from Raspberry Plants to Beehives. Archives of Environmental Contamination and Toxicology, 75(1), 45–58. https://doi.org/10.1007/s00244-017-0488-4spa
dc.relation.referencesPoulsen, M. E., & Andersen, J. H. (2003). Results from the monitoring of pesticide residues in fruit and vegetables on the Danish market, 2000-01. Food Additives & Contaminants, 20(8), 742– 757. https://doi.org/10.1080/0265203031000152433spa
dc.relation.referencesQuinteros, Z., & Sánchez, E. (2017). DESCRIPCIÓN DEL SISTEMA AGRARIO DEL DISTRITO DE CAJATAMBO ( LIMA ) Y CLASIFICACIÓN DE LOS PRODUCTORES A PARTIR DE UNA ENCUESTA DESCRIPTION OF THE AGRICULTURE OF THE DISTRICT OF CAJATAMBO ( LIMA ) AND CLASSIFICATION OF PRODUCERS FROM A SURVEY, 16(2).spa
dc.relation.referencesRamírez, H., Bonilla, O., Ocampo, J., & Wyckhuys, K. (2012). Principales insectos plagas del cultivo de la Gulupa y su control. In J. Ocampo & K. Wyckhuys (Eds.), Tecnología para el cultivo de la Gulupa en Colombia (pp. 44–52). Bogotá.spa
dc.relation.referencesReijonen, I., & Hartikainen, H. (2016). Oxidation mechanisms and chemical bioavailability of chromium in agricultural soil – pH as the master variable. Applied Geochemistry, 74, 84–93. https://doi.org/https://doi.org/10.1016/j.apgeochem.2016.08.017spa
dc.relation.referencesRendón, J. S., Ocampo, J., & Urrea, R. (2013). Estudio sobre polinización y biología floral en passiflora edulis f. Edulis sims, como base para el premejoramiento genetic. Acta Agronomica, 62(3), 232–241.spa
dc.relation.referencesRobaina, N., Vásquez, E., Restrepo, L. F., & Márquez, S. M. (2017). Characterization and typification of coffee production systems (Coffea arabica L.), Andes municipality. Revista Facultad Nacional de Agronomía, 70(3), 8327–8339. https://doi.org/10.15446/rfna.v70n3.66332spa
dc.relation.referencesRodríguez, E., McLaughlin, M., & Pennock, D. (2018). Soil Pollution: a hidden reality. Rome. https://doi.org/10.2105/ajph.12.5.426-bspa
dc.relation.referencesRueda, G., Rodríguez, J., & Madriñán, R. (2011). Metodologías para establecer valores de referencia de metales pesados en suelos agrícolas: Perspectivas para Colombia. Acta Agronómica, 60(3), 203–218. Retrieved from http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Metodologías+para+establ ecer+valores+de+referencia+de+metales+pesados+en+suelos+agrícolas+:+Perspectivas+para +Colombia#0spa
dc.relation.referencesSaravia Matus, S., Cimpoeis, D., & Ronzon, T. (2013). Literature Review and Proposal for an International Typology of Agricultural Holdings.spa
dc.relation.referencesSchaetzl, R. J. (1991). A lithosequence of soils in extremely gravelly, dolomitic parent materials, bois blanc island, lake huron. Geoderma, 48(3), 305–320. https://doi.org/https://doi.org/10.1016/0016-7061(91)90050-4spa
dc.relation.referencesSchreinemachers, P., & Tipraqsa, P. (2012). Agricultural pesticides and land use intensification in high, middle and low income countries. Food Policy, 37(6), 616–626. https://doi.org/10.1016/j.foodpol.2012.06.003spa
dc.relation.referencesSeitz, N., Traynor, K. S., Steinhauer, N., Rennich, K., Wilson, M. E., Ellis, J. D., ... vanEngelsdorp, D. (2015). A national survey of managed honey bee 2014–2015 annual colony losses in the USA. Journal of Apicultural Research, 54(4), 292–304. https://doi.org/10.1080/00218839.2016.1153294spa
dc.relation.referencesSelim, H. (2013). Competitive Sorption of Heavy Metals in Soils: Experimental Evidence. In H. Magdi (Ed.), Competitive Sorption and Transport of Heavy Metals in Soils and Geological Media (p. 2216). Boca Raton. https://doi.org/10.2136/sssaj2013.0004brspa
dc.relation.referencesSeptembre-Malaterre, A., Stanislas, G., Douraguia, E., & Gonthier, M. P. (2016). Evaluation of nutritional and antioxidant properties of the tropical fruits banana, litchi, mango, papaya, passion fruit and pineapple cultivated in Réunion French Island. Food Chemistry, 212, 225– 233. https://doi.org/10.1016/j.foodchem.2016.05.147spa
dc.relation.referencesSharifzadeh, M. S., Abdollahzadeh, G., Damalas, C. A., Rezaei, R., & Ahmadyousefi, M. (2019). Determinants of pesticide safety behavior among Iranian rice farmers. Science of The Total Environment, 651, 2953–2960. https://doi.org/https://doi.org/10.1016/j.scitotenv.2018.10.179spa
dc.relation.referencesSilva, S. R., Almeida, N. M., de Siqueira, K. M. M., Souza, J. T., & Castro, C. C. (2018). Isolation from natural habitat reduces yield and quality of passion fruit. Plant Biology. https://doi.org/10.1111/plb.12910spa
dc.relation.referencesSollitto, D., Romic, M., Castrignanò, A., Romic, D., & Bakic, H. (2010). Assessing heavy metal contamination in soils of the Zagreb region (Northwest Croatia) using multivariate geostatistics. CATENA, 80(3), 182–194. https://doi.org/https://doi.org/10.1016/j.catena.2009.11.005spa
dc.relation.referencesState Environmental Protection Administration. The Limits of Pollutants in Food (2005). China.spa
dc.relation.referencesSugeng, A. J., Beamer, P. I., Lutz, E. A., & Rosales, C. B. (2013). Hazard-ranking of agricultural pesticides for chronic health effects in Yuma County, Arizona. Science of The Total Environment, 463–464, 35–41. https://doi.org/https://doi.org/10.1016/j.scitotenv.2013.05.051spa
dc.relation.referencesTorres, O., Gallego, G., & Zakzuk, J. (1996). Conceptos básicos sobre la metodología de sistemas de producción. In Aplicacion del enfoque de sistemas de produccion. Retrieved from http://agris.fao.org/agris-search/search.do?recordID=CO20000006951spa
dc.relation.referencesToxnet. (2019). A toxnet database Hazardous Substances Data Bank (HSDB). Retrieved from https://toxnet.nlm.nih.gov/help/newtoxnet/toxnetfs.htmlspa
dc.relation.referencesTraynor, K. S., Pettis, J. S., Tarpy, D. R., Mullin, C. A., Frazier, J. L., Frazier, M., & VanEngelsdorp, D. (2016). In-hive pesticide exposome: assessing risks to migratory honey bees from in-hive pesticide contamination in the Eastern United States. Nature, 6(1), 1–16. https://doi.org/10.1038/srep33207spa
dc.relation.referencesUE. Directiva 2002/63/CE de la Comisión (2002). Unión Europea. UE. Reglamento (CE) No 396/2005 (2005). Europa.spa
dc.relation.referencesUE. Reglamento (CE) No 1881/2006 de la comisión (2006). UE. UE. REGLAMENTO (CE) No 1272/2008 (2008).spa
dc.relation.referencesUE. REGLAMENTO (UE) No 899/2012 DE LA COMISIÓN (2012). UE. Retrieved from https://eur-lex.europa.eu/legal-content/ES/TXT/PDF/?uri=CELEX:32012R0899&from=ENspa
dc.relation.referencesUE. (2016a). EU Pesticides database. Retrieved November 28, 2019, from https://ec.europa.eu/food/plant/pesticides/eu-pesticides- database/public/?event=product.resultat&language=EN&selectedID=68spa
dc.relation.referencesUE. Reglamento (UE) 2016/67 de la comisión (2016). UE. Retrieved from https://eur- lex.europa.eu/legal-content/ES/TXT/PDF/?uri=CELEX:32016R0067&from=ENspa
dc.relation.referencesVillegas, B., Ocampo, J., & Castillo, C. (2012). Principales enfermedades en el cultivo de Gulupa y su manejo. In J. Ocampo & K. Wyckhuys (Eds.), Tecnología para el cultivo de la Gulupa en Colombia (pp. 54–63). Bogotá.spa
dc.relation.referencesViviana, A., Eve, E., & Celso da Silva, N. (2007). Do farmers understand the information displayed on pesticide product labels? A key question to reduce pesticides exposure and risk of poisoning in the Brazilian Amazon. Crop Protection, 26(4), 576–583. https://doi.org/10.1016/j.cropro.2006.05.011spa
dc.relation.referencesWalters, J. P., Archer, D. W., Sassenrath, G. F., Hendrickson, J. R., Hanson, J. D., Halloran, J. M., ... Alarcon, V. J. (2016). Exploring agricultural production systems and their fundamental components with system dynamics modelling. Ecological Modelling, 333, 51–65. https://doi.org/10.1016/j.ecolmodel.2016.04.015spa
dc.relation.referencesWilson, S. G., Lambert, J.-J., Nanzyo, M., & Dahlgren, R. A. (2017). Soil genesis and mineralogy across a volcanic lithosequence. Geoderma, 285, 301–312. https://doi.org/https://doi.org/10.1016/j.geoderma.2016.09.013spa
dc.relation.referencesWyckhuys, K A G, Korytkowski, C., Martinez, J., Herrera, B., Rojas, M., & Ocampo, J. (2012). Species composition and seasonal occurrence of Diptera associated with passionfruit crops in Colombia. Crop Protection, 32, 90–98. https://doi.org/10.1016/j.cropro.2011.10.003spa
dc.relation.referencesWyckhuys, Kris A.G., Lopez, F., Rojas, M., & Ocampo, J. (2011). The relationship of farm surroundings and local infestation pressure to pest management in cultivated Passiflora species in Colombia? International Journal of Pest Management, 57(1), 1–10. https://doi.org/10.1080/09670874.2010.506223spa
dc.relation.referencesYahia, D., & Elsharkawy, E. E. (2014). Multi pesticide and PCB residues in Nile tilapia and catfish in Assiut city, Egypt. Science of The Total Environment, 466–467, 306–314. https://doi.org/https://doi.org/10.1016/j.scitotenv.2013.07.002spa
dc.relation.referencesYassoglou, N. J., Nobeli, C., & Vrahamis, S. C. (1969). A Study of Some Biosequences and Lithosequences in the Zone of Brown Forest Soils in Northern Greece: Morphological, Physical, and Chemical Properties1. Soil Science Society of America Journal, 33, 291–296. https://doi.org/10.2136/sssaj1969.03615995003300020035xspa
dc.relation.referencesZhang, Q., Zhu, D., Ding, J., Zheng, F., Zhou, S., Lu, T., ... Qian, H. (2019). The fungicide azoxystrobin perturbs the gut microbiota community and enriches antibiotic resistance genes in Enchytraeus crypticus. Environment International, 131, 104965. https://doi.org/https://doi.org/10.1016/j.envint.2019.104965spa
dc.relation.referencesZhao, F., Liu, J., Xie, D., Lv, D., & Luo, J. (2018). A novel and actual mode for study of soil degradation and transportation of difenoconazole in a mango field. RSC Advances, 8(16), 8671–8677. https://doi.org/10.1039/c8ra00251gspa
dc.relation.referencesZhao, H., Xia, B., Fan, C., Zhao, P., & Shen, S. (2012). Human health risk from soil heavy metal contamination under different land uses near Dabaoshan Mine, Southern China. Science of the Total Environment, 417–418, 45–54. https://doi.org/10.1016/j.scitotenv.2011.12.047spa
dc.relation.referencesZhou, J., Feng, K., Pei, Z., & Lu, M. (2016). Pollution assessment and spatial variation of soil heavy metals in Lixia River Region of Eastern China. Journal of Soils and Sediments, 16(3), 748–755. https://doi.org/10.1007/s11368-015-1289-xspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.agrovocPlaguicidas
dc.subject.ddc630 - Agricultura y tecnologías relacionadasspa
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetalesspa
dc.subject.lembPesticides
dc.subject.proposalPassifloraspa
dc.subject.proposalLMRspa
dc.subject.proposalGulupaspa
dc.subject.proposalSistemas productivosspa
dc.subject.proposalMetales pesadosspa
dc.subject.proposalPesticidasspa
dc.subject.proposalPassion fruiteng
dc.subject.proposalCropping systemseng
dc.subject.proposalHeavy metalseng
dc.subject.proposalHazard-rankingeng
dc.subject.proposalSoil pollutioneng
dc.titleEvaluación de la residualidad de pesticidas en fruta y contaminación por metales pesados en suelo y pulpa de diferentes sistemas productivos de gulupa (Passiflora edulis sim)spa
dc.title.translatedEvaluation of residuality of pesticides in fruit and contamination by metals in soil and pulp of different production systems of passion fruiteng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameSistema General de Regalias a través de la Secretaría de Agricultura de la Gobernación de Antioquiaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
43926952.2019.pdf
Tamaño:
11.41 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis Maestría en Medio Ambiente y Desarrollo

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: