Efecto del ambiente enriquecido posterior a la separación materna, sobre el bdnf y los astrocitos en la corteza cerebral de ratas wistar

dc.contributor.advisorDueñas Gomez, Zulma Janeth
dc.contributor.authorFlórez Abreu, Steeven
dc.date.accessioned2022-11-03T18:25:44Z
dc.date.available2022-11-03T18:25:44Z
dc.date.issued2022-10-28
dc.descriptionilustraciones, fotografías a color, gráficasspa
dc.description.abstractLas interacciones madre-hijo influyen en la fisiología, desarrollo y el comportamiento durante las primeras semanas después del nacimiento. Como una experiencia adversa en la vida temprana, la separación materna (SM), produce trastornos de las funciones conductuales y neuroendocrinas en áreas cerebrales que construyen el eje emocional. Los estudios en roedores han demostraron que la separación prolongada causa una cantidad significativa de estrés. Las consecuencias de este estrés, particularmente la hiperreactividad del eje HPA (hipotalámico-pituitario-adrenal), se expresan en la edad adulta y persisten de por vida. Se ha propuesto al ambiente enriquecido (AE), como una estrategia para mitigar el impacto negativo reportados en los individuos que presentan estrés por separación materna, sin embargo, su efecto sobre estos individuos está determinado no solo por las características de este, sino también por la etapa, sexo y condiciones de la SM. Por lo anterior, el objetivo de este trabajo consistió en evaluar el efecto de 15 dias de AE, sobre el Factor neutrofico derivado del cerebro (BDNF) como marcador de plasticidad y los astrocitos, como elementos multifuncionales, en ratas adolescentes, con estrés por separación materna. Metodología: 73 ratas (36 machos-37 hembras) se distribuyeron en dos categorías generales: Sin separación materna y ratas con separación materna, luego del destete dichas categorías se subdividieron en dos condiciones de vivienda (Estándar-A. enriquecido). Los animales fueron perfundidos con PFA al 4% en el dia postnatal (dpn) 36. Se realizó IHQ para BDNF y GFAP. Resultados: De acuerdo con los análisis realizados, la SM reduce la expresión de BDNF en Corteza prefrontal, hipocampo y amígdala, de manera similar la SM reduce el número de células positivas para GFAP y su complejidad, por su parte el ambiente enriquecido incrementó la expresión de BDNF y de células inmunomarcadas para GFAP. Conclusión: La SM afecta a la baja la expresión de marcadores de plasticidad, posiblemente generando trastornos del comportamiento y problemas de aprendizaje, sin embargo, el ambiente enriquecido, incrementa los niveles de expresión de BDNF y GFAP producidos por dicha adversidad temprana. (Texto tomado de la fuente)
dc.description.abstractMother-infant interactions influence physiology, development, and behavior during the first few weeks after birth. As an adverse experience in early life, maternal separation (MS), produces disorders of behavioral and neuroendocrine functions in brain areas that build the emotional axis. Studies in rodents have shown that prolonged separation causes a significant amount of stress. The consequences of this stress, particularly the hyperreactivity of the HPA (hypothalamic-pituitary-adrenal) axis, are expressed in adulthood and persist for life. The enriched environment (EE) has been proposed as a strategy to mitigate the negative impact reported in individuals who present stress due to maternal separation, however, its effect on these individuals is determined not only by its characteristics, but also by the stage, sex and conditions of MS. Therefore, the objective of this work was to evaluate the effect of 15 days of EE on BDNF and astrocytes in adolescent rats, with stress due to maternal separation. Methodology: 73 rats (36 males-37 females) were distributed into two general categories: without maternal separation and rats with maternal separation, after weaning these categories were subdivided into two housing conditions (Standard-E. enriched). Animals were perfused with 4% PFA in postnatal day (PND) 36. IHC was performed for BDNF and GFAP. Results: According to the analyzes carried out, MS reduces the expression of BDNF in the prefrontal cortex, hippocampus and amygala. SM reduces the number of GFAP-positive cells and their complexity, for On the other hand, the enriched environment increased the expression of BDNF and of cells immunolabeled for GFAP. Conclusion: SM affects the expression of plasticity markers, possibly generating behavioral disorders and learning problems; however, the enriched environment increases the expression levels of BDNF and GFAP produced by such early adversity.
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en fisiologíaspa
dc.description.methodsPara este trabajo, los sujetos se distribuyeron en 8 grupos subdivididos en sujetos con exposición o no a los protocolos de Separación materna (SM) y el Ambiente Enriquecido (AE), (Grafico 1). En esta investigación, los sujetos fueron distribuidos en 2 categorías de crianza: individuos no expuestos a separación materna (N) (machos y hembras) e individuos expuestos a separación materna (S) (machos y hembras). Posteriormente cada condición de crianza se subdividió en dos condiciones de vivienda: Vivienda estándar (E) (machos y hembras) y vivienda de ambiente enriquecido (A) (machos y hembras), para un total de 8 grupos de experimentación, dentro de los cuales se incluyó un grupo (N) con condición de vivienda (E), NE, para ambos sexos (hembras: NEH; machos: NEM), que actuó como grupo control (grafico1). Gráfico 1. Diseño experimental y cronología de los grupos de trabajo. Procedimiento Separación materna - (SM) El grupo con tratamiento de crianza se sometió al protocolo de SM durante los días postnatales 1 al 21 (dpn) (El día 0 corresponde al nacimiento, por lo tanto, no se incluyó). Este procedimiento se llevó a cabo durante 21 días, cada día las crías se separaron 3 horas en la mañana (7:00 am a 10:00 am) y 3 horas en la tarde (1:00 pm - 4:00 pm). Gráfico 2. Asignación de vivienda a grupos de trabajo. Ambiente enriquecido (AE) Dos grupos no separados durante la lactancia (N) (uno por cada sexo) y dos grupos separados durante la lactancia (S) (Uno por cada sexo), se sometieron al protocolo de ambiente enriquecido durante los días postnatales 22 al 36. El AE contó con las siguientes características: Jaula: Se construyó a partir de la unión de dos jaulas estándar, ello con el objetivo de garantizar mayor espacio a las ratas, dimensión aproximada de (51 x 82 y 40 cm de alto) Duración AE: El tiempo de exposición al ambiente enriquecido fue de 15 días. Días de exposición a objetos: 24 horas, durante 15 días. Número de objetos: Un total de 6 objetos: 2 bloque de madera, 2 tubos de plástico cilíndricos, 1 material de anidación, 1 canasta. Cambio de objetos: Los objetos se reorganizaban y renovaban cada cuarto día, 5 objetos estuvieron dentro de la jaula y 1 estuvo afuera para ser usado como recambio cada cuarto día. Alimentación: Los animales tuvieron alimentación y agua constante, que fue reemplazada dos veces por semana y reubicada en diferentes lugares para favorecer el comportamiento exploratorio. Limpieza: Las jaulas fueron limpiadas y reorganizadas una vez por semana. Gráfico 3. Protocolo de ambiente enriquecido. Grupo control para ambos tratamientos experimentales Cada grupo experimental (SM y AE) durante los dos tipos de tratamientos, tuvo un grupo estándar cuyo protocolo correspondió a vivir en una jaula con medida estándar, ingesta de comida y agua estándar. Inmunohistoquímica Eutanasia - Perfusión Para la ejecución de este trabajo se emplearon un total de 74 ratas (37 hembras- 37 machos). Los individuos se separaron para estudio inmunohistoquímico el día dpn 37. Se realizó la sedación y conservación de tejidos mediante perfusión transcardiaca. Los sujetos de experimentación fueron pesados para calcular la cantidad del eutanásico a inyectar: peso en razón de 300 microlitros de solución de Euthanex por kilogramo de peso. Para la perfusión se utilizó solución salina 0,9% en volumen y solución de paraformaldehído al 4% en solución amortiguadora de fosfatos recientemente preparadas. El sistema de perfusión estuvo conformado por un equipo de venoclisis, con una llave de tres vías, donde una vía lleva la solución salina (500mL) y la otra la solución de paraformaldehído (anexo 1.). Posteriormente, se extrajo el cerebro y se almacenó en un recipiente con paraformaldehído al 4%; se mantuvo a 4ºC hasta su uso. Corte en criostato Los cerebros se transfirieron a una solución de sacarosa al 30% durante 7 horas aproximadamente, para su protección en frío. Al finalizar este período, los cerebros se congelaron en isopentano en hielo seco (-70 °C) y se almacenaron en un congelador a -70 °C, hasta el momento de su sección. Con un criostato (Leica CM1850) a 21 ° C , se realizó cortes de 21 μm de espesor. De cada cerebro se recolectaron y almacenaron secciones coronales de las áreas de estudio: Hipocampo, Amígdala y corteza prefrontal. Inmunohistoquímica Se realizó marcaje para el factor derivado del cerebro (BDNF) y para la proteína ácida glial fibrilar (GFAP), en las áreas de interés: corteza prefrontal, hipocampo y amígdala, tres cortes de cada área por cada uno de los individuos. Las secciones se procesaron en un estado de flotación libre para la detección de BDNF y GFAP. Inicialmente, los cortes se trataron durante 1 hora con suero de cabra normal al 3% en PBS (0,1 M) que contuviera a albúmina de suero bovino, (BSA) 1,5% y Triton X-100 para bloquear sitios de unión inespecíficos. Posteriormente, las secciones se incubaron durante 12 horas (GFAP) y 72 horas (BDNF) en los anticuerpos primarios, diluidos en PBS-BSA. Después de cinco enjuagues en PBS (15 min cada uno), las secciones se incubaron durante 1 hora a temperatura ambiente con anticuerpos secundarios biotinilados diluidos (Banqueri et al., 2019; Bautista y Dueñas, 2012). Después del lavado posterior en PBS, las secciones se incubaron durante 1 hora con complejo de estreptavidina-peroxidasa diluido. Luego se lavaron las secciones cinco veces en PBS, se realizó actividad de peroxidasa con clorhidrato de diaminobencidina (DAB) incluido en el mismo kit. Las secciones se montaron en portaobjetos recubiertos de gelatina, se secaron al aire y se cubrieron con citoresina para observación con un microscopio óptico (Banqueri et al., 2019; Bautista y Dueñas, 2012). Cuantificación de las células inmuno-marcadas Todas las imágenes fueron capturadas con un microscopio óptico (Carl Zeiss-AxioVert 40 CFL) y con cámara digital con el programa ZEN 2.3. Los sitios neuroanatómicos se identificaron con la ayuda del atlas de cerebro de rata de Paxinos (Paxinos y Watson, 2007). La cuantificación de la expresión de BDNF para la corteza prefrontal, hipocampo y amígdala se realizó a través del software específico Image-J y bajo la técnica de densitometría. Se tomaron 3 fotografías en cada región, por individuo. Las densidades de las células inmunorreactivas para GFAP se calcularon de manera manual a través del software específico Image-J. Para cada sujeto de todos los grupos se tomaron 3 fotos de las regiones inmunomarcadas. Como control de sesgo, otro investigador que no tenía conocimiento de las muestras de los grupos experimentales, repitió el conteo a fin de realizar un análisis sin dicha problemática. El análisis morfológico se realizó con el software específico Image-J y bajo la técnica de conteo de numero de brazos y puntos de ramificación, para lo cual, se escogieron 5 células por área y sujeto tomadas con el objetivo de 40X. Se seleccionaron células teniendo en cuenta que no se encontraran yuxtapuestas con otras. Se realizó una conversión de la imagen a escala de grises (8 bits), la reconstrucción de la célula se hizo de forma manual, y se realizó la respectiva cuantificación. Todas las imágenes utilizadas en el análisis se tomaron con el mismo microscopio y la misma configuración óptica (Banqueri et al., 2019; Bautista y Dueñas, 2012).spa
dc.description.researchareaNeurofisiología comportamentalspa
dc.format.extent99 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82626
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Medicinaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Medicina - Maestría en Fisiologíaspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAbbink, M. R., Naninck, E. F. G., Lucassen, P. J., & Korosi, A. (2017). Early-life stress diminishes the increase in neurogenesis after exercise in adult female mice. Hippocampus, 27(8), 839–844. doi:10.1002/hipo.22745spa
dc.relation.referencesAicardi, E. Argilli, S. Cappello et al., (2004). Induction of long-term potentiation and depression is reflected by corresponding changes in secretion of endogenous brain-derived neurotrophic factor,Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 44,pp. 15788–15792.spa
dc.relation.referencesAláez Fernández, Máximo; Martínez Arias, Rosario; Rodríguez Sutil, Carlos. (2000) Prevalencia de trastornos psicológicos en niños y adolescentes, su relación con la edad y el género Psicothema, vol. 12, núm. 4, pp. 525-532spa
dc.relation.referencesAlonso M, Medina JH, Pozzo-Miller L. (2004). ERK1/2 activation is necessary for BDNF to increase dendritic spine density in hippocampal CA1 pyramidal neurons. Learn Mem. Mar-Apr;11(2):172-8. doi: 10.1101/lm.67804.spa
dc.relation.referencesBai, M., Zhu, X., Zhang, Y., Zhang, S., Zhang, L., Xue, L., … Zhang, X. (2012). Abnormal Hippocampal BDNF and miR-16 Expression Is Associated with Depression-Like Behaviors Induced by Stress during Early Life. PLoS ONE, 7(10), e46921. doi:10.1371/journal.pone.004692spa
dc.relation.referencesBallas N, Lioy DT, Grunseich C, Mandel G. (2009). Non-cell autonomous influence of MeCP2-deficient glia on neuronal dendritic morphology. Nat Neurosci 12: 311–31spa
dc.relation.referencesBaillargeon, R., Scott, R. M., & He, Z. (2010). False-belief understanding in infants. Trends in Cognitive Sciences, 14(3), 110–118. doi:10.1016/j.tics.2009.12.006spa
dc.relation.referencesBautista E. y Dueñas, Z. (2012). Maternal separation during breastfeeding induces changes in the number of cells immunolabeled to GFA. Psychology y Neuroscience. 5,207 - 213spa
dc.relation.referencesBanqueri, M., Méndez, M., Gómez-Lázaro, E., & Arias, J. L. (2019). Early life stress by repeated maternal separation induces long-term neuroinflammatory response in glial cells of male rats. Stress, 0(0), 1–8. https://doi.org/10.1080/10253890.2019.1604666spa
dc.relation.referencesBaroncelli L, Braschi C, Spolidoro M, Begenisic T, Sale A, Maffei L. (2010). Nurturing brain plasticity : impact of environmental enrichment. Cell Death Differ.. 17:1092–1103.spa
dc.relation.referencesBergami, S. Santi, E. Formaggio et al. (2008). Uptake and recycling of pro-BDNF for transmitter induced secretion by cortical astrocytes.The Journal of Cell Biology, vol. 183, no. 2, pp. 213–221spa
dc.relation.referencesBiggio, F., Pisu, M. G., Garau, A., Boero, G., Locci, V., Mostallino, M. C., … Serra, M. (2014). Maternal separation attenuates the effect of adolescent social isolation on HPA axis responsiveness in adult rats. European Neuropsychopharmacology, 24(7), 1152–1161. doi:10.1016/j.euroneuro.2014.03spa
dc.relation.referencesBock, J., Gruss, M., Becker, S., Braun, K. Experience-induced changes ofdendritic spine densities in the prefrontal and sensory cortex: correlation withdevelopmental time windows. Cereb. Cortex. 2005 15, 802–808spa
dc.relation.referencesBohn, M. C., Howard, E., Vielkind, U., & Krozowski, Z. (1991). Glial cells express both mineralocorticoid and glucocorticoid receptors. The Journal of Steroid Biochemistry and Molecular Biology, 40(1-3), 105–111. doi:10.1016/0960-0760(91)90173-spa
dc.relation.referencesBredy TW, Grant RJ, Champagne DL, Meaney MJ Maternalcare (2003). influences neuronal survival in the hippocampus of the rat.Eur J Neurosci.. 18:2903–2909spa
dc.relation.referencesBredy, T., Zhang, T., Grant, R., Diorio, J., and Meaney, M. (2004). Peripubertal environmental enrichment reverses the effects of maternal careon hippocampal development and glutamate receptor subunit expression.Eur.J. Neurosci. 20, 1355–1362. doi: 10.1111/j.1460-9568.2004.03599.xChenspa
dc.relation.referencesChao, M. (2003). Neurotrophins and their receptors: a convergence point for many signaling pathways. Nat. Rev. Neurosci. 4, 299–309. doi:10.1038/nrn1078spa
dc.relation.referencesChen, Y. y Swanson R. (2003). Astrocytes and Brain Injury Journal of Cerebral Blood Flow y Metabolism. 23:137–149spa
dc.relation.referencesChocyk, A., Bobula, B., Dudys, D., Przyborowska, A., Majcher-Maslanka, I., Hess, G., Wedzony, K. (2013). Early-life stress affects the structural and functional plasticity of the medial prefrontal cortex in adolescent rats. Eur. J. Neurosci. 38, 2089-2107.spa
dc.relation.referencesChocyk,A., . Dudys, D.,. Przyborowska,,A..Majcher, M., Mac ́Kowiak,I., Wedzony,K. (2011). Maternal separation affects the number, proliferationand apoptosis of glia cells in the substantia nigra andventral tegmental area of juvenile rats. Neuroscience. 173 (1–18).spa
dc.relation.referencesChung EK, Bian ZX, Xu HX, Sung JJ. (2009). Neonatal maternal separation increases brain-derived neurotrophic factor and tyrosine kinase receptor B expression in the descending pain modulatory system. Neurosignals 17:213–21.spa
dc.relation.referencesConnors M.M .Migliore S.L.Pillsbury A.N.Shaik A.C.Kentner 2015. franEnvironmental enrichment models a naturalistic form of maternal separation and shapes the anxiety response patterns of offspring. Psychoneuroendocrinology. Volume 52, Pages 153-167.spa
dc.relation.referencesCordier, J., Aguggia,J., Danelon,C., Mir, R. Rivarola, M. Masco, P.2021 Postweaning Enriched Environment Enhances Cognitive Function and Brain-Derived Neurotrophic Factor Signaling in the Hippocampus in Maternally Separated Rats. Neuroscience. 453,138-147spa
dc.relation.referencesCui, M., Yang, Y., Yang, J., Zhang, J., Han, H., Ma, W.Enriched environment experience overcomes the memory deficits anddepressive-like behavior induced by early life stress.Neurosci. Lett. 2006. 404,208–212. doi: 10.1016/j.neulet.2006.05.048spa
dc.relation.referencesCurtis, K. M. Adryan, J. L. Stark et al., (1995). Differential role of the low affinity neurotrophin receptor (p75) in retrograde axonal transport of the neurotrophins. Neuron, 14, no. 6, pp. 1201–1211.spa
dc.relation.referencesDandi, Εvgenia, Kalamari, A., Touloumi, O., Lagoudaki, R., Nousiopoulou, E., Simeonidou, C., … Tata, D. A. (2018). Beneficial effects of environmental enrichment on behavior, stress reactivity and synaptophysin/BDNF expression in hippocampus following early life stress. International Journal of Developmental Neuroscience, 67, 19–32. doi:10.1016/j.ijdevneu.2018.03.003spa
dc.relation.referencesDaskalakis, N. P., De Kloet, E. R., Yehuda, R., Malaspina, D., & Kranz, T. M. (2015). Early Life Stress Effects on Glucocorticoid—BDNF Interplay in the Hippocampus. Frontiers in Molecular Neuroscience, 8. doi:10.3389/fnmol.2015.00068spa
dc.relation.referencesDeinhardt, T. Kim, D. S. Spellman et al., (2011). Neuronal growth cone retraction relies on proneurotrophin receptor signaling through Rac..Science Signaling, vol. 4, no. 202, article ra82,spa
dc.relation.referencesDiamond MC, Law F, Rhodes H, Lindner B, Rosenzweig MR, Krec (1966). Increases in cortical depth and glia numbers in rats subjected to enriched environment. J Comp Neurol. 128:117–126.spa
dc.relation.referencesDiniz, D. Foro., Rego, C. , De Olivera F. Paes, M, Aline A. De Sousa, Tatyana P. Tokuhashi, Lucas S. Trindade, Maíra C. P. (2010). Environmental impoverishment and aging alter object recognition, spatial learning, and dentate gyrus astrocytes European Journal of Neuroscience, Vol. 32, pp. 509–519spa
dc.relation.referencesDong BE, Chen H, Sakata K.J (2010). BDNF deficiency and enriched environment treatment affect neurotransmitter gene expression differently across ages. Neurochem. 154(1):41-55. doi: 10.1111/jnc.15017. Epub 2020 Jun 12.PMID: 32222968 Free PMC article.spa
dc.relation.referencesDoreste-Mendez R, Ríos-Ruiz E J,Rivera-López LL, Gutierrez A and Torres-Reveron A Effects of Environmental Enrichment in Maternally Separated Rats: Age and Sex-Specific Outcomes. Behav. Neurosci. 2019. 13.spa
dc.relation.referencesDumontheil, I. (2016). Adolescent brain development. Current Opinion in Behavioral Sciences, 10, 39–44. https://doi.org/10.1016/j.cobeha.2016.04.012spa
dc.relation.referencesEhninger D, Kempermann G. (2003). Regional effects of wheel running and environmental enrichment on cell genesis and microglía proliferation in the adult murine neocortex. Cereb Cortex.13:845–851spa
dc.relation.referencesFavalli, G., Li, J., Belmonte-de-Abreu, P., Wong, A. H., and Daskalakis, Z. J. (2012). The role of BDNF in the pathophysiology and treatment of schizophrenia. J. Psychiatr. Res. 46, 1–11. doi: 10.1016/j.jpsychires.2011.09.022spa
dc.relation.referencesFarroni, T., Johnson, M. H., Menon, E., Zulian, L., Faraguna, D., & Csibra, G. (2005). Newborns’ preference for face-relevant stimuli: Effects of contrast polarity. Proceedings of the National Academy of Sciences, 102(47), 17245–17250. doi:10.1073/pnas.0502205102spa
dc.relation.referencesFischer A. (2016). Environmental enrichment as a method to improve cognitive function. What can we learn from animal models. Neuroimage. 131:42–4spa
dc.relation.referencesFrancis, D., Diorio, J., Plotsky, P., and Meaney, M. (2002). Environmentalenrichment reverses the effects of maternal separation on stress reactivity.J. Neurosci. 22, 7840–7843. doi: 10.1523/JNEUROSCI.22-18-07840.spa
dc.relation.referencesFenoglio KA, Brunson KL, Baram TZ. (2006). Hippocampal neuroplasticity induced by early-life stress: functional and molecular aspects. Front Neuroendocrinol 27(2):180–92. doi: 10.1016/j.yfrne.2006.02.001spa
dc.relation.referencesFumagalli, F., Molteni, R., Racagni, G., and Riva, M. A. (2007). Stress during development: impact on neuroplasticity and relevance to psychopathology. Prog. Neurobiol. 81, 197–217. doi: 10.1016/j.pneurobio.spa
dc.relation.referencesGiralt ,A., H C Friedman, B Caneda-Ferrón, N Urbán, E Moreno, N Rubio, J Blanco, A Peterson, J M Canals, J Alberch (2010). BDNF regulation under GFAP promoter provides engineered astrocytes as a new approach for long-term protection in Huntington's disease. (10):1294-308spa
dc.relation.referencesGittins, R. A., & Harrison, P. J. (2011). A morphometric study of glia and neurons in the anterior cingulate cortex in mood disorder. Journal of Affective Disorders, 133(1-2), 328–332. doi:10.1016/j.jad.2011.03.042spa
dc.relation.referencesGracia-Rubio, I., Moscoso-Castro, M., Pozo, O.J., Marcos, J., Nadal,R., Valverde, O. (2016). Maternal separation induces neuroin-flammation and long-lasting emotional alterations in mice. Prog.Neuropsychopharmacol. Biol. Psychiatry. 65, 104–117.http://dx.doi.org/10.1016/j.pnpbp.2015.09.00spa
dc.relation.referencesGrant, K. E., Compas, B. E., Thurm, A. E., McMahon, S. D., & Gipson, P. Y. (2004). Stressors and Child and Adolescent Psychopathology: Measurement Issues and Prospective Effects. Journal of Clinical Child & Adolescent Psychology, 33(2), 412–425. doi:10.1207/s15374424jccp3302_2spa
dc.relation.referencesGreisen ,M., C, Altar, T., Bolwig, R. Whitehead, Gitta Wörtwe.(2005). Increased adult hippocampal brain derived neurotrophic factor and normal levels of neurogenesis in maternal separation rats J Neurosci R 15;79(6):772-8.spa
dc.relation.referencesGourine AV, Kasparov, S. (2011). Astrocytes as brain interoceptors. Exp Physiol.. 96:411-416.spa
dc.relation.referencesHaydon, P. Y Carmignoto, G. (2006) Astrocyte control of synaptic transmission and neurovascular coupling. Physiol Rev. 86:1009-1031.spa
dc.relation.referencesHarlow, H. (1959). El amor en las crías de los monos. Psicobiología evolutiva. Barcelona: Fontanella,1976.Harlow, H. y Harlow, M.K. (1962). La privación social en los monos. Psicología Evolutiva. Barcelona:Fontanella,spa
dc.relation.referencesHarrison, E.L., Baune, B.T. (2014). Modulation of early stress-induced neurobiological changes: a review of behavioural and pharmacological interventions in animal models. Transl Psychiatry 4, e390. doi:10.1038/tp.2014.31spa
dc.relation.referencesHawrylak N. and Greenough W.T. (1995). Monocular deprivation alters the morphology of glial fibrillary acidic- inmunoreactive astrocytes in the rat visual cortex. Brain Research, 683: 187-199.spa
dc.relation.referencesHirase H. and Shinohara, Y. (2014). Transformation of cortical and hippocampal neural circuit by environmental enrichment. Neuroscience forefront reviewspa
dc.relation.referencesHolt,, L. M., Hernandez, R. Pacheco, N. L., Torres B., Hossain, M., y Olsen, M. (2019). Astrocyte morphogenesis is dependenton BDNF signaling via astrocytic TrkB.T1. Elifespa
dc.relation.referencesHui, J., Zhang, Z., Liu, S., Xi, G., Zhang, X., Teng, G. (2011). Hippocampalneurochemistry is involved in the behavioural effects of neonatal maternalseparation and their reversal by post-weaning environmental enrichment: amagnetic resonance study.Behav. Brain Res. 217, 122–127. doi: 10.1016/j.bbr.2010.10.014spa
dc.relation.referencesJacobson M. (1991). Histogénesis and Morphogenesis of cortical structures. Developmental Neurobiology. Plenum Press, New York pp: 401-45spa
dc.relation.referencesJacobs S, Doering LC. (2010). Astrocytes prevent abnormal neuronal development in the fragile X mouse. J Neurosci 30: 4508–4514spa
dc.relation.referencesJacobson L, Sapolsky R. (1991). The Role of the Hippocampus in Feedback Regulation of the Hypothalamic-Pituitary-Adrenocortical Axis. Endocr Rev. 12; 2: 118-34spa
dc.relation.referencesJahng JW. (2011). An animal model of eating disorders associated with stressful experience in early life. Horm Behav, 59(2):213–20. doi: 10.1016/j.yhbeh.2010.11.010spa
dc.relation.referencesJianga,D., Qiub, X., Rena, S. Huaa , F., Konga, Y., Guana Y., y Xiea, F. (2020). Maturation of topological organization of brain networks in male adolescent rats: A longitudinal FDG-PET Neuroscience Letters 723spa
dc.relation.referencesJones, T.A, Greenough, W.T. Ultrastructural evidence for in-creased contact between astrocytes and synapses in rats reared ina complex environment. Neurobiol Learn Mem. 65:48–56.spa
dc.relation.referencesJones TA, Hawrylak N, Greenough W.T. (1996). Rapid laminar-dependent changes in GFAP immunoreactive astrocytes in the visual cortex of rats reared in a complex environment. Psychoneuroendocrinology. 21, 2, pp. 189-201spa
dc.relation.referencesJuraska JM, Meyer M. (1986). Behavioral interactions of postweaning male and female rats with a complex environment. Dev Psychobiol. 1986. 19:493-500spa
dc.relation.referencesKang & E. M. Schuman, (1996). Requirement for local protein synthesis in neurotrophin-induced hippocampal synaptic plasticity, Science, vol. 273, no. 5280, pp. 1402–1406spa
dc.relation.referencesKarege F, Schwald M, Cisse M (2002). Postnatal developmental profile of brain-derived neurotrophic factor in rat brain and platelets. Neurosci Lett 328(3):261–264 16.spa
dc.relation.referencesKempermann, G., Song, H., & Gage, F. H. (2015). Neurogenesis in the Adult Hippocampus. Cold Spring Harbor Perspectives in Biology, 7(9), a018812. doi:10.1101/cshperspect.a018812spa
dc.relation.referencesKloet ER, Joels M, Holsboer F. (2005). Stress and the brain: from adaptation to disease. Nat Rev Neurosci.. 6: 463-4spa
dc.relation.referencesKoe A., Ashokan A., Mitra R. (2016). Short environmental enrichment in adulthood reverses anxiety and basolateral amygdala hypertrophy induced by maternal separation.Translational Psychiatry.. 6:729; doi:10.1038/tp.2015.217spa
dc.relation.referencesKomitova M, Perfilieva E, Mattsson B, Eriksson PS, Johansson BB. (2006). Enriched environment after focal cortical ischemia enhances the generation of astroglia and NG2 positive polydendrocytes in adult rat neocortex. Exp Neurol 199:113–121spa
dc.relation.referencesKorosi, A., Naninck, E. F. G., Oomen, C. A., Schouten, M., Krugers, H., Fitzsimons, C., & Lucassen, P. J. (2012). Early-life stress mediated modulation of adult neurogenesis and behavior. Behavioural Brain Research, 227(2), 400–409. doi:10.1016/j.bbr.2011.07.037spa
dc.relation.referencesKwak, H., Lee, J. ,Kwon, K., Kang,J., Cheong, Y., Chun, W., Kim, S. y Lee, H. (2009) Maternal Social Separation of Adolescent Rats Induces Hyperactivity and Anxiolytic Behavior. Korean J Physiol Pharmacol13: 79-83spa
dc.relation.referencesLee, P. Kermani, K. K. Teng, and B. L. Hempstead (2001). Regulation of cell survival by secreted proneurotrophins,” Science, vol. 294, no. 5548, pp. 1945–1948spa
dc.relation.referencesLever, E. J. Bradbury, J. R. Cunningham et al.,(2004). Brain- derived neurotrophic factor is released in the dorsal horn by distinctive patterns of afferent fiber stimulation. The Journal of Neuroscience, 21, no. 12, pp. 4469–4477spa
dc.relation.referencesLiu, D., Caldji, C., Sharma, S., Plotsky, P.M., Meaney, M.J., Influence of neonatal rearing conditions on stress-induced adrenocorticotropin responses and norepinepherine release in the hypothalamic paraventricular nucleus. J. Neuroendocrinol. 2000. 12, 5e12spa
dc.relation.referencesLiu J, Dietz K, DeLoyht JM, Pedre X, Kelkar D, Kaur J, Vialou V, Lobo MK, Dietz DM, Nestler EJ, Dupree J, Casaccia P. (2012). Impaired adult myelination in the prefrontal cortex of socially isolated mice.Nat Neurosci 15:1621–1623.spa
dc.relation.referencesLippmann, M., Bress, A., Nemeroff, C. B., Plotsky, P. M., & Monteggia, L. M. (2007). Long-term behavioural and molecular alterations associated with maternal separation in rats. European Journal of Neuroscience, 25(10), 3091–3098. doi:10.1111/j.1460-9568.2007.0spa
dc.relation.referencesLo, DC (1996). Neurotrophic factors and synaptic plasticity. Neuron 15:979–981spa
dc.relation.referencesLobsiger CS, Cleveland DW. (2007). Glial cells as intrinsic components of non-cell-autonomous neurodegenerative disease. Nat Neurosci; 10:1355–60.spa
dc.relation.referencesLowery, J., Kuczmarski, E. R., Herrmann, H., & Goldman,R. D. (2015). Intermediate filaments play a pivotal role inregulating cell architecture and function.J Biol Chem, 290,17145–17153.spa
dc.relation.referencesLu, K. Christian, and B. Lu, (2008). BDNF: a key regulator for protein synthesis-dependent LTP and long-term memory?”mNeurobiology of Learning and Memory, 89, 3, 312–323,spa
dc.relation.referencesLupien, S.J., McEwen, B.S., Gunnar, M.R., Heim, C. (2009). Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat Rev Neurosci 10(6), 434-45. doi:10.1038/nrn2639spa
dc.relation.referencesMajcher-Mas Lanka, I. Solarz, A.y Chocy, A. (2019). Maternal separation disturbs postnatal development of the medial4prefrontal cortex and affects the number of neurons and glial cells in5adolescent rats. NEUROSCIENCE. 15;423:131-147.spa
dc.relation.referencesMakinodan M, Rosen KM, Ito S, Corfas G. (2012). A critical period for social experience-dependent oligodendrocyte maturation and myelination. Science 337:1357–1360spa
dc.relation.referencesMarosi M.& P. Mattson (2014). BDNF mediates adaptive brain and body responses to energetic challenges,” Trends in Endocrinology and Metabolism, . 25, 2, 89–98.spa
dc.relation.referencesMcKeon A. y Benarroch, E. (2008). Proteína ácida fibrilar glial Neurology, 90:925-930spa
dc.relation.referencesMessaoudi, S. W. Ying, T. Kanhema, S. D. Croll, and C. R. Bramham, (2002), Brain-derived neurotrophicfactor triggers transcription-dependent, late phase long-term potentiation in vivo,” The Journal of Neuroscience, 22, 17, 7453–7461spa
dc.relation.referencesMoberg, G. P., (2000) Biological response to stress: implicationsfor animal welfare The biology of animal stress: basic principles and implications for animal welfare. Moberg, G. P.,& Mench, J. A. (Eds.). CABIspa
dc.relation.referencesMonroy E., Hernandez-Torres E., Flores, G. (2010). Maternal separation disrupts dendritic morphology of neurons in prefrontalcortex, hippocampus, and nucleus accumbens in male rat offspring. Journal of Chemical Neuroanatomy, 40, 93–101spa
dc.relation.referencesMuñoz, A., Velásquez, J., López, J., Chavarro, J., Dueñas, Z. (2019). Cellular count changes in different rat brain areas due to early maternal separation. Archivos de Medicina, 19 Nº 1spa
dc.relation.referencesMusholt K, Cirillo G, Cavaliere C, Rosaria Bianco M, Bock J, HelmekeC, Braun K, Papa M. (2009). Neonatal separation stress reducesglial fibrillary acidic protein- and S100beta-immunoreactive astro-cytes in the rat medial precentral cortex. Dev Neurobiol.. 69:203–211spa
dc.relation.referencesNagy, C., Suderman, M., Yang, J., Szyf, M., Mechawar, N., Ernst, C., &Turecki, G. (2015). Astrocytic abnormalities and global DNA methyla-tion patterns in depression and suicide.Molecular Psychiatry,. 20(3),320–328.spa
dc.relation.referencesNagy, C., Suderman, M., Yang, J., Szyf, M., Mechawar, N., Ernst, C., &Turecki, G. (2015). Astrocytic abnormalities and global DNA methyla-tion patterns in depression and suicide.Molecular Psychiatry,. 20(3),320–328.spa
dc.relation.referencesNaninck, E. F. G., Hoeijmakers, L., Kakava-Georgiadou, N., Meesters, A., Lazic, S. E., Lucassen, P. J., & Korosi, A. (2014). Chronic early life stress alters developmental and adult neurogenesis and impairs cognitive function in mice. Hippocampus, 25(3), 309–328. doi:10.1002/hipo.22374spa
dc.relation.referencesNishi, M., Horii-Hayashi, N., Sasagawa, T., Effects of early lifeadverse experiences on the brain: implications from maternal separation models in rodents. Front. Neurosci. 2014. 8, 166. http://dx.doi.org/10.3389/fnins.2014.00166spa
dc.relation.referencesNederhof, E. and Schmidt, M.V. (2012) Mismatch or Cumulative Stress: Toward an Integrated Hypothesis of Programming Effects. Physiology Behavior, 106, 691-700. http://dx.doi.org/10.1016/j.physbeh.2011.12.008spa
dc.relation.referencesNguyen V. Cuong. (2016). Does parental migration really benefit left-behind children? Comparative evidence from Ethiopia, India, Peru and Vietnam. Soc Sci Med153:230–9. doi: 10.1016/j.socscimed.2016.02.021spa
dc.relation.referencesNishi, M., Horii-Hayashi, N., & Sasagawa, T. (2014). Effects of early life adverse experiences on the brain: implications from maternal separation models in rodents. Frontiers in Neuroscience, 8. doi:10.3389/fnins.2014.00166spa
dc.relation.referencesNithianantharajah J, Hannan AJ. (2006). Enriched environments, experience- dependent plasticity and disorders of the nervous system. Nat Rev Neurosci. 697–709spa
dc.relation.referencesOhta, K., Suzuki, S., Warita, K., Kaji, T., Kusaka, T., & Miki, T. (2017). Prolonged maternal separation attenuates BDNF-ERK signaling correlated with spine formation in the hippocampus during early brain development. Journal of Neurochemistry, 141(2), 179–194. doi:10.1111/jnc.13977spa
dc.relation.referencesOlsen, M. L., & Sontheimer, H. (2008). Functional implications for Kir4.1 channels in glial biology: from K+buffering to cell differentiation. Journal of Neurochemistry, 107(3), 589–601. doi:10.1111/j.1471-4159.2008.056spa
dc.relation.referencesOrganización de los estado americanos, PRIMERA INFANCIA:UNA MIRADA DESDE LA NEUROEDUCACIÓN. 2010. ISBN:978-0-8270-5642-8spa
dc.relation.referencesPang TYC, Hannan AJ. (2013). Enhancement of cognitive function in models of brain disease through environmental enrichment and physical activity. Neuropharmacology. 64:515–528spa
dc.relation.referencesPark H & Poo MM. (2013). Neurotrophin regulation of neural circuit development and function. Nat Rev Neurosci 14:7–23spa
dc.relation.referencesParnavelas J.G., (1983). A qualitative and quantitative ultrastructural study of glial cells in the develping visual cortex of the rat. Phil. Trans. R. Soc. Lond. B 301 : 55-84spa
dc.relation.referencesPaxinos, G. and Watson, C. (2007) The Rat Brain in Stereotaxic Coordinates. 6th Edition, Academic Press, San Diegospa
dc.relation.referencesPascual, R., Zamora-Leo ́n, S.P., (2007). Effects of neonatal maternal deprivationand postweaning environmental complexity on dendritic morphology ofprefrontal pyramidal neurons in the rat. Acta Neurobiol. Exp. (Wars). 67,471–479spa
dc.relation.referencesPelphrey, K. A., & Carter, E. J. (2008). Brain Mechanisms for Social Perception. Annals of the New York Academy of Sciences, 1145(1), 283–299. doi:10.1196/annals.1416.007spa
dc.relation.referencesPetrosini, et al. 2009. On whether the environmental enrichment may provide cognitive and brain reserves. Brain Research Reviws,; 61(2): 221-39spa
dc.relation.referencesPfrieger, F.W y Barres, B.A. (1997). Synaptic efficacy enhanced by glial cells in vitro. Science. 277:1684—7.spa
dc.relation.referencesPinheiro RM, de Lima MN, Portal BC, Busato SB, Falavigna L, Ferreira RD. Long-lasting recognition memory impairment and alterations in brain levels of cytokines and BDNF induced by maternal deprivation: effects of valproic acid and topiramate. J Neural Transm (Vienna). 2015. 122:709–719spa
dc.relation.referencesPillai, A., and Mahadik, S. P. (2008). Increased truncated TrkB receptor expression and decreased BDNF/TrkB signaling in the frontal cortex of reeler mouse model of schizophrenia. Schizophr. Res. 100, 325–333. doi: 10.1016/j.schres. 2007.11.030spa
dc.relation.referencesPretorius, Ε., & Marx, J. (2004). Direct and Indirect Effects of Corticosteroids on Astrocyte Function. Reviews in the Neurosciences, 15(3). doi:10.1515/revneuro.2004.15.3spa
dc.relation.referencesQiu X, Huang C-X, Lu W, Yang S, Li C, Shi X-Y, Chen L, Xiu Y, Yang J-Q, Tang Y. (2012). Effects of a 4 month enriched environment on the hippocampus and the myelinated fibers in the hippocampus of middle-aged rats. Brain Res 1465:26–33spa
dc.relation.referencesRakic P. (2007). The radial edifice of cortical architecture: From neuronal silhouettes to genetic engineering. Brain Res Brain Res Rev 55: 204–219.spa
dc.relation.referencesRampon C, Jiang CH, Dong H, Tang YP, Lockhart DJ, Schultz PG, Tsien JZ, Hu Y (2000). Effects of environmental enrichment on gene expression in the brain. Proc Natl Acad Sci USA 197:12880–12884.spa
dc.relation.referencesReagan, L. P., Rosell, D. R., Wood, G. E., Spedding, M., Muñoz, C.,Rothstein, J., & McEwen, B. S. (2004).Chronic restraint stress up-regulates GLT-1 mRNA and protein expression in the rat hippocam-pus: Reversal by tianeptine.Proceedings of the National Academy of Sci-ences of the United States of Americaspa
dc.relation.referencesRécamier-Carballo, S., Estrada-Camarena, E. , López-Rubalcava, C. (2017). Maternal separation induces long-term effects on monoamines and brain-derived neurotrophic factor levels on the frontal cortex, amygdala, and hippocampus: differential effects after a stress challengespa
dc.relation.referencesReichardt LF. (2006). Neurotrophin-regulated signalling pathways. Philos Trans R Soc Lond B Biol Sci 361:1545–1564spa
dc.relation.referencesRios M. 2013. BDNF and the central control of feeding: accidental bystander or essential player? Trends Neurosci 36(2):83–90Vicario-Abejón, C., Owens, D., McKay, R., and Segal, M. (2002). Role of neurotrophins in central synapse formation and stabilization. Nat. Rev. Neurosci. 3, 965–974. doi:10.1038/nrn988spa
dc.relation.referencesRoceri M, Hendriks W, Racagni G, Ellenbroek BA, Riva MA. (2002). Early maternal deprivation reduces the expression of BDNF and NMDA receptor subunits in rat hippocampus. Mol Psychiatry 7:609–616.spa
dc.relation.referencesRoque, A., Ochoa-Zarzosa, A., & Torner, L. (2016). Maternal separation activates microglial cells and induces an inflammatory response in the hippocampus of male rat pups, independently of hypothalamic and peripheral cytokine levels. Brain, Behavior, and Immunity, 55, 39–48. doi:10.1016/j.bbi.2015.09.017spa
dc.relation.referencesRosenzweig MR, Bennett EL, Diamond MC. (1972). Brain changes in response to experience. Scientific American. 226:22-29spa
dc.relation.referencesRossi, D., Martorana, F., Brambilla, L. (2011). Implications of gliotransmission for the pharmacotherapy of CNS disorders. CNS drugs. 25: 641-658spa
dc.relation.referencesRoux L, Benchenane K, Rothstein JD, Bonvento G, Giaume C (2011). Plasticity of astroglial networks in olfactory glomeruli. Proc Natl Acad Sci USA 108:18442–18446spa
dc.relation.referencesRowitch DH. (2004). Glial specification in the vertebrate neural tube. Nat Rev Neurosci 5: 409–419spa
dc.relation.referencesRusso-Neustadt, A., Ha, T., Ramirez, R., & Kesslak, J. P. (2001). Physical activity–antidepressant treatment combination: impact on brain-derived neurotrophic factor and behavior in an animal model. Behavioural Brain Research, 120(1), 87–95. doi:10.1016/s0166-4328(00)00364spa
dc.relation.referencesSaavedra, L. M., Fenton Navarro, B., & Torner, L. (2017). Early Life Stress Activates Glial Cells in the Hippocampus but Attenuates Cytokine Secretion in Response to an Immune Challenge in Rat Pups. Neuroimmunomodulation, 24(4-5), 242–255. doi:10.1159/000485383spa
dc.relation.referencesSalehi, J. D. Delcroix, P. V. Belichenko et al., (2006). Increased app expression in a mouse model of Down’s síndrome disrupts NGF transport and causes cholinergic neuron degeneration. Neuron, vol. 51, no. 1, pp. 29–42spa
dc.relation.referencesSampedro-Piquero P, De Bartolo P, Petrosini L, Zancada-MenendezC, Arias JL, Begega A (2014). Astrocytic plasticity as a posible mediator of the cognitive improvements after environmental enrichment in aged rats. Neurobiol Learn Mem 114C:16–25.spa
dc.relation.referencesSang-Seo,P., Hey-Sang P., Chang-Ju, K., Seung-Soo,B.,y Tae-Woon,K. (2019). Exercise attenuates maternal separation-induced mood disorder-likebehaviors by enhancing mitochondrial functions and neuroplasticity in thedorsal raphe. Behavioural Brain Research. 372 112049spa
dc.relation.referencesSano K, Kawashima M, Imada T, Suzuki T, Nakamura S, Mimura M, Tanaka KF, Tsubota K.(2019). Enriched environment alleviates stress-induced dry-eye through the BDNF axis.Sci Rep. (1):3422. doi: 10.1038/s41598-019-39467-w.PMID: 30833600 Free PMC article.spa
dc.relation.referencesScharf, S. H., & Schmidt, M. V. (2012). Animal Models of Stress Vulnerability and Resilience in Translational Research. Current Psychiatry Reports, 14(2), 159–165. doi:10.1007/s11920-012-0256-0spa
dc.relation.referencesSchneider, B., Prvulovic, D., Oertel-Knöchel, V., Knöchel, C., Reinke, B., Grexa, M., et al. (2011). Biomarkers for major depression and its delineation from neurodegenerative disorders. Prog. Neurobiol. 95, 703–717. doi: 10.1016/j. pneurobio.2011.08.001spa
dc.relation.referencesSeidah, S. Benjannet, S. Pareek, M. Chretien, and R. A. Murphy, (1996). Cellular processing of the neurotrophin precursors of NT3 and BDNF by the mammalian proprotein convertases. FEBS Letters, vol. 379, no. 3, pp. 247–250spa
dc.relation.referencesShimizu H, Watanabe E, Hiyama TY, Nagakura A, Fujikawa A, Okado H, Yanagawa Y, Obata K, Noda M. (2007). Glial Nax channels control lactate signaling to neurons for brain [Na+] sensing. Neuron. 54:59-72spa
dc.relation.referencesShigemoto-Mogami,T. Hoshikawa,K., Goldman,J.E., Sekino, Y.and Sato, K. (2014). Microglia Enhance Neurogenesis and Oligodendrogenesis in the Early Postnatal Subventricular Zone. J Neurosci. 34(6): 2231–2243.spa
dc.relation.referencesShilpa, B., Bhagya, V., Harish, G., Srinivas Bharath, M., & Shankaranarayana Rao, B. (2017). Environmental enrichment ameliorates chronic immobilisation stress-induced spatial learning deficits and restores the expression of BDNF, VEGF, GFAP and glucocorticoid receptors. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 76, 88–100. doi:10.1016/j.pnpbp.2017.02.025spa
dc.relation.referencesSilva D.,Benjamín V. y Valdivia, M. (2015). Factor neurotrófico derivado del cerebro como marcador de conducta suicida en pacientes con trastorno depresivo mayor REV CHIL NEURO-PSIQUIAT 53 (1): 44-52spa
dc.relation.referencesSinghal G, Jaehne EJ, Corrigan F, Baune BT. (2014). Cellular and molecular mechanisms of immunomodulation in the brain through environmental enrichment..Front Cell Neurosci 3;8:97. doi: 10.3389/fncel.2014.00097.spa
dc.relation.referencesSinha, R. (2008). Chronic stress, drug use, and vulnerability toaddiction. Ann. N. Y. Acad. Sci. 1141, 105–130.http://dx.doi.org/10.1196/annals.1441.030.spa
dc.relation.referencesSirevaag AM, Greenough WT (1987). Differential rearing effects on rat visual cortex synapses. III. Neuronal and glial nuclei, boutons, dendrites, and capillaries. Brain Res 424:320–332spa
dc.relation.referencesSofroniew MV, Vinters HV. (2010). Astrocytes: biology and pathology. Acta Neuropathol; 119:7–35spa
dc.relation.referencesSoto, P. y Moreno, A. (1994). Las representaciones de la maternidad y la teoría del apego. Infancia y sociedad, 27/28, pp. 350-368 &spa
dc.relation.referencesSteiner B, Kronenberg G, Jessberger S, Brandt MD, Reuter K,Kempermann G. (2004). Differential regulation of gliogenesis in the context of adult hippocampal neurogenesis in mice. Glia 446:41–52.spa
dc.relation.referencesStewart K, Bayne K. (2004).Environmental enrichment for laboratory animals. Inn: Reuter JD, editor. Laboratory animal medicine and management. New York: International veterinary information servicespa
dc.relation.referencesStuart KE, King AE, King NE, Collins JM, Vickers JC, Ziebell JM.(2019). Late-life environmental enrichment preserves short-term memory and may attenuate microglia in male APP/PS1 mice. .Neuroscience 408:282-292. doi: 10.1016/j.neuroscience.2019.04.015spa
dc.relation.referencesSun , H., Zhang, J. Zhang,Z., Hong Zhu,L. Yang, Y. (2010). Environmental enrichment influences BDNF and NR1 levels in the hippocampus and restores cognitive impairment in chronic cerebral hypoperfused rats. Curr Neurovasc Res. 7(4):268-80.spa
dc.relation.referencesSultan, S., Li, L., Moss, J., Petrelli, F., Cassé, F., Gebara, E., … Toni, N. (2015). Synaptic Integration of Adult-Born Hippocampal Neurons Is Locally Controlled by Astrocytes. Neuron, 88(5), 957–972. doi:10.1016/j.neuron.2015.10.03spa
dc.relation.referencesSusser ER, Wallace RB. (1982). The effects of environmental complexity on the hippocampal formation of the adult rat. Acta Neurobiol Exp (Wars). 42:203-207spa
dc.relation.referencesSzeligo F, Leblond CP. (1977). Response of the three main types of glial cells of cortex and corpus callosum in rats handled during suckling or exposed to enriched, control and impoverished environments following weaning. J Comp Neurol 172:247–263.spa
dc.relation.referencesTeng, K. K. Teng, R. Lee et al. (2005).ProBDNF induces neuronal apoptosis via activation of a receptor complex of p75NTR and sortilin,” The Journal of Neuroscience,.vol. 25, no. 22, pp. 5455–5463.spa
dc.relation.referencesTinmarla, F., Marchionini, D., Yarygina,O., O'Leary, P., Hughes,R., Kholodilov,N. y Burke, R. (2009). Brain-Derived Neurotrophic Factor Regulates Early Postnatal Developmental Cell Death of Dopamine Neurons of the Substantia Nigra in VivoMol Cell Neurosci. 41(4): 440–447.spa
dc.relation.referencesTorres-Platas, S. G., Nagy, C., Wakid, M., Turecki, G., & Mechawar, (2016). NGlial fibrillary acidic protein is differentially expressed acrosscortical and subcortical regions in healthy brains and downregulated in the thalamus and caudate nucleus of depressed suicides.MolecularPsychiatry .21(4), 509–515spa
dc.relation.referencesTorres-Platas, S. G., Nagy, C., Wakid, M., Turecki, G., & Mechawar, (2016). NGlial fibrillary acidic protein is differentially expressed acrosscortical and subcortical regions in healthy brains and downregulated in the thalamus and caudate nucleus of depressed suicides.MolecularPsychiatry .21(4), 509–515spa
dc.relation.referencesToya, S., Takatsuru, Y., Kokubo, M., Amano, I., Shimokawa, N., Koibuchi, N. Early-life-stress affects the homeostasis of glutamatergic synapses. Eur. J. Neurosci. (2014). 40, 3627e3634spa
dc.relation.referencesUeyama, T, Hano, T, Hamada, M, Nishio, I, Masuyama, T. (1991). New role of nerve growth factor: aninhibitory neuromodulator of adrenergic transmissiochon. Brain Res, 559:293–296spa
dc.relation.referencesValdés-Sánchez, T., Kirstein, M., Pérez-Villalba,A., Vega, J. y Fariñas, I. (2010). BDNF is essentially required for the early postnatal survival of nociceptors Dev Biol 339(2):465-76spa
dc.relation.referencesVenero, C., & Borrell, J. (1999). Rapid glucocorticoid effects on excitatory amino acid levels in the hippocampus: a microdialysis study in freely moving rats. European Journal of Neuroscience, 11(7), 2465–2473. doi:10.1046/j.1460-9568.1999.00spa
dc.relation.referencesVerkhratsky, A., Parpura, V., Pekna, M., Pekny, M., Sofroniew, M. (2014). Glia in the pathogenesis of neurodegenerative diseases. Biochemical Society Transactions. 42: 1291-1301spa
dc.relation.referencesVicario-Abejón, C., Owens, D., McKay, R., & Segal, M. (2002). Role of neurotrophins in central synapse formation and stabilization. Nature Reviews Neuroscience, 3(12), 965–974. doi:10.1038/nrn988spa
dc.relation.referencesVillanueva, G. (2013). Neurobiology of major depressive disorder,” Neural Plasticity, 2013.vol. 6, 45, 456-506 Article ID 873278.spa
dc.relation.referencesViola GG, Rodrigues L, Ame ́ rico JC, Hansel G, Vargas RS, Biasibetti R, Swarowsky A, Gonc ̧ alves CA, Xavier LL, Achaval M, SouzaDO, Amaral OB (2009). Morphological changes in hippocampal astrocytes induced by environmental enrichment in mice. Brain Res 1274:47–54.spa
dc.relation.referencesVivinetto, A., Suárez, M., and Rivarola, M. (2013). Neurobiological effects ofneonatal maternal separation and post-weaning environmental enrichment.Behav. Brain Res. 240, 110–118. doi: 10.1016/j.bbr.2012.11.014spa
dc.relation.referencesVoss MW, Vivar C, Kramer AF, Van PH (2013). Bridging animal and human models of exercise-induced brain plasticity. Trends Cogn. Sci:525–544spa
dc.relation.referencesWalsh RN, Budtz-Olsen OE, Penny JE, Cummins RA. (1969). The effects of environmental complexity on the histology of the hippocampus. Journal of comparative neurology. 137:361-366spa
dc.relation.referencesWang Q, Shao F, Wang W. (2015). Maternal separation produces alterations of forebrain brain-derived neurotrophic factor expression in differently aged rats. Front Mol Neurosci. 8:49.spa
dc.relation.referencesWeickert, C., Hyde, T., Lipska, B., Herman, M., Weinberger, D., and Kleinman, J. (2003). Reduced brain-derived neurotrophic factor in prefrontal cortex of patients with schizophrenia. Mol. Psychiatry.. 8, 592–610. doi: 10.1038/sj.mp. 4001308spa
dc.relation.referencesWenzel J, Lammert G, Meyer U, Krug M. (1991). The influence of long- term potentiation on the spatial relationship between astrocyte processes and potentiated synapses in the dentate gyrus neuropil of rat brain. Brain Res 560:122–131.spa
dc.relation.referencesWetsel, R. M. Rodriguiz, J. Guillemot et al., “Disruption of the expression of the proprotein convertase PC7 reduces BDNF production and affects learning and memory in mice,” Proceedings of the National Academy of Sciences of the United States of America, 2013 vol. 110, no. 43, pp. 17362–17367spa
dc.relation.referencesWoo, H. K. Teng, C. J. Siao et al., (2005). Activation of p75NTR by proBDNF facilitates hippocampal long term depression,” Nature Neuroscience, 8, no. 8, pp. 1069–1077spa
dc.relation.referencesYang, C.; Shirayama, Y.; Zhang, J.C.; Ren, Q.; Hashimoto, K. (2015). Regional differences in brain-derived neurotrophic factor levels and dendritic spine density confer resilience to inescapable stress. Int. J. Neuropsychopharmacol. 18(7), pyu121. [http://dx.doi. org/10.1093/ijnp/pyu121] [PMID: 25568287]spa
dc.relation.referencesYu H, Chen Z. (2011). The role of BDNF in depression on the basis of its location in the neural circuitry. Acta Pharmacol Sin 2011; 32: 3-11spa
dc.relation.referencesZagrebelsky, A. Holz, G. Dechant, Y. A. Barde, T.Bonhoeffer, and M. Korte, (2005). The p75 neurotrophin receptor negatively modulates dendrite complexity and spine density in hippocampal neurons,” The Journal of Neuro- science, 25, no. 43, pp. 9989–9999.spa
dc.relation.referencesZhang N, Becares L, Chandola T. (2015). Does the timing of parental migration matter for child growth? A life course study on left-behind children in rural China. BMC Public Health 2015.15:966. doi: 10.1186/s12889-015-2296spa
dc.relation.referencesZhang X, Li H, Sun H, Jiang Y, Wang A, Kong Y, Sun X, Zhu G, Li Q, Du Z, Sun H, Sun L . (2020).Effects of BDNF Signaling on Anxiety-Related Behavior and Spatial Memory of Adolescent Rats in Different Length of Maternal Separation. Front Psychiatry. 23;11:709. doi: 10.3389/fpsyt.2020.00709.spa
dc.relation.referencesZilles K., Wree A. (1995).Cortex: Areal and Laminar Structure en Paxinos G. 2da. Ed. The Rat Nervous System Ed. Academia Press. pp: 649-685.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc610 - Medicina y salud::612 - Fisiología humanaspa
dc.subject.lemNeurofisiologíaspa
dc.subject.lembNeurophysiologyeng
dc.subject.lembAdaptación - psicologíaspa
dc.subject.lembAdjustment (psychology)eng
dc.subject.proposalBDNFspa
dc.subject.proposalAstrocitosspa
dc.titleEfecto del ambiente enriquecido posterior a la separación materna, sobre el bdnf y los astrocitos en la corteza cerebral de ratas wistarspa
dc.title.translatedEffect of the enriched environment after maternal separation on bdnf and astrocytes in the cerebral cortex of wistar ratseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1024566525.2022.pdf
Tamaño:
5.44 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Fisiología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: