Fenotipado de alto rendimiento mediante el análisis de imágenes digitales en raíces de maíz (Zea mays L.)

dc.contributor.advisorBarrera Sánchez, Carlos Felipe
dc.contributor.advisorGuzmán Hernández, Manuel Alejandro
dc.contributor.authorCoronado Aleans, Verónica
dc.date.accessioned2022-08-18T15:39:57Z
dc.date.available2022-08-18T15:39:57Z
dc.date.issued2022
dc.descriptionilustraciones, diagramas, tablasspa
dc.description.abstractCon el objetivo de evaluar el uso del fenotipado de raíces basado en imágenes digitales fueron evaluados genotipos de maíz (Zea mays L.) en condiciones de campo para rasgos de interés agronómico y rasgos asociados con la arquitectura de las raíces en Antioquia, Colombia. En cada lote experimental se aplicó un diseño de bloques completos al azar con tres repeticiones. Para el análisis de fenotipo del sistema de raíces se emplearon dos metodologías: I) fenotipado manual y II) fenotipado por análisis de imágenes digitales. Las variables asociadas a la parte aérea y de raíz fueron relacionadas utilizando correlaciones de Pearson. Se usaron componentes principales para evaluar patrones en la variación de la arquitectura de la raíz. El diámetro de raíz medido manualmente se correlacionó con el diámetro de raíz derivado de la imagen (r = 0,97) y los ángulos de apertura derecho e izquierdo con valores de r = 0,96 y 0,94 respectivamente. Los resultados presentados en este estudio muestran que se puede adoptar un protocolo de fenotipado de raíces automatizado bajo el software REST que permite un nivel de investigación fenotípica adecuado para la evaluación de genotipos y estudios fisiológicos.spa
dc.description.abstractWith the objective of evaluating the use of root phenotyping based on digital images, genotypes of maize (Zea mays L.) were evaluated under field conditions for traits of agronomic interest and traits associated with root architecture in Antioquia, Colombia. A randomized complete block design with three replications was applied to each experimental batch. For the analysis of the phenotype of the root system, two methodologies were used: I) manual phenotyping and II) phenotyping by digital image analysis. The variables associated with the aerial and root parts were related using Pearson's correlations. Principal components were used to evaluate patterns in root architecture variation. The results indicated significant differences (P ≤ 0.05) between genotypes for yield, male and female flowering, leaf area, plant height, ear height, plant and ear height ratio. The manually measured root diameter was correlated with the image-derived root diameter (r = 0.97) and the right and left opening angles with values of r = 0.96 and 0.94 respectively. The results presented in this study show that an automated root phenotyping protocol can be adopted under REST software that allows an adequate level of phenotypic investigation for the evaluation of genotypes and physiological studies.eng
dc.description.curricularareaÁrea Curricular en Producción Agraria Sosteniblespa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ciencias Agrariasspa
dc.description.researchareaMejoramiento genético de plantasspa
dc.format.extentxvi, 63 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81948
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Agronómicasspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias Agrarias - Maestría en Ciencias Agrariasspa
dc.relation.referencesArmengaud, P., Zambaux, K., Hills, A., Sulpice, R., Pattison, R. J., Blatt, M. R., & Amtmann, A. (2009). EZ-Rhizo: integrated software for the fast and accurate measurement of root system architecture. The Plant journal: for cell and molecular biology, 57(5), 945–956.spa
dc.relation.referencesArvidsson, S., Pérez-Rodríguez, P., Mueller-Roeber, B. (2011). A growth phenotyping pipeline for arabidopsis thaliana integrating image analysis and rosette area modeling for robust quantification of genotype effects. New Phytol, 895–907.spa
dc.relation.referencesBand, R., Fozard, A., Godin, C., Jensen, E., Pridmore, T., Bennett, J., King, R. (2012) Multiscale systems analysis of root growth and development: modeling beyond the network and cellular scales. Plant Cell 24, 3892–3906. https://doi.org/10.1105/tpc.112.101550spa
dc.relation.referencesBänziger, M., Edmeades, G., Beck, D., & Bellon, M. (2012) Mejoramiento para Aumentar la Tolerancia a Sequía y a Deficiencia de Nitrógeno en el Maíz. De la Teoría a la Práctica. Centro Internacional de Mejoramiento de Maíz y Trigo. México, D. F, 68.spa
dc.relation.referencesBarber, S.A. (1995). Soil nutrient bioavailability: a mechanistic approach, second ed. John Wiley and Sons, New York, NY.spa
dc.relation.referencesBasu, P., & Pal, A. (2012). A new tool for analysis of root growth in the spatio-temporal continuum. The New phytologist, 195(1), 264–274.spa
dc.relation.referencesBasu, P., Pal, A., Lynch, J. P., & Brown, K. M. (2007). A novel image-analysis technique for kinematic study of growth and curvature. Plant physiology, 145(2), 305–316.spa
dc.relation.referencesBauriegel, E., Giebel, A., Herppich, W. B. (2011). Hyperspectral and Chlorophyll Fluorescence Imaging to Analyse the Impact of Fusarium culmorum on the Photosynthetic Integrity of Infected Wheat Ears. Sensors, 3765–377.spa
dc.relation.referencesBauw, P.D., Ramarolahy, J.A., Senthilkumar, K., Rakotoson, T., Merckx, R., Smolders, E., Houtvinck, R.V., Vandamme, E. (2020). Phenotyping Root Architecture of Soil-Grown Rice: A Robust Protocol Combining Manual Practices with Image-based Analyses.spa
dc.relation.referencesBenoit, L., Rousseau, D., Belin, E., Demilly, D., Chapeau-Blondeau, F. (2014) Simulation of image acquisition in machine vision dedicated to seedling elongation to validate image processing root segmentation algorithms. Computers and Electronics in Agriculture, Elsevier, 104, pp.84-92.spa
dc.relation.referencesBrewer, M.T., Lang, L., Fujimura, K., Dujmovic, N., Gray, S. (2006) Development of a Controlled Vocabulary and Software Application to Analyze Fruit Shape Variation in Tomato and Other Plant Species. Plant Physiology 141, 15-25.spa
dc.relation.referencesBurton, A.L., Williams, M., Lynch, J.P., Brown, K.M. (2012) RootScan: Software for high-throughput analysis of root anatomical traits. Plant Soil, 357, 189–203.spa
dc.relation.referencesCIMMYT/IBPGR. (1991). Descriptores para maíz. 30 pspa
dc.relation.referencesClark, R.T., Famoso, A.N., Zhao, K., Shaff, J.E., Craft, E.J., Bustamante, C.D., Mccouch, S.R., Aneshansley, D.J., Kochian, L.V. (2013). High-throughput two-dimensional root system phenotyping platform facilitates genetic analysis of root growth and development. Plant Cell Environ. 36, 454–466.spa
dc.relation.referencesClark, R.T., Famoso, A.N., Zhao, K., Shaff, J.E., Craft, E.J., Bustamante, C.D., Mccouch, S.R., Aneshansley, D.J., Kochian, L.V. (2013). High-throughput two-dimensional root system phenotyping platform facilitates genetic analysis of root growth and development. Plant Cell Environ. 36, 454–466.spa
dc.relation.referencesClark, R.T., MacCurdy, R.B., Jung, J.K., Shaff, J.E., McCouch, S.R., Aneshansley, D.J., Kochian, L.V. (2011). Three-dimensional root phenotyping with a novel imaging and software platform. Plant Physiol. 156, 455–465spa
dc.relation.referencesColombi, T., Kirchgessner, N., Le Marié, C.A., York, L.M., Lynch, J.P., Hund, A. (2015) Next generation shovelomics: set up a tent and REST. Plant Soil, 388, 1–20.spa
dc.relation.referencesDas, A., Schneider, H., Burridge., Burridge, J., Martinez, A., Wojciechowski, T., Topp, C., Lynch, J., Weitz, J., Bucksch, A. (2015). Digital imaging of root traits (DIRT): a high-throughput computing and collaboration platform for field-based root phenomics. Plant Methods, 11, 51.spa
dc.relation.referencesDathe, A., Postma, J.A., Postma-Blaauw, M.B., Lynch, J.P. (2016). Impact of axial root growth angles on nitrogen acquisition in maize depends on environmental conditions. Annals of Botany,118, 401–414.spa
dc.relation.referencesDe Bauw, P., Vandamme, E., Lupembe, A., Mwakasege, L., Senthilkumar, K., Merckx, R. (2019). Architectural root responses of rice to reduced water availability can overcome phosphorus stress. Agronomy, 9.spa
dc.relation.referencesDen, H.G., Van I. G., Beeckman, T., De, S.I. (2010) The roots of a new green revolution. Trends Plant Sci 15, 600–607)spa
dc.relation.referencesDuan, L.F., Yang, W.N., Huang, C.L., Liu, Q. (2011). A novel machine-vision-based facility for the automatic evaluation of yield-related traits in rice. Plant Methods, 7.spa
dc.relation.referencesEberbach, P.L., Hoffmann, J., Moroni, S.J., Wade, L.J., Weston, L.A. (2013). Rhizo-lysimetry: Facilities for the simultaneous study of root behaviour and resource use by agricultural crop and pasture systems. Plant Methods, 9, 3.spa
dc.relation.referencesEnnos, A.R., Pellerin, S., Smit A.L., Bengough A.G., Engels C., van Noordwijk M., Pellerin S., van de Geijn S.C. (2000) Plant Anchorage. Root Methods. Springer.spa
dc.relation.referencesFahlgren, N., Gehan, M. A., Baxter I. (2015) Lights, camera, action: high-throughput plant phenotyping is ready for a close-up. Current Opinion in Plant Biology, vol. 24, 93–99.spa
dc.relation.referencesFernandez, M. G. S., Bao, Y., Tang, L., & Schnable, P. S. (2017). A high‐throughput, field‐based phenotyping technology for tall biomass crops. Plant Physiology, 174(4),spa
dc.relation.referencesFalconer DS, Mackay TFC (1996) Introduction to quantitative genetics. 4th edn. Pearson Education Limited.spa
dc.relation.referencesFan, M. S., Zhu, J. M., Richards, C., Brown, K. M. & Lynch, J. P. 2003 Physiological roles for aerenchyma in phosphorus-stressed roots. Funct. Plant Biol. 30, 493–506.spa
dc.relation.referencesFiorani, F., Schurr, U. (2013). Future scenarios for plant phenotyping. Ann. Rev. Plant Biol. 2013, 64, 267–291.spa
dc.relation.referencesFrench, A., Ubeda-Tomás, S., Holman, T. J., Bennett, M. J., & Pridmore, T. (2009). High-throughput quantification of root growth using a novel image-analysis tool. Plant physiology, 150(4), 1784–1795.spa
dc.relation.referencesFrench, A.P., Wilson, M.H., Kenobi, K. (2012). Identifying biological landmarks using a novel cell measuring image analysis tool: Cell-o-Tape. Plant Methods 8, 7.spa
dc.relation.referencesFurbank, R. (2009) Plant phenomics: from gene to form and function. Funct Plant Biol 36.spa
dc.relation.referencesGalkovskyi, T., Mileyko, Y.,Bucksch, A., Moore, B.; Symonova, O., Price, C.A.; Topp, C.N.; Iyer-Pascuzzi, A.S., Zurek, P.R., Fang, S. (2012). GiA Roots: Software for the high throughput analysis of plant root system architecture. BMC Plant Biol. 12, 116spa
dc.relation.referencesGeng, Y., Wu, R., Wee, C. W., Xie, F., Wei, X., Chan, P. M., Tham, C., Duan, L., & Dinneny, J. R. (2013). A spatio-temporal understanding of growth regulation during the salt stress response in Arabidopsis. The Plant cell, 25(6), 2132–2154.spa
dc.relation.referencesGolzarian, M.R., Frick, R.A., Rajendran, K., Berger, B., Roy, S., Tester, M., Lun, D.S. (2011). Accurate inference of shoot biomass from high-throughput images of cereal plants. Plant Methods, 7, 1–11.spa
dc.relation.referencesGraham, P. H., Rosas, J. C., de Jensen, C. E., Peralta, E., Tlusty, B., Acosta-Gallegos, J. & Pereira, P. A. A. 2003 Addressing edaphic constraints to bean production: the Bean/Cowpea CRSP project in perspective. Field Crops Res. 82, 179–192.spa
dc.relation.referencesGruber, B.D., Giehl, R.F., Friedel, S., von Wirén, N. (2013). Plasticity of the Arabidopsis root system under nutrient deficiencies. Plant Physiol.163, 161–179spa
dc.relation.referencesGrzesiak, S., Hura, T., Grzesiak, M., Pieńkowski, S. (1999). The impact of limited soil moisture and waterlogging stress conditions on morphological and anatomical root traits in maize (Zea mays L.) hybrids of different drought tolerance. Acta Physiologiae Plantarum, 21, 305-315spa
dc.relation.referencesGuingo, E., Hébert, Y. (1997). Relationships between mechanical resistance of the maize root system and root morphology, and their genotypic and environmental variation. Maydica, 42, 265-274spa
dc.relation.referencesHallauer, A. R., Miranda, J. B. (1988). Quantitative Genetics in Maize Breeding (2nd ed.). Iowa, Ames. USA: Iowa State University Press.spa
dc.relation.referencesHauck, A.L., Novais, J., Grift, T.E. (2015). Characterization of mature maize (Zea mays L.) root system architecture and complexity in a diverse set of Ex-PVP inbreds and hybrids. SpringerPlus 4, 424.spa
dc.relation.referencesHirel, B., Le, Gouis, J., Ney, B., Gallais, A. (2007). The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. Journal of Experimental Botany 58, 2369–2387spa
dc.relation.referencesHortelano Santa Rosa, René, Gil Muñoz, Abel, Santacruz Varela, Amalio, López Sánchez, Higinio, López, Pedro Antonio, & Miranda Colín, Salvador. (2012). Diversidad fenotípica de maíces nativos del altiplano centro-oriente del estado de Puebla, México. Revista fitotecnia mexicana, 35(2), 97-109. Recuperado en 25 de abril de 2021spa
dc.relation.referencesHuot, C., Zhou, Y., Philp, J., Denton, M. (2020). Root depth development in tropical perennial forage grasses is related to root angle, root diameter and leaf area. Plant Soil 456, 145–158.spa
dc.relation.referencesJansen, M., Gilmer, F., Biskup, B., Nagel, K.A., Rascher, U., Fischbach, A., Briem, S., Dreissen, G., Tittmann, S., Braun, S. (2009). Simultaneous phenotyping of leaf growth and chlorophyll fluorescence via growscreen fluoro allows detection of stress tolerance in 59 Bibliografía arabidopsis thaliana and other rosette plants. Funct. Plant Biol. 36, 902–914.spa
dc.relation.referencesJu, C., Buresh, R.J., Wang, Z., Zhang, H., Liu, L., Yang, J., Zhang, J. (2015) Root and shoot traits for rice varieties with higher grain yield and higher nitrogen use efficiency at lower nitrogen rates application. Field Crops Res 175 47–55.spa
dc.relation.referencesKano, M., Inukai, Y., Kitano, H., Yamauchi, A. (2011) Root plasticity as the key root trait for adaptation to various intensities of drought stress in rice. Plant Soil; 342,117–128.spa
dc.relation.referencesKlukas, C., Chen, D., Pape, J. (2014). Integrated analysis platform: An open-source information system for high-throughput plant phenotyping. Plant Physiology, 165(2), 506-518.spa
dc.relation.referencesKuijken, P., van Eeuwijk, A., Marcelis, M., Bouwmeester, J. (2015). Root phenotyping: from component trait in the lab to breeding. J Exp Bot; 66, 5389–5401.spa
dc.relation.referencesLe Bot, J., Serra, V., Fabre, J., Draye, X., Adamowicz, S., Pagès, L. (2010). DART: A software to analyse root system architecture and development from captured images. Plant Soil, 326,spa
dc.relation.referencesLeitner, D., Felderer, B., Vontobel, P., & Schnepf, A. (2014). Recovering root system traits using image analysis exemplified by two-dimensional neutron radiography images of lupine. Plant physiology, 164(1), 24–35.spa
dc.relation.referencesLobet, G., Draye, X., Perilleux, C. (2013). An online database for plant image analysis software tools. Plant Methods 9 -38.spa
dc.relation.referencesLobet, G., Pagès, L., Draye, X. (2011). A Novel Image-Analysis Toolbox Enabling Quantitative Analysis of Root System Architecture. Plant Physiology, 157(1), 29 -39.spa
dc.relation.referencesLynch, J. (1995). Root architecture and plant productivity. Plant Physiology 109, 7-13.spa
dc.relation.referencesLynch, J. P. & Brown, K. B. 2008 Root strategies for phosphorus acquisition. In The ecophysiology of plant– phosphorus interaction P. J. White & J. P. 64-68.spa
dc.relation.referencesLynch, J. P., Brown, K.M. (2012). New roots for agriculture: exploiting the root phenome. Philosophical Transactions of the Royal Society B: Biological Sciences 367, 1598–1604spa
dc.relation.referencesLynch, J. P., Ho, M. D. (2005). Rhizoeconomics: Carbon costs of phosphorus acquisition. Plant and Soil, 269(1-2), 45-56.spa
dc.relation.referencesLynch, J.P. (2019). Root phenotypes for improved nutrient capture: an underexploited opportunity for global agriculture. New Phytologist 223, 548–564.spa
dc.relation.referencesLynch, J.P., Brown, K.M. (2001). Topsoil foraging – an architectural adaptation of plants to low phosphorus availability. Plant and Soil 237, 225–237.spa
dc.relation.referencesLynch, J.P., Nielsen, K.L., Davis, R.D. SimRoot (1997): Modelling and visualization of root systems. Plant and Soil 188, 139–151spa
dc.relation.referencesMaeght, J.L., Rewald, B., Pierret, A. (2013). How to study deep roots—And why it matters. Front. Plant Sci. 4, 299.spa
dc.relation.referencesMairhofer, S., Zappala, S., Tracy, S., Sturrock, C., Bennett, M.J., Mooney, S.J., Pridmore, T.P. (2013). Recovering complete plant root system architectures from soil via X-ray μ-Computed Tomography. Plant Methods 9, 1–7.spa
dc.relation.referencesMathieu, L., Lobet, G., Tocquin, P., Perilleux, C. (2015). “Rhizoponics”: A novel hydroponic rhizotron for root system analyses on mature Arabidopsis thaliana plants. Plant Methods, 11.spa
dc.relation.referencesMenzel, M. I., Tittmann, S., Bühler, J., Preis, S., Wolters, N., Jahnke, S., Walter, A., Chlubek, A., Leon, A., Hermes, N., Offenhäuser, A., Gilmer, F., Blümler, P., Schurr, U., & Krause, H. J. (2009). Non-invasive determination of plant bioma ss with microwave resonators. Plant, cell & environment, 32(4), 368–379spa
dc.relation.referencesMiyao, A. Yukimoto Y., Kitano H., Itoh J, Maekawa, M., Murata, K., Yatou, O., Nagato, Y., and Hirochika, (2006) H. “A large-scale collection of phenotypic data describing an insertional mutant population to facilitate functional analysis of rice genes,” Plant Molecular Biology, 63, (5),625–635spa
dc.relation.referencesMonforte, A. J., Diaz, A., Caño-Delgado, A., van der Knaap, E. (2014). The genetic basis of fruit morphology in horticultural crops: lessons from tomato and melon. Journal of experimental botany, 65(16), 4625–4637spa
dc.relation.referencesMooney, S., Pridmore, T., Helliwell, J., Bennett, M. (2012). Developing X-ray computed tomography to non-invasively image 3-D root systems architecture in soil. Plant Soil, 352,spa
dc.relation.referencesMu, X., Chen, F., Wu, Q., Chen, Q., Wang, J., Yuan, L., Mi, G. (2015) Genetic improvement of root growth increases maize yield via enhanced post-silking nitrogen uptake. Eur J Agron 63, 55–61.spa
dc.relation.referencesPace, J., Lee, N., Naik, H. S., Ganapathysubramanian, B., & Lübberstedt, T. (2014). Analysis of maize (Zea mays L.) seedling roots with the high-throughput image analysis tool ARIA (Automatic Root Image Analysis). PloS one, 9(9),spa
dc.relation.referencesPaez-Garcia, A., Motes, C., Scheible, W.R., Chen, R., Blancaflor, E., Monteros, M. (2015). Root Traits and Phenotyping Strategies for Plant Improvement. Plants; 4: 334–355.spa
dc.relation.referencesPardey Rodríguez, C., García Dávila, M. A., & Moreno Cortés, N. (2016). Caracterización de maíz procedente del departamento del Magdalena, Colombia. Ciencia & Tecnología Agropecuaria, 17(2), 167-190spa
dc.relation.referencesPanguluri, S.K., Kumar, A.A. (2013). Phenotyping for Plant Breeding. New York, NY: Springer New York.spa
dc.relation.referencesPecina Martínez, J. A.; M. C. Mendoza Castillo, J. A. López Santillán, F. Castillo González y M. Mendoza Rodríguez. (2009). Respuesta morfológica y fenológica de maíces nativos de Tamaulipas a ambientes contrastantes de México. Agrociencia 43 (7): 681-694spa
dc.relation.referencesPierret, A., Gonkhamdee, S., Jourdan, C., Maeght, J. L. (2013). Rhizo: An open-source software to measure scanned images of root samples. Plant Soil, 373, 531–539.spa
dc.relation.referencesPieruschka, R., Poorter, H. (2012). Phenotyping plants: genes, phenes and machines. Functional Plant Biology 39, 813–820spa
dc.relation.referencesPound, M.P., French, A.P., Atkinson, J.A., Wells, D.M., Bennett, M.J., Pridmore, T. (2013) RootNav: Navigating images of complex root architectures. Plant Physiol, 162, 1802–1814.spa
dc.relation.referencesRao, N.S., Laxman, R.H. (2013). Phenotyping horticultural crops for abiotic stress tolerance. In Climate-Resilient Horticulture: Adaptation and Mitigation Strategies; Springer: Berlin/Heidelberg, Germany, 147–157spa
dc.relation.referencesRellán-Álvarez, R., Lobet, G., Lindner, H., Pradier, P.L.M., Yee, M.-C., Sebastian, J., Geng, Y., Trontin, C., LaRue, T., Lavelle, A.S. (2015). Multidimensional mapping of root responses to soil environmental cues using a luminescence-based imaging system. bioRxiv, 016931.spa
dc.relation.referencesRich, S. M., & Watt, M. (2013). Soil conditions and cereal root system architecture: review and considerations for linking Darwin and Weaver. Journal of experimental botany, 64(5), 1193–1208.spa
dc.relation.referencesRich, S.M., Watt, M. (2013) Soil conditions and cereal root system architecture: review and considerations for linking Darwin and Weaver. J Exp Bot 64: 1193–1208.spa
dc.relation.referencesRichard, C.A., Hickey, L.T., Fletcher, S., Jennings, R., Chenu, K., Christopher, J.T. (2015) High-throughput phenotyping of seminal root traits in wheat. Plant Methods,11, 13.spa
dc.relation.referencesRichardson, A. 2011 Plant and microbial strategies to improve the phosphorus efficiency of agriculture. Plant Soil. 349, 121–156.spa
dc.relation.referencesRistova, D., Rosas, U., Krouk, G., Ruffel, S., Birnbaum, K. D., & Coruzzi, G. M. (2013). RootScape: a landmark-based system for rapid screening of root architecture in Arabidopsis. Plant physiology, 161(3), 1086–1096spa
dc.relation.referencesRubio, G., Walk, T., Ge, Z., Yan, X., Liao, H., Lynch, J.P. (2001) Root Gravitropism and below-ground competition among neighbouring plants: a modelling approach. Ann Bot 88, 929–940spa
dc.relation.referencesSchmidt, T., Pasternak, T., Liu, K., Blein, T., Aubry-Hivet, D., Dovzhenko, A., Duerr, J., Teale, W., Ditengou, F. A., Burkhardt, H., Ronneberger, O., & Palme, K. (2014). The iRoCS Toolbox--3D analysis of the plant root apical meristem at cellular resolution. The Plant journal: for cell and molecular biology, 77(5), 806–814.spa
dc.relation.referencesSerebrovsky, A. S. (1925). “Somatic segregation” in domestic fowl. J. Genet. 16 33–42.spa
dc.relation.referencesShakoor, N., Lee, S., Mockler, T. C. (2017). High throughput phenotyping to accelerate crop breeding and monitoring of diseases in the field. Current Opinion in Plant Biology, 38, 184–192.spa
dc.relation.referencesShi, L., Shi, T., Broadley, M.R., White, P.J., Long, Y., Meng, J., Xu, F., Hammond, J.P. (2013) High-throughput root phenotyping screens identify genetic loci associated with root architectural traits in Brassica napus under contrasting phosphate availabilities. Ann Bot (Lond) 112, 381–38.spa
dc.relation.referencesShrestha, R., Al-Shugeairy, Z., Al-Ogaidi, F., Munasinghe, M., Radermacher, M., Vandenhirtz, J., Price, A. (2014). Comparing simple root phenotyping methods on a core set of rice genotypes. Plant Biol. 16, 632–642spa
dc.relation.referencesSingh, V., Van Oosterom, E.J., Jordan, D.R., Messina, C.D., Cooper, M., Hammer, G.L. (2010). Morphological and architectural development of root systems in sorghum and maize. Plant and Soil 333 (1-2), 287-299.spa
dc.relation.referencesStanfield, W.D. (1971). Genetics. Theory and 440 solved problems. Segunda ed. Serie Schaum, McGraw-Hill, México, 405spa
dc.relation.referencesThomas, C. L., Graham, N. S., Hayden, R., Meacham, M. C., Neugebauer, K., Nightingale, M., Broadley, M. R. (2016). High‐throughput phenotyping (HTP) identifies seedling root traits linked to variation in seed yield and nutrient capture in field‐grown oilseed rape (Brassica napus L.). Annals of Botany, 118(4), 655–665spa
dc.relation.referencesTrachsel, S., Kaeppler, S.M., Brown, K.M. (2010) Shovelomics: high throughput phenotyping of maize (Zea mays L.) root architecture in the field. Plant Soil 341, 75–87.spa
dc.relation.referencesTrachsel, S., Kaeppler, S.M., Brown, K.M., Lynch, J.P. (2013). Maize root growth angles become steeper under low N conditions. Field Crops Research 140, 18–31.spa
dc.relation.referencesvan der Weele, C. M., Jiang, H. S., Palaniappan, K. K., Ivanov, V. B., Palaniappan, K., & Baskin, T. I. (2003). A new algorithm for computational image analysis of deformable motion at high spatial and temporal resolution applied to root growth. Roughly uniform elongation in the meristem and also, after an abrupt acceleration, in the elongation zone. Plant physiology, 132(3), 1138–1148spa
dc.relation.referencesVoss-Fels, K.P., Snowdon, R.J., Hickey, L.T. (2018) Designer Roots for Future Crops. Trends Plant Sci. 23, 957–960.spa
dc.relation.referencesWalter, A., Silk, W.K., Schurr, U. (2009) Environmental effects on spatial and temporal patterns of leaf and root growth. Ann. Rev. Plant Biol., 60, 279–304.spa
dc.relation.referencesWang, L., Uilecan, I.V., Assadi, A.H., Kozmik, C.A., Spalding, E.P. (2009) HYPOTrace: Image Analysis Software for Measuring Hypocotyl Growth and Shape Demonstrated on Arabidopsis Seedlings Undergoing Photomorphogenesis. Plant Physiology 149,1632–1637.spa
dc.relation.referencesWasson, P., Richards, A., Chatrath, R., Misra, C., Prasad, S., Rebetzke, G.J., Kirkegaard, J.A., Christopher, J., Watt, M. (2012). Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops. Journal of Experimental Botany 63, (pp.3485–3498)spa
dc.relation.referencesZeng, G., Birchfield, S. T., & Wells, C. E. (2008). Automatic discrimination of fine roots in minirhizotron images. The New phytologist, 177(2), 549–557.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.lembCorn - Roots -Anatomy
dc.subject.lembMaíz - Anatomía de las raíces
dc.subject.proposalFenotipadospa
dc.subject.proposalArquitectura del sistema de raícesspa
dc.subject.proposalImágenes digitalesspa
dc.subject.proposalSoftware RESTspa
dc.subject.proposalPhenotypingeng
dc.subject.proposalDigital imagingeng
dc.subject.proposalRoot system architectureeng
dc.titleFenotipado de alto rendimiento mediante el análisis de imágenes digitales en raíces de maíz (Zea mays L.)spa
dc.title.translatedHigh -throughput phenotyping using digital image analysis in maize rootseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1064995892.2021.pdf
Tamaño:
2.41 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Agrarias

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: