Análisis de datos longitudinales con muestreo destructivo:una perspectiva desde los modelos lineales mixtos

dc.contributor.advisorMelo Martínez, Oscar Orlandospa
dc.contributor.authorAvellaneda García, Camilo Andrésspa
dc.contributor.corporatenameUniversidad Nacional de Colombiaspa
dc.date.accessioned2020-08-21T22:44:03Zspa
dc.date.available2020-08-21T22:44:03Zspa
dc.date.issued2020-02-01spa
dc.description.abstractEn este documento se realiza una comparación de modelos de regresión para el caso en donde se tienen datos longitudinales con muestreo destructivo de unidades observacionales, las cuales provienen de unidades experimentales que son medidas en todos los tiempos del análisis. La comparación se hace a partir de modelos de regresión con efectos fijos y mixtos, entre los cuales se encuentra un símil que se utiliza para datos denominados como pseudo-panel, y uno de análisis de varianza multivariado. Para comparar los modelos se utilizó el cuadrado medio del error. Esto se realizó mediante simulación y una aplicación a datos de la vida real que hacen referencia a los puntajes en las pruebas Saber 11 aplicadas a estudiantes en Colombia.spa
dc.description.abstractIn this work I make a comparison of regression models for the case where we have longitudinal data with destructive sampling of observational units which come from experimental units that are measured in every time of the analysis. The comparision is made from linear models of fixed and mixed effects, using a model used for pseudo-panel data too, and one corresponding to the multivariate analysis of variance case. To carry out the comparison between the different models I use the mean square error. It was made through simulation and using the scores of the test Saber 11 applied to students in Colombia.spa
dc.description.additionalLínea de investigación Diseñó Experimentalspa
dc.description.degreelevelMaestríaspa
dc.format.extent69spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78161
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Estadísticaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Estadísticaspa
dc.relation.referencesAntman, F. & McKenzie, D. J. (2007), ‘Earnings mobility and measurement error: Apseudo-panel approach’,Economic Development and Cultural Change56(1), 125–161.spa
dc.relation.referencesBates, D., M ̈achler, M., Bolker, B. & Walker, S. (2015), ‘Fitting linear mixed-effects modelsusing lme4’,Journal of Statistical Software67(1), 1–48.spa
dc.relation.referencesCanavire-Bacarreza, G. & Robles, M. (2017), `Non-parametric analysis of poverty duration using repeated cross section: an application for Peru', Applied Economics 49(22), 2141{ 2152.spa
dc.relation.referencesCarmona, F. (2005), `Modelos lineales', Publicaci on Universidad de Barcelona, Barcelona .spa
dc.relation.referencesDavis, C. S. (2002), Statistical methods for the analysis of repeated measurements, Springer Science and Business Media, New York.spa
dc.relation.referencesDeaton, A. (1985), `Panel data from time series of cross-sections', Journal of Econometrics 30(1-2), 109{126.spa
dc.relation.referencesFaraway, J. J. (2016), Extending the linear model with R: generalized linear, mixed e ects and nonparametric regression models, Chapman and Hall/CRC, Boca Raton.spa
dc.relation.referencesFederer, W. T. & King, F. (2007), Variations on split plot and split block experiment designs, Vol. 654, John Wiley and Sons, Hoboken.spa
dc.relation.referencesFinch, W. H., Bolin, J. E. & Kelley, K. (2016), Multilevel modeling using R, Chapman and Hall/CRC, Boca Raton.spa
dc.relation.referencesGa lecki, A. & Burzykowski, T. (2013), Linear mixed-e ects models using R: A step-by-step approach, Springer Science and Business Media, New York.spa
dc.relation.referencesGardes, F., Duncan, G. J., Gaubert, P., Gurgand, M. & Starzec, C. (2005), `Panel and pseudo-panel estimation of cross-sectional and time series elasticities of food consumption: The case of US and polish data', Journal of Business and Economic Statistics 23(2), 242{253.spa
dc.relation.referencesGentle, J. E. (2012), Numerical linear algebra for applications in statistics, Springer Science and Business Media, New York.spa
dc.relation.referencesGenz, A., Bretz, F., Miwa, T., Mi, X., Leisch, F., Scheipl, F. & Hothorn, T. (2016), mvtnorm: Multivariate Normal and t Distributions. R package version 1.0-5. URL: http://CRAN.R-project.org/package=mvtnormspa
dc.relation.referencesHimaz, R. & Aturupane, H. (2016), `Returns to education in Sri Lanka: a pseudo-panel approach', Education Economics 24(3), 300{311.spa
dc.relation.referencesHinkelmann, K. (2011), Design and analysis of experiments, special designs and applications, Vol. 3, John Wiley and Sons, Blacksburg.spa
dc.relation.referencesMinTic (2020), `Datos abiertos Colombia', urlhttps://www.datos.gov.co. Accedido 01-08- 2019.spa
dc.relation.referencesMonroy, L. G. D. & Rivera, M. A. M. (2012), Análisis estadístico de datos multivariados, Universidad Nacional de Colombia, Bogotá.spa
dc.relation.referencesMontgomery, D. C. (2017), Design and analysis of experiments, John Wiley and Sons, New York.spa
dc.relation.referencesMelo, O., López, L. & Melo, S. (2007), `Diseño de experimentos: métodos y aplicaciones', Editorial Universidad Nacional de Colombia. Bogotá.spa
dc.relation.referencesMontgomery, D. C., Peck, E. A. & Vining, G. G. (2012), Introduction to Linear Regression Analysis, Vol. 821, John Wiley and Sons, New York.spa
dc.relation.referencesPinheiro, J. & Bates, D. (2006), Mixed-e ects models in S and S-PLUS, Springer Science & Business Media, New York.spa
dc.relation.referencesPinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team (2018), nlme: Linear and Nonlinear Mixed E ects Models. R package version 3.1-131. URL: https://CRAN.R-project.org/package=nlmespa
dc.relation.referencesPropper, C., Rees, H. & Green, K. (2001), `The demand for private medical insurance in the UK: a cohort analysis', The Economic Journal 111(471), 180{200.spa
dc.relation.referencesRencher, A. C. (2003), Methods of multivariate analysis, John Wiley and Sons, Provo.spa
dc.relation.referencesRizzo, M. L. (2007), Statistical computing with R, Chapman and Hall/CRC, Bowling Green.spa
dc.relation.referencesSchabenberger, O. & Gotway, C. A. (2017), Statistical methods for spatial data analysis, Chapman and Hall/CRC, Boca Raton.spa
dc.relation.referencesSprietsma, M. (2012), `Computers as pedagogical tools in Brazil: a pseudo-panel analysis', Education Economics 20(1), 19{32.spa
dc.relation.referencesTovar, A. O., Zulaica, I. G. & N u~nez-Ant on, V. (2012), `Analysis of pseudo-panel data with dependent samples', Journal of Applied Statistics 39(9), 1921{1937.spa
dc.relation.referencesTsai, C.-H., Mulley, C. & Clifton, G. (2014), `A review of pseudo panel data approach in estimating short-run and long-run public transport demand elasticities', Transport Reviews 34(1), 102{121.spa
dc.relation.referencesUrdinola, B. P. & Ospino, C. (2015), `Long-term consequences of adolescent fertility: The colombian case', Demographic Research 32, 1487{1518.spa
dc.relation.referencesVerbeek, M. (2008), Pseudo-panels and repeated cross-sections, in `The econometrics of panel data', Springer, pp. 369{383.spa
dc.relation.referencesVerbeek, M. & Nijman, T. (1993), `Minimum mse estimation of a regression model with xed e ects from a series of cross-sections', Journal of Econometrics 59(1-2), 125{136.spa
dc.relation.referencesWei, W. W. (2006), Time series analysis, in `The Oxford Handbook of Quantitative Methods in Psychology: Vol. 2'.spa
dc.relation.referencesWest, B. T., Welch, K. B. & Galecki, A. T. (2014), Linear mixed models: a practical guide using Statistical Software, CRC Press, Boca Raton.spa
dc.relation.referencesWickham, H. (2016), ggplot2: Elegant Graphics for Data Analysis, Springer-Verlag, New York. URL: http://ggplot2.orgspa
dc.relation.referencesWickham, H., Fran cois, R., Henry, L. & M uller, K. (2019), dplyr: A Grammar of Data Manipulation. R package version 0.8.3. URL: https://CRAN.R-project.org/package=dplyrspa
dc.relation.referencesWickham, H. & Henry, L. (2018), tidyr: Easily Tidy Data with 'spread()' and 'gather()' Functions. R package version 0.8.1. URL: https://CRAN.R-project.org/package=tidyrspa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/spa
dc.subject.ddc519 - Probabilidades y matemáticas aplicadasspa
dc.subject.proposalmuestreo destructivospa
dc.subject.proposaldestructive samplingeng
dc.subject.proposalunidades observacionales y experimentalesspa
dc.subject.proposalobservational and experimental unitseng
dc.subject.proposalefectos fijosspa
dc.subject.proposalmixed effectseng
dc.subject.proposalefectos mixtosspa
dc.subject.proposalmultivariate analysis of varianceeng
dc.subject.proposalefectos mixtosspa
dc.subject.proposalmean square erroreng
dc.subject.proposallongitudinal dataeng
dc.subject.proposalanálisis de varianza multivariadospa
dc.subject.proposalcuadrado medio del errorspa
dc.subject.proposaldatos longitudinalesspa
dc.titleAnálisis de datos longitudinales con muestreo destructivo:una perspectiva desde los modelos lineales mixtosspa
dc.title.alternativeAnalysis of longitudinal data with destructive sampling: a perspective using linear mixed modelsspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1018465894.2020.pdf
Tamaño:
4.03 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: