Análisis molecular del patrón de inactivación del gen GLA y su contribución al fenotipo en una muestra de mujeres colombianas con enfermedad de Fabry, mediante ensayos basados en metilación
dc.contributor.advisor | Yunis Londoño, Juan José | spa |
dc.contributor.advisor | Ospina Lagos, Sandra Yaneth | spa |
dc.contributor.author | Iza Rodríguez, Shirley Natali | spa |
dc.contributor.researchgroup | Patología Molecular | spa |
dc.coverage.country | Colombia | spa |
dc.date.accessioned | 2024-11-05T14:08:47Z | |
dc.date.available | 2024-11-05T14:08:47Z | |
dc.date.issued | 2024 | |
dc.description | ilustraciones, diagramas, tablas | spa |
dc.description.abstract | El objetivo del presente estudio fue analizar el patrón de inactivación del gen GLA, a través de ensayos basados en metilación, y su contribución al fenotipo en una muestra de mujeres colombianas con Enfermedad de Fabry EF. Se reporta una heterogénea severidad de fenotipo en mujeres de casos familiares, pudiendo presentar todos los síntomas y signos documentados en varones con EF; asociado a un marcado deterioro en la percepción subjetiva de la calidad de vida. Así mismo se reporta una metilación heterogénea de las posiciones CpG en la región analizada del gen GLA. Con base en los resultados del ensayo HUMARA, se observó más del 60% de las muestras con inactivación aleatoria, y no se encontró relación estadística entre el patrón de ICX de las muestras analizadas y la severidad fenotípica. En conclusión, EF afecta en todos los casos la salud física, psicológica y la calidad de vida de las mujeres heterocigotas para variante patogénica en el gen GLA; y no se encontró asociación estadística entre la severidad del fenotipo sistémico en EF, y el patrón de ICX de las muestras analizadas (Texto tomado de la fuente). | spa |
dc.description.abstract | The present study aimed to analyze the pattern of GLA gene inactivation, through methylation-based assays, and its contribution to the phenotype in a sample of Colombian women with Fabry disease FD. A heterogeneous severity of phenotype is reported in women of familial cases, being able to present all the symptoms and signs documented in men with FD; associated with a marked deterioration in the subjective perception of quality of life. Likewise, a heterogeneous methylation of the CpG positions in the analyzed region of the GLA gene is reported. Based on the results of the HUMARA assay, more than 60% of the samples were observed with random inactivation, and no statistical relationship was found between the ICX pattern of the samples analyzed and phenotypic severity. In conclusion, in all cases, FD affects the physical and psychological health and quality of life of women heterozygous for the pathogenic variant in the GLA gene; and no statistical association was found between the severity of the systemic phenotype in FD and the ICX pattern of the samples analyzed. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Genética Humana | spa |
dc.format.extent | 96 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87148 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Medicina | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Medicina - Maestría en Genética Humana | spa |
dc.relation.references | Ali, N., Gillespie, S., & Laney, D. (2018). Treatment of Depression in Adults with Fabry Disease. JIMD Reports, 38, 13-21. https://doi.org/10.1007/8904_2017_21 | spa |
dc.relation.references | Allen, R. C., Zoghbi, H. Y., Moseley, A. B., Rosenblatt, H. M., & Belmont, J. W. (1992). Methylation of HpaII and HhaI sites near the polymorphic CAG repeat in the human androgen-receptor gene correlates with X chromosome inactivation. American Journal of Human Genetics, 51(6), 1229-1239. | spa |
dc.relation.references | Al-Obaide, M., Al-Obaidi, I., & Vasylyeva, T. (2020). Unexplored regulatory sequences of divergently paired GLA and HNRNPH2 loci pertinent to Fabry disease in human kidney and skin cells: Presence of an active bidirectional promoter. Experimental and Therapeutic Medicine, 21(2), 154. https://doi.org/10.3892/etm.2020.9586 | spa |
dc.relation.references | Alroy, J., Sabnis, S., & Kopp, J. B. (2002). Renal Pathology in Fabry Disease. Journal of the American Society of Nephrology, 13(suppl 2), S134-S138. https://doi.org/10.1097/01.ASN.0000016684.07368.75 | spa |
dc.relation.references | Amodio, F., Caiazza, M., Monda, E., Rubino, M., Capodicasa, L., Chiosi, F., Simonelli, V., Dongiglio, F., Fimiani, F., Pepe, N., Chimenti, C., Calabrò, P., & Limongelli, G. (2022). An Overview of Molecular Mechanisms in Fabry Disease. Biomolecules, 12(10), 1460. https://doi.org/10.3390/biom12101460 | spa |
dc.relation.references | Amos-Landgraf, J. M., Cottle, A., Plenge, R. M., Friez, M., Schwartz, C. E., Longshore, J., & Willard, H. F. (2006). X chromosome-inactivation patterns of 1,005 phenotypically unaffected females. American Journal of Human Genetics, 79(3), 493-499. https://doi.org/10.1086/507565 | spa |
dc.relation.references | Andonian, C., Beckmann, J., Mayer, O., Ewert, P., Freiberger, A., Huber, M., Kaemmerer, H., Kurschat, C., Lagler, F., Nagdyman, N., Pieper, L., Regenbogen, C., & Freilinger, S. (2022). Quality of life in patients with Fabry’s disease: A cross-sectional study of 86 adults. Cardiovascular Diagnosis and Therapy, 12(4), Article 4. https://doi.org/10.21037/cdt-22-215 | spa |
dc.relation.references | Arends, M., Hollak, C. E. M., & Biegstraaten, M. (2015). Quality of life in patients with Fabry disease: A systematic review of the literature. Orphanet Journal of Rare Diseases, 10, 77. https://doi.org/10.1186/s13023-015-0296-8 | spa |
dc.relation.references | Arends, M., Wanner, C., Hughes, D., Mehta, A., Oder, D., Watkinson, O. T., Elliott, P. M., Linthorst, G. E., Wijburg, F. A., Biegstraaten, M., & Hollak, C. E. (2017). Characterization of Classical and Nonclassical Fabry Disease: A Multicenter Study. Journal of the American Society of Nephrology : JASN, 28(5), 1631-1641. https://doi.org/10.1681/ASN.2016090964 | spa |
dc.relation.references | Ashley, G. A., Shabbeer, J., Yasuda, M., Eng, C. M., & Desnick, R. J. (2001). Fabry disease: Twenty novel α-galactosidase A mutations causing the classical phenotype. Journal of Human Genetics, 46(4), 192-196. https://doi.org/10.1007/s100380170088 | spa |
dc.relation.references | Ashton-Prolla, P., Tong, B., Shabbeer, J., Astrin, K. H., Eng, C. M., & Desnick, R. J. (2000). Fabry disease: Twenty-two novel mutations in the alpha-galactosidase A gene and genotype/phenotype correlations in severely and mildly affected hemizygotes and heterozygotes. Journal of Investigative Medicine: The Official Publication of the American Federation for Clinical Research, 48(4), 227-235. | spa |
dc.relation.references | Auray-Blais, C., Lavoie, P., Abaoui, M., Côté, A.-M., Boutin, M., Akbari, A., Levin, A., Mac-Way, F., & TR Clarke, J. (2020). High-risk screening for Fabry disease in a Canadian cohort of chronic kidney disease patients. Clinica Chimica Acta, 501, 234-240. https://doi.org/10.1016/j.cca.2019.10.045 | spa |
dc.relation.references | Avner, P., & Heard, E. (2001). X-chromosome inactivation: Counting, choice and initiation. Nature Reviews Genetics, 2(1), 59-67. https://doi.org/10.1038/35047580 | spa |
dc.relation.references | Azevedo, O., Cordeiro, F., Gago, M. F., Miltenberger-Miltenyi, G., Ferreira, C., Sousa, N., & Cunha, D. (2021). Fabry Disease and the Heart: A Comprehensive Review. International Journal of Molecular Sciences, 22(9), 4434. https://doi.org/10.3390/ijms22094434 | spa |
dc.relation.references | Azofeifa, J., Waldherr, R., & Cremer, M. (1996). X-chromosome methylation ratios as indicators of chromosomal activity: Evidence of intraindividual divergencies among tissues of different embryonal origin. Human Genetics, 97(3), 330-333. https://doi.org/10.1007/BF02185765 | spa |
dc.relation.references | Baehner, F., Kampmann, C., Whybra, C., Miebach, E., Wiethoff, C. M., & Beck, M. (2003). Enzyme replacement therapy in heterozygous females with Fabry disease: Results of a phase IIIB study. Journal of Inherited Metabolic Disease, 26(7), 617-627. https://doi.org/10.1023/b:boli.0000005658.14563.77 | spa |
dc.relation.references | Balaton, B. P., & Brown, C. J. (2021). Contribution of genetic and epigenetic changes to escape from X-chromosome inactivation. Epigenetics & Chromatin, 14(1), 30. https://doi.org/10.1186/s13072-021-00404-9 | spa |
dc.relation.references | Balaton, B. P., Cotton, A. M., & Brown, C. J. (2015). Derivation of consensus inactivation status for X-linked genes from genome-wide studies. Biology of Sex Differences, 6(1), 35. https://doi.org/10.1186/s13293-015-0053-7 | spa |
dc.relation.references | Balaton, B. P., Fornes, O., Wasserman, W. W., & Brown, C. J. (2021). Cross-species examination of X-chromosome inactivation highlights domains of escape from silencing. Epigenetics & Chromatin, 14(1), 12. https://doi.org/10.1186/s13072-021-00386-8 | spa |
dc.relation.references | Barros de Andrade E Sousa, L., Jonkers, I., Syx, L., Dunkel, I., Chaumeil, J., Picard, C., Foret, B., Chen, C.-J., Lis, J. T., Heard, E., Schulz, E. G., & Marsico, A. (2019). Kinetics of Xist-induced gene silencing can be predicted from combinations of epigenetic and genomic features. Genome Research, 29(7), 1087-1099. https://doi.org/10.1101/gr.245027.118 | spa |
dc.relation.references | Bird, A. (2002). DNA methylation patterns and epigenetic memory. Genes & Development, 16(1), 6-21. https://doi.org/10.1101/gad.947102 | spa |
dc.relation.references | Bishop, D. F., & Desnick, R. J. (1981). Affinity purification of alpha-galactosidase A from human spleen, placenta, and plasma with elimination of pyrogen contamination. Properties of the purified splenic enzyme compared to other forms. The Journal of Biological Chemistry, 256(3), 1307-1316. | spa |
dc.relation.references | Bock, C., Walter, J., Paulsen, M., & Lengauer, T. (2007). CpG Island Mapping by Epigenome Prediction. PLoS Computational Biology, 3(6), e110. https://doi.org/10.1371/journal.pcbi.0030110 | spa |
dc.relation.references | Bolduc, V., Chagnon, P., Provost, S., Dubé, M.-P., Belisle, C., Gingras, M., Mollica, L., & Busque, L. (2008). No evidence that skewing of X chromosome inactivation patterns is transmitted to offspring in humans. Journal of Clinical Investigation, 118(1), 333-341. https://doi.org/10.1172/JCI33166 | spa |
dc.relation.references | Cairns, T., & Wanner, C. (2019). Will the FAbry STabilization indEX make its way to everyday clinical practice? Clinical Kidney Journal, 12(1), 61-64. https://doi.org/10.1093/ckj/sfy126 | spa |
dc.relation.references | Cammarata, G., Fatuzzo, P., Rodolico, M. S., Colomba, P., Sicurella, L., Iemolo, F., Zizzo, C., Alessandro, R., Bartolotta, C., Duro, G., & Monte, I. (2015). High Variability of Fabry Disease Manifestations in an Extended Italian Family. BioMed Research International, 2015(1), 504784. https://doi.org/10.1155/2015/504784 | spa |
dc.relation.references | Carrel, L., & Willard, H. F. (2005). X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature, 434(7031), 400-404. https://doi.org/10.1038/nature03479 | spa |
dc.relation.references | Chen, C.-Y., Shi, W., Balaton, B. P., Matthews, A. M., Li, Y., Arenillas, D. J., Mathelier, A., Itoh, M., Kawaji, H., Lassmann, T., Hayashizaki, Y., Carninci, P., Forrest, A. R. R., Brown, C. J., & Wasserman, W. W. (2016). YY1 binding association with sex-biased transcription revealed through X-linked transcript levels and allelic binding analyses. Scientific Reports, 6, 37324. https://doi.org/10.1038/srep37324 | spa |
dc.relation.references | Chen, S., Francioli, L. C., Goodrich, J. K., Collins, R. L., Kanai, M., Wang, Q., Alföldi, J., Watts, N. A., Vittal, C., Gauthier, L. D., Poterba, T., Wilson, M. W., Tarasova, Y., Phu, W., Grant, R., Yohannes, M. T., Koenig, Z., Farjoun, Y., Banks, E., … Genome Aggregation Database Consortium. (2024). A genomic mutational constraint map using variation in 76,156 human genomes. Nature, 625(7993), 92-100. https://doi.org/10.1038/s41586-023-06045-0 | spa |
dc.relation.references | Chu, C., Zhang, Q. C., da Rocha, S. T., Flynn, R. A., Bharadwaj, M., Calabrese, J. M., Magnuson, T., Heard, E., & Chang, H. Y. (2015). Systematic discovery of Xist RNA binding proteins. Cell, 161(2), 404-416. https://doi.org/10.1016/j.cell.2015.03.025 | spa |
dc.relation.references | Cotton, A. M., Lam, L., Affleck, J. G., Wilson, I. M., Peñaherrera, M. S., McFadden, D. E., Kobor, M. S., Lam, W. L., Robinson, W. P., & Brown, C. J. (2011). Chromosome-wide DNA methylation analysis predicts human tissue-specific X inactivation. Human Genetics, 130(2), 187-201. https://doi.org/10.1007/s00439-011-1007-8 | spa |
dc.relation.references | Cotton, A. M., Price, E. M., Jones, M. J., Balaton, B. P., Kobor, M. S., & Brown, C. J. (2015). Landscape of DNA methylation on the X chromosome reflects CpG density, functional chromatin state and X-chromosome inactivation. Human Molecular Genetics, 24(6), 1528-1539. https://doi.org/10.1093/hmg/ddu564 | spa |
dc.relation.references | da Paz, O. T., Lacerda, R. C. T., & de Andrade, L. G. M. (2023). Genetic and phenotypic profile of Fabry disease in the population of Vale do Paraiba and Eastern São Paulo. Jornal Brasileiro de Nefrologia, 45(4), 424-439. https://doi.org/10.1590/2175-8239-JBN-2022-0107en | spa |
dc.relation.references | De Riso, G., Cuomo, M., Di Risi, T., Della Monica, R., Buonaiuto, M., Costabile, D., Pisani, A., Cocozza, S., & Chiariotti, L. (2020). Ultra-Deep DNA Methylation Analysis of X-Linked Genes: GLA and AR as Model Genes. Genes, 11(6), 620. | spa |
dc.relation.references | Deegan, P. B., Bähner, F., Barba, M., Hughes, D. A., & Beck, M. (2006). Fabry disease in females: Clinical characteristics and effects of enzyme replacement therapy. En A. Mehta, M. Beck, & G. Sunder-Plassmann (Eds.), Fabry Disease: Perspectives from 5 Years of FOS. Oxford PharmaGenesis. http://www.ncbi.nlm.nih.gov/books/NBK11591/ | spa |
dc.relation.references | Denoulet, M., Brulé, M., Anquez, F., Vincent, A., Schnipper, J., Adriaenssens, E., Toillon, R.-A., Le Bourhis, X., & Lagadec, C. (2023). ABSP: An automated R tool to efficiently analyze region-specific CpG methylation from bisulfite sequencing PCR. Bioinformatics (Oxford, England), 39(1), btad008. https://doi.org/10.1093/bioinformatics/btad008 | spa |
dc.relation.references | Desnick, R. J. (2020). Chapter 42 - Fabry disease: α-galactosidase A deficiency. En R. N. Rosenberg & J. M. Pascual (Eds.), Rosenberg’s Molecular and Genetic Basis of Neurological and Psychiatric Disease (Sixth Edition) (pp. 575-587). Academic Press. https://doi.org/10.1016/B978-0-12-813955-4.00042-8 | spa |
dc.relation.references | Desnick, R. J., Ioannou, Y. A., & Eng, C. M. (2019). α-Galactosidase A Deficiency: Fabry Disease. En D. L. Valle, S. Antonarakis, A. Ballabio, A. L. Beaudet, & G. A. Mitchell (Eds.), The Online Metabolic and Molecular Bases of Inherited Disease (1-Book, Section). McGraw-Hill Education. ommbid.mhmedical.com/content.aspx?aid=1181466273 | spa |
dc.relation.references | Di Risi, T., Vinciguerra, R., Cuomo, M., Della Monica, R., Riccio, E., Cocozza, S., Imbriaco, M., Duro, G., Pisani, A., & Chiariotti, L. (2021). DNA methylation impact on Fabry disease. Clinical Epigenetics, 13(1), 24. https://doi.org/10.1186/s13148-021-01019-3 | spa |
dc.relation.references | Dossin, F., & Heard, E. (2021). The Molecular and Nuclear Dynamics of X-Chromosome Inactivation. Cold Spring Harbor Perspectives in Biology, a040196. https://doi.org/10.1101/cshperspect.a040196 | spa |
dc.relation.references | Duncan, E. J., Gluckman, P. D., & Dearden, P. K. (2014). Epigenetics, plasticity, and evolution: How do we link epigenetic change to phenotype? Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 322(4), 208-220. https://doi.org/10.1002/jez.b.22571 | spa |
dc.relation.references | Echevarria, L., Benistan, K., Toussaint, A., Dubourg, O., Hagege, A. A., Eladari, D., Jabbour, F., Beldjord, C., De Mazancourt, P., & Germain, D. P. (2016). X-chromosome inactivation in female patients with Fabry disease. Clinical Genetics, 89(1), 44-54. https://doi.org/10.1111/cge.12613 | spa |
dc.relation.references | Effraimidis, G., Rasmussen, Å. K., Dunoe, M., Hasholt, L. F., Wibrand, F., Sorensen, S. S., Lund, A. M., Kober, L., Bundgaard, H., Yazdanfard, P. D. W., Oturai, P., Larsen, V. A., Fraga de Abreu, V. H., Enevoldsen, L. H., Kristensen, T., Svenstrup, K., Bille, M. B., Arif, F., Mogensen, M., … Feldt-Rasmussen, U. (2022). Systematic cascade screening in the Danish Fabry Disease Centre: 20 years of a national single-centre experience. PloS One, 17(11), e0277767. https://doi.org/10.1371/journal.pone.0277767 | spa |
dc.relation.references | El Dib, R., Gomaa, H., Carvalho, R. P., Camargo, S. E., Bazan, R., Barretti, P., & Barreto, F. C. (2016). Enzyme replacement therapy for Anderson‐Fabry disease. The Cochrane Database of Systematic Reviews, 2016(7), CD006663. https://doi.org/10.1002/14651858.CD006663.pub4 | spa |
dc.relation.references | Elliott, P. M., Kindler, H., Shah, J. S., Sachdev, B., Rimoldi, O. E., Thaman, R., Tome, M. T., McKenna, W. J., Lee, P., & Camici, P. G. (2006). Coronary microvascular dysfunction in male patients with Anderson-Fabry disease and the effect of treatment with alpha galactosidase A. Heart (British Cardiac Society), 92(3), 357-360. https://doi.org/10.1136/hrt.2004.054015 | spa |
dc.relation.references | Eng, C. M., Fletcher, J., Wilcox, W. R., Waldek, S., Scott, C. R., Sillence, D. O., Breunig, F., Charrow, J., Germain, D. P., Nicholls, K., & Banikazemi, M. (2007). Fabry disease: Baseline medical characteristics of a cohort of 1765 males and females in the Fabry Registry. Journal of Inherited Metabolic Disease, 30(2), 184-192. https://doi.org/10.1007/s10545-007-0521-2 | spa |
dc.relation.references | Eng, C. M., Germain, D. P., Banikazemi, M., Warnock, D. G., Wanner, C., Hopkin, R. J., Bultas, J., Lee, P., Sims, K., Brodie, S. E., Pastores, G. M., Strotmann, J. M., & Wilcox, W. R. (2006). Fabry disease: Guidelines for the evaluation and management of multi-organ system involvement. Genetics in Medicine, 8(9), 539-548. https://doi.org/10.1097/01.gim.0000237866.70357.c6 | spa |
dc.relation.references | Ezgu, F., Alpsoy, E., Bicik Bahcebasi, Z., Kasapcopur, O., Palamar, M., Onay, H., Ozdemir, B. H., Topcuoglu, M. A., & Tufekcioglu, O. (2022). Expert opinion on the recognition, diagnosis and management of children and adults with Fabry disease: A multidisciplinary Turkey perspective. Orphanet Journal of Rare Diseases, 17(1), 90. https://doi.org/10.1186/s13023-022-02215-x | spa |
dc.relation.references | Fagerberg, L., Hallström, B. M., Oksvold, P., Kampf, C., Djureinovic, D., Odeberg, J., Habuka, M., Tahmasebpoor, S., Danielsson, A., Edlund, K., Asplund, A., Sjöstedt, E., Lundberg, E., Szigyarto, C. A.-K., Skogs, M., Takanen, J. O., Berling, H., Tegel, H., Mulder, J., … Uhlén, M. (2014). Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Molecular & Cellular Proteomics: MCP, 13(2), 397-406. https://doi.org/10.1074/mcp.M113.035600 | spa |
dc.relation.references | Fall, B., Scott, C. R., Mauer, M., Shankland, S., Pippin, J., Jefferson, J. A., Wallace, E., Warnock, D., & Najafian, B. (2016). Urinary Podocyte Loss Is Increased in Patients with Fabry Disease and Correlates with Clinical Severity of Fabry Nephropathy. PLOS ONE, 11(12), e0168346. https://doi.org/10.1371/journal.pone.0168346 | spa |
dc.relation.references | Felis, A., Whitlow, M., Kraus, A., Warnock, D. G., & Wallace, E. (2020). Current and Investigational Therapeutics for Fabry Disease. Kidney International Reports, 5(4), 407-413. https://doi.org/10.1016/j.ekir.2019.11.013 | spa |
dc.relation.references | Fellgiebel, A., Müller, M. J., & Ginsberg, L. (2006). CNS manifestations of Fabry’s disease. The Lancet Neurology, 5(9), 791-795. https://doi.org/10.1016/S1474-4422(06)70548-8 | spa |
dc.relation.references | Ferreira, S., Reguenga, C., & Oliveira, J. P. (2015). The Modulatory Effects of the Polymorphisms in GLA 5′-Untranslated Region Upon Gene Expression Are Cell-Type Specific. JIMD Reports, 23, 27-34. https://doi.org/10.1007/8904_2015_424 | spa |
dc.relation.references | Ferri, L., Guido, C., la Marca, G., Malvagia, S., Cavicchi, C., Fiumara, A., Barone, R., Parini, R., Antuzzi, D., Feliciani, C., Zampetti, A., Manna, R., Giglio, S., Della Valle, C. M., Wu, X., Valenzano, K. J., Benjamin, R., Donati, M. A., Guerrini, R., … Morrone, A. (2012). Fabry disease: Polymorphic haplotypes and a novel missense mutation in the GLA gene. Clinical Genetics, 81(3), 224-233. https://doi.org/10.1111/j.1399-0004.2011.01689.x | spa |
dc.relation.references | Fitzmaurice, T. F., Desnick, R. J., & Bishop, D. F. (1997). Human alpha-galactosidase A: High plasma activity expressed by the -30G-->A allele. Journal of Inherited Metabolic Disease, 20(5), 643-657. https://doi.org/10.1023/a:1005366224351 | spa |
dc.relation.references | Fuller, M., Mellett, N., Hein, L. K., Brooks, D. A., & Meikle, P. J. (2015). Absence of α-galactosidase cross-correction in Fabry heterozygote cultured skin fibroblasts. Molecular Genetics and Metabolism, 114(2), 268-273. https://doi.org/10.1016/j.ymgme.2014.11.005 | spa |
dc.relation.references | Gal, A. (2010). Molecular Genetics of Fabry Disease and Genotype–Phenotype Correlation. En D. Elstein, G. Altarescu, & M. Beck (Eds.), Fabry Disease (pp. 3-19). Springer Netherlands. https://doi.org/10.1007/978-90-481-9033-1_1 | spa |
dc.relation.references | Galupa, R., & Heard, E. (2015). X-chromosome inactivation: New insights into cis and trans regulation. Current Opinion in Genetics & Development, 31, 57-66. https://doi.org/10.1016/j.gde.2015.04.002 | spa |
dc.relation.references | Gardiner-Garden, M., & Frommer, M. (1987). CpG islands in vertebrate genomes. Journal of Molecular Biology, 196(2), 261-282. https://doi.org/10.1016/0022-2836(87)90689-9 | spa |
dc.relation.references | Garieri, M., Stamoulis, G., Blanc, X., Falconnet, E., Ribaux, P., Borel, C., Santoni, F., & Antonarakis, S. E. (2018). Extensive cellular heterogeneity of X inactivation revealed by single-cell allele-specific expression in human fibroblasts. Proceedings of the National Academy of Sciences, 115(51), 13015-13020. https://doi.org/10.1073/pnas.1806811115 | spa |
dc.relation.references | Germain, D. P. (2010). Fabry disease. Orphanet Journal of Rare Diseases, 5(1), 30. https://doi.org/10.1186/1750-1172-5-30 | spa |
dc.relation.references | Germain, D. P., Altarescu, G., Barriales-Villa, R., Mignani, R., Pawlaczyk, K., Pieruzzi, F., Terryn, W., Vujkovac, B., & Ortiz, A. (2022). An expert consensus on practical clinical recommendations and guidance for patients with classic Fabry disease. Molecular Genetics and Metabolism, 137(1-2), 49-61. https://doi.org/10.1016/j.ymgme.2022.07.010 | spa |
dc.relation.references | Giannini, E. H., Mehta, A. B., Hilz, M. J., Beck, M., Bichet, D. G., Brady, R. O., West, M., Germain, D. P., Wanner, C., Waldek, S., Clarke, J. T. R., Mengel, E., Strotmann, J. M., Warnock, D. G., & Linhart, A. (2010). A validated disease severity scoring system for Fabry disease. Molecular Genetics and Metabolism, 99(3), 283-290. https://doi.org/10.1016/j.ymgme.2009.10.178 | spa |
dc.relation.references | Gibas, A. L., Klatt, R., Johnson, J., Clarke, J. T. R., & Katz, J. (2006). A survey of the pain experienced by males and females with Fabry disease. Pain Research & Management, 11(3), 185-192. https://doi.org/10.1155/2006/828964 | spa |
dc.relation.references | Gubler, M.-C., Lenoir, G., Grünfeld, J.-P., Ulmann, A., Droz, D., Habib, R., Naizot, C., Adafer, E., & Grandhomme, C. (1978). Early renal changes in hemizygous and heterozygous patients with Fabry’s disease. Kidney International, 13(3), 223-235. | spa |
dc.relation.references | Hegemann, S., Hajioff, D., Conti, G., Beck, M., Sunder-Plassmann, G., Widmer, U., Mehta, A., & Keilmann, A. (2006). Hearing loss in Fabry disease: Data from the Fabry Outcome Survey. European Journal of Clinical Investigation, 36(9), 654-662. https://doi.org/10.1111/j.1365-2362.2006.01702.x | spa |
dc.relation.references | Hossain, M. A., Yanagisawa, H., Miyajima, T., Wu, C., Takamura, A., Akiyama, K., Itagaki, R., Eto, K., Iwamoto, T., Yokoi, T., Kurosawa, K., Numabe, H., & Eto, Y. (2017). The severe clinical phenotype for a heterozygous Fabry female patient correlates to the methylation of non-mutated allele associated with chromosome 10q26 deletion syndrome. Molecular Genetics and Metabolism, 120(3), 173-179. https://doi.org/10.1016/j.ymgme.2017.01.002 | spa |
dc.relation.references | Hřebíček, M., & Ledvinová, J. (2010). Biochemistry of Fabry Disease. En D. Elstein, G. Altarescu, & M. Beck (Eds.), Fabry Disease (pp. 81-104). Springer Netherlands. https://doi.org/10.1007/978-90-481-9033-1_4 | spa |
dc.relation.references | Huang, Y., Pastor, W. A., Shen, Y., Tahiliani, M., Liu, D. R., & Rao, A. (2010). The Behaviour of 5-Hydroxymethylcytosine in Bisulfite Sequencing. PLoS ONE, 5(1), e8888. https://doi.org/10.1371/journal.pone.0008888 | spa |
dc.relation.references | Hübner, A., Metz, T., Schanzer, A., Greber-Platzer, S., & Item, C. B. (2015). Aberrant DNA methylation of calcitonin receptor in Fabry patients treated with enzyme replacement therapy. Molecular Genetics and Metabolism Reports, 5, 1-2. https://doi.org/10.1016/j.ymgmr.2015.08.002 | spa |
dc.relation.references | Hughes, D. A., Ramaswami, U., Barba Romero, M.-Á., Deegan, P., & FOS Investigators. (2010). Age adjusting severity scores for Anderson-Fabry disease. Molecular Genetics and Metabolism, 101(2-3), 219-227. https://doi.org/10.1016/j.ymgme.2010.06.002 | spa |
dc.relation.references | Izhar, R., Borriello, M., La Russa, A., Di Paola, R., De, A., Capasso, G., Ingrosso, D., Perna, A. F., & Simeoni, M. (2023). Fabry Disease in Women: Genetic Basis, Available Biomarkers, and Clinical Manifestations. Genes, 15(1), 37. https://doi.org/10.3390/genes15010037 | spa |
dc.relation.references | Joo, J. E., Novakovic, B., Cruickshank, M., Doyle, L. W., Craig, J. M., & Saffery, R. (2014). Human active X-specific DNA methylation events showing stability across time and tissues. European Journal of Human Genetics, 22(12), 1376-1381. https://doi.org/10.1038/ejhg.2014.34 | spa |
dc.relation.references | Juchniewicz, P., Piotrowska, E., Kloska, A., Podlacha, M., Mantej, J., Węgrzyn, G., Tukaj, S., & Jakóbkiewicz-Banecka, J. (2021). Dosage Compensation in Females with X-Linked Metabolic Disorders. International Journal of Molecular Sciences, 22(9), 4514. https://doi.org/10.3390/ijms22094514 | spa |
dc.relation.references | Kampmann, C., Wiethoff, C. M., Perrot, A., Beck, M., Dietz, R., & Osterziel, K. J. (2002). The heart in Anderson Fabry disease. Zeitschrift Für Kardiologie, 91(10), 786-795. https://doi.org/10.1007/s00392-002-0848-5 | spa |
dc.relation.references | Kampmann, C., Wiethoff, C. M., Whybra, C., Baehner, F. A., Mengel, E., & Beck, M. (2008). Cardiac manifestations of Anderson-Fabry disease in children and adolescents. Acta Paediatrica, 97(4), 463-469. https://doi.org/10.1111/j.1651-2227.2008.00700.x | spa |
dc.relation.references | Ke, X., & Collins, A. (2003). CpG Islands in Human X-Inactivation. Annals of Human Genetics, 67(3), 242-249. https://doi.org/10.1046/j.1469-1809.2003.00038.x | spa |
dc.relation.references | Keilmann, A., Hajioff, D., Ramaswami, U., & Investigators, on behalf of the F. (2009). Ear symptoms in children with Fabry disease: Data from the Fabry Outcome Survey. Journal of Inherited Metabolic Disease, 32(6), 739. https://doi.org/10.1007/s10545-009-1290-x | spa |
dc.relation.references | Keilmann, A., Hegemann, S., Conti, G., & Hajioff, D. (2006). Fabry disease and the ear. En A. Mehta, M. Beck, & G. Sunder-Plassmann (Eds.), Fabry Disease: Perspectives from 5 Years of FOS. Oxford PharmaGenesis. http://www.ncbi.nlm.nih.gov/books/NBK11606/ | spa |
dc.relation.references | Keshav, S. (2006). Gastrointestinal manifestations of Fabry disease. En A. Mehta, M. Beck, & G. Sunder-Plassmann (Eds.), Fabry Disease: Perspectives from 5 Years of FOS. Oxford PharmaGenesis. http://www.ncbi.nlm.nih.gov/books/NBK11570/ | spa |
dc.relation.references | Khan, S. A., & Theunissen, T. W. (2023). Modeling X-chromosome inactivation and reactivation during human development. Current Opinion in Genetics & Development, 82, 102096. https://doi.org/10.1016/j.gde.2023.102096 | spa |
dc.relation.references | Kobayashi, M., Ohashi, T., Sakuma, M., Ida, H., & Eto, Y. (2008). Clinical manifestations and natural history of Japanese heterozygous females with Fabry disease. Journal of Inherited Metabolic Disease, 31(S3), 483-487. https://doi.org/10.1007/s10545-007-0740-6 | spa |
dc.relation.references | Kok, K., Zwiers, K. C., Boot, R. G., Overkleeft, H. S., Aerts, J. M. F. G., & Artola, M. (2021). Fabry Disease: Molecular Basis, Pathophysiology, Diagnostics and Potential Therapeutic Directions. Biomolecules, 11(2), 271. https://doi.org/10.3390/biom11020271 | spa |
dc.relation.references | Kolter, T., & Sandhoff, K. (2006). Sphingolipid metabolism diseases. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1758(12), 2057-2079. https://doi.org/10.1016/j.bbamem.2006.05.027 | spa |
dc.relation.references | Körver, S., Geurtsen, G. J., Hollak, C. E. M., van Schaik, I. N., Longo, M. G. F., Lima, M. R., Vedolin, L., Dijkgraaf, M. G. W., & Langeveld, M. (2020). Depressive symptoms in Fabry disease: The importance of coping, subjective health perception and pain. Orphanet Journal of Rare Diseases, 15(1), 28. https://doi.org/10.1186/s13023-020-1307-y | spa |
dc.relation.references | Kristensen, L. S., Mikeska, T., Krypuy, M., & Dobrovic, A. (2008). Sensitive Melting Analysis after Real Time- Methylation Specific PCR (SMART-MSP): High-throughput and probe-free quantitative DNA methylation detection. Nucleic Acids Research, 36(7), e42. https://doi.org/10.1093/nar/gkn113 | spa |
dc.relation.references | Kwan, D., Rudelli, M. D., Germain, D., Garman, S. C., Grace, M. E., Nazarenko, I., Dobrovolny, R., Yasuda, M., & Desnick, R. J. (2007). Fabry Disease: Identification and Structural Analysis of 34 Novel -Galactosidase A Mutations Causing Fabry Disease. Am Soc Hum Genet. https://www.ashg.org/wp-content/uploads/2020/07/2007-allabstracts.pdf | spa |
dc.relation.references | Laney, D. A., Peck, D. S., Atherton, A. M., Manwaring, L. P., Christensen, K. M., Shankar, S. P., Grange, D. K., Wilcox, W. R., & Hopkin, R. J. (2015). Fabry disease in infancy and early childhood: A systematic literature review. Genetics in Medicine, 17(5), 323-330. https://doi.org/10.1038/gim.2014.120 | spa |
dc.relation.references | Larralde, M., Boggio, P., Amartino, H., & Chamoles, N. (2004). Fabry Disease: A Study of 6 Hemizygous Men and 5 Heterozygous Women With Emphasis on Dermatologic Manifestations. Archives of Dermatology, 140(12). https://doi.org/10.1001/archderm.140.12.1440 | spa |
dc.relation.references | Lenders, M., & Brand, E. (2020). FAbry STabilization indEX (FASTEX): Clinical evaluation of disease progression in Fabry patients. Molecular Genetics and Metabolism, 129(2), 142-149. https://doi.org/10.1016/j.ymgme.2019.12.010 | spa |
dc.relation.references | Li, L.-C., & Dahiya, R. (2002). MethPrimer: Designing primers for methylation PCRs. Bioinformatics (Oxford, England), 18(11), 1427-1431. https://doi.org/10.1093/bioinformatics/18.11.1427 | spa |
dc.relation.references | Li, Y., & Tollefsbol, T. O. (2011). DNA methylation detection: Bisulfite genomic sequencing analysis. Methods in molecular biology (Clifton, N.J.), 791, 11-21. https://doi.org/10.1007/978-1-61779-316-5_2 | spa |
dc.relation.references | Lidove, O., Jaussaud, R., & Aractingi, S. (2006). Dermatological and soft-tissue manifestations of Fabry disease: Characteristics and response to enzyme replacement therapy. En A. Mehta, M. Beck, & G. Sunder-Plassmann (Eds.), Fabry Disease: Perspectives from 5 Years of FOS. Oxford PharmaGenesis. http://www.ncbi.nlm.nih.gov/books/NBK11605/ | spa |
dc.relation.references | Lidove, O., Kaminsky, P., Hachulla, E., Leguy-Seguin, V., Lavigne, C., Marie, I., Maillot, F., Serratrice, C., Masseau, A., Chérin, P., Cabane, J., Noel, E., & Investigators, on behalf of the Fim. (2012). Fabry disease ‘The New Great Imposter’: Results of the French Observatoire in Internal Medicine Departments (FIMeD). Clinical Genetics, 81(6), 571-577. https://doi.org/10.1111/j.1399-0004.2011.01718.x | spa |
dc.relation.references | Linhart, A. (2006). The heart in Fabry disease. En A. Mehta, M. Beck, & G. Sunder-Plassmann (Eds.), Fabry Disease: Perspectives from 5 Years of FOS. Oxford PharmaGenesis. http://www.ncbi.nlm.nih.gov/books/NBK11576/ | spa |
dc.relation.references | Linhart, A., Germain, D. P., Olivotto, I., Akhtar, M. M., Anastasakis, A., Hughes, D., Namdar, M., Pieroni, M., Hagège, A., Cecchi, F., Gimeno, J. R., Limongelli, G., & Elliott, P. (2020). An expert consensus document on the management of cardiovascular manifestations of Fabry disease. European Journal of Heart Failure, 22(7), 1076-1096. https://doi.org/10.1002/ejhf.1960 | spa |
dc.relation.references | Luciano, C. A., Russell, J. W., Banerjee, T. K., Quirk, J. M., Scott, L. J. C., Dambrosia, J. M., Barton, N. W., & Schiffmann, R. (2002). Physiological characterization of neuropathy in Fabry’s disease. Muscle & Nerve, 26(5), 622-629. https://doi.org/10.1002/mus.10236 | spa |
dc.relation.references | MacDermot, K. D. (2001). Anderson-Fabry disease: Clinical manifestations and impact of disease in a cohort of 98 hemizygous males. Journal of Medical Genetics, 38(11), 750-760. https://doi.org/10.1136/jmg.38.11.750 | spa |
dc.relation.references | Madeira, F., Pearce, M., Tivey, A. R. N., Basutkar, P., Lee, J., Edbali, O., Madhusoodanan, N., Kolesnikov, A., & Lopez, R. (2022). Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Research, 50(W1), W276-W279. https://doi.org/10.1093/nar/gkac240 | spa |
dc.relation.references | Maier, E. M., Osterrieder, S., Whybra, C., Ries, M., Gal, A., Beck, M., Roscher, A. A., & Muntau, A. C. (2006). Disease manifestations and X inactivation in heterozygous females with Fabry disease. Acta Paediatrica (Oslo, Norway: 1992). Supplement, 95(451), 30-38. https://doi.org/10.1080/08035320600618809 | spa |
dc.relation.references | Maier, E. M., Osterrieder, S., Whybra, C., Ries, M., Gal, A., Beck, M., Roscher, A. A., & Muntau, A. C. (2007). Disease manifestations and X inactivation in heterozygous females with Fabry disease: X inactivation in heterozygous females with Fabry disease. Acta Paediatrica, 95, 30-38. https://doi.org/10.1111/j.1651-2227.2006.tb02386.x | spa |
dc.relation.references | McCafferty, E. H., & Scott, L. J. (2019). Migalastat: A review in Fabry disease. Drugs, 79(5), 543-554. | spa |
dc.relation.references | Mehta, A., Clarke, J. T., Giugliani, R., Elliott, P., Linhart, A., Beck, M., & Sunder-Plassmann, G. (2009). Natural course of Fabry disease: Changing pattern of causes of death in FOS–Fabry Outcome Survey. Journal of medical genetics, 46(8), 548-552. | spa |
dc.relation.references | Mehta, A., Ricci, R., Widmer, U., Dehout, F., Garcia de Lorenzo, A., Kampmann, C., Linhart, A., Sunder-Plassmann, G., Ries, M., & Beck, M. (2004). Fabry disease defined: Baseline clinical manifestations of 366 patients in the Fabry Outcome Survey. European Journal of Clinical Investigation, 34(3), 236-242. https://doi.org/10.1111/j.1365-2362.2004.01309.x | spa |
dc.relation.references | Mehta, A., West, M. L., Pintos-Morell, G., Reisin, R., Nicholls, K., Figuera, L. E., Parini, R., Carvalho, L. R., Kampmann, C., Pastores, G. M., & Lidove, O. (2010). Therapeutic goals in the treatment of Fabry disease. Genetics in Medicine, 12(11), 713-720. https://doi.org/10.1097/GIM.0b013e3181f6e676 | spa |
dc.relation.references | Mehta, A., & Widmer, U. (2006). Natural history of Fabry disease. En A. Mehta, M. Beck, & G. Sunder-Plassmann (Eds.), Fabry Disease: Perspectives from 5 Years of FOS. Oxford PharmaGenesis. http://www.ncbi.nlm.nih.gov/books/NBK11572/ | spa |
dc.relation.references | Mendizabal, I., & Yi, S. V. (2017). Diversity of Human CpG Islands. En V. Patel & V. Preedy (Eds.), Handbook of Nutrition, Diet, and Epigenetics (pp. 1-16). Springer International Publishing. https://doi.org/10.1007/978-3-319-31143-2_67-1 | spa |
dc.relation.references | Mignani, R., Pieruzzi, F., Berri, F., Burlina, A., Chinea, B., Gallieni, M., Pieroni, M., Salviati, A., & Spada, M. (2016). FAbry STabilization indEX (FASTEX): An innovative tool for the assessment of clinical stabilization in Fabry disease. Clinical Kidney Journal, 9(5), 739-747. https://doi.org/10.1093/ckj/sfw082 | spa |
dc.relation.references | Miller, A. P., & Willard, H. F. (1998). Chromosomal basis of X chromosome inactivation: Identification of a multigene domain in Xp11.21-p11.22 that escapes X inactivation. Proceedings of the National Academy of Sciences of the United States of America, 95(15), 8709-8714. | spa |
dc.relation.references | Minks, J., Robinson, W. P., & Brown, C. J. (2008). A skewed view of X chromosome inactivation. Journal of Clinical Investigation, 118(1), 20-23. https://doi.org/10.1172/JCI34470 | spa |
dc.relation.references | Möhrenschlager, M., Braun-Falco, M., Ring, J., & Abeck, D. (2003). Fabry Disease: Recognition and Management of Cutaneous Manifestations. American Journal of Clinical Dermatology, 4(3), 189-196. https://doi.org/10.2165/00128071-200304030-00005 | spa |
dc.relation.references | Moindrot, B., & Brockdorff, N. (2016). RNA binding proteins implicated in Xist-mediated chromosome silencing. Seminars in Cell & Developmental Biology, 56, 58-70. https://doi.org/10.1016/j.semcdb.2016.01.029 | spa |
dc.relation.references | Moore, L. D., Le, T., & Fan, G. (2013). DNA Methylation and Its Basic Function. Neuropsychopharmacology, 38(1), Article 1. https://doi.org/10.1038/npp.2012.112 | spa |
dc.relation.references | Morris, D. A., Blaschke, D., Canaan-Kühl, S., Krebs, A., Knobloch, G., Walter, T. C., & Haverkamp, W. (2015). Global cardiac alterations detected by speckle-tracking echocardiography in Fabry disease: Left ventricular, right ventricular, and left atrial dysfunction are common and linked to worse symptomatic status. The International Journal of Cardiovascular Imaging, 31(2), 301-313. https://doi.org/10.1007/s10554-014-0551-4 | spa |
dc.relation.references | Muhr, J., Arbor, T. C., & Ackerman, K. M. (2024). Embryology, Gastrulation. En StatPearls. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK554394/ | spa |
dc.relation.references | Müller, M. J. (2006). Neuropsychiatric and psychosocial aspects of Fabry disease. En A. Mehta, M. Beck, & G. Sunder-Plassmann (Eds.), Fabry Disease: Perspectives from 5 Years of FOS. Oxford PharmaGenesis. http://www.ncbi.nlm.nih.gov/books/NBK11618/ | spa |
dc.relation.references | Nassar, L. R., Barber, G. P., Benet-Pagès, A., Casper, J., Clawson, H., Diekhans, M., Fischer, C., Gonzalez, J. N., Hinrichs, A. S., Lee, B. T., Lee, C. M., Muthuraman, P., Nguy, B., Pereira, T., Nejad, P., Perez, G., Raney, B. J., Schmelter, D., Speir, M. L., … Kent, W. J. (2023). The UCSC Genome Browser database: 2023 update. Nucleic Acids Research, 51(D1), D1188-D1195. https://doi.org/10.1093/nar/gkac1072 | spa |
dc.relation.references | Navarro-Cobos, M. J., Balaton, B. P., & Brown, C. J. (2020). Genes that escape from X-chromosome inactivation: Potential contributors to Klinefelter syndrome. American Journal of Medical Genetics. Part C, Seminars in Medical Genetics, 184(2), 226-238. https://doi.org/10.1002/ajmg.c.31800 | spa |
dc.relation.references | Okamoto, T., Okada, M., Wada, H., Kanamaru, A., Kakishita, E., Hashimoto, T., & Furuyama, J. (1998). Clonal analysis of hematopoietic cells using a novel polymorphic site of the X chromosome. American Journal of Hematology, 58(4), 263-266. https://doi.org/10.1002/(SICI)1096-8652(199808)58:4<263::AID-AJH2>3.0.CO;2-O | spa |
dc.relation.references | Oliveira, J. P., Ferreira, S., Barceló, J., Gaspar, P., Carvalho, F., Sá Miranda, M. C., & Månsson, J.-E. (2008). Effect of single-nucleotide polymorphisms of the 5’ untranslated region of the human α-galactosidase gene on enzyme activity, and their frequencies in Portuguese caucasians. Journal of Inherited Metabolic Disease, 31 Suppl 2, S247-253. https://doi.org/10.1007/s10545-008-0818-9 | spa |
dc.relation.references | Oliveira, J. P., Ferreira, S., Reguenga, C., Carvalho, F., & Månsson, J.-E. (2008). The g.1170C>T polymorphism of the 5’ untranslated region of the human alpha-galactosidase gene is associated with decreased enzyme expression—Evidence from a family study. Journal of Inherited Metabolic Disease, 31 Suppl 2, S405-413. https://doi.org/10.1007/s10545-008-0972-0 | spa |
dc.relation.references | Ortiz, A., Germain, D. P., Desnick, R. J., Politei, J., Mauer, M., Burlina, A., Eng, C., Hopkin, R. J., Laney, D., Linhart, A., Waldek, S., Wallace, E., Weidemann, F., & Wilcox, W. R. (2018). Fabry disease revisited: Management and treatment recommendations for adult patients. Molecular Genetics and Metabolism, 123(4), 416-427. https://doi.org/10.1016/j.ymgme.2018.02.014 | spa |
dc.relation.references | Owczarzy, R., Tataurov, A. V., Wu, Y., Manthey, J. A., McQuisten, K. A., Almabrazi, H. G., Pedersen, K. F., Lin, Y., Garretson, J., McEntaggart, N. O., Sailor, C. A., Dawson, R. B., & Peek, A. S. (2008). IDT SciTools: A suite for analysis and design of nucleic acid oligomers. Nucleic Acids Research, 36(Web Server issue), W163-W169. https://doi.org/10.1093/nar/gkn198 | spa |
dc.relation.references | Peeters, S., Leung, T., Fornes, O., Farkas, R. A., Wasserman, W. W., & Brown, C. J. (2023). Refining the genomic determinants underlying escape from X-chromosome inactivation. NAR Genomics and Bioinformatics, 5(2), lqad052. https://doi.org/10.1093/nargab/lqad052 | spa |
dc.relation.references | Pieroni, M., Moon, J. C., Arbustini, E., Barriales-Villa, R., Camporeale, A., Vujkovac, A. C., Elliott, P. M., Hagege, A., Kuusisto, J., Linhart, A., Nordbeck, P., Olivotto, I., Pietilä-Effati, P., & Namdar, M. (2021). Cardiac Involvement in Fabry Disease: JACC Review Topic of the Week. Journal of the American College of Cardiology, 77(7), 922-936. https://doi.org/10.1016/j.jacc.2020.12.024 | spa |
dc.relation.references | Pintacuda, G., Young, A. N., & Cerase, A. (2017). Function by Structure: Spotlights on Xist Long Non-coding RNA. Frontiers in Molecular Biosciences, 4. https://doi.org/10.3389/fmolb.2017.00090 | spa |
dc.relation.references | Polistena, B., Rigante, D., Sicignano, L. L., Verrecchia, E., Manna, R., d’Angela, D., & Spandonaro, F. (2021). Survey about the Quality of Life of Italian Patients with Fabry Disease. Diseases (Basel, Switzerland), 9(4), 72. https://doi.org/10.3390/diseases9040072 | spa |
dc.relation.references | Politei, J. M., Durand, C., & Schenone, A. B. (2016). Small Fiber Neuropathy in Fabry Disease: A Review of Pathophysiology and Treatment. Journal of Inborn Errors of Metabolism and Screening, 4, e160002. https://doi.org/10.1177/2326409816661351 | spa |
dc.relation.references | Posynick, B. J., & Brown, C. J. (2019). Escape From X-Chromosome Inactivation: An Evolutionary Perspective. Frontiers in Cell and Developmental Biology, 7. https://doi.org/10.3389/fcell.2019.00241 | spa |
dc.relation.references | Poveda Gutiérrez, A. G., García Robles, R., & Ayala Ramírez, P. A. (2020). Hallazgos moleculares en mujeres colombianas con sospecha de enfermedad de Fabry entre enero del 2016 y diciembre del 2018 [Pontificia Universidad Javeriana]. https://doi.org/10.11144/Javeriana.10554.45055 | spa |
dc.relation.references | Qi, L., & Teschendorff, A. E. (2022). Cell-type heterogeneity: Why we should adjust for it in epigenome and biomarker studies. Clinical Epigenetics, 14(1), 31. https://doi.org/10.1186/s13148-022-01253-3 | spa |
dc.relation.references | Ramaswami, U. (2008). Fabry disease during childhood: Clinical manifestations and treatment with agalsidase alfa. Acta Paediatrica, 97(s457), 38-40. https://doi.org/10.1111/j.1651-2227.2008.00658.x | spa |
dc.relation.references | Ramaswami, U., Parini, R., & Pintos-Morell, G. (2006). Natural history and effects of enzyme replacement therapy in children and adolescents with Fabry disease. En A. Mehta, M. Beck, & G. Sunder-Plassmann (Eds.), Fabry Disease: Perspectives from 5 Years of FOS. Oxford PharmaGenesis. http://www.ncbi.nlm.nih.gov/books/NBK11575/ | spa |
dc.relation.references | Ramaswami, U., Whybra, C., Parini, R., Pintos-Morell, G., Mehta, A., Sunder-Plassmann, G., Widmer, U., Beck, M., & Behalf Of The Fos European Investig, O. (2006). Clinical manifestations of Fabry disease in children: Data from the Fabry Outcome Survey. Acta Paediatrica, 95(1), 86-92. https://doi.org/10.1080/08035250500275022 | spa |
dc.relation.references | Řeboun, M., Sikora, J., Magner, M., Wiederlechnerová, H., Černá, A., Poupětová, H., Štorkánova, G., Mušálková, D., Dostálová, G., Goláň, L., Linhart, A., & Dvořáková, L. (2022). Pitfalls of X-chromosome inactivation testing in females with Fabry disease. American Journal of Medical Genetics. Part A, 188(7), 1979-1989. https://doi.org/10.1002/ajmg.a.62728 | spa |
dc.relation.references | Redonnet-Vernhet, I., Ploos van Amstel, J. K., Jansen, R. P., Wevers, R. A., Salvayre, R., & Levade, T. (1996). Uneven X inactivation in a female monozygotic twin pair with Fabry disease and discordant expression of a novel mutation in the alpha-galactosidase A gene. Journal of Medical Genetics, 33(8), 682-688. https://doi.org/10.1136/jmg.33.8.682 | spa |
dc.relation.references | Reisin, R., Perrin, A., & García-Pavía, P. (2017). Time delays in the diagnosis and treatment of Fabry disease. International Journal of Clinical Practice, 71(1). https://doi.org/10.1111/ijcp.12914 | spa |
dc.relation.references | Richards, S., Aziz, N., Bale, S., Bick, D., Das, S., Gastier-Foster, J., Grody, W. W., Hegde, M., Lyon, E., Spector, E., Voelkerding, K., & Rehm, H. L. (2015). Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics in medicine : official journal of the American College of Medical Genetics, 17(5), 405-424. https://doi.org/10.1038/gim.2015.30 | spa |
dc.relation.references | Ries, M., Ramaswami, U., Parini, R., Lindblad, B., Whybra, C., Willers, I., Gal, A., & Beck, M. (2003). The early clinical phenotype of Fabry disease: A study on 35 European children and adolescents. European Journal of Pediatrics, 162(11), 767-772. https://doi.org/10.1007/s00431-003-1299-3 | spa |
dc.relation.references | Rigoldi, M., Concolino, D., Morrone, A., Pieruzzi, F., Ravaglia, R., Furlan, F., Santus, F., Strisciuglio, P., Torti, G., & Parini, R. (2014). Intrafamilial phenotypic variability in four families with Anderson-Fabry disease. Clinical Genetics, 86(3), 258-263. https://doi.org/10.1111/cge.12261 | spa |
dc.relation.references | Rosa Neto, N. S., Bento, J. C. de B., & Pereira, R. M. R. (2020). Depression, sleep disturbances, pain, disability and quality of LIFE in Brazilian Fabry disease patients. Molecular Genetics and Metabolism Reports, 22, 100547. https://doi.org/10.1016/j.ymgmr.2019.100547 | spa |
dc.relation.references | Rossanti, R., Nozu, K., Fukunaga, A., Nagano, C., Horinouchi, T., Yamamura, T., Sakakibara, N., Minamikawa, S., Ishiko, S., Aoto, Y., Okada, E., Ninchoji, T., Kato, N., Maruyama, S., Kono, K., Nishi, S., Iijima, K., & Fujii, H. (2021). X-chromosome inactivation patterns in females with Fabry disease examined by both ultra-deep RNA sequencing and methylation-dependent assay. Clinical and Experimental Nephrology, 25(11), 1224-1230. https://doi.org/10.1007/s10157-021-02099-4 | spa |
dc.relation.references | Rozenfeld, P. A. (2009). Fabry Disease: Treatment and diagnosis. IUBMB Life, 61(11), 1043-1050. https://doi.org/10.1002/iub.257 | spa |
dc.relation.references | Sadek, J., Shellhaas, R., Camfield, C. S., Camfield, P. R., & Burley, J. (2004). Psychiatric findings in four female carriers of Fabry disease. Psychiatric Genetics, 14(4), 199-201. https://doi.org/10.1097/00041444-200412000-00006 | spa |
dc.relation.references | Saifudeen, Z., Desnick, R. J., & Ehrlich, M. (1995). A mutation in the 5’ untranslated region of the human alpha-galactosidase A gene in high-activity variants inhibits specific protein binding. FEBS Letters, 371(2), 181-184. https://doi.org/10.1016/0014-5793(95)00891-c | spa |
dc.relation.references | Samie, M. A., & Xu, H. (2014). Lysosomal exocytosis and lipid storage disorders. Journal of Lipid Research, 55(6), 995-1009. https://doi.org/10.1194/jlr.R046896 | spa |
dc.relation.references | Sayin, B. Y., & Oto, A. (2022). Left Ventricular Hypertrophy: Etiology-Based Therapeutic Options. Cardiology and Therapy, 11(2), 203-230. https://doi.org/10.1007/s40119-022-00260-y | spa |
dc.relation.references | Schaefer, E., Mehta, A., & Gal, A. (2005). Genotype and phenotype in Fabry disease: Analysis of the Fabry Outcome Survey: Genotype and phenotype in Fabry disease. Acta Paediatrica, 94, 87-92. https://doi.org/10.1111/j.1651-2227.2005.tb02119.x | spa |
dc.relation.references | Schiffmann, R., Hughes, D. A., Linthorst, G. E., Ortiz, A., Svarstad, E., Warnock, D. G., West, M. L., Wanner, C., Bichet, D. G., Christensen, E. I., Correa-Rotter, R., Elliott, P. M., Feriozzi, S., Fogo, A. B., Germain, D. P., Hollak, C. E. M., Hopkin, R. J., Johnson, J., Kantola, I., … Walter, J. (2017). Screening, diagnosis, and management of patients with Fabry disease: Conclusions from a “Kidney Disease: Improving Global Outcomes” (KDIGO) Controversies Conference. Kidney International, 91(2), 284-293. https://doi.org/10.1016/j.kint.2016.10.004 | spa |
dc.relation.references | Schiffmann, R., & Moore, D. F. (2006). Neurological manifestations of Fabry disease. En A. Mehta, M. Beck, & G. Sunder-Plassmann (Eds.), Fabry Disease: Perspectives from 5 Years of FOS. Oxford PharmaGenesis. http://www.ncbi.nlm.nih.gov/books/NBK11602/ | spa |
dc.relation.references | Schiffmann, R., Warnock, D. G., Banikazemi, M., Bultas, J., Linthorst, G. E., Packman, S., Sorensen, S. A., Wilcox, W. R., & Desnick, R. J. (2009). Fabry disease: Progression of nephropathy, and prevalence of cardiac and cerebrovascular events before enzyme replacement therapy. Nephrology Dialysis Transplantation, 24(7), 2102-2111. https://doi.org/10.1093/ndt/gfp031 | spa |
dc.relation.references | Seroussi, E. (2021). Estimating Copy-Number Proportions: The Comeback of Sanger Sequencing. Genes, 12(2), 283. https://doi.org/10.3390/genes12020283 | spa |
dc.relation.references | Shvetsova, E., Sofronova, A., Monajemi, R., Gagalova, K., Draisma, H. H. M., White, S. J., Santen, G. W. E., Chuva de Sousa Lopes, S. M., Heijmans, B. T., van Meurs, J., Jansen, R., Franke, L., Kiełbasa, S. M., den Dunnen, J. T., & ‘t Hoen, P. A. C. (2019). Skewed X-inactivation is common in the general female population. European Journal of Human Genetics, 27(3), Article 3. https://doi.org/10.1038/s41431-018-0291-3 | spa |
dc.relation.references | Shyamala, N., Kongettira, C. L., Puranam, K., Kupsal, K., Kummari, R., Padala, C., & Hanumanth, S. R. (2022). In silico identification of single nucleotide variations at CpG sites regulating CpG island existence and size. Scientific Reports, 12, 3574. https://doi.org/10.1038/s41598-022-05198-8 | spa |
dc.relation.references | Silva, C. A. B., Moura-Neto, J. A., dos Reis, M. A., Vieira Neto, O. M., & Barreto, F. C. (2021). Renal Manifestations of Fabry Disease: A Narrative Review. Canadian Journal of Kidney Health and Disease, 8, 205435812098562. https://doi.org/10.1177/2054358120985627 | spa |
dc.relation.references | Sims, K., Politei, J., Banikazemi, M., & Lee, P. (2009). Stroke in Fabry Disease Frequently Occurs Before Diagnosis and in the Absence of Other Clinical Events: Natural History Data From the Fabry Registry. Stroke, 40(3), 788-794. https://doi.org/10.1161/STROKEAHA.108.526293 | spa |
dc.relation.references | Sodi, A., Ioannidis, A., & Pitz, S. (2006). Ophthalmological manifestations of Fabry disease. En A. Mehta, M. Beck, & G. Sunder-Plassmann (Eds.), Fabry Disease: Perspectives from 5 Years of FOS. Oxford PharmaGenesis. http://www.ncbi.nlm.nih.gov/books/NBK11599/ | spa |
dc.relation.references | Spada, M., Pagliardini, S., Yasuda, M., Tukel, T., Thiagarajan, G., Sakuraba, H., Ponzone, A., & Desnick, R. J. (2006). High Incidence of Later-Onset Fabry Disease Revealed by Newborn Screening*. The American Journal of Human Genetics, 79(1), 31-40. https://doi.org/10.1086/504601 | spa |
dc.relation.references | Street, N. J., Yi, M. S., Bailey, L. A., & Hopkin, R. J. (2006). Comparison of health-related quality of life between heterozygous women with Fabry disease, a healthy control population, and patients with other chronic disease. Genetics in Medicine: Official Journal of the American College of Medical Genetics, 8(6), 346-353. https://doi.org/10.1097/01.gim.0000223545.63012.5a | spa |
dc.relation.references | Takai, D., & Jones, P. A. (2002). Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proceedings of the National Academy of Sciences of the United States of America, 99(6). https://doi.org/10.1073/pnas.052410099 | spa |
dc.relation.references | Theda, C., Hwang, S. H., Czajko, A., Loke, Y. J., Leong, P., & Craig, J. M. (2018). Quantitation of the cellular content of saliva and buccal swab samples. Scientific Reports, 8(1), 6944. https://doi.org/10.1038/s41598-018-25311-0 | spa |
dc.relation.references | Thurberg, B. L., Fallon, J. T., Mitchell, R., Aretz, T., Gordon, R. E., & O’Callaghan, M. W. (2009). Cardiac microvascular pathology in Fabry disease: Evaluation of endomyocardial biopsies before and after enzyme replacement therapy. Circulation, 119(19), 2561-2567. https://doi.org/10.1161/CIRCULATIONAHA.108.841494 | spa |
dc.relation.references | Trimarchi, H., Karl, A., Raña, M. S., Forrester, M., Pomeranz, V., Lombi, F., & Iotti, A. (2013). Initially Nondiagnosed Fabry’s Disease when Electron Microscopy Is Lacking: The Continuing Story of Focal and Segmental Glomerulosclerosis. Case Reports in Nephrology and Urology, 3(1), 51-57. https://doi.org/10.1159/000351516 | spa |
dc.relation.references | Tukiainen, T., Villani, A.-C., Yen, A., Rivas, M. A., Marshall, J. L., Satija, R., Aguirre, M., Gauthier, L., Fleharty, M., Kirby, A., Cummings, B. B., Castel, S. E., Karczewski, K. J., Aguet, F., Byrnes, A., Lappalainen, T., Aviv Regev, Ardlie, K. G., Hacohen, N., & MacArthur, D. G. (2017). Landscape of X chromosome inactivation across human tissues. Nature, 550(7675), Article 7675. https://doi.org/10.1038/nature24265 | spa |
dc.relation.references | Tusnády, G. E., Simon, I., Váradi, A., & Arányi, T. (2005). BiSearch: Primer-design and search tool for PCR on bisulfite-treated genomes. Nucleic Acids Research, 33(1), e9. https://doi.org/10.1093/nar/gni012 | spa |
dc.relation.references | van den Berg, I. M., Laven, J. S. E., Stevens, M., Jonkers, I., Galjaard, R.-J., Gribnau, J., & van Doorninck, J. H. (2009). X chromosome inactivation is initiated in human preimplantation embryos. American Journal of Human Genetics, 84(6), 771-779. https://doi.org/10.1016/j.ajhg.2009.05.003 | spa |
dc.relation.references | Vavouri, T., & Lehner, B. (2012). Human genes with CpG island promoters have a distinct transcription-associated chromatin organization. Genome Biology, 13(11), R110. https://doi.org/10.1186/gb-2012-13-11-r110 | spa |
dc.relation.references | Vieitez, I., Souto-Rodriguez, O., Fernandez-Mosquera, L., San Millan, B., Teijeira, S., Fernandez-Martin, J., Martinez-Sanchez, F., Aldamiz-Echevarria, L. J., Lopez-Rodriguez, M., Navarro, C., & Ortolano, S. (2018). Fabry disease in the Spanish population: Observational study with detection of 77 patients. Orphanet Journal of Rare Diseases, 13(1), 52. https://doi.org/10.1186/s13023-018-0792-8 | spa |
dc.relation.references | Viggiano, E., & Politano, L. (2021). X Chromosome Inactivation in Carriers of Fabry Disease: Review and Meta-Analysis. International Journal of Molecular Sciences, 22(14), Article 14. https://doi.org/10.3390/ijms22147663 | spa |
dc.relation.references | von der Lippe, C., Frich, J. C., Harris, A., & Solbrække, K. N. (2016). Experiences of Being Heterozygous for Fabry Disease: A Qualitative Study. Journal of Genetic Counseling, 25(5), 1085-1092. https://doi.org/10.1007/s10897-016-9941-1 | spa |
dc.relation.references | Wainer Katsir, K., & Linial, M. (2019). Human genes escaping X-inactivation revealed by single cell expression data. BMC Genomics, 20(1), 201. https://doi.org/10.1186/s12864-019-5507-6 | spa |
dc.relation.references | Waldek, S., Patel, M. R., Banikazemi, M., Lemay, R., & Lee, P. (2009). Life expectancy and cause of death in males and females with Fabry disease: Findings from the Fabry Registry. Genetics in Medicine: Official Journal of the American College of Medical Genetics, 11(11), 790-796. https://doi.org/10.1097/GIM.0b013e3181bb05bb | spa |
dc.relation.references | Wang, R. Y., Lelis, A., Mirocha, J., & Wilcox, W. R. (2007). Heterozygous Fabry women are not just carriers, but have a significant burden of disease and impaired quality of life. Genetics in Medicine, 9(1), 34-45. https://doi.org/10.1097/GIM.0b013e31802d8321 | spa |
dc.relation.references | Wang, Z., Willard, H. F., Mukherjee, S., & Furey, T. S. (2006). Evidence of Influence of Genomic DNA Sequence on Human X Chromosome Inactivation. PLOS Computational Biology, 2(9), e113. https://doi.org/10.1371/journal.pcbi.0020113 | spa |
dc.relation.references | Warnecke, P. M., Stirzaker, C., Song, J., Grunau, C., Melki, J. R., & Clark, S. J. (2002). Identification and resolution of artifacts in bisulfite sequencing. Methods (San Diego, Calif.), 27(2), 101-107. https://doi.org/10.1016/s1046-2023(02)00060-9 | spa |
dc.relation.references | Welford, R. W. D., Mühlemann, A., Garzotti, M., Rickert, V., Groenen, P. M. A., Morand, O., Üçeyler, N., & Probst, M. R. (2018). Glucosylceramide synthase inhibition with lucerastat lowers globotriaosylceramide and lysosome staining in cultured fibroblasts from Fabry patients with different mutation types. Human Molecular Genetics, 27(19), 3392-3403. https://doi.org/10.1093/hmg/ddy248 | spa |
dc.relation.references | Whybra, C., Bähner, F., & Baron, K. (2006). Measurement of disease severity and progression in Fabry disease. En A. Mehta, M. Beck, & G. Sunder-Plassmann (Eds.), Fabry Disease: Perspectives from 5 Years of FOS. Oxford PharmaGenesis. http://www.ncbi.nlm.nih.gov/books/NBK11612/ | spa |
dc.relation.references | Whybra, C., Kampmann, C., Krummenauer, F., Ries, M., Mengel, E., Miebach, E., Baehner, F., Kim, K., Bajbouj, M., Schwarting, A., Gal, A., & Beck, M. (2004). The Mainz Severity Score Index: A new instrument for quantifying the Anderson-Fabry disease phenotype, and the response of patients to enzyme replacement therapy. Clinical Genetics, 65(4), 299-307. https://doi.org/10.1111/j.1399-0004.2004.00219.x | spa |
dc.relation.references | Whybra, C., Kampmann, Chr., Willers, I., Davies, J., Winchester, B., Kriegsmann, J., Brühl, K., Gal, A., Bunge, S., & Beck, M. (2001). Anderson-Fabry disease: Clinical manifestations of disease in female heterozygotes. Journal of Inherited Metabolic Disease, 24(7), 715-724. https://doi.org/10.1023/A:1012993305223 | spa |
dc.relation.references | Whybra, C., Miebach, E., Mengel, E., Gal, A., Baron, K., Beck, M., & Kampmann, C. (2009). A 4-year study of the efficacy and tolerability of enzyme replacement therapy with agalsidase alfa in 36 women with Fabry disease. Genetics in Medicine, 11(6), 441-449. https://doi.org/10.1097/GIM.0b013e3181a23bec | spa |
dc.relation.references | Wilkinson, A. L., Zorzan, I., & Rugg-Gunn, P. J. (2023). Epigenetic regulation of early human embryo development. Cell Stem Cell, 30(12), 1569-1584. https://doi.org/10.1016/j.stem.2023.09.010 | spa |
dc.relation.references | Wu, J. C., Ho, C. Y., Skali, H., Abichandani, R., Wilcox, W. R., Banikazemi, M., Packman, S., Sims, K., & Solomon, S. D. (2010). Cardiovascular manifestations of Fabry disease: Relationships between left ventricular hypertrophy, disease severity, and alpha-galactosidase A activity. European Heart Journal, 31(9), 1088-1097. https://doi.org/10.1093/eurheartj/ehp588 | spa |
dc.relation.references | Zar-Kessler, C., Karaa, A., Sims, K. B., Clarke, V., & Kuo, B. (2016). Understanding the gastrointestinal manifestations of Fabry disease: Promoting prompt diagnosis. Therapeutic Advances in Gastroenterology, 9(4), 626-634. https://doi.org/10.1177/1756283X16642936 | spa |
dc.relation.references | Zhu, J., He, F., Hu, S., & Yu, J. (2008). On the nature of human housekeeping genes. Trends in Genetics, 24(10), 481-484. https://doi.org/10.1016/j.tig.2008.08.004 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 570 - Biología::576 - Genética y evolución | spa |
dc.subject.ddc | 610 - Medicina y salud::616 - Enfermedades | spa |
dc.subject.decs | Enfermedad de Fabry | spa |
dc.subject.decs | Fabry Disease | eng |
dc.subject.decs | Metilación de ADN | spa |
dc.subject.decs | DNA Methylation | eng |
dc.subject.decs | Fenotipo | spa |
dc.subject.decs | Phenotype | eng |
dc.subject.decs | Calidad de Vida | spa |
dc.subject.decs | Quality of Life | eng |
dc.subject.proposal | Enfermedad de Fabry | spa |
dc.subject.proposal | Inactivación del cromosoma X | spa |
dc.subject.proposal | Mujer | spa |
dc.subject.proposal | Metilación de ADN | spa |
dc.subject.proposal | Fabry disease | eng |
dc.subject.proposal | X chromosome inactivation | eng |
dc.subject.proposal | Female | eng |
dc.subject.proposal | DNA methylation | eng |
dc.title | Análisis molecular del patrón de inactivación del gen GLA y su contribución al fenotipo en una muestra de mujeres colombianas con enfermedad de Fabry, mediante ensayos basados en metilación | spa |
dc.title.translated | Molecular analysis of the GLA gene inactivation pattern and its contribution to the phenotype in a Colombian women with Fabry disease sample through methylation-based assays | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Padres y familias | spa |
dcterms.audience.professionaldevelopment | Personal de apoyo escolar | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1019093438.2024.pdf
- Tamaño:
- 1.92 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Genética Humana
Bloque de licencias
1 - 2 de 2
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:
Cargando...
- Nombre:
- U.FT.09.006.004 Licencia para publicación de obras en el Repositorio Institucional UNAL v4 (2).pdf
- Tamaño:
- 240.82 KB
- Formato:
- Adobe Portable Document Format
- Descripción: