Análisis molecular del patrón de inactivación del gen GLA y su contribución al fenotipo en una muestra de mujeres colombianas con enfermedad de Fabry, mediante ensayos basados en metilación

dc.contributor.advisorYunis Londoño, Juan Joséspa
dc.contributor.advisorOspina Lagos, Sandra Yanethspa
dc.contributor.authorIza Rodríguez, Shirley Natalispa
dc.contributor.researchgroupPatología Molecularspa
dc.coverage.countryColombiaspa
dc.date.accessioned2024-11-05T14:08:47Z
dc.date.available2024-11-05T14:08:47Z
dc.date.issued2024
dc.descriptionilustraciones, diagramas, tablasspa
dc.description.abstractEl objetivo del presente estudio fue analizar el patrón de inactivación del gen GLA, a través de ensayos basados en metilación, y su contribución al fenotipo en una muestra de mujeres colombianas con Enfermedad de Fabry EF. Se reporta una heterogénea severidad de fenotipo en mujeres de casos familiares, pudiendo presentar todos los síntomas y signos documentados en varones con EF; asociado a un marcado deterioro en la percepción subjetiva de la calidad de vida. Así mismo se reporta una metilación heterogénea de las posiciones CpG en la región analizada del gen GLA. Con base en los resultados del ensayo HUMARA, se observó más del 60% de las muestras con inactivación aleatoria, y no se encontró relación estadística entre el patrón de ICX de las muestras analizadas y la severidad fenotípica. En conclusión, EF afecta en todos los casos la salud física, psicológica y la calidad de vida de las mujeres heterocigotas para variante patogénica en el gen GLA; y no se encontró asociación estadística entre la severidad del fenotipo sistémico en EF, y el patrón de ICX de las muestras analizadas (Texto tomado de la fuente).spa
dc.description.abstractThe present study aimed to analyze the pattern of GLA gene inactivation, through methylation-based assays, and its contribution to the phenotype in a sample of Colombian women with Fabry disease FD. A heterogeneous severity of phenotype is reported in women of familial cases, being able to present all the symptoms and signs documented in men with FD; associated with a marked deterioration in the subjective perception of quality of life. Likewise, a heterogeneous methylation of the CpG positions in the analyzed region of the GLA gene is reported. Based on the results of the HUMARA assay, more than 60% of the samples were observed with random inactivation, and no statistical relationship was found between the ICX pattern of the samples analyzed and phenotypic severity. In conclusion, in all cases, FD affects the physical and psychological health and quality of life of women heterozygous for the pathogenic variant in the GLA gene; and no statistical association was found between the severity of the systemic phenotype in FD and the ICX pattern of the samples analyzed.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Genética Humanaspa
dc.format.extent96 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87148
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Medicinaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Medicina - Maestría en Genética Humanaspa
dc.relation.referencesAli, N., Gillespie, S., & Laney, D. (2018). Treatment of Depression in Adults with Fabry Disease. JIMD Reports, 38, 13-21. https://doi.org/10.1007/8904_2017_21spa
dc.relation.referencesAllen, R. C., Zoghbi, H. Y., Moseley, A. B., Rosenblatt, H. M., & Belmont, J. W. (1992). Methylation of HpaII and HhaI sites near the polymorphic CAG repeat in the human androgen-receptor gene correlates with X chromosome inactivation. American Journal of Human Genetics, 51(6), 1229-1239.spa
dc.relation.referencesAl-Obaide, M., Al-Obaidi, I., & Vasylyeva, T. (2020). Unexplored regulatory sequences of divergently paired GLA and HNRNPH2 loci pertinent to Fabry disease in human kidney and skin cells: Presence of an active bidirectional promoter. Experimental and Therapeutic Medicine, 21(2), 154. https://doi.org/10.3892/etm.2020.9586spa
dc.relation.referencesAlroy, J., Sabnis, S., & Kopp, J. B. (2002). Renal Pathology in Fabry Disease. Journal of the American Society of Nephrology, 13(suppl 2), S134-S138. https://doi.org/10.1097/01.ASN.0000016684.07368.75spa
dc.relation.referencesAmodio, F., Caiazza, M., Monda, E., Rubino, M., Capodicasa, L., Chiosi, F., Simonelli, V., Dongiglio, F., Fimiani, F., Pepe, N., Chimenti, C., Calabrò, P., & Limongelli, G. (2022). An Overview of Molecular Mechanisms in Fabry Disease. Biomolecules, 12(10), 1460. https://doi.org/10.3390/biom12101460spa
dc.relation.referencesAmos-Landgraf, J. M., Cottle, A., Plenge, R. M., Friez, M., Schwartz, C. E., Longshore, J., & Willard, H. F. (2006). X chromosome-inactivation patterns of 1,005 phenotypically unaffected females. American Journal of Human Genetics, 79(3), 493-499. https://doi.org/10.1086/507565spa
dc.relation.referencesAndonian, C., Beckmann, J., Mayer, O., Ewert, P., Freiberger, A., Huber, M., Kaemmerer, H., Kurschat, C., Lagler, F., Nagdyman, N., Pieper, L., Regenbogen, C., & Freilinger, S. (2022). Quality of life in patients with Fabry’s disease: A cross-sectional study of 86 adults. Cardiovascular Diagnosis and Therapy, 12(4), Article 4. https://doi.org/10.21037/cdt-22-215spa
dc.relation.referencesArends, M., Hollak, C. E. M., & Biegstraaten, M. (2015). Quality of life in patients with Fabry disease: A systematic review of the literature. Orphanet Journal of Rare Diseases, 10, 77. https://doi.org/10.1186/s13023-015-0296-8spa
dc.relation.referencesArends, M., Wanner, C., Hughes, D., Mehta, A., Oder, D., Watkinson, O. T., Elliott, P. M., Linthorst, G. E., Wijburg, F. A., Biegstraaten, M., & Hollak, C. E. (2017). Characterization of Classical and Nonclassical Fabry Disease: A Multicenter Study. Journal of the American Society of Nephrology : JASN, 28(5), 1631-1641. https://doi.org/10.1681/ASN.2016090964spa
dc.relation.referencesAshley, G. A., Shabbeer, J., Yasuda, M., Eng, C. M., & Desnick, R. J. (2001). Fabry disease: Twenty novel α-galactosidase A mutations causing the classical phenotype. Journal of Human Genetics, 46(4), 192-196. https://doi.org/10.1007/s100380170088spa
dc.relation.referencesAshton-Prolla, P., Tong, B., Shabbeer, J., Astrin, K. H., Eng, C. M., & Desnick, R. J. (2000). Fabry disease: Twenty-two novel mutations in the alpha-galactosidase A gene and genotype/phenotype correlations in severely and mildly affected hemizygotes and heterozygotes. Journal of Investigative Medicine: The Official Publication of the American Federation for Clinical Research, 48(4), 227-235.spa
dc.relation.referencesAuray-Blais, C., Lavoie, P., Abaoui, M., Côté, A.-M., Boutin, M., Akbari, A., Levin, A., Mac-Way, F., & TR Clarke, J. (2020). High-risk screening for Fabry disease in a Canadian cohort of chronic kidney disease patients. Clinica Chimica Acta, 501, 234-240. https://doi.org/10.1016/j.cca.2019.10.045spa
dc.relation.referencesAvner, P., & Heard, E. (2001). X-chromosome inactivation: Counting, choice and initiation. Nature Reviews Genetics, 2(1), 59-67. https://doi.org/10.1038/35047580spa
dc.relation.referencesAzevedo, O., Cordeiro, F., Gago, M. F., Miltenberger-Miltenyi, G., Ferreira, C., Sousa, N., & Cunha, D. (2021). Fabry Disease and the Heart: A Comprehensive Review. International Journal of Molecular Sciences, 22(9), 4434. https://doi.org/10.3390/ijms22094434spa
dc.relation.referencesAzofeifa, J., Waldherr, R., & Cremer, M. (1996). X-chromosome methylation ratios as indicators of chromosomal activity: Evidence of intraindividual divergencies among tissues of different embryonal origin. Human Genetics, 97(3), 330-333. https://doi.org/10.1007/BF02185765spa
dc.relation.referencesBaehner, F., Kampmann, C., Whybra, C., Miebach, E., Wiethoff, C. M., & Beck, M. (2003). Enzyme replacement therapy in heterozygous females with Fabry disease: Results of a phase IIIB study. Journal of Inherited Metabolic Disease, 26(7), 617-627. https://doi.org/10.1023/b:boli.0000005658.14563.77spa
dc.relation.referencesBalaton, B. P., & Brown, C. J. (2021). Contribution of genetic and epigenetic changes to escape from X-chromosome inactivation. Epigenetics & Chromatin, 14(1), 30. https://doi.org/10.1186/s13072-021-00404-9spa
dc.relation.referencesBalaton, B. P., Cotton, A. M., & Brown, C. J. (2015). Derivation of consensus inactivation status for X-linked genes from genome-wide studies. Biology of Sex Differences, 6(1), 35. https://doi.org/10.1186/s13293-015-0053-7spa
dc.relation.referencesBalaton, B. P., Fornes, O., Wasserman, W. W., & Brown, C. J. (2021). Cross-species examination of X-chromosome inactivation highlights domains of escape from silencing. Epigenetics & Chromatin, 14(1), 12. https://doi.org/10.1186/s13072-021-00386-8spa
dc.relation.referencesBarros de Andrade E Sousa, L., Jonkers, I., Syx, L., Dunkel, I., Chaumeil, J., Picard, C., Foret, B., Chen, C.-J., Lis, J. T., Heard, E., Schulz, E. G., & Marsico, A. (2019). Kinetics of Xist-induced gene silencing can be predicted from combinations of epigenetic and genomic features. Genome Research, 29(7), 1087-1099. https://doi.org/10.1101/gr.245027.118spa
dc.relation.referencesBird, A. (2002). DNA methylation patterns and epigenetic memory. Genes & Development, 16(1), 6-21. https://doi.org/10.1101/gad.947102spa
dc.relation.referencesBishop, D. F., & Desnick, R. J. (1981). Affinity purification of alpha-galactosidase A from human spleen, placenta, and plasma with elimination of pyrogen contamination. Properties of the purified splenic enzyme compared to other forms. The Journal of Biological Chemistry, 256(3), 1307-1316.spa
dc.relation.referencesBock, C., Walter, J., Paulsen, M., & Lengauer, T. (2007). CpG Island Mapping by Epigenome Prediction. PLoS Computational Biology, 3(6), e110. https://doi.org/10.1371/journal.pcbi.0030110spa
dc.relation.referencesBolduc, V., Chagnon, P., Provost, S., Dubé, M.-P., Belisle, C., Gingras, M., Mollica, L., & Busque, L. (2008). No evidence that skewing of X chromosome inactivation patterns is transmitted to offspring in humans. Journal of Clinical Investigation, 118(1), 333-341. https://doi.org/10.1172/JCI33166spa
dc.relation.referencesCairns, T., & Wanner, C. (2019). Will the FAbry STabilization indEX make its way to everyday clinical practice? Clinical Kidney Journal, 12(1), 61-64. https://doi.org/10.1093/ckj/sfy126spa
dc.relation.referencesCammarata, G., Fatuzzo, P., Rodolico, M. S., Colomba, P., Sicurella, L., Iemolo, F., Zizzo, C., Alessandro, R., Bartolotta, C., Duro, G., & Monte, I. (2015). High Variability of Fabry Disease Manifestations in an Extended Italian Family. BioMed Research International, 2015(1), 504784. https://doi.org/10.1155/2015/504784spa
dc.relation.referencesCarrel, L., & Willard, H. F. (2005). X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature, 434(7031), 400-404. https://doi.org/10.1038/nature03479spa
dc.relation.referencesChen, C.-Y., Shi, W., Balaton, B. P., Matthews, A. M., Li, Y., Arenillas, D. J., Mathelier, A., Itoh, M., Kawaji, H., Lassmann, T., Hayashizaki, Y., Carninci, P., Forrest, A. R. R., Brown, C. J., & Wasserman, W. W. (2016). YY1 binding association with sex-biased transcription revealed through X-linked transcript levels and allelic binding analyses. Scientific Reports, 6, 37324. https://doi.org/10.1038/srep37324spa
dc.relation.referencesChen, S., Francioli, L. C., Goodrich, J. K., Collins, R. L., Kanai, M., Wang, Q., Alföldi, J., Watts, N. A., Vittal, C., Gauthier, L. D., Poterba, T., Wilson, M. W., Tarasova, Y., Phu, W., Grant, R., Yohannes, M. T., Koenig, Z., Farjoun, Y., Banks, E., … Genome Aggregation Database Consortium. (2024). A genomic mutational constraint map using variation in 76,156 human genomes. Nature, 625(7993), 92-100. https://doi.org/10.1038/s41586-023-06045-0spa
dc.relation.referencesChu, C., Zhang, Q. C., da Rocha, S. T., Flynn, R. A., Bharadwaj, M., Calabrese, J. M., Magnuson, T., Heard, E., & Chang, H. Y. (2015). Systematic discovery of Xist RNA binding proteins. Cell, 161(2), 404-416. https://doi.org/10.1016/j.cell.2015.03.025spa
dc.relation.referencesCotton, A. M., Lam, L., Affleck, J. G., Wilson, I. M., Peñaherrera, M. S., McFadden, D. E., Kobor, M. S., Lam, W. L., Robinson, W. P., & Brown, C. J. (2011). Chromosome-wide DNA methylation analysis predicts human tissue-specific X inactivation. Human Genetics, 130(2), 187-201. https://doi.org/10.1007/s00439-011-1007-8spa
dc.relation.referencesCotton, A. M., Price, E. M., Jones, M. J., Balaton, B. P., Kobor, M. S., & Brown, C. J. (2015). Landscape of DNA methylation on the X chromosome reflects CpG density, functional chromatin state and X-chromosome inactivation. Human Molecular Genetics, 24(6), 1528-1539. https://doi.org/10.1093/hmg/ddu564spa
dc.relation.referencesda Paz, O. T., Lacerda, R. C. T., & de Andrade, L. G. M. (2023). Genetic and phenotypic profile of Fabry disease in the population of Vale do Paraiba and Eastern São Paulo. Jornal Brasileiro de Nefrologia, 45(4), 424-439. https://doi.org/10.1590/2175-8239-JBN-2022-0107enspa
dc.relation.referencesDe Riso, G., Cuomo, M., Di Risi, T., Della Monica, R., Buonaiuto, M., Costabile, D., Pisani, A., Cocozza, S., & Chiariotti, L. (2020). Ultra-Deep DNA Methylation Analysis of X-Linked Genes: GLA and AR as Model Genes. Genes, 11(6), 620.spa
dc.relation.referencesDeegan, P. B., Bähner, F., Barba, M., Hughes, D. A., & Beck, M. (2006). Fabry disease in females: Clinical characteristics and effects of enzyme replacement therapy. En A. Mehta, M. Beck, & G. Sunder-Plassmann (Eds.), Fabry Disease: Perspectives from 5 Years of FOS. Oxford PharmaGenesis. http://www.ncbi.nlm.nih.gov/books/NBK11591/spa
dc.relation.referencesDenoulet, M., Brulé, M., Anquez, F., Vincent, A., Schnipper, J., Adriaenssens, E., Toillon, R.-A., Le Bourhis, X., & Lagadec, C. (2023). ABSP: An automated R tool to efficiently analyze region-specific CpG methylation from bisulfite sequencing PCR. Bioinformatics (Oxford, England), 39(1), btad008. https://doi.org/10.1093/bioinformatics/btad008spa
dc.relation.referencesDesnick, R. J. (2020). Chapter 42 - Fabry disease: α-galactosidase A deficiency. En R. N. Rosenberg & J. M. Pascual (Eds.), Rosenberg’s Molecular and Genetic Basis of Neurological and Psychiatric Disease (Sixth Edition) (pp. 575-587). Academic Press. https://doi.org/10.1016/B978-0-12-813955-4.00042-8spa
dc.relation.referencesDesnick, R. J., Ioannou, Y. A., & Eng, C. M. (2019). α-Galactosidase A Deficiency: Fabry Disease. En D. L. Valle, S. Antonarakis, A. Ballabio, A. L. Beaudet, & G. A. Mitchell (Eds.), The Online Metabolic and Molecular Bases of Inherited Disease (1-Book, Section). McGraw-Hill Education. ommbid.mhmedical.com/content.aspx?aid=1181466273spa
dc.relation.referencesDi Risi, T., Vinciguerra, R., Cuomo, M., Della Monica, R., Riccio, E., Cocozza, S., Imbriaco, M., Duro, G., Pisani, A., & Chiariotti, L. (2021). DNA methylation impact on Fabry disease. Clinical Epigenetics, 13(1), 24. https://doi.org/10.1186/s13148-021-01019-3spa
dc.relation.referencesDossin, F., & Heard, E. (2021). The Molecular and Nuclear Dynamics of X-Chromosome Inactivation. Cold Spring Harbor Perspectives in Biology, a040196. https://doi.org/10.1101/cshperspect.a040196spa
dc.relation.referencesDuncan, E. J., Gluckman, P. D., & Dearden, P. K. (2014). Epigenetics, plasticity, and evolution: How do we link epigenetic change to phenotype? Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 322(4), 208-220. https://doi.org/10.1002/jez.b.22571spa
dc.relation.referencesEchevarria, L., Benistan, K., Toussaint, A., Dubourg, O., Hagege, A. A., Eladari, D., Jabbour, F., Beldjord, C., De Mazancourt, P., & Germain, D. P. (2016). X-chromosome inactivation in female patients with Fabry disease. Clinical Genetics, 89(1), 44-54. https://doi.org/10.1111/cge.12613spa
dc.relation.referencesEffraimidis, G., Rasmussen, Å. K., Dunoe, M., Hasholt, L. F., Wibrand, F., Sorensen, S. S., Lund, A. M., Kober, L., Bundgaard, H., Yazdanfard, P. D. W., Oturai, P., Larsen, V. A., Fraga de Abreu, V. H., Enevoldsen, L. H., Kristensen, T., Svenstrup, K., Bille, M. B., Arif, F., Mogensen, M., … Feldt-Rasmussen, U. (2022). Systematic cascade screening in the Danish Fabry Disease Centre: 20 years of a national single-centre experience. PloS One, 17(11), e0277767. https://doi.org/10.1371/journal.pone.0277767spa
dc.relation.referencesEl Dib, R., Gomaa, H., Carvalho, R. P., Camargo, S. E., Bazan, R., Barretti, P., & Barreto, F. C. (2016). Enzyme replacement therapy for Anderson‐Fabry disease. The Cochrane Database of Systematic Reviews, 2016(7), CD006663. https://doi.org/10.1002/14651858.CD006663.pub4spa
dc.relation.referencesElliott, P. M., Kindler, H., Shah, J. S., Sachdev, B., Rimoldi, O. E., Thaman, R., Tome, M. T., McKenna, W. J., Lee, P., & Camici, P. G. (2006). Coronary microvascular dysfunction in male patients with Anderson-Fabry disease and the effect of treatment with alpha galactosidase A. Heart (British Cardiac Society), 92(3), 357-360. https://doi.org/10.1136/hrt.2004.054015spa
dc.relation.referencesEng, C. M., Fletcher, J., Wilcox, W. R., Waldek, S., Scott, C. R., Sillence, D. O., Breunig, F., Charrow, J., Germain, D. P., Nicholls, K., & Banikazemi, M. (2007). Fabry disease: Baseline medical characteristics of a cohort of 1765 males and females in the Fabry Registry. Journal of Inherited Metabolic Disease, 30(2), 184-192. https://doi.org/10.1007/s10545-007-0521-2spa
dc.relation.referencesEng, C. M., Germain, D. P., Banikazemi, M., Warnock, D. G., Wanner, C., Hopkin, R. J., Bultas, J., Lee, P., Sims, K., Brodie, S. E., Pastores, G. M., Strotmann, J. M., & Wilcox, W. R. (2006). Fabry disease: Guidelines for the evaluation and management of multi-organ system involvement. Genetics in Medicine, 8(9), 539-548. https://doi.org/10.1097/01.gim.0000237866.70357.c6spa
dc.relation.referencesEzgu, F., Alpsoy, E., Bicik Bahcebasi, Z., Kasapcopur, O., Palamar, M., Onay, H., Ozdemir, B. H., Topcuoglu, M. A., & Tufekcioglu, O. (2022). Expert opinion on the recognition, diagnosis and management of children and adults with Fabry disease: A multidisciplinary Turkey perspective. Orphanet Journal of Rare Diseases, 17(1), 90. https://doi.org/10.1186/s13023-022-02215-xspa
dc.relation.referencesFagerberg, L., Hallström, B. M., Oksvold, P., Kampf, C., Djureinovic, D., Odeberg, J., Habuka, M., Tahmasebpoor, S., Danielsson, A., Edlund, K., Asplund, A., Sjöstedt, E., Lundberg, E., Szigyarto, C. A.-K., Skogs, M., Takanen, J. O., Berling, H., Tegel, H., Mulder, J., … Uhlén, M. (2014). Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Molecular & Cellular Proteomics: MCP, 13(2), 397-406. https://doi.org/10.1074/mcp.M113.035600spa
dc.relation.referencesFall, B., Scott, C. R., Mauer, M., Shankland, S., Pippin, J., Jefferson, J. A., Wallace, E., Warnock, D., & Najafian, B. (2016). Urinary Podocyte Loss Is Increased in Patients with Fabry Disease and Correlates with Clinical Severity of Fabry Nephropathy. PLOS ONE, 11(12), e0168346. https://doi.org/10.1371/journal.pone.0168346spa
dc.relation.referencesFelis, A., Whitlow, M., Kraus, A., Warnock, D. G., & Wallace, E. (2020). Current and Investigational Therapeutics for Fabry Disease. Kidney International Reports, 5(4), 407-413. https://doi.org/10.1016/j.ekir.2019.11.013spa
dc.relation.referencesFellgiebel, A., Müller, M. J., & Ginsberg, L. (2006). CNS manifestations of Fabry’s disease. The Lancet Neurology, 5(9), 791-795. https://doi.org/10.1016/S1474-4422(06)70548-8spa
dc.relation.referencesFerreira, S., Reguenga, C., & Oliveira, J. P. (2015). The Modulatory Effects of the Polymorphisms in GLA 5′-Untranslated Region Upon Gene Expression Are Cell-Type Specific. JIMD Reports, 23, 27-34. https://doi.org/10.1007/8904_2015_424spa
dc.relation.referencesFerri, L., Guido, C., la Marca, G., Malvagia, S., Cavicchi, C., Fiumara, A., Barone, R., Parini, R., Antuzzi, D., Feliciani, C., Zampetti, A., Manna, R., Giglio, S., Della Valle, C. M., Wu, X., Valenzano, K. J., Benjamin, R., Donati, M. A., Guerrini, R., … Morrone, A. (2012). Fabry disease: Polymorphic haplotypes and a novel missense mutation in the GLA gene. Clinical Genetics, 81(3), 224-233. https://doi.org/10.1111/j.1399-0004.2011.01689.xspa
dc.relation.referencesFitzmaurice, T. F., Desnick, R. J., & Bishop, D. F. (1997). Human alpha-galactosidase A: High plasma activity expressed by the -30G-->A allele. Journal of Inherited Metabolic Disease, 20(5), 643-657. https://doi.org/10.1023/a:1005366224351spa
dc.relation.referencesFuller, M., Mellett, N., Hein, L. K., Brooks, D. A., & Meikle, P. J. (2015). Absence of α-galactosidase cross-correction in Fabry heterozygote cultured skin fibroblasts. Molecular Genetics and Metabolism, 114(2), 268-273. https://doi.org/10.1016/j.ymgme.2014.11.005spa
dc.relation.referencesGal, A. (2010). Molecular Genetics of Fabry Disease and Genotype–Phenotype Correlation. En D. Elstein, G. Altarescu, & M. Beck (Eds.), Fabry Disease (pp. 3-19). Springer Netherlands. https://doi.org/10.1007/978-90-481-9033-1_1spa
dc.relation.referencesGalupa, R., & Heard, E. (2015). X-chromosome inactivation: New insights into cis and trans regulation. Current Opinion in Genetics & Development, 31, 57-66. https://doi.org/10.1016/j.gde.2015.04.002spa
dc.relation.referencesGardiner-Garden, M., & Frommer, M. (1987). CpG islands in vertebrate genomes. Journal of Molecular Biology, 196(2), 261-282. https://doi.org/10.1016/0022-2836(87)90689-9spa
dc.relation.referencesGarieri, M., Stamoulis, G., Blanc, X., Falconnet, E., Ribaux, P., Borel, C., Santoni, F., & Antonarakis, S. E. (2018). Extensive cellular heterogeneity of X inactivation revealed by single-cell allele-specific expression in human fibroblasts. Proceedings of the National Academy of Sciences, 115(51), 13015-13020. https://doi.org/10.1073/pnas.1806811115spa
dc.relation.referencesGermain, D. P. (2010). Fabry disease. Orphanet Journal of Rare Diseases, 5(1), 30. https://doi.org/10.1186/1750-1172-5-30spa
dc.relation.referencesGermain, D. P., Altarescu, G., Barriales-Villa, R., Mignani, R., Pawlaczyk, K., Pieruzzi, F., Terryn, W., Vujkovac, B., & Ortiz, A. (2022). An expert consensus on practical clinical recommendations and guidance for patients with classic Fabry disease. Molecular Genetics and Metabolism, 137(1-2), 49-61. https://doi.org/10.1016/j.ymgme.2022.07.010spa
dc.relation.referencesGiannini, E. H., Mehta, A. B., Hilz, M. J., Beck, M., Bichet, D. G., Brady, R. O., West, M., Germain, D. P., Wanner, C., Waldek, S., Clarke, J. T. R., Mengel, E., Strotmann, J. M., Warnock, D. G., & Linhart, A. (2010). A validated disease severity scoring system for Fabry disease. Molecular Genetics and Metabolism, 99(3), 283-290. https://doi.org/10.1016/j.ymgme.2009.10.178spa
dc.relation.referencesGibas, A. L., Klatt, R., Johnson, J., Clarke, J. T. R., & Katz, J. (2006). A survey of the pain experienced by males and females with Fabry disease. Pain Research & Management, 11(3), 185-192. https://doi.org/10.1155/2006/828964spa
dc.relation.referencesGubler, M.-C., Lenoir, G., Grünfeld, J.-P., Ulmann, A., Droz, D., Habib, R., Naizot, C., Adafer, E., & Grandhomme, C. (1978). Early renal changes in hemizygous and heterozygous patients with Fabry’s disease. Kidney International, 13(3), 223-235.spa
dc.relation.referencesHegemann, S., Hajioff, D., Conti, G., Beck, M., Sunder-Plassmann, G., Widmer, U., Mehta, A., & Keilmann, A. (2006). Hearing loss in Fabry disease: Data from the Fabry Outcome Survey. European Journal of Clinical Investigation, 36(9), 654-662. https://doi.org/10.1111/j.1365-2362.2006.01702.xspa
dc.relation.referencesHossain, M. A., Yanagisawa, H., Miyajima, T., Wu, C., Takamura, A., Akiyama, K., Itagaki, R., Eto, K., Iwamoto, T., Yokoi, T., Kurosawa, K., Numabe, H., & Eto, Y. (2017). The severe clinical phenotype for a heterozygous Fabry female patient correlates to the methylation of non-mutated allele associated with chromosome 10q26 deletion syndrome. Molecular Genetics and Metabolism, 120(3), 173-179. https://doi.org/10.1016/j.ymgme.2017.01.002spa
dc.relation.referencesHřebíček, M., & Ledvinová, J. (2010). Biochemistry of Fabry Disease. En D. Elstein, G. Altarescu, & M. Beck (Eds.), Fabry Disease (pp. 81-104). Springer Netherlands. https://doi.org/10.1007/978-90-481-9033-1_4spa
dc.relation.referencesHuang, Y., Pastor, W. A., Shen, Y., Tahiliani, M., Liu, D. R., & Rao, A. (2010). The Behaviour of 5-Hydroxymethylcytosine in Bisulfite Sequencing. PLoS ONE, 5(1), e8888. https://doi.org/10.1371/journal.pone.0008888spa
dc.relation.referencesHübner, A., Metz, T., Schanzer, A., Greber-Platzer, S., & Item, C. B. (2015). Aberrant DNA methylation of calcitonin receptor in Fabry patients treated with enzyme replacement therapy. Molecular Genetics and Metabolism Reports, 5, 1-2. https://doi.org/10.1016/j.ymgmr.2015.08.002spa
dc.relation.referencesHughes, D. A., Ramaswami, U., Barba Romero, M.-Á., Deegan, P., & FOS Investigators. (2010). Age adjusting severity scores for Anderson-Fabry disease. Molecular Genetics and Metabolism, 101(2-3), 219-227. https://doi.org/10.1016/j.ymgme.2010.06.002spa
dc.relation.referencesIzhar, R., Borriello, M., La Russa, A., Di Paola, R., De, A., Capasso, G., Ingrosso, D., Perna, A. F., & Simeoni, M. (2023). Fabry Disease in Women: Genetic Basis, Available Biomarkers, and Clinical Manifestations. Genes, 15(1), 37. https://doi.org/10.3390/genes15010037spa
dc.relation.referencesJoo, J. E., Novakovic, B., Cruickshank, M., Doyle, L. W., Craig, J. M., & Saffery, R. (2014). Human active X-specific DNA methylation events showing stability across time and tissues. European Journal of Human Genetics, 22(12), 1376-1381. https://doi.org/10.1038/ejhg.2014.34spa
dc.relation.referencesJuchniewicz, P., Piotrowska, E., Kloska, A., Podlacha, M., Mantej, J., Węgrzyn, G., Tukaj, S., & Jakóbkiewicz-Banecka, J. (2021). Dosage Compensation in Females with X-Linked Metabolic Disorders. International Journal of Molecular Sciences, 22(9), 4514. https://doi.org/10.3390/ijms22094514spa
dc.relation.referencesKampmann, C., Wiethoff, C. M., Perrot, A., Beck, M., Dietz, R., & Osterziel, K. J. (2002). The heart in Anderson Fabry disease. Zeitschrift Für Kardiologie, 91(10), 786-795. https://doi.org/10.1007/s00392-002-0848-5spa
dc.relation.referencesKampmann, C., Wiethoff, C. M., Whybra, C., Baehner, F. A., Mengel, E., & Beck, M. (2008). Cardiac manifestations of Anderson-Fabry disease in children and adolescents. Acta Paediatrica, 97(4), 463-469. https://doi.org/10.1111/j.1651-2227.2008.00700.xspa
dc.relation.referencesKe, X., & Collins, A. (2003). CpG Islands in Human X-Inactivation. Annals of Human Genetics, 67(3), 242-249. https://doi.org/10.1046/j.1469-1809.2003.00038.xspa
dc.relation.referencesKeilmann, A., Hajioff, D., Ramaswami, U., & Investigators, on behalf of the F. (2009). Ear symptoms in children with Fabry disease: Data from the Fabry Outcome Survey. Journal of Inherited Metabolic Disease, 32(6), 739. https://doi.org/10.1007/s10545-009-1290-xspa
dc.relation.referencesKeilmann, A., Hegemann, S., Conti, G., & Hajioff, D. (2006). Fabry disease and the ear. En A. Mehta, M. Beck, & G. Sunder-Plassmann (Eds.), Fabry Disease: Perspectives from 5 Years of FOS. Oxford PharmaGenesis. http://www.ncbi.nlm.nih.gov/books/NBK11606/spa
dc.relation.referencesKeshav, S. (2006). Gastrointestinal manifestations of Fabry disease. En A. Mehta, M. Beck, & G. Sunder-Plassmann (Eds.), Fabry Disease: Perspectives from 5 Years of FOS. Oxford PharmaGenesis. http://www.ncbi.nlm.nih.gov/books/NBK11570/spa
dc.relation.referencesKhan, S. A., & Theunissen, T. W. (2023). Modeling X-chromosome inactivation and reactivation during human development. Current Opinion in Genetics & Development, 82, 102096. https://doi.org/10.1016/j.gde.2023.102096spa
dc.relation.referencesKobayashi, M., Ohashi, T., Sakuma, M., Ida, H., & Eto, Y. (2008). Clinical manifestations and natural history of Japanese heterozygous females with Fabry disease. Journal of Inherited Metabolic Disease, 31(S3), 483-487. https://doi.org/10.1007/s10545-007-0740-6spa
dc.relation.referencesKok, K., Zwiers, K. C., Boot, R. G., Overkleeft, H. S., Aerts, J. M. F. G., & Artola, M. (2021). Fabry Disease: Molecular Basis, Pathophysiology, Diagnostics and Potential Therapeutic Directions. Biomolecules, 11(2), 271. https://doi.org/10.3390/biom11020271spa
dc.relation.referencesKolter, T., & Sandhoff, K. (2006). Sphingolipid metabolism diseases. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1758(12), 2057-2079. https://doi.org/10.1016/j.bbamem.2006.05.027spa
dc.relation.referencesKörver, S., Geurtsen, G. J., Hollak, C. E. M., van Schaik, I. N., Longo, M. G. F., Lima, M. R., Vedolin, L., Dijkgraaf, M. G. W., & Langeveld, M. (2020). Depressive symptoms in Fabry disease: The importance of coping, subjective health perception and pain. Orphanet Journal of Rare Diseases, 15(1), 28. https://doi.org/10.1186/s13023-020-1307-yspa
dc.relation.referencesKristensen, L. S., Mikeska, T., Krypuy, M., & Dobrovic, A. (2008). Sensitive Melting Analysis after Real Time- Methylation Specific PCR (SMART-MSP): High-throughput and probe-free quantitative DNA methylation detection. Nucleic Acids Research, 36(7), e42. https://doi.org/10.1093/nar/gkn113spa
dc.relation.referencesKwan, D., Rudelli, M. D., Germain, D., Garman, S. C., Grace, M. E., Nazarenko, I., Dobrovolny, R., Yasuda, M., & Desnick, R. J. (2007). Fabry Disease: Identification and Structural Analysis of 34 Novel -Galactosidase A Mutations Causing Fabry Disease. Am Soc Hum Genet. https://www.ashg.org/wp-content/uploads/2020/07/2007-allabstracts.pdfspa
dc.relation.referencesLaney, D. A., Peck, D. S., Atherton, A. M., Manwaring, L. P., Christensen, K. M., Shankar, S. P., Grange, D. K., Wilcox, W. R., & Hopkin, R. J. (2015). Fabry disease in infancy and early childhood: A systematic literature review. Genetics in Medicine, 17(5), 323-330. https://doi.org/10.1038/gim.2014.120spa
dc.relation.referencesLarralde, M., Boggio, P., Amartino, H., & Chamoles, N. (2004). Fabry Disease: A Study of 6 Hemizygous Men and 5 Heterozygous Women With Emphasis on Dermatologic Manifestations. Archives of Dermatology, 140(12). https://doi.org/10.1001/archderm.140.12.1440spa
dc.relation.referencesLenders, M., & Brand, E. (2020). FAbry STabilization indEX (FASTEX): Clinical evaluation of disease progression in Fabry patients. Molecular Genetics and Metabolism, 129(2), 142-149. https://doi.org/10.1016/j.ymgme.2019.12.010spa
dc.relation.referencesLi, L.-C., & Dahiya, R. (2002). MethPrimer: Designing primers for methylation PCRs. Bioinformatics (Oxford, England), 18(11), 1427-1431. https://doi.org/10.1093/bioinformatics/18.11.1427spa
dc.relation.referencesLi, Y., & Tollefsbol, T. O. (2011). DNA methylation detection: Bisulfite genomic sequencing analysis. Methods in molecular biology (Clifton, N.J.), 791, 11-21. https://doi.org/10.1007/978-1-61779-316-5_2spa
dc.relation.referencesLidove, O., Jaussaud, R., & Aractingi, S. (2006). Dermatological and soft-tissue manifestations of Fabry disease: Characteristics and response to enzyme replacement therapy. En A. Mehta, M. Beck, & G. Sunder-Plassmann (Eds.), Fabry Disease: Perspectives from 5 Years of FOS. Oxford PharmaGenesis. http://www.ncbi.nlm.nih.gov/books/NBK11605/spa
dc.relation.referencesLidove, O., Kaminsky, P., Hachulla, E., Leguy-Seguin, V., Lavigne, C., Marie, I., Maillot, F., Serratrice, C., Masseau, A., Chérin, P., Cabane, J., Noel, E., & Investigators, on behalf of the Fim. (2012). Fabry disease ‘The New Great Imposter’: Results of the French Observatoire in Internal Medicine Departments (FIMeD). Clinical Genetics, 81(6), 571-577. https://doi.org/10.1111/j.1399-0004.2011.01718.xspa
dc.relation.referencesLinhart, A. (2006). The heart in Fabry disease. En A. Mehta, M. Beck, & G. Sunder-Plassmann (Eds.), Fabry Disease: Perspectives from 5 Years of FOS. Oxford PharmaGenesis. http://www.ncbi.nlm.nih.gov/books/NBK11576/spa
dc.relation.referencesLinhart, A., Germain, D. P., Olivotto, I., Akhtar, M. M., Anastasakis, A., Hughes, D., Namdar, M., Pieroni, M., Hagège, A., Cecchi, F., Gimeno, J. R., Limongelli, G., & Elliott, P. (2020). An expert consensus document on the management of cardiovascular manifestations of Fabry disease. European Journal of Heart Failure, 22(7), 1076-1096. https://doi.org/10.1002/ejhf.1960spa
dc.relation.referencesLuciano, C. A., Russell, J. W., Banerjee, T. K., Quirk, J. M., Scott, L. J. C., Dambrosia, J. M., Barton, N. W., & Schiffmann, R. (2002). Physiological characterization of neuropathy in Fabry’s disease. Muscle & Nerve, 26(5), 622-629. https://doi.org/10.1002/mus.10236spa
dc.relation.referencesMacDermot, K. D. (2001). Anderson-Fabry disease: Clinical manifestations and impact of disease in a cohort of 98 hemizygous males. Journal of Medical Genetics, 38(11), 750-760. https://doi.org/10.1136/jmg.38.11.750spa
dc.relation.referencesMadeira, F., Pearce, M., Tivey, A. R. N., Basutkar, P., Lee, J., Edbali, O., Madhusoodanan, N., Kolesnikov, A., & Lopez, R. (2022). Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Research, 50(W1), W276-W279. https://doi.org/10.1093/nar/gkac240spa
dc.relation.referencesMaier, E. M., Osterrieder, S., Whybra, C., Ries, M., Gal, A., Beck, M., Roscher, A. A., & Muntau, A. C. (2006). Disease manifestations and X inactivation in heterozygous females with Fabry disease. Acta Paediatrica (Oslo, Norway: 1992). Supplement, 95(451), 30-38. https://doi.org/10.1080/08035320600618809spa
dc.relation.referencesMaier, E. M., Osterrieder, S., Whybra, C., Ries, M., Gal, A., Beck, M., Roscher, A. A., & Muntau, A. C. (2007). Disease manifestations and X inactivation in heterozygous females with Fabry disease: X inactivation in heterozygous females with Fabry disease. Acta Paediatrica, 95, 30-38. https://doi.org/10.1111/j.1651-2227.2006.tb02386.xspa
dc.relation.referencesMcCafferty, E. H., & Scott, L. J. (2019). Migalastat: A review in Fabry disease. Drugs, 79(5), 543-554.spa
dc.relation.referencesMehta, A., Clarke, J. T., Giugliani, R., Elliott, P., Linhart, A., Beck, M., & Sunder-Plassmann, G. (2009). Natural course of Fabry disease: Changing pattern of causes of death in FOS–Fabry Outcome Survey. Journal of medical genetics, 46(8), 548-552.spa
dc.relation.referencesMehta, A., Ricci, R., Widmer, U., Dehout, F., Garcia de Lorenzo, A., Kampmann, C., Linhart, A., Sunder-Plassmann, G., Ries, M., & Beck, M. (2004). Fabry disease defined: Baseline clinical manifestations of 366 patients in the Fabry Outcome Survey. European Journal of Clinical Investigation, 34(3), 236-242. https://doi.org/10.1111/j.1365-2362.2004.01309.xspa
dc.relation.referencesMehta, A., West, M. L., Pintos-Morell, G., Reisin, R., Nicholls, K., Figuera, L. E., Parini, R., Carvalho, L. R., Kampmann, C., Pastores, G. M., & Lidove, O. (2010). Therapeutic goals in the treatment of Fabry disease. Genetics in Medicine, 12(11), 713-720. https://doi.org/10.1097/GIM.0b013e3181f6e676spa
dc.relation.referencesMehta, A., & Widmer, U. (2006). Natural history of Fabry disease. En A. Mehta, M. Beck, & G. Sunder-Plassmann (Eds.), Fabry Disease: Perspectives from 5 Years of FOS. Oxford PharmaGenesis. http://www.ncbi.nlm.nih.gov/books/NBK11572/spa
dc.relation.referencesMendizabal, I., & Yi, S. V. (2017). Diversity of Human CpG Islands. En V. Patel & V. Preedy (Eds.), Handbook of Nutrition, Diet, and Epigenetics (pp. 1-16). Springer International Publishing. https://doi.org/10.1007/978-3-319-31143-2_67-1spa
dc.relation.referencesMignani, R., Pieruzzi, F., Berri, F., Burlina, A., Chinea, B., Gallieni, M., Pieroni, M., Salviati, A., & Spada, M. (2016). FAbry STabilization indEX (FASTEX): An innovative tool for the assessment of clinical stabilization in Fabry disease. Clinical Kidney Journal, 9(5), 739-747. https://doi.org/10.1093/ckj/sfw082spa
dc.relation.referencesMiller, A. P., & Willard, H. F. (1998). Chromosomal basis of X chromosome inactivation: Identification of a multigene domain in Xp11.21-p11.22 that escapes X inactivation. Proceedings of the National Academy of Sciences of the United States of America, 95(15), 8709-8714.spa
dc.relation.referencesMinks, J., Robinson, W. P., & Brown, C. J. (2008). A skewed view of X chromosome inactivation. Journal of Clinical Investigation, 118(1), 20-23. https://doi.org/10.1172/JCI34470spa
dc.relation.referencesMöhrenschlager, M., Braun-Falco, M., Ring, J., & Abeck, D. (2003). Fabry Disease: Recognition and Management of Cutaneous Manifestations. American Journal of Clinical Dermatology, 4(3), 189-196. https://doi.org/10.2165/00128071-200304030-00005spa
dc.relation.referencesMoindrot, B., & Brockdorff, N. (2016). RNA binding proteins implicated in Xist-mediated chromosome silencing. Seminars in Cell & Developmental Biology, 56, 58-70. https://doi.org/10.1016/j.semcdb.2016.01.029spa
dc.relation.referencesMoore, L. D., Le, T., & Fan, G. (2013). DNA Methylation and Its Basic Function. Neuropsychopharmacology, 38(1), Article 1. https://doi.org/10.1038/npp.2012.112spa
dc.relation.referencesMorris, D. A., Blaschke, D., Canaan-Kühl, S., Krebs, A., Knobloch, G., Walter, T. C., & Haverkamp, W. (2015). Global cardiac alterations detected by speckle-tracking echocardiography in Fabry disease: Left ventricular, right ventricular, and left atrial dysfunction are common and linked to worse symptomatic status. The International Journal of Cardiovascular Imaging, 31(2), 301-313. https://doi.org/10.1007/s10554-014-0551-4spa
dc.relation.referencesMuhr, J., Arbor, T. C., & Ackerman, K. M. (2024). Embryology, Gastrulation. En StatPearls. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK554394/spa
dc.relation.referencesMüller, M. J. (2006). Neuropsychiatric and psychosocial aspects of Fabry disease. En A. Mehta, M. Beck, & G. Sunder-Plassmann (Eds.), Fabry Disease: Perspectives from 5 Years of FOS. Oxford PharmaGenesis. http://www.ncbi.nlm.nih.gov/books/NBK11618/spa
dc.relation.referencesNassar, L. R., Barber, G. P., Benet-Pagès, A., Casper, J., Clawson, H., Diekhans, M., Fischer, C., Gonzalez, J. N., Hinrichs, A. S., Lee, B. T., Lee, C. M., Muthuraman, P., Nguy, B., Pereira, T., Nejad, P., Perez, G., Raney, B. J., Schmelter, D., Speir, M. L., … Kent, W. J. (2023). The UCSC Genome Browser database: 2023 update. Nucleic Acids Research, 51(D1), D1188-D1195. https://doi.org/10.1093/nar/gkac1072spa
dc.relation.referencesNavarro-Cobos, M. J., Balaton, B. P., & Brown, C. J. (2020). Genes that escape from X-chromosome inactivation: Potential contributors to Klinefelter syndrome. American Journal of Medical Genetics. Part C, Seminars in Medical Genetics, 184(2), 226-238. https://doi.org/10.1002/ajmg.c.31800spa
dc.relation.referencesOkamoto, T., Okada, M., Wada, H., Kanamaru, A., Kakishita, E., Hashimoto, T., & Furuyama, J. (1998). Clonal analysis of hematopoietic cells using a novel polymorphic site of the X chromosome. American Journal of Hematology, 58(4), 263-266. https://doi.org/10.1002/(SICI)1096-8652(199808)58:4<263::AID-AJH2>3.0.CO;2-Ospa
dc.relation.referencesOliveira, J. P., Ferreira, S., Barceló, J., Gaspar, P., Carvalho, F., Sá Miranda, M. C., & Månsson, J.-E. (2008). Effect of single-nucleotide polymorphisms of the 5’ untranslated region of the human α-galactosidase gene on enzyme activity, and their frequencies in Portuguese caucasians. Journal of Inherited Metabolic Disease, 31 Suppl 2, S247-253. https://doi.org/10.1007/s10545-008-0818-9spa
dc.relation.referencesOliveira, J. P., Ferreira, S., Reguenga, C., Carvalho, F., & Månsson, J.-E. (2008). The g.1170C>T polymorphism of the 5’ untranslated region of the human alpha-galactosidase gene is associated with decreased enzyme expression—Evidence from a family study. Journal of Inherited Metabolic Disease, 31 Suppl 2, S405-413. https://doi.org/10.1007/s10545-008-0972-0spa
dc.relation.referencesOrtiz, A., Germain, D. P., Desnick, R. J., Politei, J., Mauer, M., Burlina, A., Eng, C., Hopkin, R. J., Laney, D., Linhart, A., Waldek, S., Wallace, E., Weidemann, F., & Wilcox, W. R. (2018). Fabry disease revisited: Management and treatment recommendations for adult patients. Molecular Genetics and Metabolism, 123(4), 416-427. https://doi.org/10.1016/j.ymgme.2018.02.014spa
dc.relation.referencesOwczarzy, R., Tataurov, A. V., Wu, Y., Manthey, J. A., McQuisten, K. A., Almabrazi, H. G., Pedersen, K. F., Lin, Y., Garretson, J., McEntaggart, N. O., Sailor, C. A., Dawson, R. B., & Peek, A. S. (2008). IDT SciTools: A suite for analysis and design of nucleic acid oligomers. Nucleic Acids Research, 36(Web Server issue), W163-W169. https://doi.org/10.1093/nar/gkn198spa
dc.relation.referencesPeeters, S., Leung, T., Fornes, O., Farkas, R. A., Wasserman, W. W., & Brown, C. J. (2023). Refining the genomic determinants underlying escape from X-chromosome inactivation. NAR Genomics and Bioinformatics, 5(2), lqad052. https://doi.org/10.1093/nargab/lqad052spa
dc.relation.referencesPieroni, M., Moon, J. C., Arbustini, E., Barriales-Villa, R., Camporeale, A., Vujkovac, A. C., Elliott, P. M., Hagege, A., Kuusisto, J., Linhart, A., Nordbeck, P., Olivotto, I., Pietilä-Effati, P., & Namdar, M. (2021). Cardiac Involvement in Fabry Disease: JACC Review Topic of the Week. Journal of the American College of Cardiology, 77(7), 922-936. https://doi.org/10.1016/j.jacc.2020.12.024spa
dc.relation.referencesPintacuda, G., Young, A. N., & Cerase, A. (2017). Function by Structure: Spotlights on Xist Long Non-coding RNA. Frontiers in Molecular Biosciences, 4. https://doi.org/10.3389/fmolb.2017.00090spa
dc.relation.referencesPolistena, B., Rigante, D., Sicignano, L. L., Verrecchia, E., Manna, R., d’Angela, D., & Spandonaro, F. (2021). Survey about the Quality of Life of Italian Patients with Fabry Disease. Diseases (Basel, Switzerland), 9(4), 72. https://doi.org/10.3390/diseases9040072spa
dc.relation.referencesPolitei, J. M., Durand, C., & Schenone, A. B. (2016). Small Fiber Neuropathy in Fabry Disease: A Review of Pathophysiology and Treatment. Journal of Inborn Errors of Metabolism and Screening, 4, e160002. https://doi.org/10.1177/2326409816661351spa
dc.relation.referencesPosynick, B. J., & Brown, C. J. (2019). Escape From X-Chromosome Inactivation: An Evolutionary Perspective. Frontiers in Cell and Developmental Biology, 7. https://doi.org/10.3389/fcell.2019.00241spa
dc.relation.referencesPoveda Gutiérrez, A. G., García Robles, R., & Ayala Ramírez, P. A. (2020). Hallazgos moleculares en mujeres colombianas con sospecha de enfermedad de Fabry entre enero del 2016 y diciembre del 2018 [Pontificia Universidad Javeriana]. https://doi.org/10.11144/Javeriana.10554.45055spa
dc.relation.referencesQi, L., & Teschendorff, A. E. (2022). Cell-type heterogeneity: Why we should adjust for it in epigenome and biomarker studies. Clinical Epigenetics, 14(1), 31. https://doi.org/10.1186/s13148-022-01253-3spa
dc.relation.referencesRamaswami, U. (2008). Fabry disease during childhood: Clinical manifestations and treatment with agalsidase alfa. Acta Paediatrica, 97(s457), 38-40. https://doi.org/10.1111/j.1651-2227.2008.00658.xspa
dc.relation.referencesRamaswami, U., Parini, R., & Pintos-Morell, G. (2006). Natural history and effects of enzyme replacement therapy in children and adolescents with Fabry disease. En A. Mehta, M. Beck, & G. Sunder-Plassmann (Eds.), Fabry Disease: Perspectives from 5 Years of FOS. Oxford PharmaGenesis. http://www.ncbi.nlm.nih.gov/books/NBK11575/spa
dc.relation.referencesRamaswami, U., Whybra, C., Parini, R., Pintos-Morell, G., Mehta, A., Sunder-Plassmann, G., Widmer, U., Beck, M., & Behalf Of The Fos European Investig, O. (2006). Clinical manifestations of Fabry disease in children: Data from the Fabry Outcome Survey. Acta Paediatrica, 95(1), 86-92. https://doi.org/10.1080/08035250500275022spa
dc.relation.referencesŘeboun, M., Sikora, J., Magner, M., Wiederlechnerová, H., Černá, A., Poupětová, H., Štorkánova, G., Mušálková, D., Dostálová, G., Goláň, L., Linhart, A., & Dvořáková, L. (2022). Pitfalls of X-chromosome inactivation testing in females with Fabry disease. American Journal of Medical Genetics. Part A, 188(7), 1979-1989. https://doi.org/10.1002/ajmg.a.62728spa
dc.relation.referencesRedonnet-Vernhet, I., Ploos van Amstel, J. K., Jansen, R. P., Wevers, R. A., Salvayre, R., & Levade, T. (1996). Uneven X inactivation in a female monozygotic twin pair with Fabry disease and discordant expression of a novel mutation in the alpha-galactosidase A gene. Journal of Medical Genetics, 33(8), 682-688. https://doi.org/10.1136/jmg.33.8.682spa
dc.relation.referencesReisin, R., Perrin, A., & García-Pavía, P. (2017). Time delays in the diagnosis and treatment of Fabry disease. International Journal of Clinical Practice, 71(1). https://doi.org/10.1111/ijcp.12914spa
dc.relation.referencesRichards, S., Aziz, N., Bale, S., Bick, D., Das, S., Gastier-Foster, J., Grody, W. W., Hegde, M., Lyon, E., Spector, E., Voelkerding, K., & Rehm, H. L. (2015). Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics in medicine : official journal of the American College of Medical Genetics, 17(5), 405-424. https://doi.org/10.1038/gim.2015.30spa
dc.relation.referencesRies, M., Ramaswami, U., Parini, R., Lindblad, B., Whybra, C., Willers, I., Gal, A., & Beck, M. (2003). The early clinical phenotype of Fabry disease: A study on 35 European children and adolescents. European Journal of Pediatrics, 162(11), 767-772. https://doi.org/10.1007/s00431-003-1299-3spa
dc.relation.referencesRigoldi, M., Concolino, D., Morrone, A., Pieruzzi, F., Ravaglia, R., Furlan, F., Santus, F., Strisciuglio, P., Torti, G., & Parini, R. (2014). Intrafamilial phenotypic variability in four families with Anderson-Fabry disease. Clinical Genetics, 86(3), 258-263. https://doi.org/10.1111/cge.12261spa
dc.relation.referencesRosa Neto, N. S., Bento, J. C. de B., & Pereira, R. M. R. (2020). Depression, sleep disturbances, pain, disability and quality of LIFE in Brazilian Fabry disease patients. Molecular Genetics and Metabolism Reports, 22, 100547. https://doi.org/10.1016/j.ymgmr.2019.100547spa
dc.relation.referencesRossanti, R., Nozu, K., Fukunaga, A., Nagano, C., Horinouchi, T., Yamamura, T., Sakakibara, N., Minamikawa, S., Ishiko, S., Aoto, Y., Okada, E., Ninchoji, T., Kato, N., Maruyama, S., Kono, K., Nishi, S., Iijima, K., & Fujii, H. (2021). X-chromosome inactivation patterns in females with Fabry disease examined by both ultra-deep RNA sequencing and methylation-dependent assay. Clinical and Experimental Nephrology, 25(11), 1224-1230. https://doi.org/10.1007/s10157-021-02099-4spa
dc.relation.referencesRozenfeld, P. A. (2009). Fabry Disease: Treatment and diagnosis. IUBMB Life, 61(11), 1043-1050. https://doi.org/10.1002/iub.257spa
dc.relation.referencesSadek, J., Shellhaas, R., Camfield, C. S., Camfield, P. R., & Burley, J. (2004). Psychiatric findings in four female carriers of Fabry disease. Psychiatric Genetics, 14(4), 199-201. https://doi.org/10.1097/00041444-200412000-00006spa
dc.relation.referencesSaifudeen, Z., Desnick, R. J., & Ehrlich, M. (1995). A mutation in the 5’ untranslated region of the human alpha-galactosidase A gene in high-activity variants inhibits specific protein binding. FEBS Letters, 371(2), 181-184. https://doi.org/10.1016/0014-5793(95)00891-cspa
dc.relation.referencesSamie, M. A., & Xu, H. (2014). Lysosomal exocytosis and lipid storage disorders. Journal of Lipid Research, 55(6), 995-1009. https://doi.org/10.1194/jlr.R046896spa
dc.relation.referencesSayin, B. Y., & Oto, A. (2022). Left Ventricular Hypertrophy: Etiology-Based Therapeutic Options. Cardiology and Therapy, 11(2), 203-230. https://doi.org/10.1007/s40119-022-00260-yspa
dc.relation.referencesSchaefer, E., Mehta, A., & Gal, A. (2005). Genotype and phenotype in Fabry disease: Analysis of the Fabry Outcome Survey: Genotype and phenotype in Fabry disease. Acta Paediatrica, 94, 87-92. https://doi.org/10.1111/j.1651-2227.2005.tb02119.xspa
dc.relation.referencesSchiffmann, R., Hughes, D. A., Linthorst, G. E., Ortiz, A., Svarstad, E., Warnock, D. G., West, M. L., Wanner, C., Bichet, D. G., Christensen, E. I., Correa-Rotter, R., Elliott, P. M., Feriozzi, S., Fogo, A. B., Germain, D. P., Hollak, C. E. M., Hopkin, R. J., Johnson, J., Kantola, I., … Walter, J. (2017). Screening, diagnosis, and management of patients with Fabry disease: Conclusions from a “Kidney Disease: Improving Global Outcomes” (KDIGO) Controversies Conference. Kidney International, 91(2), 284-293. https://doi.org/10.1016/j.kint.2016.10.004spa
dc.relation.referencesSchiffmann, R., & Moore, D. F. (2006). Neurological manifestations of Fabry disease. En A. Mehta, M. Beck, & G. Sunder-Plassmann (Eds.), Fabry Disease: Perspectives from 5 Years of FOS. Oxford PharmaGenesis. http://www.ncbi.nlm.nih.gov/books/NBK11602/spa
dc.relation.referencesSchiffmann, R., Warnock, D. G., Banikazemi, M., Bultas, J., Linthorst, G. E., Packman, S., Sorensen, S. A., Wilcox, W. R., & Desnick, R. J. (2009). Fabry disease: Progression of nephropathy, and prevalence of cardiac and cerebrovascular events before enzyme replacement therapy. Nephrology Dialysis Transplantation, 24(7), 2102-2111. https://doi.org/10.1093/ndt/gfp031spa
dc.relation.referencesSeroussi, E. (2021). Estimating Copy-Number Proportions: The Comeback of Sanger Sequencing. Genes, 12(2), 283. https://doi.org/10.3390/genes12020283spa
dc.relation.referencesShvetsova, E., Sofronova, A., Monajemi, R., Gagalova, K., Draisma, H. H. M., White, S. J., Santen, G. W. E., Chuva de Sousa Lopes, S. M., Heijmans, B. T., van Meurs, J., Jansen, R., Franke, L., Kiełbasa, S. M., den Dunnen, J. T., & ‘t Hoen, P. A. C. (2019). Skewed X-inactivation is common in the general female population. European Journal of Human Genetics, 27(3), Article 3. https://doi.org/10.1038/s41431-018-0291-3spa
dc.relation.referencesShyamala, N., Kongettira, C. L., Puranam, K., Kupsal, K., Kummari, R., Padala, C., & Hanumanth, S. R. (2022). In silico identification of single nucleotide variations at CpG sites regulating CpG island existence and size. Scientific Reports, 12, 3574. https://doi.org/10.1038/s41598-022-05198-8spa
dc.relation.referencesSilva, C. A. B., Moura-Neto, J. A., dos Reis, M. A., Vieira Neto, O. M., & Barreto, F. C. (2021). Renal Manifestations of Fabry Disease: A Narrative Review. Canadian Journal of Kidney Health and Disease, 8, 205435812098562. https://doi.org/10.1177/2054358120985627spa
dc.relation.referencesSims, K., Politei, J., Banikazemi, M., & Lee, P. (2009). Stroke in Fabry Disease Frequently Occurs Before Diagnosis and in the Absence of Other Clinical Events: Natural History Data From the Fabry Registry. Stroke, 40(3), 788-794. https://doi.org/10.1161/STROKEAHA.108.526293spa
dc.relation.referencesSodi, A., Ioannidis, A., & Pitz, S. (2006). Ophthalmological manifestations of Fabry disease. En A. Mehta, M. Beck, & G. Sunder-Plassmann (Eds.), Fabry Disease: Perspectives from 5 Years of FOS. Oxford PharmaGenesis. http://www.ncbi.nlm.nih.gov/books/NBK11599/spa
dc.relation.referencesSpada, M., Pagliardini, S., Yasuda, M., Tukel, T., Thiagarajan, G., Sakuraba, H., Ponzone, A., & Desnick, R. J. (2006). High Incidence of Later-Onset Fabry Disease Revealed by Newborn Screening*. The American Journal of Human Genetics, 79(1), 31-40. https://doi.org/10.1086/504601spa
dc.relation.referencesStreet, N. J., Yi, M. S., Bailey, L. A., & Hopkin, R. J. (2006). Comparison of health-related quality of life between heterozygous women with Fabry disease, a healthy control population, and patients with other chronic disease. Genetics in Medicine: Official Journal of the American College of Medical Genetics, 8(6), 346-353. https://doi.org/10.1097/01.gim.0000223545.63012.5aspa
dc.relation.referencesTakai, D., & Jones, P. A. (2002). Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proceedings of the National Academy of Sciences of the United States of America, 99(6). https://doi.org/10.1073/pnas.052410099spa
dc.relation.referencesTheda, C., Hwang, S. H., Czajko, A., Loke, Y. J., Leong, P., & Craig, J. M. (2018). Quantitation of the cellular content of saliva and buccal swab samples. Scientific Reports, 8(1), 6944. https://doi.org/10.1038/s41598-018-25311-0spa
dc.relation.referencesThurberg, B. L., Fallon, J. T., Mitchell, R., Aretz, T., Gordon, R. E., & O’Callaghan, M. W. (2009). Cardiac microvascular pathology in Fabry disease: Evaluation of endomyocardial biopsies before and after enzyme replacement therapy. Circulation, 119(19), 2561-2567. https://doi.org/10.1161/CIRCULATIONAHA.108.841494spa
dc.relation.referencesTrimarchi, H., Karl, A., Raña, M. S., Forrester, M., Pomeranz, V., Lombi, F., & Iotti, A. (2013). Initially Nondiagnosed Fabry’s Disease when Electron Microscopy Is Lacking: The Continuing Story of Focal and Segmental Glomerulosclerosis. Case Reports in Nephrology and Urology, 3(1), 51-57. https://doi.org/10.1159/000351516spa
dc.relation.referencesTukiainen, T., Villani, A.-C., Yen, A., Rivas, M. A., Marshall, J. L., Satija, R., Aguirre, M., Gauthier, L., Fleharty, M., Kirby, A., Cummings, B. B., Castel, S. E., Karczewski, K. J., Aguet, F., Byrnes, A., Lappalainen, T., Aviv Regev, Ardlie, K. G., Hacohen, N., & MacArthur, D. G. (2017). Landscape of X chromosome inactivation across human tissues. Nature, 550(7675), Article 7675. https://doi.org/10.1038/nature24265spa
dc.relation.referencesTusnády, G. E., Simon, I., Váradi, A., & Arányi, T. (2005). BiSearch: Primer-design and search tool for PCR on bisulfite-treated genomes. Nucleic Acids Research, 33(1), e9. https://doi.org/10.1093/nar/gni012spa
dc.relation.referencesvan den Berg, I. M., Laven, J. S. E., Stevens, M., Jonkers, I., Galjaard, R.-J., Gribnau, J., & van Doorninck, J. H. (2009). X chromosome inactivation is initiated in human preimplantation embryos. American Journal of Human Genetics, 84(6), 771-779. https://doi.org/10.1016/j.ajhg.2009.05.003spa
dc.relation.referencesVavouri, T., & Lehner, B. (2012). Human genes with CpG island promoters have a distinct transcription-associated chromatin organization. Genome Biology, 13(11), R110. https://doi.org/10.1186/gb-2012-13-11-r110spa
dc.relation.referencesVieitez, I., Souto-Rodriguez, O., Fernandez-Mosquera, L., San Millan, B., Teijeira, S., Fernandez-Martin, J., Martinez-Sanchez, F., Aldamiz-Echevarria, L. J., Lopez-Rodriguez, M., Navarro, C., & Ortolano, S. (2018). Fabry disease in the Spanish population: Observational study with detection of 77 patients. Orphanet Journal of Rare Diseases, 13(1), 52. https://doi.org/10.1186/s13023-018-0792-8spa
dc.relation.referencesViggiano, E., & Politano, L. (2021). X Chromosome Inactivation in Carriers of Fabry Disease: Review and Meta-Analysis. International Journal of Molecular Sciences, 22(14), Article 14. https://doi.org/10.3390/ijms22147663spa
dc.relation.referencesvon der Lippe, C., Frich, J. C., Harris, A., & Solbrække, K. N. (2016). Experiences of Being Heterozygous for Fabry Disease: A Qualitative Study. Journal of Genetic Counseling, 25(5), 1085-1092. https://doi.org/10.1007/s10897-016-9941-1spa
dc.relation.referencesWainer Katsir, K., & Linial, M. (2019). Human genes escaping X-inactivation revealed by single cell expression data. BMC Genomics, 20(1), 201. https://doi.org/10.1186/s12864-019-5507-6spa
dc.relation.referencesWaldek, S., Patel, M. R., Banikazemi, M., Lemay, R., & Lee, P. (2009). Life expectancy and cause of death in males and females with Fabry disease: Findings from the Fabry Registry. Genetics in Medicine: Official Journal of the American College of Medical Genetics, 11(11), 790-796. https://doi.org/10.1097/GIM.0b013e3181bb05bbspa
dc.relation.referencesWang, R. Y., Lelis, A., Mirocha, J., & Wilcox, W. R. (2007). Heterozygous Fabry women are not just carriers, but have a significant burden of disease and impaired quality of life. Genetics in Medicine, 9(1), 34-45. https://doi.org/10.1097/GIM.0b013e31802d8321spa
dc.relation.referencesWang, Z., Willard, H. F., Mukherjee, S., & Furey, T. S. (2006). Evidence of Influence of Genomic DNA Sequence on Human X Chromosome Inactivation. PLOS Computational Biology, 2(9), e113. https://doi.org/10.1371/journal.pcbi.0020113spa
dc.relation.referencesWarnecke, P. M., Stirzaker, C., Song, J., Grunau, C., Melki, J. R., & Clark, S. J. (2002). Identification and resolution of artifacts in bisulfite sequencing. Methods (San Diego, Calif.), 27(2), 101-107. https://doi.org/10.1016/s1046-2023(02)00060-9spa
dc.relation.referencesWelford, R. W. D., Mühlemann, A., Garzotti, M., Rickert, V., Groenen, P. M. A., Morand, O., Üçeyler, N., & Probst, M. R. (2018). Glucosylceramide synthase inhibition with lucerastat lowers globotriaosylceramide and lysosome staining in cultured fibroblasts from Fabry patients with different mutation types. Human Molecular Genetics, 27(19), 3392-3403. https://doi.org/10.1093/hmg/ddy248spa
dc.relation.referencesWhybra, C., Bähner, F., & Baron, K. (2006). Measurement of disease severity and progression in Fabry disease. En A. Mehta, M. Beck, & G. Sunder-Plassmann (Eds.), Fabry Disease: Perspectives from 5 Years of FOS. Oxford PharmaGenesis. http://www.ncbi.nlm.nih.gov/books/NBK11612/spa
dc.relation.referencesWhybra, C., Kampmann, C., Krummenauer, F., Ries, M., Mengel, E., Miebach, E., Baehner, F., Kim, K., Bajbouj, M., Schwarting, A., Gal, A., & Beck, M. (2004). The Mainz Severity Score Index: A new instrument for quantifying the Anderson-Fabry disease phenotype, and the response of patients to enzyme replacement therapy. Clinical Genetics, 65(4), 299-307. https://doi.org/10.1111/j.1399-0004.2004.00219.xspa
dc.relation.referencesWhybra, C., Kampmann, Chr., Willers, I., Davies, J., Winchester, B., Kriegsmann, J., Brühl, K., Gal, A., Bunge, S., & Beck, M. (2001). Anderson-Fabry disease: Clinical manifestations of disease in female heterozygotes. Journal of Inherited Metabolic Disease, 24(7), 715-724. https://doi.org/10.1023/A:1012993305223spa
dc.relation.referencesWhybra, C., Miebach, E., Mengel, E., Gal, A., Baron, K., Beck, M., & Kampmann, C. (2009). A 4-year study of the efficacy and tolerability of enzyme replacement therapy with agalsidase alfa in 36 women with Fabry disease. Genetics in Medicine, 11(6), 441-449. https://doi.org/10.1097/GIM.0b013e3181a23becspa
dc.relation.referencesWilkinson, A. L., Zorzan, I., & Rugg-Gunn, P. J. (2023). Epigenetic regulation of early human embryo development. Cell Stem Cell, 30(12), 1569-1584. https://doi.org/10.1016/j.stem.2023.09.010spa
dc.relation.referencesWu, J. C., Ho, C. Y., Skali, H., Abichandani, R., Wilcox, W. R., Banikazemi, M., Packman, S., Sims, K., & Solomon, S. D. (2010). Cardiovascular manifestations of Fabry disease: Relationships between left ventricular hypertrophy, disease severity, and alpha-galactosidase A activity. European Heart Journal, 31(9), 1088-1097. https://doi.org/10.1093/eurheartj/ehp588spa
dc.relation.referencesZar-Kessler, C., Karaa, A., Sims, K. B., Clarke, V., & Kuo, B. (2016). Understanding the gastrointestinal manifestations of Fabry disease: Promoting prompt diagnosis. Therapeutic Advances in Gastroenterology, 9(4), 626-634. https://doi.org/10.1177/1756283X16642936spa
dc.relation.referencesZhu, J., He, F., Hu, S., & Yu, J. (2008). On the nature of human housekeeping genes. Trends in Genetics, 24(10), 481-484. https://doi.org/10.1016/j.tig.2008.08.004spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc570 - Biología::576 - Genética y evoluciónspa
dc.subject.ddc610 - Medicina y salud::616 - Enfermedadesspa
dc.subject.decsEnfermedad de Fabryspa
dc.subject.decsFabry Diseaseeng
dc.subject.decsMetilación de ADNspa
dc.subject.decsDNA Methylationeng
dc.subject.decsFenotipospa
dc.subject.decsPhenotypeeng
dc.subject.decsCalidad de Vidaspa
dc.subject.decsQuality of Lifeeng
dc.subject.proposalEnfermedad de Fabryspa
dc.subject.proposalInactivación del cromosoma Xspa
dc.subject.proposalMujerspa
dc.subject.proposalMetilación de ADNspa
dc.subject.proposalFabry diseaseeng
dc.subject.proposalX chromosome inactivationeng
dc.subject.proposalFemaleeng
dc.subject.proposalDNA methylationeng
dc.titleAnálisis molecular del patrón de inactivación del gen GLA y su contribución al fenotipo en una muestra de mujeres colombianas con enfermedad de Fabry, mediante ensayos basados en metilaciónspa
dc.title.translatedMolecular analysis of the GLA gene inactivation pattern and its contribution to the phenotype in a Colombian women with Fabry disease sample through methylation-based assayseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPadres y familiasspa
dcterms.audience.professionaldevelopmentPersonal de apoyo escolarspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1019093438.2024.pdf
Tamaño:
1.92 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Genética Humana

Bloque de licencias

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
Cargando...
Miniatura
Nombre:
U.FT.09.006.004 Licencia para publicación de obras en el Repositorio Institucional UNAL v4 (2).pdf
Tamaño:
240.82 KB
Formato:
Adobe Portable Document Format
Descripción: