A view toward the geometry of normalizing sequences in finitely semi-graded algebras

dc.contributor.advisorReyes Villamil, Milton Armandospa
dc.contributor.authorRubiano Suarez, Andrés Alejandrospa
dc.contributor.researchgroupSAC2spa
dc.date.accessioned2020-09-11T16:34:36Zspa
dc.date.available2020-09-11T16:34:36Zspa
dc.date.issued2020-05-15spa
dc.description.abstractEn este trabajo vemos el comportamiento de la sucesión normalizadora en álgebras semi-graduadas. Primero, definimos la sucesión regular y el complejo de Koszul en el caso conmutativo. Usando la variedad de ideales máximos, llegamos a una geometría entre las subvariedades y las sucesiones regulares en álgebras graduadas. Luego, pasamos al caso no conmutativo. Definimos la sucesión normalizadora y vemos que está relacionada con la altura de un ideal. Luego, vemos que la sucesión normalizadora aparece en álgebras de Clifford torcidas graduadas. Además, definimos los módulos punto derechos y el zero locus. Con estas definiciones, vemos la relación entre el zero locus con las sucesiones normalizadoras en álgebras graduadas. Presentamos el contexto de álgebras finitamente semi-graduadas y la geometría de la sucesión normalizadora en este caso. Así, definimos el concepto de anillo finitamente semi-graduado y álgebra finitamente semi-graduada. Vemos que las extensiones PBW torcidas son anillos finitamente semi-graduados. También, vemos la aparición de la sucesión normalizadoras en un tipo de álgebra semi-graduada. Para esto, consideramos la teoría del álgebra envolvente universal de un álgebra de Lie. Definimos un álgebra completamente solucionable, un anillo de fracciones y llegamos a algunas propiedades en las que aparece la sucesión normalizadora. Finalmente, vemos cómo los módulos de puntos pueden parametrizarse con un cierto esquema en el caso de álgebras graduadas. Con la ayuda de esto, llegamos al objetivo principal de este trabajo, que es ver la geometría de las sucesiones normalizadoras en ciertas álgebras finitamente semi-graduadas. Aquí, encontramos una geometría de las sucesiones normalizadoras en las extensiones PBW torcidas graduadas. Luego, se deja una vía para continuar investigando las geometría de las sucesiones normalizadoras en objetos semigraduados más generales.spa
dc.description.abstractIn this work, we see the behavior of normalizing sequence in semi-graded algebras. First, we define regular sequence and the Koszul complex in commutative case. Using the variety of maximal ideals a geometry is reached between the sub-varieties and regular sequences in graded algebras. Then, we turn to non-commutative case. The normalizing sequence is defined and we see that it appears related to the height of an ideal. Then we see that the normalizing sequence appears in graded skew Clifford algebras. Also, we define the right point modules and the zero locus. With these definitions, we consider the relation between the zero locus with the normalizing sequences in graded algebras. We present the context of finitely semi-graded algebras and geometry of normalizing sequence in this case. Thus, we define the concept of finitely semi-graded ring and finitely semi-graded algebra. We note that skew PBW extension are finitely semi-graded rings. Also, we see the appearance of normalizing sequence in a type of semi-graded algebra. For this, we consider the theory of the universal enveloping algebra of a Lie algebra. We define a completely solvable algebra, a ring of fractions and we arrive at some properties in which the normalizing sequence appears. Finally, we see how point modules can be parameterized with a certain scheme in the case of graded algebras. With the help of this, we get to the main purpose of this work, which is to see the geometry of the normalizing sequences in certain finitely semi-graded algebras. Here, we find a geometry of the normalizing sequences in graded skew PBW extensions. Then, a way is left to continue investigating the geometry of normalizing sequences in more general semi-graded objects.spa
dc.description.degreelevelMaestríaspa
dc.format.extent117spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78449
dc.language.isoengspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Matemáticasspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Matemáticasspa
dc.relation.referencesV. Artamonov, O. Lezama, and W. Fajardo. Extended modules and Ore extensions. Commun. Math. Stat., 4(2):189–202, 2016.spa
dc.relation.referencesV. Artamonov. Derivations of Skew PBW Extensions. Commun. Math. Stat., 3(4):449–457, 2015.spa
dc.relation.referencesK. Ajitabh, S. Smith, and J. Zhang. Auslander-Gorenstein rings. Comm. Algebra, 26(7):2159–2180, 1998.spa
dc.relation.referencesM. Artin, J. Tate, and M. Van den Bergh. Some Algebras associated to Automorphisms of Elliptic Curves. In The Grothendieck Festschrift, pages 33–85. Springer, 2007.spa
dc.relation.referencesA. Bell and K. Goodearl. Uniform rank over differential operator rings and Poincaré-Birkhoff-Witt extensions. Pac. J. Math., 131(1):13–37, 1988.spa
dc.relation.referencesG. Bellamy, D. Rogalski, T. Schedler, J. Stafford, and M. Wemyss. Noncommutative Algebraic Geometry, volume 64. Cambridge University Press, 2016.spa
dc.relation.referencesP. Cohn. A Remark on the Birkhoff-Witt Theorem. J. Lond. Math. Soc., s1-38(1):197–203, 01 1963.spa
dc.relation.referencesT. Cassidy and M. Vancliff. Generalizations of Graded Clifford Algebras and of Complete Intersections. J. Lond. Math. Soc., 81(1):91–112, 2010.spa
dc.relation.referencesT. Cassidy and M. Vancliff. Corrigendum: Generalizations of Graded Clifford Algebras and of Complete Intersections. J. Lond. Math. Soc., 90(2):631–636, 2014.spa
dc.relation.referencesB. Doran, P. Flajolet, M. Ismail, TY Lam, and E. Lutwak. Categorical foundations: special topics in order, topology, algebra, and sheaf theory, volume 97. Cambridge University Press, 2004.spa
dc.relation.referencesV. Futorny and S. Ovsienko. Kostant’s theorem for special filtered algebras. Bull. Lond. Math. Soc., 37(2):187–199, 2005.spa
dc.relation.referencesC. Gallego and O. Lezama. Gröbner Bases for Ideals of -PBW Extensions. Comm. Algebra, 39(1):50–75, 2010.spa
dc.relation.referencesG. Greuel and G. Pfister. A Singular Introduction to Commutative Algebra. Springer Science & Business Media, 2012.spa
dc.relation.referencesK. Goodearl and R. Warfield Jr. An Introduction to Noncommutative Noetherian Rings, volume 61. Cambridge University Press, 2004.spa
dc.relation.referencesR. Hartshorne. Algebraic Geometry, volume 52. Springer Science & Business Media, 2013.spa
dc.relation.referencesP. Higgins. Baer Invariants and the Birkhoff-Witt Theorem. J. Algebra, 11(4):469–482, 1969.spa
dc.relation.referencesT. Hungerford. Algebra. 1974. Grad. Texts in Math, 1974.spa
dc.relation.referencesA. Kirillov. An Introduction to Lie Groups and Lie Algebras, volume 113. Cambridge University Press, 2008.spa
dc.relation.referencesA. Knapp. Lie Groups Beyond an Introduction, volume 140. Springer Science & Business Media, 2013.spa
dc.relation.referencesA. Knutson, T. Tao, et al. Puzzles and (equivariant) cohomology of Grassmannians. Duke Math. J., 119(2):221–260, 2003.spa
dc.relation.referencesO. Lezama, J. Acosta, and A. Reyes. Prime Ideals of Skew PBW Extensions. Rev. Un. Mat. Argentina, 56(2):39–55, 2015.spa
dc.relation.referencesT. Leinster. Basic Category Theory, volume 143. Cambridge University Press, 2014.spa
dc.relation.referencesT. Levasseur. Some properties of non-commutative regular graded rings. Glasg. Math. J., 34(3):277–300, 1992.spa
dc.relation.referencesO. Lezama. Cuadernos de álgebra, Volumen 2: Anillos y Módulos, Categorías, álgebra Homológica, álgebra no Conmutativa, Geometría Algebraica.spa
dc.relation.referencesO. Lezama. Some Homological Properties of Skew PBW Extensions arising in Non-Commutative Algebraic Geometry. Discuss. Math. Gen. Algebra Appl., 37(1):45–57, 2017.spa
dc.relation.referencesO. Lezama. Some open problems in the context of skew PBW extensions and semi-graded rings. arXiv preprint arXiv:1908.04880, 2019.spa
dc.relation.referencesO. Lezama. Computation of Point Modules of Finitely Semi-Graded Rings. Comm. Algebra, 48(2):866–878, 2020.spa
dc.relation.referencesO. Lezama, W. Fajardo, C. Gallego, A. Reyes, H. Suárez, and H. Venegas. Skew PBW Extensions, Ring and Module Theoretic Properties, Matrix and Gröebner Methods and Applications. To be published by Springer.spa
dc.relation.referencesO. Lezama and J. Gómez. Koszulity and Point Modules of Finitely Semi- Graded Rings and Algebras. Symmetry, 11(7):881, 2019.spa
dc.relation.referencesO. Lezama and E. Latorre. Non-Commutative Algebraic Geometry of Semi- Graded Rings. Internat. J. Algebra Comput., 27(04):361–389, 2017.spa
dc.relation.referencesO. Lezama and H. Venegas. Gelfand-Kirillov Dimension for Rings. São Paulo J. Math.Sci., 14(1):207–222, 2020.spa
dc.relation.referencesP. Morandi. Examples of Localization. Class notes, 1998.spa
dc.relation.referencesJ. McConnell, J. Robson, and L. Small. Noncommutative Noetherian Rings, volume 30. American Mathematical Society, 2001.spa
dc.relation.referencesB. Nathanson. An elementary proof for the Krull dimension of a polynomial ring. Amer. Math. Monthly, 125(7):623–637, 2018.spa
dc.relation.referencesA. Niño and A. Reyes. Some Ring Theoretical Properties of Skew Poincaré- Birkhoff-Witt Extensions. Bol. Mat., 24(2):131–148, 2017.spa
dc.relation.referencesP. Nuss. L’homologie cyclique des algèbres enveloppantes des algèbres de lie de dimension trois. J. Pure Appl. Algebra, 73(1):39–71, 1991.spa
dc.relation.referencesM. Nafari and M. Vancliff. Graded Skew Clifford Algebras that are twists of Graded Clifford Algebras. Comm. Algebra, 43(2):719–725, 2015.spa
dc.relation.referencesO. Ore. Theory of non-commutative polynomials. Ann. of Math., pages 480– 508, 1933.spa
dc.relation.referencesA. Reyes. Gelfand-Kirillov Dimension of Skew PBW Extensions. Rev. Colombiana Mat., 47(1):95–111, 2013.spa
dc.relation.referencesA. Reyes. Ring and Module Theoretical Properties of Skew PBW Extensions. PhD, National University of Colombia, Bogotá, Colombia, 2013.spa
dc.relation.referencesA. Reyes. Uniform Dimension over Skew PBW Extensions. Rev. Colombiana Mat., 48(1):79–96, 2014.spa
dc.relation.referencesA. Rosenberg. Noncommutative Algebraic Geometry and Representations of Quantized Algebras, volume 330. Springer Science & Business Media, 2013.spa
dc.relation.referencesJ. Rotman. An Introduction to Homological Algebra. Springer Science & Business Media, 2008.spa
dc.relation.referencesA. Rubiano and A. Reyes. On Graded Skew Clifford Algebras and Graded Skew PBW Extensions. preprint.spa
dc.relation.referencesA. Reyes and H. Suárez. Some Remarks about the Cyclic Homology of Skew PBW Extensions. Ciencia en Desarrollo, 7(2):99–107, 2016.spa
dc.relation.referencesA. Reyes and H. Suárez. Bases for Quantum Algebras and Skew Poincaré- Birkhoff-Witt Extensions. Momento, 1(54):54–75, 2017.spa
dc.relation.referencesA. Reyes and H. Suárez. Enveloping algebra and skew Calabi-Yau algebras over skew Poincaré–Birkhoff–Witt extensions. Far East J. Math. Sci. (FJMS), 102(2):373–397, 2017.spa
dc.relation.referencesH. Samelson. Notes on Lie Algebras. Springer Science & Business Media, 2012.spa
dc.relation.referencesH. Suárez, O. Lezama, and A. Reyes. Calabi-Yau property for graded skew PBW extensions. Rev. Colombiana Mat., 51(2):221–239, 2017.spa
dc.relation.referencesH. Suárez and A. Reyes. Koszulity for Skew PBW Extensions over Fields. JP J. Algebra Number Theory Appl., 39(2):181–203, 2017.spa
dc.relation.referencesH. Suárez and M. Reyes. A generalized Koszul property for skew PBW extensions. Far East J. Math. Sci. (FJMS), 101(2):301–320, 2017.spa
dc.relation.referencesH. Suárez. Koszulity for Graded Skew PBW Extensions. Comm. Algebra, 45(10):4569–4580, 2017.spa
dc.relation.referencesB. Shelton and M. Vancliff. Schemes of Line Modules I. J. Lond. Math. Soc., 65(3):575–590, 2002.spa
dc.relation.referencesM. Vancliff. The Interplay of Algebra and Geometry in the Setting of Regular Algebras. Commut. Algebra and Noncommut. Algebra. Geom., 6:371–390, 2015.spa
dc.relation.referencesM. Vancliff. On the Notion of Complete Intersection Outside the Setting of Skew Polynomial Rings. Comm. Algebra, 43(2):460–470, 2015.spa
dc.relation.referencesP. Veerapen. Graded Clifford Algebras and Graded Skew Clifford Algebras and Their Role in the Classification of Artin–Schelter Regular Algebras. Adv. Appl. Clifford Algebr., 27(3):2855–2871, 2017.spa
dc.relation.referencesM. Vancliff and K. Van Rompay. Embedding a Quantum Nonsingular Quadric in a Quantum P3. J. Algebra, 195(1):93–129, 1997.spa
dc.relation.referencesC. Weibel. An Introduction to Homological Algebra. Number 38. Cambridge University Press, 1995.spa
dc.relation.referencesJ. Zhang. A note on GK dimension of skew polynomial extensions. Proc. Amer. Math. Soc., 125(2):363–373, 1997.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc510 - Matemáticasspa
dc.subject.proposalNormalizing sequenceeng
dc.subject.proposalSucesión normalizadoraspa
dc.subject.proposalSemi-graded algebraeng
dc.subject.proposalÁlgebra semigraduadaspa
dc.subject.proposalSucesión regularspa
dc.subject.proposalRegular sequenceeng
dc.subject.proposalSheafeng
dc.subject.proposalHazspa
dc.subject.proposalEsquemaspa
dc.subject.proposalSchemeeng
dc.subject.proposalMódulo puntospa
dc.subject.proposalPoint moduleeng
dc.titleA view toward the geometry of normalizing sequences in finitely semi-graded algebrasspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Trabajo final maestria.pdf
Tamaño:
1.3 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: