Generación distribuida basada en sistemas híbridos caso de estudio: La Guajira, Colombia

dc.contributor.advisorChejne Janna, Farid
dc.contributor.advisorBotero Botero, Sergio
dc.contributor.authorMorales Sanchez, Karidys Liseth
dc.contributor.researchgroupTermodinámica Aplicada y Energías Alternativasspa
dc.coverage.countryLa Guajira - Colombia
dc.date.accessioned2022-03-16T14:04:00Z
dc.date.available2022-03-16T14:04:00Z
dc.date.issued2022-03-14
dc.descriptionilustraciones, diagramas, mapas, tablasspa
dc.description.abstractEn este trabajo se presenta una propuesta de sistema híbrido de potencia (HPS) con tecnologías solar fotovoltaica y gasificación de biomasa con posibilidad de ser implementado en el departamento de La Guajira. El HPS incluye un sistema de gasificación de 30 kWt y 10 kWe evaluado para funcionar con cascarilla de arroz. Se utilizó un modelo de predicción de la composición del syngas y se obtuvo un poder calorífico inferior de 3,77 MJ/Nm3 utilizado para determinar las dimensiones constructivas del gasificador y seleccionar el motor acoplable. Por otro lado, se dimensionó un sistema fotovoltaico de 12,5 kW con inversor de tipo híbrido para gestionar la carga DC de los paneles y la carga AC del motor. El prototipo diseñado se evaluó desde los aspectos técnicos, financieros y regulatorios. La evaluación regulatoria indica que la normativa colombiana ha establecido la promoción de la generación con HPS con el objetivo de sustituir la alta presencia de generación con diésel existente en las Zonas No Interconectadas y aunque la conexión al Sistema Interconectado Nacional no es mencionada en la normativa, se encuentra permitida y en ambos casos se puede acceder a los incentivos tributarios establecidos por la ley. La evaluación técnica y financiera se realizó en el software HOMER Pro y se seleccionó como mejor alternativa la generación a partir de gasificación + fotovoltaica + baterías con un exceso de electricidad y demanda no atendida mínima de 14,5% y 0,03% respectivamente; finalmente se obtiene un costo nivelado de la energía 0,34 USD/kWh. (Texto tomado de la fuente)spa
dc.description.abstractThis paper presents a proposal for a hybrid power system (HPS) with photovoltaic solar technologies and biomass gasification with the possibility of being implemented in the department of La Guajira. The HPS includes a 30 kWt and 10 kWe gasification system evaluated to work with rice husks. A prediction model of the synthesis gas composition was obtained, and a lower calorific value of 3,77 MJ/Nm3 was obtained, used to determine the gasifier's construction dimensions, and select the attachable engine. On the other hand, a 12,5 kW photovoltaic system with a hybrid inverter was dimensioned to manage the panels’ DC load and the motor’s AC load. The designed prototype was evaluated from the technical, financial, and regulatory aspects. The regulatory evaluation indicates that the Colombian regulations have established the promotion of HPS generation to replace the high presence of existing diesel generation in the Non-Interconnected Zones and although the connection to the National Interconnected System is not mentioned in the regulations, it is allowed and in both cases the tax incentives established by law can be accessed. The technical and financial evaluation was carried out using the HOMER Pro software and generation from gasification + photovoltaic + batteries with excess electricity and minimum unattended demand of 14,5% and 0,03%, respectively, was selected as the best alternative; Finally, a levelized cost of energy of 0,34 USD/kWh is obtained.eng
dc.description.curricularareaÁrea Curricular de Ingeniería de Sistemas e Informáticaspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Sistemas Energéticosspa
dc.description.funderColombia Científica financia la alianza interinstitucional Energética 2030spa
dc.format.extentxvi, 143 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81244
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de la Computación y la Decisiónspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Sistemas Energéticosspa
dc.relation.referencesIEA, “Global Energy Review 2021,” 2021. [Online]. Available: https://www.iea.org/reports/global-energy-review-2021spa
dc.relation.referencesIEA, “World Energy Outlook 2019,” 2019. [Online]. Available: https://www.iea.org/reports/world-energy-outlook-2019spa
dc.relation.referencesIRENA, IEA, UNSD, The World Bank, and WHO, “Tracking SDG7: the energy progress report,” 2019. [Online]. Available: https://trackingsdg7.esmap.org/downloadsspa
dc.relation.referencesA. Planas, J. D. Quintero, and L. Montealegra, “Guía ambiental y social para proyectos de generación fotovoltaicos e híbridos menores o iguales a 1MW,” 2021. [Online]. Available: http://dx.doi.org/10.18235/0003114spa
dc.relation.referencesH. O. Benavides Ballesteros, O. Simbaqueva Fonseca, and H. J. Zapata Lesmes, “Atlas de radiación solar, ultravioleta y ozono de Colombia,” 2017spa
dc.relation.referencesJ. F. Ruíz Murcia, J. Serna Cuenca, and H. J. Zapata Lesmes, “Atlas de viento de Colombia,” 2017spa
dc.relation.referencesH. Escalante Hernández, J. Orduz Prada, H. J. Zapata Lesmes, M. C. Cardona Ruiz, and M. Duarte Ortega, “Atlas del potencial energético de la Biomasa residual en Colombia,” 2011spa
dc.relation.referencesIEA, “Status of power system transformation,” 2019. [Online]. Available: https://www.iea.org/reports/status-of-power-system-transformation-2019spa
dc.relation.referencesA. Ehsan and Q. Yang, “Optimal integration and planning of renewable distributed generation in the power distribution networks: A review of analytical techniques,” Applied Energy, vol. 210, pp. 44–59, 2018.spa
dc.relation.referencesT. Ackermann, G. Andersson, and L. Söder, “Distributed generation: a definition,” Electric power systems research, vol. 57, no. 3, pp. 195–204, 2001.spa
dc.relation.referencesG. Pepermans, J. Driesen, D. Haeseldonckx, R. Belmans, and W. D’haeseleer, “Distributed generation: definition, benefits and issues,” Energy policy, vol. 33, no. 6, pp. 787–798, 2005.spa
dc.relation.referencesP. Fraser, “Distributed generation in liberalised electricity markets,” in Second international symposium on distributed generation: power system and market aspects (Stockholm, 2-4 October 2002), 2002, pp. 1G – 12.spa
dc.relation.referencesIEA, “Renewables 2019,” 2019. [Online]. Available: https://www.iea.org/reports/renewables-2019spa
dc.relation.referencesCESA, “Distributed generation in state Renewable Portfolio Standards,” 2017.spa
dc.relation.referencesA. L’Abbate, G. Fulli, F. Starr, and S. D. Peteves, “Distributed Power Generation in Europe: technical issues for further integration,” JRC European Commission Scientific and Technical Report. EUR, vol. 23234, 2007.spa
dc.relation.referencesY. Guiyong, “The status of distributed generation in China,” 2017. [Online]. Available: https://www.unescap.org/sites/default/files/Session 2-3. Guiyong Yu_CGC.pdfspa
dc.relation.referencesO. Zhang, S. Yu, and P. Liu, “Development mode for renewable energy power in China: Electricity pool and distributed generation units,” Renewable and Sustainable Energy Reviews, vol. 44, pp. 657–668, 2015.spa
dc.relation.referencesEIA, “Electricity generation, capacity, and sales in the United States,” 2020. [Online]. Available: https://www.eia.gov/energyexplained/electricity/electricity-in-the-us-generation-capacity-and-sales.phpspa
dc.relation.referencesO. Zinaman, T. Bowen, and A. Y. Aznar, “An Overview of Behind-the-meter Solar-plus-storage Regulatory Design: Approaches and Case Studies to Inform International Applications,” 2020.spa
dc.relation.referencesO. Zinaman, A. Aznar, C. Linvill, N. Darghouth, T. Dubbeling, and E. Bianco, “Grid-connected distributed generation: compensation mechanism basics,” National Renewable Energy Laboratory: Golden, CO, USA, 2017.spa
dc.relation.referencesJ. Lowitzsch, C. E. Hoicka, and F. J. van Tulder, “Renewable energy communities under the 2019 European Clean Energy Package–Governance model for the energy clusters of the future?,” Renewable and Sustainable Energy Reviews, vol. 122, p. 109489, 2020.spa
dc.relation.referencesK. Frank et al., “Distributed electricity production and self-consumption in the Nordics,” 2019.spa
dc.relation.referencesFortum, “Fortum Solar Charging, funciona con su propia energía fotovoltaica,” 2021. https://www.fortum.fi/aurinkolatausspa
dc.relation.referencesA. N. Mejdalani, J. E. Chueca, D. D. L. Soto, Y. Ji, and M. Hallack, “Implementación de políticas de medición neta en América Latina y el Caribe: diseño, incentivos y mejores prácticas,” 2019.spa
dc.relation.referencesARCONEL, “Proyecto de regulación: marco normativo para la participación de la generación distribuida,” 2020.spa
dc.relation.referencesComisión Reguladora de Energía de México, “Solicitudes de interconexión de Centrales Eléctricas con capacidad menor a 0.5 MW, Contratos Interconexión de Pequeña y Mediana Escala/Generación Distribuida – Estadísticas al primer semestre de 2020,” 2020. https://www.gob.mx/cre/documentos/pequena-y-mediana-escalaspa
dc.relation.referencesUPME, “Guía para la Incorporación de la Dimensión Minero Energética en los Planes de Ordenamiento Departamental,” 2020. [Online]. Available: https://www.upme.gov.co/CursoCajaHerramientas/departamental-modulo1-1.htmlspa
dc.relation.referencesUPME, “Capacidad instalada de autogeneración y cogeneración en el sector de industria, petróleo, comercio y público del país,” 2014.spa
dc.relation.referencesCREG, “Marco regulatorio para la prestación del servicio de energía eléctrica en las zonas no interconectadas,” 2007.spa
dc.relation.referencesUPME, “Estadísticas Incentivos FNCE,” 2020.spa
dc.relation.referencesUPME, “Solicitudes de autogeneración y generación distribuida,” 2020.spa
dc.relation.referencesCREG, “Revisión de las reglas de autogeneración a pequeña escala y generación distribuida,” 2021.spa
dc.relation.referencesN. Bizon, H. Shayeghi, and N. M. Tabatabaei, Analysis, control, and optimal operations in hybrid power systems: Advanced techniques and applications for linear and nonlinear systems. Springer, 2013.spa
dc.relation.referencesS. M. Lawan and W. A. W. Z. Abidin, “A Review of hybrid renewable energy systems based on wind and solar energy: modeling, design and optimization,” Wind Solar Hybrid Renewable Energy System, 2020.spa
dc.relation.referencesS. Ganguly, C. K. Shiva, and V. Mukherjee, “Frequency stabilization of isolated and grid connected hybrid power system models,” Journal of Energy Storage, vol. 19, pp. 145–159, 2018.spa
dc.relation.referencesM. M. Elkadragy et al., “Off-grid and decentralized hybrid renewable electricity systems data analysis platform (OSDAP): A building block of a comprehensive techno-economic approach based on contrastive case studies in Sub-Saharan Africa and Canada,” Journal of Energy Storage, vol. 34, p. 101965, 2021.spa
dc.relation.referencesP. P. Kumar and R. P. Saini, “Optimization of an off-grid integrated hybrid renewable energy system with different battery technologies for rural electrification in India,” Journal of Energy Storage, vol. 32, p. 101912, 2020.spa
dc.relation.referencesX. Fei, R. Xuejun, and N. Razmjooy, “Optimal configuration and energy management for combined solar chimney, solid oxide electrolysis, and fuel cell: a case study in Iran,” Energy sources, part A: Recovery, utilization, and environmental effects, pp. 1–21, 2019.spa
dc.relation.referencesM. del M. Martínez Díaz, “Stand-alone hybrid renewable energy systems (HRES),” 2017.spa
dc.relation.referencesH. Morais, P. Kádár, P. Faria, Z. A. Vale, and H. M. Khodr, “Optimal scheduling of a renewable micro-grid in an isolated load area using mixed-integer linear programming,” Renewable Energy, vol. 35, no. 1, pp. 151–156, 2010.spa
dc.relation.referencesH. Farzaneh, Energy systems modeling: Principles and applications. Springer, 2019.spa
dc.relation.referencesH. Yang, W. Zhou, L. Lu, and Z. Fang, “Optimal sizing method for stand-alone hybrid solar–wind system with LPSP technology by using genetic algorithm,” Solar energy, vol. 82, no. 4, pp. 354–367, 2008.spa
dc.relation.referencesB. G. Subhadra, “Macro-level integrated renewable energy production schemes for sustainable development,” Energy Policy, vol. 39, no. 4, pp. 2193–2196, 2011.spa
dc.relation.referencesV. T. Achirgbenda, A. Kuhe, and K. Okoli, “Techno-economic feasibility assessment of a solar-biomass-diesel energy system for a remote rural health facility in Nigeria,” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, pp. 1–18, 2020.spa
dc.relation.referencesM. Hossain, K. Ziaul Islam, A. Jahid, K. M. Rahman, S. Ahmed, and M. H. Alsharif, “Renewable energy-aware sustainable cellular networks with load balancing and energy-sharing technique,” Sustainability, vol. 12, no. 22, p. 9340, 2020.spa
dc.relation.referencesM. S. Hossain, A. Jahid, K. Z. Islam, and M. F. Rahman, “Solar PV and biomass resources-based sustainable energy supply for off-grid cellular base stations,” IEEE Access, vol. 8, pp. 53817–53840, 2020.spa
dc.relation.referencesA. Cano, P. Arévalo, and F. Jurado, “Energy analysis and techno-economic assessment of a hybrid PV/HKT/BAT system using biomass gasifier: Cuenca-Ecuador case study,” Energy, vol. 202, p. 117727, 2020.spa
dc.relation.referencesM. K. Deshmukh and S. S. Deshmukh, “Modeling of hybrid renewable energy systems,” Renewable and sustainable energy reviews, vol. 12, no. 1, pp. 235–249, 2008.spa
dc.relation.referencesJ. L. Bernal-Agustín and R. Dufo-Lopez, “Simulation and optimization of stand-alone hybrid renewable energy systems,” Renewable and sustainable energy reviews, vol. 13, no. 8, pp. 2111–2118, 2009.spa
dc.relation.referencesJ. Paska, P. Biczel, and M. Kłos, “Hybrid power systems–An effective way of utilising primary energy sources,” Renewable energy, vol. 34, no. 11, pp. 2414–2421, 2009.spa
dc.relation.referencesB. G. Subhadra, “Macro-level integrated renewable energy production schemes for sustainable development,” Energy Policy, vol. 39, no. 4, pp. 2193–2196, 2011.spa
dc.relation.referencesC. L. Chambon, T. Karia, P. Sandwell, and J. P. Hallett, “Techno-economic assessment of biomass gasification-based mini-grids for productive energy applications: The case of rural India,” Renewable Energy, vol. 154, pp. 432–444, 2020.spa
dc.relation.referencesD. Alfonso-Solar, C. Vargas-Salgado, C. Sánchez-Díaz, and E. Hurtado-Pérez, “Small-scale hybrid photovoltaic-biomass systems feasibility analysis for higher education buildings,” Sustainability, vol. 12, no. 21, p. 9300, 2020.spa
dc.relation.referencesI. M. Eleftheriadis and E. G. Anagnostopoulou, “Identifying barriers in the diffusion of renewable energy sources,” Energy Policy, vol. 80, pp. 153–164, 2015.spa
dc.relation.referencesN. Alshammari and J. Asumadu, “Optimum unit sizing of hybrid renewable energy system utilizing harmony search, Jaya and particle swarm optimization algorithms,” Sustainable Cities and Society, vol. 60, p. 102255, Sep. 2020, doi: 10.1016/j.scs.2020.102255.spa
dc.relation.referencesJ. Rezaiyan and N. P. Cheremisinoff, Gasification technologies: a primer for engineers and scientists. CRC press, 2005.spa
dc.relation.referencesX. L. Yin, C. Z. Wu, S. P. Zheng, and Y. Chen, “Design and operation of a CFB gasification and power generation system for rice husk,” Biomass and Bioenergy, vol. 23, no. 3, pp. 181–187, 2002.spa
dc.relation.referencesS. De, A. K. Agarwal, V. S. Moholkar, and B. Thallada, “Coal and Biomass Gasification,” Recent Advances and Future Challenges; Springer Nature Singapore Pte Ltd.: Singapore, p. 521, 2018.spa
dc.relation.referencesY. Yun, Gasification for practical applications. BoD–Books on Demand, 2012.spa
dc.relation.referencesR. Luque and J. Clark, Handbook of biofuels production: Processes and technologies. Elsevier, 2010.spa
dc.relation.referencesP. Basu, Biomass gasification, pyrolysis, and torrefaction: practical design and theory. Academic press, 2018.spa
dc.relation.referencesP. Sharma, B. Gupta, M. Pandey, K. S. Bisen, and P. Baredar, “Downdraft biomass gasification: A review on concepts, designs analysis, modelling and recent advances,” Materials Today: Proceedings, 2020.spa
dc.relation.referencesA. A. P. Susastriawan, H. Saptoadi, and others, “Small-scale downdraft gasifiers for biomass gasification: A review,” Renewable and Sustainable Energy Reviews, vol. 76, pp. 989–1003, 2017.spa
dc.relation.referencesR. Luque and J. Clark, Handbook of biofuels production: Processes and technologies. Elsevier, 2010.spa
dc.relation.referencesC. A. D. González and L. P. Sandoval, “Sustainability aspects of biomass gasification systems for small power generation,” Renewable and Sustainable Energy Reviews, vol. 134, p. 110180, 2020.spa
dc.relation.referencesR. Luque and J. Speight, Gasification for synthetic fuel production: fundamentals, processes, and applications. Elsevier, 2014.spa
dc.relation.referencesH. Häberlin, Photovoltaics: system design and practice. John Wiley & Sons, 2012.spa
dc.relation.referencesO. Perpiñan Lamigueiro, A. Colmenar Santos, and M. A. Catro Gil, Diseño de sistemas fotovoltaicos. Promotora General de Estudios S.A, 2012.spa
dc.relation.referencesM. H. Alsharif and J. Kim, “Hybrid off-grid SPV/WTG power system for remote cellular base stations towards green and sustainable cellular networks in South Korea,” Energies, vol. 10, no. 1, p. 9, 2017.spa
dc.relation.referencesD. Watson, Y. Binnie, K. Duncan, and J.-F. Dorville, “Photurgen: The open source software for the analysis and design of hybrid solar wind energy systems in the Caribbean region: A brief introduction to its development policy,” Energy Reports, vol. 3, pp. 61–69, 2017.spa
dc.relation.referencesB. Ugwoke, A. Adeleke, S. P. Corgnati, J. M. Pearce, and P. Leone, “Decentralized renewable hybrid mini-grids for rural communities: Culmination of the IREP framework and scale up to urban communities,” Sustainability, vol. 12, no. 18, p. 7411, 2020.spa
dc.relation.referencesV. T. Achirgbenda, A. Kuhe, and K. Okoli, “Techno-economic feasibility assessment of a solar-biomass-diesel energy system for a remote rural health facility in Nigeria,” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, pp. 1–18, 2020.spa
dc.relation.referencesM. S. Hossain, A. Jahid, K. Z. Islam, and M. F. Rahman, “Solar PV and biomass resources-based sustainable energy supply for Off-Grid cellular base stations,” IEEE Access, vol. 8, pp. 53817–53840, 2020.spa
dc.relation.referencesC. L. Chambon, T. Karia, P. Sandwell, and J. P. Hallett, “Techno-economic assessment of biomass gasification-based mini-grids for productive energy applications: The case of rural India,” Renewable Energy, vol. 154, pp. 432–444, 2020.spa
dc.relation.referencesD. Alfonso-Solar, C. Vargas-Salgado, C. Sánchez-Díaz, and E. Hurtado-Pérez, “Small-Scale Hybrid Photovoltaic-Biomass Systems Feasibility Analysis for Higher Education Buildings,” Sustainability, vol. 12, no. 21, p. 9300, 2020.spa
dc.relation.referencesA. Cano, P. Arévalo, and F. Jurado, “Energy analysis and techno-economic assessment of a hybrid PV/HKT/BAT system using biomass gasifier: Cuenca-Ecuador case study,” Energy, vol. 202, p. 117727, 2020.spa
dc.relation.referencesS. Bhattacharjee and A. Dey, “Techno-economic performance evaluation of grid integrated PV-biomass hybrid power generation for rice mill,” Sustainable Energy Technologies and Assessments, vol. 7, pp. 6–16, 2014.spa
dc.relation.referencesP. Arévalo, A. Cano, and F. Jurado, “Comparative study of two new energy control systems based on PEMFC for a hybrid tramway in Ecuador,” International Journal of Hydrogen Energy, vol. 45, no. 46, pp. 25357–25377, 2020.spa
dc.relation.referencesN. Chowdhury, C. Akram Hossain, M. Longo, and W. Ya\"\ici, “Feasibility and Cost Analysis of Photovoltaic-Biomass Hybrid Energy System in Off-Grid Areas of Bangladesh,” Sustainability, vol. 12, no. 4, p. 1568, 2020.spa
dc.relation.referencesP. P Kumar and R. P. Saini, “Optimization of an off-grid integrated hybrid renewable energy system with various energy storage technologies using different dispatch strategies,” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, pp. 1–30, 2020.spa
dc.relation.referencesP. Malik, M. Awasthi, and S. Sinha, “Study of grid integrated biomass-based hybrid renewable energy systems for Himalayan terrain,” International Journal of Sustainable Energy Planning and Management, vol. 28, pp. 71–88, 2020.spa
dc.relation.referencesV. Suresh, M. M., and R. Kiranmayi, “Modelling and optimization of an off-grid hybrid renewable energy system for electrification in a rural areas,” Energy Reports, vol. 6, pp. 594–604, 2020, doi: https://doi.org/10.1016/j.egyr.2020.01.013.spa
dc.relation.referencesS. Ghosh and V. Karar, “Assimilation of optimal sized hybrid photovoltaic-biomass system by dragonfly algorithm with grid,” Energies, vol. 11, no. 7, p. 1892, 2018.spa
dc.relation.referencesE. Aykut and Ü. K. Terzi, “Techno-economic and environmental analysis of grid connected hybrid wind/photovoltaic/biomass system for Marmara University Goztepe campus,” International Journal of Green Energy, vol. 17, no. 15, pp. 1036–1043, 2020.spa
dc.relation.referencesA. N. Kozlov, N. v Tomin, D. N. Sidorov, E. E. S. Lora, and V. G. Kurbatsky, “Optimal Operation Control of PV-Biomass Gasifier-Diesel-Hybrid Systems using Reinforcement Learning Techniques,” Energies, vol. 13, no. 10, p. 2632, 2020.spa
dc.relation.referencesN. Alshammari and J. Asumadu, “Optimum unit sizing of hybrid renewable energy system utilizing harmony search, Jaya and particle swarm optimization algorithms,” Sustainable Cities and Society, vol. 60, p. 102255, 2020.spa
dc.relation.referencesJ. L. Murgas Bornachelly, B. Mauricio, A. Olivella Fernandez, and M. M. L. Javier, “Implementación de una central micro-central hidroeléctrica en el trapiche panelero de la vereda Alto San Jorge Municipio de Dibulla.” 2015.spa
dc.relation.referencesJ. L. Murgas Bornachelly, M. Brito, and J. Ramirez Ortega, “Energización como alternativa para el fortalecimiento de la cadena productiva del café en el municipio de Urumita - Plan de Energización Rural Sostenible para el Departamento de La Guajira - PERS,” 2015.spa
dc.relation.referencesJ. L. Murgas Bornachelly, M. Brito, and J. Ramirez Ortega, “Energización para el mejoramiento del servicio en rancherías etnoturísticas del municipio de Riohacha - Plan de Energización Rural Sostenible para el Departamento de La Guajira - PERS,” 2015.spa
dc.relation.referencesJ. L. Murgas Bornachelly, M. Brito, and J. Ramirez Ortega, “Energización híbrida para el mejoramiento del servicio en las posadas turísticas de punta gallinas - Plan de Energización Rural Sostenible para el Departamento de La Guajira - PERS,” 2016.spa
dc.relation.referencesJ. L. Murgas Bornachelly, “Implementación de energías alternativas en los ambientes de aprendizajes de instituciones educativas rurales del departamento del Cesar - Plan de Energización Rural Sostenible para el Departamento del Cesar - PERS Cesar,” 2018.spa
dc.relation.referencesG. F. García Acevedo, D. M. Bonet, and J. L. Murgas, “Implementación de un sistema de energía solar para la disminución de los costos de la energía eléctrica de las actividades de riego en parcelas productivas en el corregimiento de Guacochito - Valledupar.” 2018.spa
dc.relation.referencesJ. Murgas Bornachelly, “Energización para el fortalecimiento de los trapiches paneleros en zona rural del municipio de González.” 2018.spa
dc.relation.referencesJ. L. Murgas Bornachelly, “Instalación de sistemas fotovoltaicos para el mejoramiento de las tareas de beneficio de café en zona rural del municipio del Copey.” 2019.spa
dc.relation.referencesJ. Asprilla Perea, P. Pineda Jaime, J. E. Luna Rengifo, and L. Lemos, “Diseño de un sistema de energía alternativa para incrementar el potencial competitivo del sector pesquero en el municipio de Nuquí - Plan de Energización Rural Sostenible para el Departamento del Chocó - PERS Chocó,” 2015.spa
dc.relation.referencesJ. Asprilla Perea, P. Pineda Jaime, J. E. Luna Rengifo, and L. Lemos, “Diseño de un sistema de energía eléctrica a base de fuentes renovables para el fortalecimiento de la prestación de servicios de salud pública en el municipio de Media Baudó, del departamento del Chocó.” 2015.spa
dc.relation.referencesJ. Asprilla Perea, P. Pineda Jaime, J. E. Luna Rengifo, and L. Lemos, “Diseño de sistemas de energía solar fotovoltaica para la energización de instituciones de educativas rurales de la subregión geográfica del Baudó, departamento del Chocó.” 2015.spa
dc.relation.referencesJ. Asprilla Perea, P. Pineda Jaime, J. E. Luna Rengifo, and L. Lemos, “Diseño de un sistema de energía solar fotovoltaico para el mantenimiento de la cadena de frío de la pesca en un centro de acopio comunitario del municipio de Bajo Baudó en el departamento del Chocó.” 2015.spa
dc.relation.referencesJ. Asprilla Perea, P. Pineda Jaime, J. E. Luna Rengifo, and L. Lemos, “Diseño de un sistema de energía eléctrica con fuentes renovables para el fortalecimiento de la pesca artesanal del municipio de Juradó, departamento del Chocó - Plan de Energización Rural Sostenible para el Departamento del Chocó - PERS Chocó,” 2015.spa
dc.relation.referencesIPSE, “Informe mensual de la prestación del servicio de energía eléctrica en las localidades sin sistema de telemetría en las Zonas No Interconectadas- Abril de 2021,” 2021.spa
dc.relation.referencesSSPD, “Evaluación integral de prestadores de energía para el Amazonas S.A. E.S.P.” 2018.spa
dc.relation.referencesSSPD, “Diagnostico de la prestación del servicio de energía eléctrica en Zonas No Interconectadas ZNI.” 2018.spa
dc.relation.referencesSSPD, “Diagnostico de la prestación del servicio de energía eléctrica en Zonas No Interconectadas ZNI - Superintendencia delegada para la energía y gas combustible,” 2019.spa
dc.relation.referencesIPSE, “Informes mensuales de telemetría 2013 a 2021.” 2021.spa
dc.relation.referencesF. Chejne, F. Frechoso, V. Jhon Fredy, D. Diez, and A. Urueña, Generación de energía eléctrica mediante sistema de híbrido solar/gasificación de residuos agroindustriales HIBRELEC. Editorial CARTIF, 2017.spa
dc.relation.referencesFEDEARR0Z, “IV Censo Nacional Arrocero 2016,” Bogotá D.C., 2017. [Online]. Available: http://bit.ly/2SER3O7spa
dc.relation.referencesIPSE, “Informes mensuales de telemetría 2018 a 2021,” 2021. [Online]. Available: https://ipse.gov.co/cnm/informe-mensuales-telemetria/spa
dc.relation.referencesR. Flórez Faura, M. Á. Meneses Ariza, and O. E. Siabatto Pérez, Estudio semidetallado de suelos y zonificación de tierras en la media y baja Guajira. 2012.spa
dc.relation.referencesGobernación de La Guajira, “Plan de desarrollo 2016-2019 - Oportunidad para todos y propósito del país,” Riohacha, La Guajira, 2016. [Online]. Available: https://www.laguajira.gov.co/web/attachments/article/4221/Plan de Desarrollo 2017-2019.pdfspa
dc.relation.referencesGobernación de La Guajira, “Plan departamental de desarrollo de La Guajira, unidos por el cambio 2020-2023,” 2020.spa
dc.relation.referencesIGAC, “División política administrativa de La Guajira,” 2011.spa
dc.relation.referencesDANE, “Censo Nacional de Población y Vivienda - CNPV 2018 Colombia,” 2019. [Online]. Available: https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/censo-nacional-de-poblacion-y-vivenda-2018spa
dc.relation.referencesDANE, “Resultados censo nacional de población y vivienda 2018 - La Guajira,” Bogotá D.C., 2019. [Online]. Available: http://bit.ly/2X5fbLkspa
dc.relation.referencesIPSE, “Oferta de recursos renovables como fuentes para generar energía en el departamento de La Guajira,” 2016.spa
dc.relation.referencesE. Romero Sierra and C. Benedetti Henao, “Inversión en La Guajira: Oportunidades y Restricciones,” 2016.spa
dc.relation.referencesDANE, “Resultados pobreza multidimensional por departamentos 2018,” Bogotá D.C., 2019. [Online]. Available: http://bit.ly/2Q92I8cspa
dc.relation.referencesDANE, “La información del DANE en la toma de decisiones regionales, Riohacha-La Guajira,” 2020. [Online]. Available: https://www.dane.gov.co/files/investigaciones/planes-departamentos-ciudades/201215-InfoDane-La-Guajira-Riohacha.pdfspa
dc.relation.referencesDANE, “Población indígena de Colombia - Resultados del censo nacional de población y vivienda 2018,” Bogotá D.C., 2019.spa
dc.relation.referencesDANE, “Pueblo Wayúu - Resultados del Censo Nacional de Población y Vivienda - CNPV 2018 Colombia,” 2019. [Online]. Available: https://www.dane.gov.co/files/censo2018/informacion-tecnica/presentaciones-territorio/190816-CNPV-presentacion-Resultados-Guajira-Pueblo-Wayuu.pdfspa
dc.relation.referencesR. Rodríguez, D. Arroyo Alvares, E. Mejía Suarez, L. Mendoza, and T. González Peralta, “Dotación de kits para áreas dispersas y vulnerables en el departamento de La Guajira - Plan de Energización Rural Sostenible para el Departamento de La Guajira - PERS,” 2016.spa
dc.relation.referencesC. Posso and J. Barney, El viento del este llega con revoluciones, Multinacionales y transición con energía eólica en territorio Wayúu. 2019.spa
dc.relation.referencesOCA, “El Cercado, ¿nuevo elefante blanco en La Guajira? , Observatorio de Conflictos Ambientales (OCA) del Instituto de Estudios Ambientales (IDEA).” 2019.spa
dc.relation.referencesUPME, “Informe de Registro de Proyectos de Generación de Electricidad 2020– Inscripción según los requisitos de las Resoluciones UPME No. 0520, No.0638 de 2007 y No.0143 de 2016,” 2020.spa
dc.relation.referencesCámara de Comercio de La Guajira, “Oportunidades para los productores agropecuarios de La Guajira,” 2020. Accessed: Jun. 27, 2021. [Online]. Available: https://www.camaraguajira.org/publicaciones/informes/nuestro-entorno-empresarial-14.pdfspa
dc.relation.referencesCORPOGUAJIRA, “Altlas Ambiental del Departamento de La Guajira,” https://issuu.com/corpoguajira/docs/atlas_ambiental/124, 2011.spa
dc.relation.referencesAgronet, “Evaluaciones Agropecuarias - EVA y Anuario Estadístico del Sector Agropecuario,” https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=59, 2020.spa
dc.relation.referencesJ. Rivera Rincones, J. Murgas Bornachelly, T. González Peralta, and E. Mejía Suarez, “Implementación de la Unidad de Investigación en Energías Renovables para la Productividad y la Equidad Social del Departamento de La Guajira.” 2016.spa
dc.relation.referencesL. Ruidia Adianis AND González, “Inventario del recurso biomásico agrícola con capacidad energética de la región caribe de Colombia,” 2019.spa
dc.relation.referencesI. Osei, F. Kemausuor, M. K. Commeh, J. O. Akowuah, and L. Owusu-Takyi, “Design, fabrication and evaluation of non-continuous inverted downdraft gasifier stove utilizing rice husk as feedstock,” Scientific African, vol. 8, p. e00414, 2020.spa
dc.relation.referencesFEDEARROZ, “IV Censo nacional arrocerro 2016.” 2017.spa
dc.relation.referencesA. T. Belonio, “Rice husk gas stove handbook,” Appropriate Technology Center. Department of Agricultural Engineering and Environmental Management, College of Agriculture, Central Philippine University, Iloilo City, Philippines, pp. 1–155, 2005.spa
dc.relation.referencesA. Friedl, E. Padouvas, H. Rotter, and K. Varmuza, “Prediction of heating values of biomass fuel from elemental composition,” Analytica chimica acta, vol. 544, no. 1–2, pp. 191–198, 2005.spa
dc.relation.referencesF. Centeno, K. Mahkamov, E. E. Silva Lora, and R. v. Andrade, “Theoretical and experimental investigations of a downdraft biomass gasifier-spark ignition engine power system,” Renewable Energy, vol. 37, no. 1, pp. 97–108, 2012, doi: 10.1016/j.renene.2011.06.008.spa
dc.relation.referencesJ. K. Ratnadhariya and S. A. Channiwala, “Three zone equilibrium and kinetic free modeling of biomass gasifier–a novel approach,” Renewable energy, vol. 34, no. 4, pp. 1050–1058, 2009.spa
dc.relation.referencesJ. B. Shohan, Present-day Knowledge of the Chemical Constitution of Coal, vol. 6212. US Department of Commerce, Bureau of Mines, 1929.spa
dc.relation.referencesR. A. Mott and C. E. Spooner, “The calorific value of carbon in coal: the Dulong relationship,” Fuel, vol. 19, no. 226–231, pp. 242–251, 1940.spa
dc.relation.referencesW. A. Selvig, “Calorific value of coal.,” Chemistry of coal utilization, pp. 132–144, 1945.spa
dc.relation.referencesS. A. Channiwala, “On biomass gasification process and technology development some analytical and experimental investigations,” Bombay:” Indian Institute of Technology, 1992.spa
dc.relation.referencesS. A. Channiwala and P. P. Parikh, “A unified correlation for estimating HHV of solid, liquid and gaseous fuels,” Fuel, vol. 81, no. 8, pp. 1051–1063, 2002.spa
dc.relation.referencesC. Storm, H. Rudiger, H. Spliethoff, and K. R. G. Hein, “Co-pyrolysis of coal/biomass and coal/sewage sludge mixtures,” 1999.spa
dc.relation.referencesF. J. Mastral, E. Esperanza, C. Berrueco, S. Serrano, and J. Ceamanos, “Co-pyrolysis and Cogasification of polyethylene and sawdust mixtures in a fluidized bed reactor; temperature influence,” 2001.spa
dc.relation.referencesR. Berends and G. Brem, “Two-stage gasification of biomass for the production of syngas,” in Proceedings of the 12th European conference and technical exhibition on biomass for energy. Amsterdam, Netherlands: Industry and Climate Protection, 2002, pp. 622–624.spa
dc.relation.referencesL. van de Steene, S. Salvador, and A. Napoli, “Rice husk, straw and bark behaviour during pyrolysis, combustion, and gasification: fundamental study,” 2002.spa
dc.relation.referencesJ. Parikh, G. Ghosal, and S. A. Channiwala, “A critical review on biomass pyrolysis,” 2002.spa
dc.relation.referencesM. J. Baxter, “Downdraft gasification of biomass,” 1994.spa
dc.relation.referencesM. W. Thring, The science of flames and furnaces. Wiley, 1962.spa
dc.relation.referencesN. R. Amundson and L. E. Arri, “Char gasification in a countercurrent reactor,” AIChE Journal, vol. 24, no. 1, pp. 87–101, 1978.spa
dc.relation.referencesB. Srinivas and N. R. Amundson, “A single-particle char gasification model,” AIChE Journal, vol. 26, no. 3, pp. 487–496, 1980.spa
dc.relation.referencesB. Lewis and G. von Elbe, Combustion, flames, and explosions of gases. Elsevier, 2012.spa
dc.relation.referencesW. Gumz, Gas producers and blast furnaces: theory and methods of calculation. Wiley, 1950.spa
dc.relation.referencesP. M. Bhagat, “Wood charcoal combustion and the effects of water application,” Combustion and Flame, vol. 37, pp. 275–291, 1980.spa
dc.relation.referencesD. D. Evans and H. W. Emmons, “Combustion of wood charcoal,” Fire Safety Journal, vol. 1, no. 1, pp. 57–66, 1977.spa
dc.relation.referencesD. L. Giltrap, “Investigating downdraft gasification of biomass: a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Physics,” 2002.spa
dc.relation.referencesD. L. Giltrap, R. McKibbin, and G. R. G. Barnes, “A steady state model of gas-char reactions in a downdraft biomass gasifier,” Solar Energy, vol. 74, no. 1, pp. 85–91, 2003.spa
dc.relation.referencesB. v Babu and P. N. Sheth, “Modeling and simulation of reduction zone of downdraft biomass gasifier: effect of char reactivity factor,” Energy conversion and management, vol. 47, no. 15–16, pp. 2602–2611, 2006.spa
dc.relation.referencesY. Wang and C. M. Kinoshita, “Kinetic model of biomass gasification,” Solar energy, vol. 51, no. 1, pp. 19–25, 1993.spa
dc.relation.referencesR. Macías, Manual práctico para el diseño de un gasificador de lecho fijo a pequeña escala. Universidad Nacional de Colombia, 2021.spa
dc.relation.referencesP. E. Akhator, A. I. Obanor, and E. G. Sadjere, “Design and development of a small-scale biomass downdraft gasifier,” Nigerian Journal of Technology, vol. 38, no. 4, pp. 922–930, 2019.spa
dc.relation.referencesJ. Venselaar, “Design Rules for Down Draft Wood Gasifiers: a Short Review,” Joint Technical Assistance Project, JTA-9A-Research Development1 at the Institut Teknologi Bandung, Indonesia, pp. 1–24, 1982.spa
dc.relation.referencesW. P. M. van Swaaij, S. R. A. Kersten, and W. Palz, Biomass power for the world. CRC Press, 2015.spa
dc.relation.referencesT. B. Reed and A. Das, Handbook of biomass downdraft gasifier engine systems. Biomass Energy Foundation, 1988.spa
dc.relation.referencesJ. I. Silva Ortega, E. Ojeda, and J. E. Candelo, “Perspectivas de comunidades ind\’\igenas de la Guajira frente al desarrollo sostenible y el abastecimiento energético,” 2017.spa
dc.relation.referencesUSPCAS-E, “Biomass gasification system, training manual,” US Pakistan Centre of Advance Studies in Energy & National University of Sciences and Tecnology, 2016.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::003 - Sistemasspa
dc.subject.ddc330 - Economía::333 - Economía de la tierra y de la energíaspa
dc.subject.lembRecursos energéticos renovables
dc.subject.lembRenewable energy sources
dc.subject.lembEnergy supply - La Guajira (Colombia)
dc.subject.lembAbastecimiento de energía - La Guajira (Colombia)
dc.subject.proposalSistemas híbridos de potenciaspa
dc.subject.proposalGeneración distribuidaspa
dc.subject.proposalGasificación de biomasaspa
dc.subject.proposalEnergía solarspa
dc.subject.proposalFotovoltaicaspa
dc.subject.proposalHybrid power systemseng
dc.subject.proposalDistributed generationeng
dc.subject.proposalBiomass gasificationeng
dc.subject.proposalSolar energyeng
dc.subject.proposalPhotovoltaiceng
dc.titleGeneración distribuida basada en sistemas híbridos caso de estudio: La Guajira, Colombiaspa
dc.title.translatedDistributed power generation based on hybrid systems case study: La Guajira, Colombiaeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentAdministradoresspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleproyecto P4 - Poligeneración: Biomasaspa
oaire.fundernameCOLCIENCIASspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1015424344.2022.pdf
Tamaño:
13.31 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis Maestría en Ingeniería - Sistemas Energéticos

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: