Efecto de elicitores de origen biótico en la transcripción de algunos genes involucrados en los mecanismos de defensa del clavel Dianthus caryophyllus L. al patógeno Fusarium oxysporum f sp dianthi

dc.contributor.advisorArdila Barrantes, Harold Dubanspa
dc.contributor.advisorPinzón Velasco, Andres Mauriciospa
dc.contributor.authorMonroy Mena, Santiagospa
dc.contributor.corporatenameUniversidad Nacional de Colombiaspa
dc.contributor.researchgroupEstudio de actividades metabolicas vegetalesspa
dc.date.accessioned2020-08-05T07:45:53Zspa
dc.date.available2020-08-05T07:45:53Zspa
dc.date.issued2020-02-14spa
dc.description.abstractThe treatement effect of a biotic elicitor fraction from the pathogen Fusarium oxysporum f. sp. dianthi (Fod), in the transcription of some defense genes on carnation roots (Dianthus caryophyllus L.) was evaluated. In a first stage, reference genes were selected for transcriptional studies in this plant-pathogen interaction, finding that genes coding for an H3 histone and for the 18s ribosomal subunit can be used for this purpose. Subsequently, an in vivo assay was carried out to verify that the application of this elicitor fraction reduce the incidence of Fod disease in the carnation-susceptible cultivar. In the transcriptomic analysis, it was found that the effect of elicitation at the root level, caused overexpression at constitutive level of 1551 genes, of which 347 were related to functions in response to stress. In this category, it was determined that among others, there are genes that code for proteins related to pathogenesis (PRs) such as β-1-3 endoglucanases and chitinases, enzymes involved in biosynthetic pathways of secondary metabolites, proteins associated with the recognition of PAMPs and MAMPs (molecular paterns associated with pathogens and microorganisms recognition, respectively) and transcription factors in response to ethylene. Finally, the transcriptional levels for 4 of these genes were compared during the pathogen inoculation, in treatments previously treated with the elicitor fraction and control treatments without elicitation. It was determined that elicitation potentiated the expression of an aminocyclopropylcarboxylate oxidase enzyme related to the biosynthesis of ethylene and of a protein acting as a response factor to this hormone. These results suggest that elicitation potentiates the signaling pathways associated with this hormone which may be important in the induction of resistance in this pathosystem.spa
dc.description.abstractSe evaluó el efecto que tiene la aplicación de una fracción elicitora de origen biótico proveniente del patógeno Fusarium oxysporum f. sp. dianthi (Fod), en la transcripción de algunos genes de defensa en raíces del clavel (Dianthus caryophyllus L.). Para ello, en una primera etapa se encontró que los genes codificantes para una histona H3 y para la subunidad ribosomal 18s, pueden ser usados como genes de referencia para estudios transcripcionales en esta interacción planta patógeno. Posteriormente en un ensayo in vivo se verificó que la aplicación del elicitor, tiene un efecto en la disminución de la incidencia a la enfermedad causada por Fod en la variedad susceptible de clavel. Se determinó en el análisis transcriptómico preliminar que la elicitación, generó un aumento en los niveles de transcripción de 1551 genes de los cuales, 347 se encontraban relacionados a funciones como respuesta a estrés. En esta categoría, se encuentran genes que codifican para proteínas relacionadas con patogénesis como β-1-3 endoglucanasas y quitinasas, enzimas involucradas en rutas biosintéticas de metabolitos secundarios, proteínas asociadas con el reconocimiento de PAMPs y MAMPs (patrones moleculares asociados a patógenos y microorganismos, respectivamente) y factores de transcripción de respuesta al etileno. Finalmente se compararon los niveles transcripcionales durante la inoculación con el patógeno, de 4 de los genes con potencial expresión diferencial, en tratamientos con o sin elicitación. Se determinó que la elicitación potencializó la expresión de una enzima aminociclopropilcarboxilato oxidasa relacionada con la biosíntesis del etileno y de una proteína que actúa como factor de respuesta a esta hormona. Estos resultados sugieren que la elicitación potencializa las rutas de señalización asociadas con esta hormona la cual puede ser central en la inducción de resistencia en este patosistema.spa
dc.description.additionalLínea de Investigación: Bioquímica de las Interacciones Hospedero-Patógeno.spa
dc.description.degreelevelMaestríaspa
dc.description.projectEstudio del uso de elicitores de origen biótico en el clavel (Dianthus caryophyllus L) para el control del marchitamiento vascular: Una alternativa al uso de fungicidas de origen sintético” (Código 110174558226)spa
dc.description.sponsorshipColcienciasspa
dc.format.extent130spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationMonroy Mena, S. (2020). Efecto de elicitores de origen biótico en la transcripción de algunos genes involucrados en los mecanismos de defensa del clavel Dianthus caryophyllus L. al patógeno Fusarium oxysporum f sp dianthi. Departamento de Quimica, Facultad de Ciencias, Universidad Nacional de Colombia.spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77930
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Químicaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Bioquímicaspa
dc.relation.referencesAdie, B., Chico, J. M., Rubio-Somoza, I., & Solano, R. (2007). Modulation of plant defenses by ethylene. In Journal of Plant Growth Regulation (Vol. 26, Issue 2, pp. 160–177). https://doi.org/10.1007/s00344-007-0012-6spa
dc.relation.referencesAgrios, G. N. (1995). Fitopatología. Editorial Limusa S.A. De C.V. https://books.google.com.co/books?id=6hVkNAAACAAJspa
dc.relation.referencesAlba, Aguayo, D. R., & Rueda, A. (2013). Problema bioquímico. Determinación del ciclo umbral y la eficiencia para la PCR cuantitativa en tiempo real. Revista de Educación Bioquímica, 32(1), 36–39.spa
dc.relation.referencesAlexandersson, E., Mulugeta, T., Lankinen, Å., Liljeroth, E., & Andreasson, E. (2016). Plant resistance inducers against pathogens in Solanaceae species-from molecular mechanisms to field application. International Journal of Molecular Sciences, 17(10), 1–25. https://doi.org/10.3390/ijms17101673spa
dc.relation.referencesAmil-Ruiz, F., Garrido-Gala, J., Blanco-Portales, R., Folta, K. M., Muñoz-Blanco, J., & Caballero, J. L. (2013). Identification and Validation of Reference Genes for Transcript Normalization in Strawberry (Fragaria × ananassa) Defense Responses. PLOS ONE, 8(8). https://doi.org/10.1371/journal.pone.0070603spa
dc.relation.referencesAndersen, C. L., Ledet-Jensen, J., & Orntoft, T. F. (2004). Normalization of Real-Time quantitative reverse transcription- PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Research, 64, 5245–5250. https://doi.org/10.1158/0008-5472.CAN-04-0496spa
dc.relation.referencesArbeláez, G., Guzmán, S., León, J., González, M., Molina, J. C., Parra, J., Ferney, J., & Darlo, J. (1993). Control Integrado Del Marchitamiento Vascular Del Clavel. Agron. Colombiana, 10(1), 68–89.spa
dc.relation.referencesArdila-Barrantes, H. D. (2013). CONTRIBUCIÓN AL ESTUDIO DE ALGUNOS COMPONENTES BIOQUÍMICOS Y MOLECULARES DE LA RESISTENCIA DEL CLAVEL (Dianthus caryophyllus L) AL PATÓGENO Fusarium oxysporum f. sp. dianthi. Departamento de Quimica, Facultad de Ciencias,Universidad Nacional de Colombia.spa
dc.relation.referencesArdila, H;Martinez, S, T;Baquero, B. (2007). Inducción de la actividad de la enzima fenilalanina amonio liasa en clavel (Dianthus caryophyllus L) por el hongo Fusarium oxysporum f. sp. Dianthi raza 2. Revista Colombiana de Quimica, 36(2), 151–167.spa
dc.relation.referencesArdila, H. D., Martínez, S. T., & Higuera, B. L. (2013). Levels of constitutive flavonoid biosynthetic enzymes in carnation (Dianthus caryophyllus L.) cultivars with differential response to Fusarium oxysporum f. sp. dianthi. Acta Physiologiae Plantarum, 35(4), 1233–1245. https://doi.org/10.1007/s11738-012-1162-0spa
dc.relation.referencesArdila, H. D., Torres, A. M., Martínez, S. T., & Higuera, B. L. (2014). Biochemical and molecular evidence for the role of class III peroxidases in the resistance of carnation (Dianthus caryophyllus L) to Fusarium oxysporum f. sp. dianthi. Physiological and Molecular Plant Pathology, 85, 42–52. https://doi.org/10.1016/j.pmpp.2014.01.003spa
dc.relation.referencesBaayen, R. P., & Elgersma, D. M. (1985). Colonization and histopathology of susceptible and resistant carnation cultivars infected with Fusarium oxysporum f. sp. dianthi. Netherlands Journal of Plant Pathology, 91(3), 119–135. https://doi.org/10.1007/BF01976386spa
dc.relation.referencesBadawy, M. E. I., & Rabea, E. I. (2011). A Biopolymer Chitosan and Its Derivatives as Promising Antimicrobial Agents against Plant Pathogens and Their Applications in Crop Protection. International Journal of Carbohydrate Chemistry, 2011, 1–29. https://doi.org/10.1155/2011/460381spa
dc.relation.referencesBarilli, E., Prats, E., & Rubiales, D. (2010). Benzothiadiazole and BABA improve resistance to Uromyces pisi (Pers.) Wint. in Pisum sativum L. with an enhancement of enzymatic activities and total phenolic content. European Journal of Plant Pathology, 128(4), 483–493. https://doi.org/10.1007/s10658-010-9678-xspa
dc.relation.referencesBektas, Y., & Eulgem, T. (2015). Synthetic plant defense elicitors. Frontiers in Plant Science, 5(January), 1–17. https://doi.org/10.3389/fpls.2014.00804spa
dc.relation.referencesBent, A. F. (1996). Plant Disease Resistance Genes: Function Meets Structure. The Plant Cell, 8(10), 1757–1771. https://doi.org/10.1105/tpc.8.10.1757spa
dc.relation.referencesBent, A. F., & Mackey, D. (2007). Elicitors, Effectors, and R Genes: The New Paradigm and a Lifetime Supply of Questions. Annual Review of Phytopathology, 45(1), 399–436. https://doi.org/10.1146/annurev.phyto.45.062806.094427spa
dc.relation.referencesBergey, D. R., Kandel, R., Tyree, B. K., Dutt, M., & Dhekney, S. A. (2014). The Role of Calmodulin and Related Proteins in Plant Cell Function: An Ever-Thickening Plot. Springer Science Reviews, 2, 145–159. https://doi.org/10.1007/s40362-014-0025-zspa
dc.relation.referencesBoller, T., & Felix, G. (2009). A Renaissance of Elicitors: Perception of Microbe-Associated Molecular Patterns and Danger Signals by Pattern-Recognition Receptors. Annual Review of Plant Biology, 60(1), 379–406. https://doi.org/10.1146/annurev.arplant.57.032905.105346spa
dc.relation.referencesBolwell, G. P., Bindschedler, L. V., Blee, K. A., Butt, V. S., Davies, D. R., Gardner, S. L., Gerrish, C., & Minibayeva, F. (2002). The apoplastic oxidative burst in response to biotic stress in plants: A three-component system. Journal of Experimental Botany, 53(372), 1367–1376. https://doi.org/10.1093/jxb/53.372.1367spa
dc.relation.referencesBurketova, L., Trda, L., Ott, P. G., & Valentova, O. (2015). Bio-based resistance inducers for sustainable plant protection against pathogens. Biotechnology Advances, 33(6), 994–1004. https://doi.org/10.1016/j.biotechadv.2015.01.004spa
dc.relation.referencesCevallos, J., Gonzales, D., & Arbelaez, G. (1990). Determinacion de las razas fisiologicas de Fusarium oxysporum f.sp. dianthi en clavel en la sabana de Bogota. Agron. Colombiana, 7, 40–46.spa
dc.relation.referencesChen, F., Dong, M., Ge, M., Zhu, L., Ren, L., Liu, G., & Mu, R. (2013). The History and Advances of Reversible Terminators Used in New Generations of Sequencing Technology. Genomics, Proteomics and Bioinformatics, 11(1), 34–40. https://doi.org/10.1016/j.gpb.2013.01.003spa
dc.relation.referencesChen, Y. C., Wong, C. L., Muzzi, F., Vlaardingerbroek, I., Kidd, B. N., & Schenk, P. M. (2014). Root defense analysis against fusarium oxysporum reveals new regulators to confer resistance. Scientific Reports, 4, 1–10. https://doi.org/10.1038/srep05584spa
dc.relation.referencesChiocchetti, a, Bernardo, I., Daboussi, M. J., Garibaldi, a, Gullino, M. L., Langin, T., & Migheli, Q. (1999). Detection of Fusarium oxysporum f. sp. dianthi in Carnation Tissue by PCR Amplification of Transposon Insertions. Phytopathology, 89(12), 1169–1175. https://doi.org/10.1094/PHYTO.1999.89.12.1169spa
dc.relation.referencesChoudhary, D. K., Prakash, A., & Johri, B. N. (2007). Induced systemic resistance (ISR) in plants: Mechanism of action. Indian Journal of Microbiology, 47(4), 289–297. https://doi.org/10.1007/s12088-007-0054-2spa
dc.relation.referencesConrath, U. (2011). Molecular aspects of defence priming. Trends in Plant Science, 16(10), 524–531. https://doi.org/10.1016/j.tplants.2011.06.004spa
dc.relation.referencesCorpet, F. (1988). Multiple sequence alignment with hierarchical clustering. Nucleic Acids Research, 16(22), 10881–10890. https://doi.org/10.1093/nar/16.22.10881spa
dc.relation.referencesCuervo Plata, D. C. (2018). Estudio bioquímico y molécular de algunas enzimas asociadas al estres oxidativo en apoplasto de clavel (Dianthus caryophyllus L.) durante su interacción con Fusarium oxysporum f.sp. dianthi. In Tesis de Maestria. Departamento de Quimica, Facultad de Ciencias,Universidad Nacional de Colombia.spa
dc.relation.referencesCurir, P., Dolci, M., & Galeotti, F. (2005). A phytoalexin-like flavonol involved in the carnation (Dianthus caryophyllus)-Fusarium oxysporum f. sp. dianthi pathosystem. Journal of Phytopathology, 153(2), 65–67. https://doi.org/10.1111/j.1439-0434.2004.00916.xspa
dc.relation.referencesCzechowski, T., Stitt, M., Altmann, T., & Udvardi, M. K. (2005). Genome-wide identification and testing of superior reference genes for transcript normalization. Society, 139, 5–17. https://doi.org/10.1104/pp.105.063743.1spa
dc.relation.referencesDavidson, N. M., & Oshlack, A. (2018). Necklace: combining reference and assembled transcriptomes for more comprehensive RNA-Seq analysis. GigaScience, 7(5), 1–6. https://doi.org/10.1093/gigascience/giy045spa
dc.relation.referencesDe Ascensao, A. R. D. C. F., & Dubery, I. A. (2000). Panama disease: Cell wall reinforcement in banana roots in response to elicitors from Fusarium oxysporum f. sp. cubense Race four. Phytopathology, 90(10), 1173–1180. https://doi.org/10.1094/PHYTO.2000.90.10.1173spa
dc.relation.referencesDe Cremer, K., Mathys, J., Vos, C., Froenicke, L., Michelmore, R. W., Cammue, B. P. A., & De Coninck, B. (2013). RNAseq-based transcriptome analysis of Lactuca sativa infected by the fungal necrotroph Botrytis cinerea. Plant, Cell and Environment, 36(11), 1992–2007. https://doi.org/10.1111/pce.12106spa
dc.relation.referencesDi Pietro, A., Madrid, M. P., Caracuel, Z., Delgado-Jarana, J., & Roncero, M. I. G. (2003). Fusarium oxysporum: Exploring the molecular arsenal of a vascular wilt fungus. Molecular Plant Pathology, 4(5), 315–325. https://doi.org/10.1046/j.1364-3703.2003.00180.xspa
dc.relation.referencesDías Puentes, L. N. (2012). Systemic Acquired Resistance Induced By Salicylic Acid Resistência Sistêmica Adquirida. Biotecnología En El Sector Agropecuario y Agroindustrial Vol 10 No. 2 (257 - 267), 10(2), 257–267.spa
dc.relation.referencesDodds, P. N., & Schwechheimer, C. (2002). A breakdown in defense signaling. The Plant Cell, 14 Suppl, S5–S8. https://doi.org/10.1105/tpc.141330spa
dc.relation.referencesDoyle, J., & Doyle, J. (1986). A Rapid DNA Isolation Procedure from Small Quantities of Fresh Leaf Tissues. Phytochem Bull, 19.spa
dc.relation.referencesErayman, M., Turktas, M., Akdogan, G., Gurkok, T., Inal, B., Ishakoglu, E., Ilhan, E., & Unver, T. (2015). Transcriptome analysis of wheat inoculated with Fusarium graminearum. Frontiers in Plant Science, 6(867), 1–17. https://doi.org/10.3389/fpls.2015.00867spa
dc.relation.referencesFang, Z., & Cui, X. (2011). Design and validation issues in RNA-seq experiments. Briefings in Bioinformatics, 12(3), 280–287. https://doi.org/10.1093/bib/bbr004spa
dc.relation.referencesFelix, G., Duran, J. D., Volko, S., & Boller, T. (1999). Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant Journal, 18(3), 265–276. https://doi.org/10.1046/j.1365-313X.1999.00265.xspa
dc.relation.referencesFelsenfeld, G. (1992). Chromatin as an essential part of the transcriptional mechanim. Nature, 355(6357), 219–224. https://doi.org/10.1038/355219a0spa
dc.relation.referencesFitza, K. N. E., Payn, K. G., Steenkamp, E. T., Myburg, A. A., & Naidoo, S. (2013). South African Journal of Botany Chitosan application improves resistance to Fusarium circinatum in Pinus patula. 85, 70–78.spa
dc.relation.referencesGalindo-González, L., & Deyholos, M. K. (2016). RNA-seq Transcriptome Response of Flax (Linum usitatissimum L.) to the Pathogenic Fungus Fusarium oxysporum f. sp. lini. Frontiers in Plant Science, 7(1766), 1–22. https://doi.org/10.3389/fpls.2016.01766spa
dc.relation.referencesGamm, M., Héloir, M. C., Kelloniemi, J., Poinssot, B., Wendehenne, D., & Adrian, M. (2011). Identification of reference genes suitable for qRT-PCR in grapevine and application for the study of the expression of genes involved in pterostilbene synthesis. Molecular Genetics and Genomics, 285(4), 273–285. https://doi.org/10.1007/s00438-011-0607-2spa
dc.relation.referencesGarber, M., Grabherr, M. G., Guttman, M., & Trapnell, C. (2011). Computational methods for transcriptome annotation and quantification using RNA-seq. Nature Methods, 8(6), 469–477. https://doi.org/10.1038/nmeth.1613spa
dc.relation.referencesGlazebrook, J. (2005). Contrasting Mechanisms of Defense Against Biotrophic and Necrotrophic Pathogens. Annual Review of Phytopathology, 43(1), 205–227. https://doi.org/10.1146/annurev.phyto.43.040204.135923spa
dc.relation.referencesGómez-ariza, J., Campo, S., Rufat, M., Messeguer, J., Segundo, B. S., & Coca, M. (2007). Sucrose-Mediated Priming of Plant Defense Responses and Broad-Spectrum Disease Resistance by Overexpression of the Maize Pathogenesis-Related PRms Protein in Rice Plants. 20(7), 832–842.spa
dc.relation.referencesGómez-Gómez, L. (2004). Plant perception systems for pathogen recognition and defence. Molecular Immunology, 41, 1055–1062. https://doi.org/10.1016/j.molimm.2004.06.008spa
dc.relation.referencesGonzález-Bosch, C. (2018). Priming plant resistance by activation of redox-sensitive genes. Free Radical Biology and Medicine, 122, 171–180. https://doi.org/10.1016/j.freeradbiomed.2017.12.028spa
dc.relation.referencesGrabbe, C., & Dikic, I. (2009). Functional roles of ubiquitin-like domain (ULD) and ubiquitin-binding domain (UBD) containing proteins. Chemical Reviews, 109(4), 1481–1494. https://doi.org/10.1021/cr800413pspa
dc.relation.referencesGrabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q., Chen, Z., Mauceli, E., Hacohen, N., Gnirke, A., Rhind, N., di Palma, F., Birren, B. W., Nusbaum, C., Lindblad-Toh, K., … Regev, A. (2011). Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 29(7), 644–652. https://doi.org/10.1038/nbt.1883spa
dc.relation.referencesGraham, M. Y., Weidner, J., Wheeler, K., Pelow, M. J., & Graham, T. L. (2003). Induced expression of pathogenesis-related protein genes in soybean by wounding and the Phytophthora sojae cell wall glucan elicitor. 63, 141–149. https://doi.org/10.1016/j.pmpp.2003.11.002spa
dc.relation.referencesGullino, M. L., Daughtrey, M. L., Garibaldi, A., & Elmer, W. H. (2015). Fusarium wilts of ornamental crops and their management. Crop Protection, 73, 45–49. https://doi.org/10.1016/j.cropro.2015.01.003spa
dc.relation.referencesHan, R., Takahashi, H., Nakamura, M., Bunsupa, S., Yoshimoto, N., Yamamoto, H., Suzuki, H., Shibata, D., Yamazaki, M., & Saito, K. (2015). Transcriptome analysis of nine tissues to discover genes involved in the biosynthesis of active ingredients in Sophora flavescens. Biological and Pharmaceutical Bulletin, 38(6), 876–883. https://doi.org/10.1248/bpb.b14-00834spa
dc.relation.referencesHan, R., Takahashi, H., Nakamura, M., Yoshimoto, N., Suzuki, H., Shibata, D., Yamazaki, M., & Saito, K. (2015). Transcriptomic landscape of pueraria lobata demonstrates potential for phytochemical study. Frontiers in Plant Science, 6(JUNE), 1–10. https://doi.org/10.3389/fpls.2015.00426spa
dc.relation.referencesHeyman, J., Canher, B., Bisht, A., Christiaens, F., & De Veylder, L. (2018). Emerging role of the plant ERF transcription factors in coordinating wound defense responses and repair. Journal of Cell Science, 131(2). https://doi.org/10.1242/jcs.208215spa
dc.relation.referencesHu, Y., & Lai, Y. (2015). Identification and expression analysis of rice histone genes. Plant Physiology and Biochemistry, 86, 55–65. https://doi.org/10.1016/j.plaphy.2014.11.012spa
dc.relation.referencesIllumina. (2011). An Introduction to Next-Generation Sequencing Technology. Manual. https://doi.org/Pub No. 770-2012-008spa
dc.relation.referencesImbeaud, S., Graudens, E., Boulanger, V., Barlet, X., Zaborski, P., Eveno, E., Mueller, O., Schroeder, A., & Auffray, C. (2005). Towards standardization of RNA quality assessment using user-independent classifiers of microcapillary electrophoresis traces. Nucleic Acids Research, 33(6), 1–12. https://doi.org/10.1093/nar/gni054spa
dc.relation.referencesIwai, T., Miyasaka, A., Seo, S., & Ohashi, Y. (2006). Contribution of ethylene biosynthesis for resistance to blast fungus infection in young rice plants. Plant Physiology, 142(3), 1202–1215. https://doi.org/10.1104/pp.106.085258spa
dc.relation.referencesJin, S. L., Kyung, W. H., Bhargava, A., & Ellis, B. E. (2008). Comprehensive analysis of protein-protein interactions between Arabidopsis MAPKs and MAPK kinases helps define potential MAPK signalling modules. Plant Signaling and Behavior, 3(12), 1037–1041. https://doi.org/10.4161/psb.3.12.6848spa
dc.relation.referencesJongeneel, V., Estreicher, A., Baxevanis, A. D., Ouellette, B. F. F., Wolfsberg, T. G., Landsman, D., Wang, Z., Gerstein, M., Snyder, M., Baeck, G. W., Kim, J. W., Kim, K. H., & Jun, K. Y. (2001). EXPRESSED SEQUENCE TAGS (ESTs). Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins, 10(1), 57–63. https://doi.org/10.1038/nrg2484.RNA-Seqspa
dc.relation.referencesKaku, H., Nishizawa, Y., Ishii-Minami, N., Akimoto-Tomiyama, C., Dohmae, N., Takio, K., Minami, E., & Shibuya, N. (2006). Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proceedings of the National Academy of Sciences, 103(29), 11086–11091. https://doi.org/10.1073/pnas.0508882103spa
dc.relation.referencesKim, J. H., Lee, Y. J., Kim, B. G., Lim, Y., & Ahn, J. H. (2008). Flavanone 3β-hydroxylases from rice: Key enzymes for favonol and anthocyanin biosynthesis. Molecules and Cells, 25(2), 312–316.spa
dc.relation.referencesKitajima, S., Koyama, T., Ohme-takagi, M., & Shinshi, H. (2000). Characterization of Gene Expression of NsERFs , Transcription Factors of Basic PR Genes from Nicotiana sylvestris. 41(6), 817–824.spa
dc.relation.referencesKong, W., Chen, N., Liu, T., Zhu, J., Wang, J., He, X., & Jin, Y. (2015). Large-scale transcriptome analysis of cucumber and botrytis cinerea during infection. PLoS ONE, 10(11), 1–16. https://doi.org/10.1371/journal.pone.0142221spa
dc.relation.referencesKruse, C. P. S., Basu, P., Luesse, D. R., & Wyatt, S. E. (2017). Transcriptome and proteome responses in RNAlater preserved tissue of Arabidopsis thaliana. PLoS ONE, 12(4), 1–10. https://doi.org/10.1371/journal.pone.0175943spa
dc.relation.referencesKunze, G. (2004). The N Terminus of Bacterial Elongation Factor Tu Elicits Innate Immunity in Arabidopsis Plants. The Plant Cell Online, 16(12), 3496–3507. https://doi.org/10.1105/tpc.104.026765spa
dc.relation.referencesLahey, K. A., Yuan, R., Burns, J. K., Ueng, P. P., Timmer, L. W., & Chung, K. R. (2004). Induction of phytohormones and differential gene expression in citrus flowers infected by the fungus Colletotrichum acutatum. Molecular Plant-Microbe Interactions, 17(12), 1394–1401. https://doi.org/10.1094/MPMI.2004.17.12.1394spa
dc.relation.referencesLee, J. K., Jin, H.-O., Hong, Y. J., Park, J.-A., Kim, J.-H., & Chang, Y. H. (2014). Comparison of three different kits for extraction of high-quality RNA from frozen blood. SpringerPlus, 3(1), 76. https://doi.org/10.1186/2193-1801-3-76spa
dc.relation.referencesLi, G., & Yen, Y. (2008). Jasmonate and Ethylene Signaling Pathway May Mediate Fusarium Head Blight Resistance in Wheat. October, 1888–1896. https://doi.org/10.2135/cropsci2008.02.0097spa
dc.relation.referencesLiu, L., Li, Y., Li, S., Hu, N., He, Y., Pong, R., Lin, D., Lu, L., & Law, M. (2012). Comparison of next-generation sequencing systems. Journal of Biomedicine and Biotechnology, 2012. https://doi.org/10.1155/2012/251364spa
dc.relation.referencesLiu, Q., Wei, C., Zhang, M.-F., & Jia, G.-X. (2016). Evaluation of putative reference genes for quantitative real-time PCR normalization in Lilium regale during development and under stress. PeerJ, 4, e1837. https://doi.org/10.7717/peerj.1837spa
dc.relation.referencesLiu, W., & Saint, D. A. (2002). A new quantitative method of real time reverse transcription polymerase chain reaction assay based on simulation of polymerase chain reaction kinetics. Analytical Biochemistry, 302(1), 52–59. https://doi.org/10.1006/abio.2001.5530spa
dc.relation.referencesLiu, Y., Guo, Y., Ma, C., Zhang, D., Wang, C., & Yang, Q. (2016). Transcriptome analysis of maize resistance to Fusarium graminearum. BMC Genomics, 17(1), 477. https://doi.org/10.1186/s12864-016-2780-5spa
dc.relation.referencesLu, H., Rate, D. N., Song, J. T., & Greenberg, J. T. (2003). ACD6, a Novel Ankyrin Protein, Is a Regulator and an Effector of Salicylic Acid Signaling in the Arabidopsis Defense Response. Plant Cell, 15(10), 2408–2420. https://doi.org/10.1105/tpc.015412spa
dc.relation.referencesMacKay, V. L., Li, X., Flory, M. R., Turcott, E., Law, G. L., Serikawa, K. A., Xu, X. L., Lee, H., Goodlett, D. R., Aebersold, R., Zhao, L. P., & Morris, D. R. (2004). Gene expression analyzed by high-resolution state array analysis and quantitative proteomics. Molecular and Cellular Proteomics, 3(5), 478–489. https://doi.org/10.1074/mcp.M300129-MCP200spa
dc.relation.referencesMahesh, H. M., Murali, M., Chandra, M. A., Melvin, P., & Sharada, M. S. (2017). Plant Physiology and Biochemistry Salicylic acid seed priming instigates defense mechanism by inducing PR-Proteins in Solanum melongena L . upon infection with Verticillium dahliae Kleb . Plant Physiology et Biochemistry, 117, 12–23. https://doi.org/10.1016/j.plaphy.2017.05.012spa
dc.relation.referencesMartinez, A. P. (2019). Contribución al estudio de los Contribución al estudio de los fenómenos bioquímicos y fenómenos bioquímicos y moleculares del apoplasto de clavel moleculares del apoplasto de clavel ( Dianthus caryophyllus L) durante su durante su interacción con Fusarium. Departamento de Quimica, Facultad de Ciencias,Universidad Nacional de Colombia.spa
dc.relation.referencesMeng, X., Li, F., & Liu, C. (2010). Isolation and Characterization of an ERF Transcription Factor Gene from Cotton ( Gossypium barbadense L .). 176–183. https://doi.org/10.1007/s11105-009-0136-xspa
dc.relation.referencesMonaghan, J., & Zipfel, C. (2012). Plant pattern recognition receptor complexes at the plasma membrane. Current Opinion in Plant Biology, 15(4), 349–357. https://doi.org/10.1016/j.pbi.2012.05.006spa
dc.relation.referencesMonroy-Mena, S., Chacon-Parra, A. L., Farfan-Angarita, J. P., Martinez-Peralta, S. T., & Ardila-Barrantes, H. D. (2019). Selección de genes de referencia para análisis transcripcionales en el modelo clavel (Dianthus caryophyllus L.) - Fusarium oxysporum f. sp. dianthi. Revista Colombiana de Química, 48(2), 5–14. https://doi.org/10.15446/rev.colomb.quim.v48n2.72771spa
dc.relation.referencesMueller, O., & Schroeder, A. (2004). RNA Integrity Number ( RIN ) – Standardization of RNA Quality Control Application. Nano, 1–8. https://doi.org/10.1101/gr.189621.115.7spa
dc.relation.referencesNedukha, O. M. (2015). Callose: Localization, functions, and synthesis in plant cells. Cytology and Genetics, 49(1), 49–57. https://doi.org/10.3103/S0095452715010090spa
dc.relation.referencesNg, D. W., Abeysinghe, J. K., & Kamali, M. (2018). Regulating the Regulators : The Control of Transcription Factors in Plant Defense Signaling. International Journal of Molecular Sciences, 19, 1–18. https://doi.org/10.3390/ijms19123737spa
dc.relation.referencesNiemann, G. J., & Kerk, A. van der K. (1991). Free and cell wall-bound phenolics and other constituents from healthy and fungus-infected carnation (Dianthus caryophyllus) stems. Physiological and Molecular Plant Pathology, 38, 417–432.spa
dc.relation.referencesOdintsova, T. I., Slezina, M. P., Istomina, E. A., Korostyleva, T. V., Kasianov, A. S., Kovtun, A. S., Makeev, V. J., Shcherbakova, L. A., & Kudryavtsev, A. M. (2019). Defensin-like peptides in wheat analyzed by whole-transcriptome sequencing: A focus on structural diversity and role in induced resistance. PeerJ, 2019(1), 1–29. https://doi.org/10.7717/peerj.6125spa
dc.relation.referencesOlbrich, M., Gerstner, E., Welzl, G., & Fleischmann, F. (2008). Quantification of mRNAs and Housekeeping Gene Selection for Quantitative Real-Time RT-PCR Normalization in European Beech ( Fagus sylvatica L .) during Abiotic and Biotic Stress. Z. Naturforsch., 63(c), 574–582.spa
dc.relation.referencesOneto, C. D., Bossio, E., Faccio, P., Beznec, A., Blumwald, E., & Lewi, D. (2017). Validation of housekeeping genes for qPCR in maize during water deficit stress conditions at flowering time. Maydica, 62(2), 1–6.spa
dc.relation.referencesOxley, S. J. P., & Walters, D. R. (2012). Control of light leaf spot (Pyrenopeziza brassicae) on winter oilseed rape (Brassica napus) with resistance elicitors. Crop Protection, 40, 59–62. https://doi.org/10.1016/j.cropro.2012.04.028spa
dc.relation.referencesPfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 29(9), 45e – 45. https://doi.org/10.1093/nar/29.9.e45spa
dc.relation.referencesPhukan, U. J., Jeena, G. S., Tripathi, V., & Shukla, R. K. (2017). Regulation of Apetala2 / Ethylene Response Factors in Plants. Frontiers in Plant Science, 8(February), 1–18. https://doi.org/10.3389/fpls.2017.00150spa
dc.relation.referencesRancour, D. M., Park, S., Knight, S. D., & Bednarek, S. Y. (2004). Plant UBX domain-containing protein 1, PUX1, regulates the oligomeric structure and activity of arabidopsis CDC48. Journal of Biological Chemistry, 279(52), 54264–54274. https://doi.org/10.1074/jbc.M405498200spa
dc.relation.referencesRattray, A. M. J., & Müller, B. (2012). The control of histone gene expression. Biochemical Society Transactions, 40(4), 880–885. https://doi.org/10.1042/BST20120065spa
dc.relation.referencesReddy, A. S. N., Ali, G. S., Celesnik, H., & Day, I. S. (2011). Coping with stresses: Roles of calcium- and calcium/calmodulin-regulated gene expression. Plant Cell, 23(6), 2010–2032. https://doi.org/10.1105/tpc.111.084988spa
dc.relation.referencesRobertson, G., Schein, J., Chiu, R., Corbett, R., Field, M., Jackman, S. D., Mungall, K., Lee, S., Okada, H. M., Qian, J. Q., Griffith, M., Raymond, A., Thiessen, N., Cezard, T., Butterfield, Y. S., Newsome, R., Chan, S. K., She, R., Varhol, R., … Birol, I. (2010). De novo assembly and analysis of RNA-seq data. Nature Methods, 7(11), 909–912. https://doi.org/10.1038/nmeth.1517spa
dc.relation.referencesRuduś, I., Sasiak, M., & Kepczyński, J. (2013). Regulation of ethylene biosynthesis at the level of 1-aminocyclopropane-1-carboxylate oxidase (ACO) gene. Acta Physiologiae Plantarum, 35(2), 295–307. https://doi.org/10.1007/s11738-012-1096-6spa
dc.relation.referencesSánchez, G. R., Mercado, E. C., Peña, E. B., Reyes, H., & Cruz, D. (2010). El acido salicílico y su participacion en la resistencia a patógenos en plantas. Biologicas, 12(2), 90–95.spa
dc.relation.referencesSillero, J. C., Rojas-Molina, M. M., Avila, C. M., & Rubiales, D. (2012). Induction of systemic acquired resistance against rust, ascochyta blight and broomrape in faba bean by exogenous application of salicylic acid and benzothiadiazole. Crop Protection, 34, 65–69. https://doi.org/10.1016/j.cropro.2011.12.001spa
dc.relation.referencesSingh, V., Kaul, S. C., Wadhwa, R., & Pati, P. K. (2015). Evaluation and selection of candidate reference genes for normalization of quantitative RT-PCR in Withania somnifera (L.) Dunal. PLoS ONE, 10(3), 1–20. https://doi.org/10.1371/journal.pone.0118860spa
dc.relation.referencesStadnik, M. J., & Freitas, M. B. de. (2014). Algal polysaccharides as source of plant resistance inducers. Tropical Plant Pathology, 39(2), 111–118. https://doi.org/10.1590/S1982-56762014000200001spa
dc.relation.referencesTameling, W. I. L., & Joosten, M. H. A. J. (2007). The diverse roles of NB-LRR proteins in plants. Physiological and Molecular Plant Pathology, 71(4–6), 126–134. https://doi.org/10.1016/j.pmpp.2007.12.006spa
dc.relation.referencesTamm, L., Thürig, B., Fliessbach, A., Goltlieb, A. E., Karavani, S., & Cohen, Y. (2011). Elicitors and soil management to induce resistance against fungal plant diseases. NJAS - Wageningen Journal of Life Sciences, 58(3–4), 131–137. https://doi.org/10.1016/j.njas.2011.01.001spa
dc.relation.referencesTarazona, S., García, F., Ferrer, A., Dopazo, J., & Conesa, A. (2012). NOIseq: a RNA-seq differential expression method robust for sequencing depth biases. EMBnet.Journal, 17(B), 18. https://doi.org/10.14806/ej.17.b.265spa
dc.relation.referencesTon, J., Ent, S. Van Der, Hulten, M. Van, Pozo, M., van Oosten, V., van Loon, L. C., Mauch-Mani, B., Turlings, T. C. J., & Pieterse, C. M. J. (2009). Priming as a mechanism behind induced resistance against pathogens, insects and abiotic stress. IOBC/Wprs Bull, 44, 3–13. https://doi.org/IOBC/wprs Bulletinspa
dc.relation.referencesTrillas, M. I., Cotxarrera, L., Casanova, E., & Cortadellas, N. (2000). Ultrastructural changes and localization of chitin and callose in compatible and incompatible interactions between carnation callus and Fusarium oxysporum. Physiological and Molecular Plant Pathology, 56(3), 107–116. https://doi.org/10.1006/pmpp.1999.0254spa
dc.relation.referencesTristan, C., Shahani, N., Sedlak, T. W., & Sawa, A. (2011). The diverse functions of GAPDH: Views from different subcellular compartments. Cellular Signalling, 23(2), 317–323. https://doi.org/10.1016/j.cellsig.2010.08.003spa
dc.relation.referencesUntergasser, A., Cutcutache, I., Koressaar, T., Ye, J., Faircloth, B. C., Remm, M., & Rozen, S. G. (2012). Primer3-new capabilities and interfaces. Nucleic Acids Research, 40(15), 1–12. https://doi.org/10.1093/nar/gks596spa
dc.relation.referencesVandesompele, J., De Preter, K., Pattyn, ilip, Poppe, B., Van Roy, N., De Paepe, A., & Speleman, rank. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology, 3(711), 34–1. https://doi.org/10.1186/gb-2002-3-7-research0034spa
dc.relation.referencesVanegas Cano, L. J. (2019). APROXIMACIÓN BIOQUÍMICA AL ESTUDIO DE LAS RUTAS DE SEÑALIZACIÓN INVOLUCRADAS EN LA RESISTENCIA DEL CLAVEL (Dianthus caryophyllus L.) AL PATÓGENO Fusarium oxysporum f. sp. dianthi. Departamento de Quimica, Facultad de Ciencias,Universidad Nacional de Colombia.spa
dc.relation.referencesVanetten, H. D., Mansfield, J. W., Bailey, J. A., & Farmer, E. E. (1994). Two Classes of Plant Antibiotics: Phytoalexins versus “Phytoanticipins.” Plant Cell, 101, 1191–1192.spa
dc.relation.referencesVechet, L., Burketova, L., & Sindelarova, M. (2009). A comparative study of the efficiency of several sources of induced resistance to powdery mildew (Blumeria graminis f. sp. tritici) in wheat under field conditions. Crop Protection, 28(2), 151–154. https://doi.org/10.1016/j.cropro.2008.09.009spa
dc.relation.referencesVerhagen, B. W. M., Glazebrook, J., Zhu, T., Chang, H., Loon, L. C. Van, & Pieterse, C. M. J. (2004). The Transcriptome of Rhizobacteria-Induced Systemic Resistance in Arabidopsis. 17(8), 895–908.spa
dc.relation.referencesVorwerk, S., Somerville, S., & Somerville, C. (2004). The role of plant cell wall polysaccharide composition in disease resistance. Trends in Plant Science, 9(4), 203–209. https://doi.org/10.1016/j.tplants.2004.02.005spa
dc.relation.referencesWalters, D. R., Ratsep, J., & Havis, N. D. (2013). Controlling crop diseases using induced resistance : challenges for the future. 64(5), 1263–1280. https://doi.org/10.1093/jxb/ert026spa
dc.relation.referencesWei, Y., Liu, Q., Dong, H., Zhou, Z., Hao, Y., Chen, X., & Xu, L. (2016). Selection of reference genes for real-time quantitative PCR in pinus massoniana post nematode inoculation. PLoS ONE, 11(1), 1–14. https://doi.org/10.1371/journal.pone.0147224spa
dc.relation.referencesWhite, R. F. (1979). Acetylsalicylic acid (aspirin) induces resistance to tobacco mosaic virus in tobacco. Virology, 99(2), 410–412. https://doi.org/10.1016/0042-6822(79)90019-9spa
dc.relation.referencesWiesel, L., Newton, A. C., Elliott, I., Booty, D., Gilroy, E. M., Birch, P. R. J., & Hein, I. (2014). Molecular effects of resistance elicitors from biological origin and their potential for crop protection. Frontiers in Plant Science, 5(November), 1–13. https://doi.org/10.3389/fpls.2014.00655spa
dc.relation.referencesWilson, I. G., & Wilson, I. a N. G. (1997). Inhibition and Facilitation of Nucleic Acid Amplification Inhibition and Facilitation of Nucleic Acid Amplification. 63(10), 3741–3751.spa
dc.relation.referencesWise, R. P., Moscou, M. J., Bogdanove, A. J., & Whitham, S. A. (2007). Transcript Profiling in Host–Pathogen Interactions. Annual Review of Phytopathology, 45(1), 329–369. https://doi.org/10.1146/annurev.phyto.45.011107.143944spa
dc.relation.referencesWrzaczek, M., Vainonen, J. P., Stael, S., Tsiatsiani, L., Help‐Rinta‐Rahko, H., Gauthier, A., Kaufholdt, D., Bollhöner, B., Lamminmäki, A., Staes, A., Gevaert, K., Tuominen, H., Van Breusegem, F., Helariutta, Y., & Kangasjärvi, J. (2015). GRIM REAPER peptide binds to receptor kinase PRK 5 to trigger cell death in Arabidopsis . The EMBO Journal, 34(1), 55–66. https://doi.org/10.15252/embj.201488582spa
dc.relation.referencesXiao, J., Jin, X., Jia, X., Wang, H., Cao, A., Zhao, W., Pei, H., Xue, Z., He, L., Chen, Q., & Wang, X. (2013). Transcriptome-based discovery of pathways and genes related to resistance against Fusarium head blight in wheat landrace Wangshuibai. BMC Genomics, 14(1), 1. https://doi.org/10.1186/1471-2164-14-197spa
dc.relation.referencesXu, C., Jiao, C., Sun, H., Cai, X., Wang, X., Ge, C., Zheng, Y., Liu, W., Sun, X., Xu, Y., Deng, J., Zhang, Z., Huang, S., Dai, S., Mou, B., Wang, Q., Fei, Z., & Wang, Q. (2017). Draft genome of spinach and transcriptome diversity of 120 Spinacia accessions. Nature Communications, 8(May), 1–10. https://doi.org/10.1038/ncomms15275spa
dc.relation.referencesXu, P., Narasimhan, M. L., Samson, T., Coca, M. A., Huh, G., Zhou, J., Martin, G. B., Hasegawa, P. M., & Bressan, R. A. (1998). A Nitrilase-Like Protein Interacts with GCC Box DNA-Binding Proteins Involved in Ethylene and Defense Responses 1. 867–874.spa
dc.relation.referencesXu, Z. S., Chen, M., Li, L. C., & Ma, Y. Z. (2008). Functions of the ERF transcription factor family in plants. Botany, 86(9), 969–977. https://doi.org/10.1139/B08-041spa
dc.relation.referencesYagi, M., Kosugi, S., Hirakawa, H., Ohmiya, A., Tanase, K., Harada, T., Kishimoto, K., Nakayama, M., Ichimura, K., Onozaki, T., Yamaguchi, H., Sasaki, N., Miyahara, T., Nishizaki, Y., Ozeki, Y., Nakamura, N., Suzuki, T., Tanaka, Y., Sato, S., … Tabata, S. (2014). Sequence analysis of the genome of carnation (Dianthus caryophyllus L.). DNA Research, 21(3), 231–241. https://doi.org/10.1093/dnares/dst053spa
dc.relation.referencesYang, I. S., & Kim, S. (2015). Analysis of Whole Transcriptome Sequencing Data: Workflow and Software. Genomics & Informatics, 13(4), 119. https://doi.org/10.5808/GI.2015.13.4.119spa
dc.relation.referencesZipfel, C. (2009). Early molecular events in PAMP-triggered immunity. Current Opinion in Plant Biology, 12(4), 414–420. https://doi.org/10.1016/j.pbi.2009.06.003spa
dc.relation.referencesZipfel, C., Robatzek, S., Navarro, L., Oakeley, E. J., Jones, J. D. G., Felix, G., & Boller, T. (2004). Bacterial disease resistance in Arabidopsis through flagellin perception. Nature, 428(6984), 764–767. https://doi.org/10.1038/nature02485spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc540 - Química y ciencias afinesspa
dc.subject.ddc570 - Biologíaspa
dc.subject.ddc580 - Plantasspa
dc.subject.proposalhistonaspa
dc.subject.proposalRNAr18seng
dc.subject.proposalRNAseqeng
dc.subject.proposalaminociclopropilcarboxilato oxidasaspa
dc.subject.proposalfactor de respuesta al etilenospa
dc.subject.proposaldianthus caryophyllusspa
dc.titleEfecto de elicitores de origen biótico en la transcripción de algunos genes involucrados en los mecanismos de defensa del clavel Dianthus caryophyllus L. al patógeno Fusarium oxysporum f sp dianthispa
dc.typeDocumento de trabajospa
dc.type.coarhttp://purl.org/coar/resource_type/c_8042spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/workingPaperspa
dc.type.redcolhttp://purl.org/redcol/resource_type/WPspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1031140642.2020.pdf
Tamaño:
1.46 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: