Influencia de la adición de niobio sobre la resistencia al desgaste y a la corrosión de recubrimientos duros a base de hierro y alto cromo

dc.contributor.advisorPiamba Tulcan, Oscar Edwin
dc.contributor.advisorOlaya Florez, Jhon Jairo
dc.contributor.authorPerez Cepeda, Jaime Andres
dc.contributor.orcidPerez, Jaime [0000000172978663]spa
dc.contributor.researchgroupGrupo de Investigación en Corrosión, Tribologia y Energíaspa
dc.date.accessioned2024-02-28T15:14:24Z
dc.date.available2024-02-28T15:14:24Z
dc.date.issued2024
dc.descriptionilustraciones, diagramasspa
dc.description.abstractEn el campo de los recubrimientos duros es frecuente encontrar aplicaciones que se vean sometidas a procesos de desgaste, por tal motivo, es importante analizar cómo la variación de niobio en el contenido del revestimiento de un electrodo aplicado en un proceso de soldadura por arco con electrodo revestido (shielded metal arc weldind, SMAW por sus siglas en inglés) afecta la microestructura,el desgaste abrasivo, corrosivo, el coeficiente de rozamiento, la dilución y la entrada de calor obtenido con diferentes condiciones eléctricas y numero de capas. Para la realización de este trabajo se aplicaron seis tipos diferentes de recubrimiento de con variaciones de 0, 2, 4, 6 y 8% de Niobio sobre sustratos de acero de baja aleación. Sobre ellos se realizaron ensayos de desgaste por deslizamiento de tipo esfera sobre disco (sphere on disk), desgaste corrosivo EIS (espectroscopia de impedancia Electroquimica), desgaste abrasivo (ASTM G65), medición de dilución en primera capa, obtención de la entrada de calor, donde se obtuvieron los correspondientes]. Además, se analizó la microestructura que se obtuvo de cada uno de los recubrimientos por medio de microscopia óptica y electrónica (SEM), respectivamente. A partir de los ensayos realizados se logró obtener que la mejor condición de aplicación se da con contenido de 2%Nb y parámetros de soldadura de 120 A y 3 capas. (Texto tomado de la fuente)spa
dc.description.abstractIn the field of hard coatings, applications often undergo wear processes, therefore, it is essential to analyze how the variation of niobium in the content of the electrode coating applied in a shielded metal arc welding (SMAW) process affects the microstructure, abrasive and corrosive wear, friction coefficient, dilution, and heat input under different electrical conditions and number of layers. This study applied six different types of coatings with variations of 0, 2, 4, 6, and 8% niobium on low-alloy steel substrates. Wear tests were conducted, including sphere-on-disk sliding wear, corrosive wear using Electrochemical Impedance Spectroscopy (EIS), and abrasive wear (ASTM G65). Dilution measurement in the first layer and heat input were also obtained. The microstructure of each coating was analyzed using optical and electron microscopy (SEM). The results showed that the best application condition is achieved with 2% Nb content and welding parameters of 120 A and 3 layers.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.description.researchareaSoldaduraspa
dc.format.extentxviii, 175 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85733
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Ciencia y Tecnología de Materialesspa
dc.relation.referencesA. Anderson, W. Arnold, and B. Avitzur, ASM Handbook Friction, Lubrication and Wear Technology. 1992.spa
dc.relation.referencesH. Alloy, “Stoody Hardfacing and High-Alloy Joining”.spa
dc.relation.referencesB. GERARD, Fundamentals of hardfacing by fusion welding.spa
dc.relation.referencesL. Fouilland, M. El Mansori, and A. Massaq, “Friction-induced work hardening of cobalt-base hardfacing deposits for hot forging tools,” J Mater Process Technol, vol. 209, no. 7, pp. 3366–3373, 2009, doi: 10.1016/j.jmatprotec.2008.07.039.spa
dc.relation.referencesS. Prabanjan, K. Karthick, J. Rejvin Kumar, S. Ramkumar, and A. Riswan Ahmed, “Wear behavior and metallurgical characteristics of particle reinforced metal matrix composites produced by hardfacing: A review,” Mater Today Proc, no. xxxx, 2020, doi: 10.1016/j.matpr.2020.05.527.spa
dc.relation.referencesAWS, Welding Handbook - Welding Processes. 1995.spa
dc.relation.referencesV. E. Buchanan, P. H. Shipway, and D. G. McCartney, “Microstructure and abrasive wear behaviour of shielded metal arc welding hardfacings used in the sugarcane industry,” Wear, vol. 263, pp. 99–110, 2007, doi: 10.1016/j.wear.2006.12.053.spa
dc.relation.referencesB. Srikarun, H. Z. Oo, S. Petchsang, and P. Muangjunburee, “The effects of dilution and choice of added powder on hardfacing deposited by submerged arc welding,” Wear, vol. 424–425, no. November 2018, pp. 246–254, 2019, doi: 10.1016/j.wear.2019.02.027.spa
dc.relation.referencesD. Liu, R. Liu, Y. Wei, Y. Ma, and K. Zhu, “Microstructure and wear properties of Fe–15Cr–2.5Ti–2C–xBwt.% hardfacing alloys,” Appl Surf Sci, vol. 271, pp. 253–259, Apr. 2013, doi: 10.1016/j.apsusc.2013.01.169.spa
dc.relation.referencesV. E. Buchanan, D. G. Mccartney, and P. H. Shipway, “A comparison of the abrasive wear behaviour of iron-chromium based hardfaced coatings deposited by SMAW and electric arc spraying,” vol. 264, pp. 542–549, 2008, doi: 10.1016/j.wear.2007.04.008spa
dc.relation.referencesK. Günther, J. P. Bergmann, and D. Suchodoll, “Hot wire-assisted gas metal arc welding of hypereutectic FeCrC hardfacing alloys: Microstructure and wear properties,” Surf Coat Technol, vol. 334, no. September 2017, pp. 420–428, 2018, doi: 10.1016/j.surfcoat.2017.11.059.spa
dc.relation.referencesA. Cruz-Crespo, A. Scotti, R. Fernandez Fuentes, and T. Ortiz Mendez, “Relationship of coating factor of coated tubular electrodes for hardfacing by SMAW process, with the consumption parameters and the geometry of the deposited metal,” Revista Tecnica De La Facultad De Ingenieria Universidad Del Zulia, vol. 35, no. 3, pp. 224–232, 2012spa
dc.relation.referencesA. Scotti, M. Gomes, and J. Pereira, “Use assessment of electronic power sources for SMAW,” Revista de Metalurgia, vol. 35, no. 2, pp. 84–90, 2010, doi: 10.3989/revmetalm.1999.v35.i2.610.spa
dc.relation.referencesS. Chatterjee and T. K. Pal, “Weld procedural effect on the performance of iron based hardfacing deposits on cast iron substrate,” J Mater Process Technol, vol. 173, no. 1, pp. 61–69, Mar. 2006, doi: 10.1016/j.jmatprotec.2005.10.025spa
dc.relation.referencesE. Badisch, R. Polak, and F. Franek, “The comparison of wear properties of different Fe- based hardfacing alloys in four kinds of testing methods,” Tribotest, vol. 14, pp. 225–233, 2008, doi: 10.1002/tt.spa
dc.relation.referencesF. Findik, “Latest progress on tribological properties of industrial materials,” Mater Des, vol. 57, pp. 218–244, May 2014, doi: 10.1016/j.matdes.2013.12.028.spa
dc.relation.referencesM. Rodríguez Ripoll, N. Ojala, C. Katsich, V. Totolin, C. Tomastik, and K. Hradil, “The role of niobium in improving toughness and corrosion resistance of high speed steel laser hardfacings,” Mater Des, vol. 99, pp. 509–520, 2016, doi: 10.1016/j.matdes.2016.03.081.spa
dc.relation.referencesJ. A. Pérez-Cepeda and J. J. Olaya-Flórez, “Influence of the type of electrode on the microstructure and coefficient of friction obtained by sliding test to hard coatings deposited by welding SMAW,” Ingeniería y Desarrollo, vol. 36, no. 2, pp. 327–342, Jul. 2018, doi: 10.14482/inde.36.2.10086.spa
dc.relation.referencesN. G. Chaidemenopoulos, P. P. Psyllaki, E. Pavlidou, and G. Vourlias, “Aspects on carbides transformations of Fe-based hardfacing deposits,” Surf Coat Technol, vol. 357, no. August 2018, pp. 651–661, 2019, doi: 10.1016/j.surfcoat.2018.10.061.spa
dc.relation.referencesP. de Sairre, A. Scotti, and J. Biasoli, “Interpretacion de la microestructira de recargues duros depositados por soldadura utilizando la superficie de Liquidus de Diagramas Fe-Cr-C,” Revista de soldadura CENIN, vol. 25, no. 4, pp. 199–207, 1995.spa
dc.relation.referencesR. Jackson, “The Austenite Liquidus Surface and Constitutional Diagram for the Fe-Cr-C Metastable System,” Iron and Steel Institute, pp. 163–167, 1970.spa
dc.relation.referencesS. Liu, Y. Zhou, X. Xing, J. Wang, Y. Yang, and Q. Yang, “Agglomeration model of (Fe,Cr)7C3 carbide in hypereutectic Fe-Cr-C alloy,” Mater Lett, vol. 183, pp. 272–276, 2016, doi: 10.1016/j.matlet.2016.07.135.spa
dc.relation.referencesJ. Hornung, A. Zikin, K. Pichelbauer, M. Kalin, and M. Kirchgaßner, “Influence of cooling speed on the microstructure and wear behaviour of hypereutectic Fe–Cr–C hardfacings,” Materials Science and Engineering: A, vol. 576, pp. 243–251, Aug. 2013, doi: 10.1016/j.msea.2013.04.029.spa
dc.relation.referencesL. Margarita, L. Sevilla, J. Carlos, G. Pineda, and A. Toro, “RELACIÓN MICROESTRUCTURA RESISTENCIA AL DESGASTE DE RECUBRIMIENTOS DUROS RICOS EN CROMO Y TUNGSTENO APLICADOS POR SOLDADURA ELECTRICA (SMAW),” Dyna (Medellin), vol. 144, pp. 165–171, 2004.spa
dc.relation.referencesL. Fedrizzi, S. Rossi, F. Bellei, and F. Deflorian, “Wear-corrosion mechanism of hard chromium coatings,” Wear, vol. 253, no. 11–12, pp. 1173–1181, 2002, doi: 10.1016/S0043-1648(02)00254-5.spa
dc.relation.referencesA. Zikin, I. Hussainova, C. Katsich, E. Badisch, and C. Tomastik, “Advanced chromium carbide-based hardfacings,” Surf Coat Technol, vol. 206, no. 19–20, pp. 4270–4278, 2012, doi: 10.1016/j.surfcoat.2012.04.039.spa
dc.relation.referencesN. Yüksel and S. Şahin, “Wear behavior–hardness–microstructure relation of Fe–Cr–C and Fe–Cr–C–B based hardfacing alloys,” Mater Des, vol. 58, pp. 491–498, Jun. 2014, doi: 10.1016/j.matdes.2014.02.032.spa
dc.relation.referencesG. D. Nelson, “The Influence Of Microstructure On The Corrosion And Wear Mechanisms Of High Chromium White Irons In Highly Caustic Solutions The University of Adelaide,” no. December, 2010.spa
dc.relation.referencesB. Venkatesh, K. Sriker, and V. S. V. Prabhakar, “Wear Characteristics of Hardfacing Alloys: State-of-the-art,” Procedia Materials Science, vol. 10, no. Cnt 2014, pp. 527–532, 2015, doi: 10.1016/j.mspro.2015.06.002.spa
dc.relation.referencesH. Berns and A. Fischer, “Microstructure of Fe-Cr-C hardfacing alloys with additions of Nb, Ti and, B,” Mater Charact, vol. 39, no. 2–5, pp. 499–527, 1997, doi: 10.1016/0026-0800(87)90017-6.spa
dc.relation.referencesF. Sadeghi, H. Najafi, and A. Abbasi, “The effect of Ta substitution for Nb on the microstructure and wear resistance of an Fe-Cr-C hardfacing alloy,” Surf Coat Technol, vol. 324, pp. 85–91, 2017, doi: 10.1016/j.surfcoat.2017.05.067.spa
dc.relation.referencesH. Liu et al., “Refinement mechanism of NbC by CeO 2 in hypereutectic Fe-Cr-C hardfacing coating,” J Alloys Compd, vol. 770, pp. 1016–1028, 2019, doi: 10.1016/j.jallcom.2018.08.162.spa
dc.relation.referencesJ. Gou, Y. Wang, J. Sun, and X. Li, “Bending strength and wear behavior of Fe-Cr-C-B hardfacing alloys with and without rare earth oxide nanoparticles,” Surf Coat Technol, vol. 311, pp. 113–126, 2017, doi: 10.1016/j.surfcoat.2016.12.104.spa
dc.relation.referencesA. Sadeghi, A. Moloodi, M. Golestanipour, and M. Mahdavi Shahri, “An investigation of abrasive wear and corrosion behavior of surface repair of gray cast iron by SMAW,” Journal of Materials Research and Technology, vol. 6, no. 1, pp. 90–95, 2017, doi: 10.1016/j.jmrt.2016.09.003.spa
dc.relation.referencesD. Pathak, R. P. Singh, S. Gaur, and V. Balu, “Influence of input process parameters on weld bead width of shielded metal arc welded joints for AISI 1010 plates,” Mater Today Proc, no. xxxx, 2020, doi: 10.1016/j.matpr.2020.05.516.spa
dc.relation.referencesM. Filipovic, Z. Kamberovic, M. Korac, and M. Gavrilovski, “Microstructure and mechanical properties of Fe-Cr-C-Nb white cast irons,” Mater Des, vol. 47, pp. 41–48, 2013, doi: 10.1016/j.matdes.2012.12.034.spa
dc.relation.referencesV. E. Buchanan, “Solidification and microstructural characterisation of iron-chromium based hardfaced coatings deposited by SMAW and electric arc spraying,” Surf Coat Technol, vol. 203, no. 23, pp. 3638–3646, 2009, doi: 10.1016/j.surfcoat.2009.05.051.spa
dc.relation.referencesA. Scotti and V. A. De Meneses, “Governing parameters affecting fume generation in short-circuit MAG welding,” pp. 367–376, 2014, doi: 10.1007/s40194-014-0122-2.spa
dc.relation.referencesG. R. C. Pradeep, A. Ramesh, and B. D. Prasad, “A Review Paper on Hardfacing Processes and Materials,” International Journal of Engineering Science and Technology, vol. 2, no. 11, pp. 6507–6510, 2010.spa
dc.relation.referencesW. Messler, Principles of welding.spa
dc.relation.referencesP. Jiluan, Arc Welding Control. 2003. doi: 10.1533/9781855738553spa
dc.relation.referencesA. S. M. International, Alloy Phase Diagrams. 2018. doi: 10.31399/asm.hb.v03.9781627081634.spa
dc.relation.referencesW. Forgeng and J. Forgeng, Metallography, Structure and Phase Diagrams, Metals Handbook, 8th ed. ASM International, 1973.spa
dc.relation.referencesD. T. Llewellyn and R. C. Hudd, “Steels: Metallurgy & Applications,” p. 403, 1998.spa
dc.relation.referencesJ. Wesley, “The Development of Fe-Cr-C Based Allooy for High Wear and High Impact Applications,” Oregon State University, 1975.spa
dc.relation.referencesT. Massalsky, Binary Alloy Phase Diagram, 2nd ed. ASM International, 1990.spa
dc.relation.referencesM. Durand-Charre, Microstructure of steel and cast irons. Springer US, 2004. doi: 10.1007/978-3-662-08729-9_4.spa
dc.relation.referencesM. C. Carvalho, Y. Wang, J. A. S. Souza, E. M. Braga, and L. Li, “Characterization of phases and defects in chromium carbide overlays deposited by SAW process,” Eng Fail Anal, vol. 60, pp. 374–382, 2016, doi: 10.1016/j.engfailanal.2015.11.058.spa
dc.relation.referencesH. Y. Liu, Z. L. Song, Q. Cao, S. P. Chen, and Q. Sen Meng, “Microstructure and Properties of Fe-Cr-C Hardfacing Alloys Reinforced with TiC-NbC,” Journal of Iron and Steel Research International, vol. 23, no. 3, pp. 276–280, Mar. 2016, doi: 10.1016/S1006-706X(16)30045-0.spa
dc.relation.referencesN. Yüksel and S. Şahin, “Wear behavior–hardness–microstructure relation of Fe–Cr–C and Fe–Cr–C–B based hardfacing alloys,” Mater Des, vol. 58, pp. 491–498, Jun. 2014, doi: 10.1016/j.matdes.2014.02.032.spa
dc.relation.referencesK. Bungardt, E. Kunze, and E. Horne, “Untersuchungen uber den Aufbau des Systems Eisen-Chrom-Kohlenstoff,” Archiv. Eisenhuttenwesen, vol. 29, pp. 193–203, 1958.spa
dc.relation.referencesN. Griffing, W. Forgeng, and W. Healy, “C-Cr-Fe Liquidus Surface,” Metall. Trans., pp. 148–159, 1962.spa
dc.relation.referencesV. Rivlin, “Critical review of constitution of carbon-chromium-iron and carbon-iron-manganese systems,” International Metals Reviews, vol. 29, pp. 299–327, 1984.spa
dc.relation.referencesW. Thorpe, “The Fe-Rich Corner of the Metastable C-Cr-Fe Liquidus Surface,” Metall.Tran., vol. 16, pp. 1541–1549, 1985.spa
dc.relation.referencesJ. Andersson, “A thermodinamyc Evaluation of the Fe-Cr-C System,” Metall.Tran., pp. 627–636, 1988.spa
dc.relation.referencesR. Kesri and M. Durand-Charre, “Metallurgical structure and phase diagram of the Fe-V-C system : comparison with other systems forming MC carbides,” Mater Sci. and Tech., vol. 4, pp. 692–700, 1988.spa
dc.relation.referencesU. Reisgen, U. Dilthey, B. Balashov, S. Kondapalli, and C. Geffers, “Investigation of wear resistance and microstructure of a newly developed chromium and vanadium containing iron-based hardfacing alloy,” Materwiss Werksttech, vol. 39, no. 6, pp. 379–384, Jun. 2008, doi: 10.1002/mawe.200800283.spa
dc.relation.referencesJ. Zhang, J. Wei, S. Wei, Z. Huang, W. Wei, and L. Xu, “Effect of cooling conditions on microstructure evolution and wear behavior of high chromium cast iron hardfacing layer,” Mater Lett, vol. 314, p. 131417, May 2022, doi: 10.1016/J.MATLET.2021.131417.spa
dc.relation.referencesV. Raghavan, “The C-Fe-V (Carbon-Iron-Vanadium) System,” Bull, of Alloy Phase Diagrams, vol. 5, no. 3, pp. 293–322, 1984.spa
dc.relation.referencesR. Kesri and M. Durand-Charre, “Phase equilibria, solidification and solid state transformations of white cast irons containing niobium,” Journal of Mater. Sci., vol. 22, pp. 2959–2964, 1987.spa
dc.relation.referencesF. Sadeghi, H. Najafi, and A. Abbasi, “The effect of Ta substitution for Nb on the microstructure and wear resistance of an Fe-Cr-C hardfacing alloy,” Surf Coat Technol, vol. 324, pp. 85–91, 2017, doi: 10.1016/j.surfcoat.2017.05.067.spa
dc.relation.referencesH. Holleck, Binare und ternare Carbid- und Nitridsysteme der Ubergangsmetalle. Berlin: Ed. G. Petzow, 1984.spa
dc.relation.referencesK. Inoue, N. Ishikawa, I. Ohnuma, H. Ohtani, and K. Ishida, “Calculation of phase equilibria between austenite and (Nb, Ti, V)(C, N) in microalloyed steels,” ISIJ International, vol. 41, no. 2, pp. 175–182, 2001, doi: 10.2355/isijinternational.41.175.spa
dc.relation.referencesL. Habraken and D. Brouwer, De ferri metallographia, Vol 1. Brussels: CNRM Presses Academiques Europeenne, 1966.spa
dc.relation.referencesC. Pollock and H. Stadelmaier, “Brussels,” Metall. Trans., vol. 1, pp. 767–770, 1970.spa
dc.relation.referencesP. Rogl, Phase Diagrams of Ternary Metal-Boron-Carbon Systems. OH, USA: ASM The Materials International Society, 1998.spa
dc.relation.referencesM. Woydt, S. Huang, J. Vleugels, H. Mohrbacher, and E. Cannizza, “Potentials of niobium carbide (NbC) as cutting tools and for wear protection,” Int J Refract Metals Hard Mater, vol. 72, no. January, pp. 380–387, 2018, doi: 10.1016/j.ijrmhm.2018.01.009.spa
dc.relation.referencesL. Margarita, L. Sevilla, J. Carlos, G. Pineda, and A. Toro, “RELACIÓN MICROESTRUCTURA RESISTENCIA AL DESGASTE DE RECUBRIMIENTOS DUROS RICOS EN CROMO Y TUNGSTENO APLICADOS POR SOLDADURA ELECTRICA (SMAW),” Dyna (Medellin), vol. 144, pp. 165–171, 2004.spa
dc.relation.referencesM. G. di V. Cuppari and S. F. Santos, “Physical properties of the NbC carbide,” Metals (Basel), vol. 6, no. 10, Oct. 2016, doi: 10.3390/MET6100250.spa
dc.relation.referencesA. I. Gusev, A. A. Rempel, and A. J. Magerl, Disorder and Order in Strongly Nonstoichiometric Compounds: Transition Metal Carbides, Nitrides and Oxides. 2001.spa
dc.relation.referencesR. Chotěborský, P. Hrabě, M. Müller, J. Savková, and M. Jirka, “Abrasive wear of high chromium Fe-Cr-C hardfacing alloys,” vol. 2008, no. 87, pp. 192–198, 2008.spa
dc.relation.referencesX. Zhi, J. Xing, H. Fu, and B. Xiao, “Effect of niobium on the as-cast microstructure of hypereutectic high chromium cast iron,” vol. 62, pp. 857–860, 2008, doi: 10.1016/j.matlet.2007.06.084.spa
dc.relation.referencesC. M. Chang, Y. C. Chen, and W. Wu, “Microstructural and abrasive characteristics of high carbon Fe-Cr-C hardfacing alloy,” Tribol Int, vol. 43, no. 5–6, pp. 929–934, 2010, doi: 10.1016/j.triboint.2009.12.045.spa
dc.relation.referencesH. Liu et al., “Refinement mechanism of NbC by CeO 2 in hypereutectic Fe-Cr-C hardfacing coating,” J Alloys Compd, vol. 770, pp. 1016–1028, 2019, doi: 10.1016/j.jallcom.2018.08.162.spa
dc.relation.referencesS. Pawar, A. K. Jha, and G. Mukhopadhyay, “Effect of different carbides on the wear resistance of Fe-based hardfacing alloys,” Int J Refract Metals Hard Mater, vol. 78, no. August 2018, pp. 288–295, 2019, doi: 10.1016/j.ijrmhm.2018.10.014.spa
dc.relation.referencesX. H. Wang, F. Han, X. M. Liu, S. Y. Qu, and Z. D. Zou, “Effect of molybdenum on the microstructure and wear resistance of Fe-based hardfacing coatings,” Materials Science and Engineering: A, vol. 489, no. 1–2, pp. 193–200, Aug. 2008, doi: 10.1016/j.msea.2007.12.020.spa
dc.relation.referencesS. Xing, S. Yu, Y. Deng, M. Dai, and L. Yu, “Effect of cerium on abrasive wear behaviour of hardfacing alloy,” Journal of Rare Earths, vol. 30, no. 1, pp. 69–73, Jan. 2012, doi: 10.1016/S1002-0721(10)60641-2.spa
dc.relation.referencesX. Zhou, Y. Chen, Y. Huang, Y. Mao, and Y. Yu, “Effects of niobium addition on the microstructure and mechanical properties of laser-welded joints of NiTiNb and Ti6Al4V alloys,” J Alloys Compd, vol. 735, pp. 2616–2624, 2018, doi: 10.1016/j.jallcom.2017.11.307.spa
dc.relation.referencesM. Rodríguez Ripoll, N. Ojala, C. Katsich, V. Totolin, C. Tomastik, and K. Hradil, “The role of niobium in improving toughness and corrosion resistance of high speed steel laser hardfacings,” Mater Des, vol. 99, pp. 509–520, 2016, doi: 10.1016/j.matdes.2016.03.081.spa
dc.relation.referencesN. G. Chaidemenopoulos, P. P. Psyllaki, E. Pavlidou, and G. Vourlias, “Aspects on carbides transformations of Fe-based hardfacing deposits,” Surf Coat Technol, vol. 357, no. August 2018, pp. 651–661, 2019, doi: 10.1016/j.surfcoat.2018.10.061.spa
dc.relation.referencesH. Y. Liu, Z. L. Song, Q. Cao, S. P. Chen, and Q. Sen Meng, “Microstructure and Properties of Fe-Cr-C Hardfacing Alloys Reinforced with TiC-NbC,” Journal of Iron and Steel Research International, vol. 23, no. 3, pp. 276–280, 2016, doi: 10.1016/S1006-706X(16)30045-0.spa
dc.relation.referencesA. Cruz-crespo, R. Fernández-fuentes, A. V. Ferraressi, R. A. Gonçalves, and A. Scotti, “Microstructure and Abrasion Resistance of Fe-Cr-C and Fe-Cr-C-Nb Hardfacing Alloys Deposited by S-FCAW and Cold Solid Wires,” vol. 21, no. 3, pp. 342–353, 2016.spa
dc.relation.referencesS.-L. Jeng and Y.-H. Chang, “The influence of Nb and Mo on the microstructure and mechanical properties of Ni–Cr–Fe GTAW welds,” Materials Science and Engineering: A, vol. 555, pp. 1–12, Jul. 2012, doi: 10.1016/j.msea.2012.06.017.spa
dc.relation.referencesE. O. Correa, N. G. Alcântara, L. C. Valeriano, N. D. Barbedo, and R. R. Chaves, “The effect of microstructure on abrasive wear of a Fe-Cr-C-Nb hardfacing alloy deposited by the open arc welding process,” Surf Coat Technol, vol. 276, pp. 479–484, 2015, doi: 10.1016/j.surfcoat.2015.06.026.spa
dc.relation.referencesJ. Wang et al., “Effect of nitrogen alloying on the microstructure and abrasive impact wear resistance of Fe-Cr-C-Ti-Nb hardfacing alloy,” Surf Coat Technol, vol. 309, pp. 1072–1080, 2016, doi: 10.1016/j.surfcoat.2016.10.029.spa
dc.relation.referencesJ. Yang, J. Huang, D. Fan, and S. Chen, “Microstructure and wear properties of Fe-6wt.%Cr-0.55wt.%C-Xwt.%Nb laser cladding coating and the mechanism analysis,” Mater Des, vol. 88, pp. 1031–1041, 2015, doi: 10.1016/j.matdes.2015.09.108.spa
dc.relation.referencesL. Zhang, D. Sun, and H. Yu, “Effect of niobium on the microstructure and wear resistance of iron-based alloy coating produced by plasma cladding,” vol. 490, pp. 57–61, 2008, doi: 10.1016/j.msea.2008.02.041.spa
dc.relation.referencesK. Yang, Y. Gao, K. Yang, Y. Bao, and Y. Jiang, “Microstructure and wear resistance of Fe-Cr13-C-Nb hardfacing alloy with Ti addition,” Wear, vol. 376–377, pp. 1091–1096, 2017, doi: 10.1016/j.wear.2016.12.062.spa
dc.relation.referencesY. K. Singla, N. Arora, D. K. Dwivedi, and V. Rohilla, “Influence of niobium on the microstructure and wear resistance of iron-based hardfacings produced by pre-placement technique—a novel approach,” International Journal of Advanced Manufacturing Technology, vol. 93, no. 5–8, pp. 2667–2674, 2017, doi: 10.1007/s00170-017-0708-0.spa
dc.relation.referencesS. Liu, Z. Wang, Z. Shi, Y. Zhou, and Q. Yang, “Experiments and calculations on refining mechanism of NbC on primary M7C3carbide in hypereutectic Fe-Cr-C alloy,” J Alloys Compd, vol. 713, pp. 108–118, 2017, doi: 10.1016/j.jallcom.2017.04.167.spa
dc.relation.referencesC. M. Allen and B. Boardman, “ASM Handbook , Volume 1 , Properties and Selection : Irons , Steels , and High Performance Alloys Section : Publication Information and Contributors Publication Information and Contributors,” 2005.spa
dc.relation.referencesP. F. Mendez et al., “Welding processes for wear resistant overlays,” J Manuf Process, vol. 16, no. 1, pp. 4–25, 2014, doi: 10.1016/j.jmapro.2013.06.011.spa
dc.relation.referencesG. Stachowiak, Ed., Wear Materials Mechanisms and Practice Tribology in Practice Series. Wiley, 2005.spa
dc.relation.referencesB. Bhushan, INTRODUCTION TO TRIBOLOGY. 2013.spa
dc.relation.referencesG. Straffelini, “Wear mechanisms,” Springer Tracts in Mechanical Engineering, vol. 11, pp. 85–113, 2015, doi: 10.1007/978-3-319-05894-8_4.spa
dc.relation.referencesJ. R. Davis, “Corrosion of Weldments,” ASM International, 2006.spa
dc.relation.referencesF. I. Corrosion and W. Microstructures, “Corrosion of Weld,” no. Ref 1, pp. 1–10, 2006.spa
dc.relation.referencesD. I. Pantelis and T. E. Tsiourva, Corrosion of weldments. Elsevier Ltd, 2017. doi: 10.1016/b978-0-08-101105-8.00010-3.spa
dc.relation.referencesP. R. Roberge, Handbook of Corrosion Engineering Library of Congress. 1999.spa
dc.relation.referencesS. ̧ Danişman and S. Savaş, “The effect of ceramic coatings on corrosion and wear behaviour,” Tribology in Industry, vol. 27, no. 3–4, pp. 41–48, 2005.spa
dc.relation.referencesP. Roberge, Corrosion and Wear Mechanism. McGraw-Hill Education, 2008.spa
dc.relation.referencesS. Pawar, A. K. Jha, and G. Mukhopadhyay, “Effect of different carbides on the wear resistance of Fe-based hardfacing alloys,” Int J Refract Metals Hard Mater, vol. 78, no. August 2018, pp. 288–295, 2019, doi: 10.1016/j.ijrmhm.2018.10.014.spa
dc.relation.referencesN. Chawla, K. K. Chawla, N. Chawla, and K. K. Chawla, “Wear and Corrosion,” in Metal Matrix Composites, 2013, pp. 311–324. doi: 10.1007/978-1-4614-9548-2_10.spa
dc.relation.referencesD. R. Askeland, The Science and Engineering of Materials, vol. 212, no. 1. Chapman and Hall, 1996. doi: 10.1016/j.msea.2008.04.012.spa
dc.relation.referencesW. Steckelmacher, “The materials science of thin films,” Vacuum, vol. 46, no. 1. p. 85, 1995.spa
dc.relation.referencesF. James, E. J. F. Shackelford, and W. Alexander, MATERIALS SCIENCE ENGINEERING, vol. 29, no. 3. in Books, vol. 29. Elsevier B.V., 2001. doi: 10.1016/j.msec.2008.08.021.spa
dc.relation.referencesW. F. Smith, Principles of materials science and engineering. McGraw-Hill, 1986.spa
dc.relation.referencesW. Plieth, Electrochemistry for Materials Science, 1st ed. Elsevier B.V., 2008. doi: 10.1016/B978-044452792-9.50009-9.spa
dc.relation.referencesM. Alizadeh and S. Bordbar, “The influence of microstructure on the protective properties of the corrosion product layer generated on the welded API X70 steel in chloride solution,” Corros Sci, vol. 70, pp. 170–179, 2013, doi: 10.1016/j.corsci.2013.01.026.spa
dc.relation.referencesU. C. 3 de Madrid, “Tema 5. Cinética química, termodinámica y equilibrio (IV),” Curso Virtual.spa
dc.relation.referencesS. Parker, Principles and Practice, vol. 32, no. 3. 2006. doi: 10.1177/0340035206070163.spa
dc.relation.referencesB. Venkatesh, K. Sriker, and V. S. V. Prabhakar, “Wear Characteristics of Hardfacing Alloys: State-of-the-art,” Procedia Materials Science, vol. 10, no. Cnt 2014, pp. 527–532, 2015, doi: 10.1016/j.mspro.2015.06.002.spa
dc.relation.referencesJ. F. Archard, “Contact and rubbing of flat surfaces,” J Appl Phys, vol. 24, no. 8, pp. 981–988, 1953, doi: 10.1063/1.1721448.spa
dc.relation.referencesASTM A36, “Standard Specification for Carbon Structural Steel,” Standards, pp. 1–4, 2005, doi: 10.1520/A0036.spa
dc.relation.referencesV. Jankauskas and R. Kreivaitis, “Analysis of abrasive wear performance of arc welded hard layers,” Wear, 2008, doi: 10.1016/j.wear.2008.03.022.spa
dc.relation.referencesS.-L. Jeng and Y.-H. Chang, “Microstructure and flow behavior of Ni–Cr–Fe welds with Nb and Mo additions,” Materials Science and Engineering: A, vol. 560, pp. 343–350, Jan. 2013, doi: 10.1016/j.msea.2012.09.077.spa
dc.relation.referencesC. Zhao, Y. Zhou, X. Xing, S. Liu, X. Ren, and Q. Yang, “Investigation on the relationship between NbC and wear-resistance of Fe matrix composite coatings with different C contents,” Appl Surf Sci, vol. 439, pp. 468–474, 2018, doi: 10.1016/j.apsusc.2018.01.034.spa
dc.relation.referencesX. H. Zhi and J. X. Wang, “Effect of niobium on primary carbides of hypereutectic high chromium cast iron,” Ironmaking and Steelmaking, vol. 41, no. 5, pp. 394–399, 2014, doi: 10.1179/1743281213Y.0000000166.spa
dc.relation.referencesW. Theisen, S. Siebert, and S. Huth, “Wear resistant steels and casting alloys containing niobium carbide,” Steel Res Int, vol. 78, no. 12, pp. 921–928, 2007, doi: 10.1002/srin.200706307.spa
dc.relation.referencesA. C. Crespo, A. Scotti, and M. R. Pérez, “Operational behavior assesment of coated tubular electrodes for SMAW hardfacing,” J Mater Process Technol, vol. 199, no. 1, pp. 265–273, 2008, doi: 10.1016/j.jmatprotec.2007.07.048.spa
dc.relation.referencesS. De Cali, “UNIVERSIDAD AUTONOMA DE OCCIDENTE FACULTAD DE INGENIERIA DEPARTAMENTO DE ENERGÉTICA Y MECÁNICA PROGRAMA INGENIERÍA MECÁNICA,” 2005.spa
dc.relation.referencesT. Hir, A. Oka, N. B. Sano, and Y. Likio Matsushita, “Electrochemical Measurement of the Standard Free Energies of Formation of Niobium Oxides*.”spa
dc.relation.referencesL. L. Zhang, Y. Zhou, L. J. Zhang, J. Ning, Y. J. Sun, and S. J. Na, “Effect of niobium on the mechanical strength of the laser beam welding joints of molybdenum,” Int J Refract Metals Hard Mater, vol. 113, Jun. 2023, doi: 10.1016/j.ijrmhm.2023.106207.spa
dc.relation.referencesS. E. Ziemniak, L. M. Anovitz, R. A. Castelli, and W. D. Porter, “Thermodynamics of Cr2O3, FeCr2O4, ZnCr2O4, and CoCr2O4,” Journal of Chemical Thermodynamics, vol. 39, no. 11, pp. 1474–1492, Nov. 2007, doi: 10.1016/j.jct.2007.03.001.spa
dc.relation.referencesJ. Perez, J. Gutierrez, J. Olaya, O. Piamba, and A. Scotti, “The Effect of Niobium Addition on the Operational and Metallurgical Behavior of Fe-Cr-C Hardfacing Deposited by Shielded Metal Arc Welding,” Journal of Manufacturing and Materials Processing, vol. 8, no. 1, p. 38, Feb. 2024, doi: 10.3390/jmmp8010038.spa
dc.relation.referencesAishwarya, A. Jain, and P. Khanna, “Mathematical modeling to predict the weld dilution in FCA welding of stainless steel 301 plates,” Mater Today Proc, vol. 56, pp. 755–759, Jan. 2022, doi: 10.1016/j.matpr.2022.02.250.spa
dc.relation.referencesS. Aggarwal, M. Dwivedi, and P. Khanna, “Mathematical modelling to predict the dilution in FCA welded low carbon steel plates,” Mater Today Proc, vol. 56, pp. 3512–3519, Jan. 2022, doi: 10.1016/j.matpr.2021.11.226.spa
dc.relation.referencesX. Zhi, J. Xing, H. Fu, and B. Xiao, “Effect of niobium on the as-cast microstructure of hypereutectic high chromium cast iron,” Mater Lett, vol. 62, no. 6–7, pp. 857–860, Mar. 2008, doi: 10.1016/j.matlet.2007.06.084.spa
dc.relation.referencesJ. N. Lemke, L. Rovatti, M. Colombo, and M. Vedani, “Interrelation between macroscopic, microscopic and chemical dilution in hardfacing alloys,” Mater Des, vol. 91, pp. 368–377, 2016, doi: 10.1016/j.matdes.2015.11.117.spa
dc.relation.referencesV. Jankauskas, M. Antonov, V. Varnauskas, R. Skirkus, and D. Goljandin, “Effect of WC grain size and content on low stress abrasive wear of manual arc welded hardfacings with low-carbon or stainless steel matrix,” Wear, vol. 328–329, pp. 378–390, 2015, doi: 10.1016/j.wear.2015.02.063.spa
dc.relation.referencesA. Cruz-Crespo, R. Fernández Fuentes, and A. Scotti, “Efecto sobre la dilución de la granulometría de la ferroaleación en el alma de electrodos tubulares revestidos bajo la influencia de la composición del revestimiento,” Soldagem & Inspeção, vol. 16, no. 1, pp. 79–85, 2011, doi: 10.1590/s0104-92242011000100010.spa
dc.relation.referencesJ. J. Coronado, H. F. Caicedo, and A. L. Gómez, “The effects of welding processes on abrasive wear resistance for hardfacing deposits,” Tribol Int, vol. 42, pp. 745–749, 2009, doi: 10.1016/j.triboint.2008.10.012.spa
dc.relation.referencesK. Yamamoto, S. Inthidech, N. Sasaguri, and Y. Matsubara, “In fl uence of Mo and W on High Temperature Hardness of M 7 C 3 Carbide in High Chromium White Cast Iron + 1,” J Alloys Compd, vol. 55, no. 4, pp. 684–689, 2014, doi: 10.2355/isijinternational.52.2200.spa
dc.relation.referencesJ. J. Coronado, H. F. Caicedo, and A. L. Gómez, “The effects of welding processes on abrasive wear resistance for hardfacing deposits,” Tribol Int, vol. 42, no. 5, pp. 745–749, May 2009, doi: 10.1016/j.triboint.2008.10.012.spa
dc.relation.referencesN. Ojala et al., “Effects of composition and microstructure on the abrasive wear performance of quenched wear resistant steels,” Wear, vol. 317, no. 1–2, pp. 225–232, Sep. 2014, doi: 10.1016/j.wear.2014.06.003.spa
dc.relation.referencesA. Gualco and L. A. de Vedia, “EFECTO DE LOS PARÁMETROS DE SOLDADURA SOBRE LA MICROESTRUCTURA Y LA RESISTENCIA AL DESGASTE DE RECARGUES MARTENSÍTICOS DEPOSITADOS CON ALAMBRES TUBULARES METAL-CORED,” Universidad de Buenos Aires, 2011.spa
dc.relation.referencesM. F. Buchely, J. C. Gutierrez, L. M. Le, and A. Toro, “The effect of microstructure on abrasive wear of hardfacing alloys,” Wear, vol. 259, pp. 52–61, 2005, doi: 10.1016/j.wear.2005.03.002.spa
dc.relation.referencesJ. Perez and E. Espejo, “INFLUENCIA DE LA MICROESTRUCTURA EN EL COMPORTAMIENTO A DESGASTE ABRASIVO EVALUADO BAJO NORMA ASTM G 65 DE DEPÓSITOS DE SOLDADURA ANTIDESGASTE APLICADOS SOBRE SUSTRATOS DE ACERO DE BAJA ALEACIÓN Y BAJO CARBONO,” Universidad Nacional de Colombia, 2011.spa
dc.relation.referencesP. Balsamo, A. Scotti, and J. Mello, “Interpretacion de la microestructura de recargues duros depositados por soldadura utilizando la superficie de liquidus de diagramas Fe-Cr-C,” Soldadura, vol. 25, no. 4, pp. 199–207, 1995.spa
dc.relation.referencesG. S. Sandhu, R. Singh, I. Singh, and F. Khan, “Effect of Chromium Content Variation on Wear Resistance of Rotavator Blades,” International Research Journal of Engineering and Technology(IRJET), vol. 4, no. 5, pp. 1038–1043, 2017, [Online]. Available: https://www.irjet.net/archives/V4/i5/IRJET-V4I5202.pdfspa
dc.relation.referencesH. Pourasiabi and J. D. Gates, “Effects of niobium macro-additions to high chromium white cast iron on microstructure, hardness and abrasive wear behaviour,” Mater Des, vol. 212, p. 110261, Dec. 2021, doi: 10.1016/J.MATDES.2021.110261.spa
dc.relation.referencesA. Bedolla-Jacuinde, F. Guerra, I. Mejia, and U. Vera, “Niobium additions to a 15%cr–3%c white iron and its effects on the microstructure and on abrasive wear behavior,” Metals (Basel), vol. 9, no. 12, Dec. 2019, doi: 10.3390/MET9121321.spa
dc.relation.referencesM. Woydt and H. Mohrbacher, “The tribological and mechanical properties of niobium carbides (NbC) bonded with cobalt or Fe3Al,” Wear, vol. 321, pp. 1–7, 2014, doi: 10.1016/j.wear.2014.09.007.spa
dc.relation.referencesF. R. Morales, A. D. Scott, M. R. Pérez, E. M. Díaz Cedré, and J. A. Pozo Morejón, “Energía Calorífica Necesaria, Durante la Soldadura en Servicio de tuberías para el transporte de petróleo,” Soldagem e Inspecao, vol. 14, no. 1, pp. 47–57, 2009.spa
dc.relation.referencesT. Melfi, “New code requirements for calculating heat input,” Welding Journal (Miami, Fla), vol. 89, no. 6, pp. 61–63, 2010.spa
dc.relation.referencesH. Iván, M. Gil, J. Enrique, and G. Barrada, “EFECTO DEL AMPERAJE EN LAS PROPIEDADES DE RECUBRIMIENTOS DUROS RESISTENTES A LA ABRASIÓN APLICADOS POR SOLDADURA,” Dyna (Medellin), vol. 144, no. 2, pp. 151–163, 2004.spa
dc.relation.referencesAMERICAN SOCIETY FOR TESTING AND MATERIALS, “Astm G99-17,” Standard Test Method for Wear Testing with a Pin-on- Disk Apparatus, vol. 05, no. 2016, pp. 1–6, 2017, doi: 10.1520/G0099-17.Copyright.spa
dc.relation.referencesH. Durmuş, N. Çömez, C. Gül, M. Yurddaşkal, and M. Yurddaşkal, “Wear performance of Fe-Cr-C-B hardfacing coatings: Dry sand/rubber wheel test and ball-on-disc test,” Int J Refract Metals Hard Mater, vol. 77, no. July, pp. 37–43, 2018, doi: 10.1016/j.ijrmhm.2018.07.006.spa
dc.relation.referencesH. Wang and S. Yu, “Influence of heat treatment on microstructure and sliding wear resistance of high chromium cast iron electroslag hardfacing layer,” Surf Coat Technol, vol. 319, pp. 182–190, 2017, doi: 10.1016/j.surfcoat.2017.04.013.spa
dc.relation.referencesZ. Brytan, J. Niagaj, and Reiman, “Corrosion studies using potentiodynamic and EIS electrochemical techniques of welded lean duplex stainless steel UNS S82441,” Appl Surf Sci, vol. 388, pp. 160–168, 2016, doi: 10.1016/j.apsusc.2016.01.260.spa
dc.relation.referencesA. Lasia, Electrochemical impedance spectroscopy and its applications, vol. 9781461489. 2014. doi: 10.1007/978-1-4614-8933-7.spa
dc.relation.referencesD. Cai, S. Han, S. Zheng, Z. Luo, Y. Zhang, and K. Wang, “Microstructure and corrosion resistance of Al5083 alloy hybrid plasma-MIG welds,” J Mater Process Technol, vol. 255, no. December 2017, pp. 530–535, 2018, doi: 10.1016/j.jmatprotec.2017.12.033.spa
dc.relation.referencesD. Loveday, P. Peterson, and B. Rodgers, “Evaluation of organic coatings with electrochemical impedance spectroscopy: Part 1: Fundamentals of electrochemical impedance spectroscopy,” CoatingsTech, vol. 1, no. 8, pp. 46–52, 2004.spa
dc.relation.referencesD. Loveday, P. Peterson, and B. Rodgers, “Evaluation of organic coatings with electrochemical impedance spectroscopy: Part 2: Application of EIS to Coatings,” CoatingsTech, vol. 1, no. 8, pp. 46–52, 2004.spa
dc.relation.referencesM. Shamir, M. Junaid, F. N. Khan, A. A. Taimoor, and M. N. Baig, “A comparative study of electrochemical corrosion behavior in Laser and TIG welded Ti-5Al-2.5Sn alloy,” Journal of Materials Research and Technology, vol. 8, no. 1, pp. 87–98, 2019, doi: 10.1016/j.jmrt.2017.09.006.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::622 - Minería y operaciones relacionadasspa
dc.subject.ddc670 - Manufactura::672 - Hierro, acero, otras aleaciones ferrosasspa
dc.subject.lembNiobiospa
dc.subject.lembNiobiumeng
dc.subject.lembSurfaces (technology) - Analysiseng
dc.subject.lembSuperficies (Tecnologia)-Analisisspa
dc.subject.lembAdherenciaspa
dc.subject.lembAdhesioneng
dc.subject.proposalSoldaduraspa
dc.subject.proposalWeldingeng
dc.subject.proposalHardfacingeng
dc.subject.proposalNiobiumeng
dc.subject.proposalSMAWeng
dc.subject.proposalRecubrimientos durosspa
dc.subject.proposalNiobiospa
dc.subject.proposalDesgastespa
dc.subject.proposalWeareng
dc.subject.proposalCorrosiónspa
dc.subject.proposalAbrasiónspa
dc.subject.proposalEntrada de calorspa
dc.subject.proposalDiluciónspa
dc.titleInfluencia de la adición de niobio sobre la resistencia al desgaste y a la corrosión de recubrimientos duros a base de hierro y alto cromospa
dc.title.translatedInfluence of the addition of niobium on the wear resistance and corrosion resistance of hard coatings based on iron and high chromeeng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
80024286.2024.pdf
Tamaño:
26.74 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Ciencia y Tecnología de Materiales

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: