Estudio de potenciales insecticidas derivados de especies aromáticas con alto contenido de monoterpenoides para el control de Sitophilus Zeamais y Tribolium Castaneum

dc.contributor.advisorPatiño Ladino, Oscar Javierspa
dc.contributor.advisorPrieto Rodríguez, Juliet Angélicaspa
dc.contributor.authorSierra Quitian, Andrés Germánspa
dc.contributor.orcidSierra Quitian, Andrés Germán [0000000319015133]spa
dc.date.accessioned2025-03-18T15:55:30Z
dc.date.available2025-03-18T15:55:30Z
dc.date.issued2025
dc.descriptionilustraciones, diagramas, fotografías a color, tablasspa
dc.description.abstractLos cereales desempeñan un papel importante en la seguridad alimentaria mundial ya que son una excelente fuente de nutrientes y pueden almacenarse durante largos períodos de tiempo. Sin embargo, durante la etapa de almacenamiento suelen presentarse los mayores problemas fitosanitarios que reducen la calidad de los cereales y que generalmente se asocian a diversos tipos de plagas, que incluyen insectos, roedores y microorganismos. Entre los insectos se destacan S. zeamais y T. castaneum por su distribución cosmopolita y por los daños que ocasionan en diversos cereales y productos de molienda. Para su control se suelen utilizar diversos productos sintéticos, muchos de los cuales suelen ser muy tóxicos para la salud humana y a nivel ambiental son poco selectivos, tienen problemas de acumulación y por su uso indiscriminado ha crecido la resistencia por parte de los insectos hacia los insecticidas. En la búsqueda de insecticidas eficaces y seguros para el control de este tipo de plagas de productos almacenados, los aceites esenciales (AEs) emergen como una alternativa prometedora de origen natural debido a sus propiedades fisicoquímicas, funciones ecológicas y propiedades biológicas reportadas. Entre los AEs con potencial productivo en este campo se destacan por sus altos rendimientos de extracción, composición química particular y sus propiedades insecticidas a Anethum graveolens L. (Apiaceae), Minthostachys mollis (Benth.) Griseb. (Lamiaceae), Satureja viminea L. (Lamiaceae) y Tagetes zypaquirensis Humb. & Bonpl. (Asteraceae). El presente estudio contribuye a la caracterización del potencial insecticida de estos cuatro AEs y de algunos de sus constituyentes químicos principales. En la primera etapa de la investigación se determinó el potencial insecticida frente a S. zeamais y T. castaneum de los AEs provenientes de A. graveolens, M. mollis, S. viminea y T. zypaquirensis. En este sentido los AEs fueron obtenidos mediante destilación por arrastre con vapor y se caracterizaron químicamente mediante CG-EM. Adicionalmente, se determinó la acción insecticida de algunos constituyentes químicos presentes en los AEs, algunos de los cuales fueron aislados por técnicas cromatográficas (éter de eneldo 1, oxido de piperitona 5, p-ment-3-en-8-ol 8, dihidrotagetona 9 y epóxido de mirceno 10) y otros fueron adquiridos comercialmente (R-carvona 2, D-limoneno 3, α-felandreno 4, R-pulegona 6, β-cariofileno 7 y β-mirceno 11). En una segunda etapa se establecieron algunas relaciones preliminares de estructura-actividad insecticida a partir de algunos de los monoterpenoides bioactivos presentes en los AEs. Para lo anterior fue necesario la adquisición de algunos monoterpenoides comerciales con estructura química relacionada (L-mentol 12, L-mentona 13, piperitona 14, carveol 15), la síntesis de algunos derivados (16 a 24) a partir de los constituyentes más activos (2, 5 y 6) y la determinación de la acción insecticida frente a S. zeamais y T. castaneum. Finalmente, en la tercera etapa del estudio se desarrolló una formulación de un insecticida encapsulado con los AEs de S. viminea y M. mollis, empleando el método de coprecipitación y usando β-ciclodextrina como matriz. Los complejos de inclusión (CI) obtenidos fueron caracterizados fisicoquímicamente y sus propiedades insecticidas determinadas sobre ambos insectos. Los resultados de composición química de los AEs permitieron establecer como componentes principales a éter de eneldo (28.56%), α-felandreno (25.78%) y R-carvona (23.67%) para A. graveolens, óxido de piperitona (30.40%) y pulegona (25.91%) en M. mollis, pulegona (37.40%) y p-ment-3-en-8-ol (11.83%) para S. viminea y dihidrotagetona (32.13%), epóxido de mirceno (19.64%) y β-mirceno (5.30%) en T. zypaquirensis. Los resultados destacan la acción fumigante (CL50) y la toxicidad por contacto (DL50) del AE de M. mollis contra T. castaneum (CL50 de 4.8 μL/L de aire y DL50 de 6.5 μg/insecto) y S. zeamais (CL50 de 7.0 μL/L de aire y DL50 de 5.81 μg/insecto). Este estudio describe el primer reporte sobre la actividad insecticida de los AEs de A. graveolens (contacto), M. mollis y S. viminea (de contacto y fumigante) contra T. castaneum, la toxicidad fumigante de M. mollis sobre S. zeamais y la acción insecticida del AE de T. zypaquirensis contra los dos insectos. Entre los constituyentes químicos evaluados, la R-carvona 2, el óxido de piperitona 5 y la R-pulegona 6 se destacan por su potencial insecticida contra S. zeamais (CL50 entre 3.0 y 42.4 μL/L, mientras que la DL50 está entre 14.9 y 24.6 μg/insecto) y T. castaneum (CL50 entre 2.2 y 4.8 μL/L, mientras que la DL50 está entre 4.8 y 13.1 μg/insecto). Este estudio proporciona por primera vez datos sobre la actividad insecticida, tanto fumigante como de contacto, de los compuestos 1, 5, 8, 9 y 11 frente a S. zeamais y T. castaneum. A partir de los compuestos 2, 5 y 6 se realizó la síntesis de nueve derivados (16 a 24) por modificaciones sobre sus grupos funcionales, encontrándose que los compuestos 20, 22 y 23 destacan por su potencial insecticida contra S. zeamais (CL50 entre 41.8 y 92.9 μL/L en el ensayo fumigante, y DL50 entre 24.5 y 45.1 μg/insecto en el ensayo tópico por contacto) y contra T. castaneum (CL50 entre 1.4 y 35.2 μL/L y DL50 entre 1.9 y 17.6 μg/insecto). El análisis preliminar de relación estructura-actividad permitió evidenciar: a) la halogenación y epoxidación de los monoterpenoides disminuyeron significativamente su actividad insecticida, excepto el compuesto 21, que presentó mayor toxicidad por contacto contra T. castaneum; b) la hidrogenación del doble enlace reduce la actividad fumigante sobre los dos insectos; c) la reducción del grupo carbonilo a alcohol disminuyó la actividad mediante la metodología fumigante, destacando la importancia del grupo carbonilo en la actividad insecticida; d) la isomerización del doble enlace afectó la actividad insecticida, resaltando la relevancia de los sistemas carbonilos α,β-insaturados exocíclicos para la actividad insecticida. Finalmente, se lograron obtener los CI con los AEs de S. viminea y M. mollis, partir del desarrollo de una formulación a base de β-ciclodextrina, lo cuales mostraron actividad insecticida frente a S. zeamais y T. castaneum después de 48 h de tratamiento, alcanzando el máximo efecto entre 96 y 148 h, resaltando el potencial que tiene el CI a base del mejor AE de S. viminea con una mortalidad superior al 80% a las 120 h. Finalmente, este estudio aporta de manera significativa al desarrollo de nuevos insecticidas basados en compuestos derivados de especies aromáticas, ofreciendo alternativas prometedoras para el control de plagas en granos almacenados. Los hallazgos abren nuevas perspectivas en la búsqueda de soluciones sostenibles y efectivas para la protección de productos agrícolas, destacando el potencial de estos compuestos naturales en el manejo integrado de plagas y la reducción de dependencia en pesticidas sintéticos (Texto tomado de la fuente).spa
dc.description.abstractCereals are crucial to global food security due to their rich nutrient content and long-term storage capability. However, during the storage phase, the greatest phytosanitary issues typically arise, which reduce cereal quality and are generally associated with various types of pests, including insects, rodents, and microorganisms. Among the insects, S. zeamais and T. castaneum stand out due to their cosmopolitan distribution and the damage they cause to various cereals and milling products. Various synthetic products are commonly used for their control, many of which are highly toxic to human health, environmentally non-selective, prone to accumulation issues, and have led to resistant insects due to indiscriminate use. In the search for effective and safe insecticides to control such pests in stored products, essential oils (EOs) emerge as a promising natural alternative due to their physicochemical properties, ecological functions and biological activities. Among the EOs with productive potential in this field, those from Anethum graveolens L. (Apiaceae), Minthostachys mollis (Benth.) Griseb. (Lamiaceae), Satureja viminea L. (Lamiaceae), and Tagetes zypaquirensis Humb. & Bonpl. (Asteraceae) stand out for their high extraction yields, unique chemical composition, and insecticidal properties. This study contributes to the characterization of the insecticidal potential of these four EOs and some of their main chemical constituents. In the first phase of the research, the insecticidal potential against S. zeamais and T. castaneum of the EOs from A. graveolens, M. mollis, S. viminea, and T. zypaquirensis was determined. The EOs were obtained by steam distillation and chemically characterized using GC-MS. Additionally, the insecticidal activity of some chemical constituents present in the EOs was determined, some of which were isolated by chromatographic techniques (dill ether 1, piperitone oxide 5, p-menth-3-en-8-ol 8, dihydrotagetone 9, and myrcene epoxide 10), while others were commercially acquired (R-carvone 2, D-limonene 3, α-phellandrene 4, R-pulegone 6, β-caryophyllene 7, and β-myrcene 11). In a second phase, preliminary structure-activity relationships of the insecticidal activity of some bioactive monoterpenoids present in the EOs were established. For this, several commercial monoterpenoids with related chemical structures were acquired (L-menthol 12, L-menthone 13, piperitone 14, carveol 15), and several derivatives (16 to 24) were synthesized from the most active constituents (2, 5, and 6). The insecticidal activity against S. zeamais and T. castaneum was then determined. Finally, in the third phase of the study, an encapsulated insecticide formulation was developed using the EOs of S. viminea and M. mollis, employing the co-precipitation method and using β-cyclodextrin as the matrix. The resulting inclusion complexes (ICs) were physicochemically characterized, and their insecticidal properties were assessed against both insects. The chemical composition results of the EOs identified dill ether (28.56%), α-phellandrene (25.78%), and carvone (23.67%) as the main components of A. graveolens; piperitone oxide (30.40%) and pulegone (25.91%) in M. mollis; pulegone (37.40%) and p-menth-3-en-8-ol (11.83%) for S. viminea; and dihydrotagetone (32.13%), myrcene epoxide (19.64%), and β-myrcene (5.30%) in T. zypaquirensis. The results highlight the fumigant action (LC50) and contact toxicity (LD50) of M. mollis EO against T. castaneum (LC50 of 4.8 μL/L of air and LD50 of 6.5 μg/insect) and S. zeamais (LC50 of 7.0 μL/L of air and LD50 of 5.81 μg/insect). This study reports for the first time the insecticidal activity of A. graveolens (contact), M. mollis, and S. viminea (contact and fumigant) EOs against T. castaneum, the fumigant toxicity of M. mollis against S. zeamais, and the insecticidal action of T. zypaquirensis EO against both insects. Among the evaluated chemical constituents, R-carvone 2, piperitone oxide 5, and R-pulegone 6 stood out for their insecticidal potential against S. zeamais (LC50 ranging from 3.0 to 42.4 μL/L, while the LD50 ranged from 14.9 to 24.6 μg/insect) and T. castaneum (LC50 ranging from 2.2 to 4.8 μL/L, while the LD50 ranged from 4.8 to 13.1 μg/insect). This study provides the first data on the fumigant and contact insecticidal activity of compounds 1, 5, 8, 9, and 11 against S. zeamais and T. castaneum. Nine derivatives (16 to 24) were synthesized from compounds 2, 5, and 6 through simple modifications of their functional groups, with compounds 20, 22, and 23 showing promising insecticidal potential against S. zeamais (LC50 ranging from 41.8 to 92.9 μL/L in the fumigant assay and LD50 from 24.5 to 45.1 μg/insect in the topical contact assay) and T. castaneum (LC50 ranging from 1.4 to 35.2 μL/L and LD50 from 1.9 to 17.6 μg/insect). Preliminary structure-activity relationship analysis revealed: a) halogenation and epoxidation of the monoterpenoids significantly decreased their insecticidal efficacy, except for compound 21, which exhibited greater contact toxicity against T. castaneum; b) hydrogenation of the double bond reduced fumigant activity on both insects; c) reduction of the carbonyl group to an alcohol diminished fumigant activity, highlighting the importance of the carbonyl group in insecticidal activity; d) double bond isomerization affected insecticidal activity, emphasizing the relevance of exocyclic α,β-unsaturated carbonyl systems for insecticidal activity. Finally, the ICs with the EOs of S. viminea and M. mollis were obtained, which showed insecticidal activity against S. zeamais and T. castaneum after 48 hours of treatment, with maximum effects observed between 96 and 148 hours. The IC based on S. viminea EO stood out with over 80% mortality at 120 hours. This study significantly contributes to the development of new insecticides based on compounds derived from aromatic species, offering promising alternatives for controlling pests in stored grains. The findings open new perspectives in the search for sustainable and effective solutions for agricultural product protection, highlighting the potential of these natural compounds in integrated pest management and reducing dependency on synthetic pesticides.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Químicaspa
dc.description.methodsEl análisis CG-EM se realizó en un cromatógrafo de gases Shimadzu GC 2010 Plus, el cual estaba acoplado a un detector selectivo de masas GCMS-TQ 8040 (Shimadzu© , Kioto, Japón) en modo de impacto electrónico (IE), operando a 70 eV con un analizador de cuadrupolo en modo de escaneo completo a 4.57 s⁻¹. Los espectros de masas se adquirieron en el rango de 40 a 400 m/z. Se realizaron dos análisis diferentes para los AEs utilizando dos columnas de polaridad ortogonal: columna DB-5MS ((5%)-fenilmetilpolisiloxano, 60 m × 0.25 mm × 0.25 μm) y columna HP-INNOWax (polietilenglicol (PEG), 60 m × 0.25 mm × 0.25 μm) adquiridas de Agilent Technologies (Santa Clara, CA, EE. UU.). Los índices de retención (IR) se calcularon usando una solución estándar de alcanos (C7–C40) a 1000 ppm adquirida en Sigma-Aldrich© (Saint Louis, MO, EE. UU.). El aislamiento y purificación de los compuestos químicos presentes en los AEs y de los compuestos obtenidos mediante modificaciones sintéticas se realizó mediante Cromatografía Flash (CF) en sílice gel SiliaFlash® P60 de tamaño 25–40 μm (SiliCycle® Inc., Quebec, QC, Canadá). Los estudios cromatográficos, el monitoreo de las CF y el control de pureza se realizaron por cromatografía en capa delgada (CCD) utilizando placas de aluminio SiliaPlateTM recubiertas con sílice gel P60 F254 de tamaño 5–20 μm (SiliCycle ® Inc., Quebec, QC, Canadá), utilizando luz UV (254 y 365 nm) vapores de yodo y una solución de 0.1% de vainillina en H2SO4. Se empleó un evaporador rotativo Heidolph HeiVAP (Heidolph Instruments GmbH & Co. KG, Schwabach, Alemania) en los procesos de eliminación y recuperación de solventes. Los solventes utilizados en las separaciones cromatográficas fueron adquiridos comercialmente en calidad técnica y fueron destilados y secados, antes de su uso. Los demás reactivos empleados en este estudio fueron adquiridos comercialmente y utilizados sin purificación previa. Los compuestos aislados y sintetizados se caracterizaron por sus propiedades físicas, espectros de RMN y por comparación con datos de la literatura. Las rotaciones ópticas fueron medidas en un polarímetro Atago® Polax-2L (Fukuya, Saitama, Japón) a 25 °C usando una lámpara de sodio a una longitud de onda de 589 nm. Las mediciones de RMN se realizaron en un equipo Bruker Advance AC-400 operado a 400 MHz para ¹H y a 100 MHz para APT a 25 °C (Bruker® , Hamburgo, Alemania), y utilizando cloroformo deuterado (CDCl3) como disolvente. Los desplazamientos químicos (δ) se expresan en partes por millón (ppm), y las constantes de acoplamiento (J) en Hertz (Hz). Se utilizaron las siguientes abreviaturas para indicar la multiplicidad de los desplazamientos químicos: s = singlete, d = doblete, dd = doble doblete, ddd = doble doble doblete, td = triple doblete, tdd = triple doble doblete, t = triplete, q = cuarteto, m = multiplete, brs = singlete ancho. Las eficiencias de encapsulación fueron medidas a través de un lector de microplacas Thermo Scientific Multiskan GO con la ayuda de un plato µDropTM (Thermo Scientific© , Waltham, MA, EE. UU.). La composición química de las sustancias encapsuladas se hizo mediante análisis de CG-EM, en el equipo previamente descrito. El análisis espectroscópico de los complejos de inclusión (CI) se realizó mediante análisis de RMN utilizando el quipo descrito anteriormente. El análisis de infrarrojo (IR) se realizó utilizando un espectrofotómetro Shimadzu modelo MIRACLE 10 ZnSe (Shimadzu© , Kyoto, Japón). Los análisis termogravimétricos se midieron utilizando una termobalanza. del sistema TGA/DSC de marca TA instrument SDT-Q600 (WatersTM, Lukens, New Castle. EE. UU.).spa
dc.description.researchareaQuímica de Productos Naturalesspa
dc.format.extent176 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87683
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Químicaspa
dc.relation.referencesZou, X.; Zhang, J.; Cheng, T.; Guo, Y.; Zhang, L.; Han, X.; Liu, C.; Wan, Y.; Ye, X.; Cao, X.; et al. New Strategies to Address World Food Security and Elimination of Malnutrition: Future Role of Coarse Cereals in Human Health. Front Plant Sci 2023, 14, 1301445, doi:10.3389/FPLS.2023.1301445/BIBTEX.spa
dc.relation.referencesGrote, U.; Fasse, A.; Nguyen, T.T.; Erenstein, O. Food Security and the Dynamics of Wheat and Maize Value Chains in África and Asia. Front Sustain Food Syst 2021, 4, 617009, doi:10.3389/FSUFS.2020.617009/BIBTEX.spa
dc.relation.referencesFAO Situación Alimentaria Mundial. Available online: https://www.fao.org/worldfoodsituation/csdb/es (accessed on 7 July 2024).spa
dc.relation.referencesColombia Corn Area, Yield and Production Available online: https://ipad.fas.usda.gov/countrysummary/Default.aspx?id=CO&crop=Corn (accessed on 7 July 2024).spa
dc.relation.referencesCorn | USDA Foreign Agricultural Service Available online: https://fas.usda.gov/data/production/commodity/0440000 (accessed on 7 July 2024).spa
dc.relation.referencesNirmala Prasadi, V.P.; Joye, I.J. Dietary Fibre from Whole Grains and Their Benefits on Metabolic Health. Nutrients 2020, 12, 3045, doi:10.3390/NU12103045.spa
dc.relation.referencesPandey, A.K.; Kumar, P.; Saxena, M.J.; Maurya, P. Distribution of Aromatic Plants in the World and Their Properties. Feed Additives: Aromatic Plants and Herbs in Animal Nutrition and Health 2020, 89–114, doi:10.1016/B978-0-12-814700-9.00006-6.spa
dc.relation.referencesNath, B.; Chen, G.; O’Sullivan, C.M.; Zare, D. Research and Technologies to Reduce Grain Postharvest Losses: A Review. Foods 2024, 13, 1875, doi:10.3390/FOODS13121875.spa
dc.relation.referencesAbass, A.B.; Ndunguru, G.; Mamiro, P.; Alenkhe, B.; Mlingi, N.; Bekunda, M. Post-Harvest Food Losses in a Maize-Based Farming System of Semi-Arid Savannah Area of Tanzania. J Stored Prod Res 2014, 57, 49–57, doi:10.1016/J.JSPR.2013.12.004.spa
dc.relation.referencesCorrêa, A.S.; Pereira, E.J.G.; Cordeiro, E.M.G.; Braga, L.S.; Guedes, R.N.C. Insecticide Resistance, Mixture Potentiation and Fitness in Populations of the Maize Weevil (Sitophilus Zeamais). Crop Protection 2011, 30, 1655–1666, doi:10.1016/J.CROPRO.2011.08.022.spa
dc.relation.referencesPointer, M.D.; Spurgin, L.G.; Gage, M.J.G.; McMullan, M.; Richardson, D.S. Genetic Architecture of Dispersal Behaviour in the Post-Harvest Pest and Model Organism Tribolium castaneum. Heredity 2023, 131, 253–262, doi:10.1038/s41437-023-00641-6.spa
dc.relation.referencesCamaroti, J.R.S.L.; de Almeida, W.A.; do Rego Belmonte, B.; de Oliveira, A.P.S.; de Albuquerque Lima, T.; Ferreira, M.R.A.; Paiva, P.M.G.; Soares, L.A.L.; Pontual, E.V.; Napoleão, T.H. Sitophilus zeamais Adults Have Survival and Nutrition Affected by Schinus terebinthifolius Leaf Extract and Its Lectin (SteLL). Ind Crops Prod 2018, 116, 81–89, doi:10.1016/J.INDCROP.2018.02.065.spa
dc.relation.referencesOjo, J.A.; Omoloye, A.A. Development and Life History of Sitophilus zeamais (Coleoptera: Curculionidae) on Cereal Crops. Advances in Agriculture 2016, 2016, 7836379, doi:10.1155/2016/7836379.spa
dc.relation.referencesJiménez-Galindo, J.C.; Castillo-Rosales, A.; Castellanos-Pérez, G.; Orozco-González, F.; Ortega-Ortega, A.; Padilla-Chacón, D.; Butrón, A.; Revilla, P.; Malvar, R.A. Identification of Resistance to the Corn Weevil (Sitophilus zeamais M.) in Mexican Maize Races (Zea mays L.). Agronomy 2023, 13, 312, doi:10.3390/AGRONOMY13020312.spa
dc.relation.referencesLewis, R.; Pointer, M.D.; Friend, L.; Gage, M.J.G.; Spurgin, L.G. Tests of Evolutionary and Genetic Rescue Using Flour Beetles, Tribolium castaneum, Experimentally Evolved to Thermal Conditions. Ecol Evol 2024, 14, e11313, doi:10.1002/ECE3.11313.spa
dc.relation.referencesSemeao, A.A.; Campbell, J.F.; Beeman, R.W.; Lorenzen, M.D.; Whitworth, R.J.; Sloderbeck, P.E. Genetic Structure of Tribolium castaneum (Coleoptera: Tenebrionidae) Populations in Mills. Environ Entomol 2012, 41, 188–199, doi:10.1603/EN11207.spa
dc.relation.referencesDuarte, S.; Magro, A.; Tomás, J.; Hilário, C.; Ferreira, R.B.; Carvalho, M.O. Antifungal Activity of Benzoquinones Produced by Tribolium castaneum in Maize-Associated Fungi. Insects 2022, 13, 868, doi:10.3390/INSECTS13100868.spa
dc.relation.referencesKim, K.H.; Kabir, E.; Jahan, S.A. Exposure to Pesticides and the Associated Human Health Effects. Sci Total Environ 2017, 575, 525–535, doi:10.1016/J.SCITOTENV.2016.09.009.spa
dc.relation.referencesHamel, D.; Rozman, V.; Liška, A. Storage of Cereals in Warehouses with or without Pesticides. Insects 2020, 11, 1–21, doi:10.3390/INSECTS11120846.spa
dc.relation.referencesAbdelgaleil, S.A.M.; Gad, H.A.; Ramadan, G.R.M.; El-Bakry, A.M.; El-Sabrout, A.M. Monoterpenes: Chemistry, Insecticidal Activity against Stored Product Insects and Modes of Action—a Review. Int J Pest Manag 2024, 70, 267–289, doi:10.1080/09670874.2021.1982067.spa
dc.relation.referencesAchimón, F.; Peschiutta, M.L.; Brito, V.D.; Beato, M.; Pizzolitto, R.P.; Zygadlo, J.A.; Zunino, M.P. Exploring Contact Toxicity of Essential Oils against Sitophilus zeamais through a Meta-Analysis Approach. Plants 2022, 11, 3070, doi:10.3390/PLANTS11223070.spa
dc.relation.referencesTucker, A.O.; Libbey, L.M. Essential Oil of Satureja Viminea L. (Lamiaceae). J. Essent. Oil Res 2011, 12, 283–284, doi:10.1080/10412905.2000.9699516.spa
dc.relation.referencesVila, R.; Clcció, J.F.; Cañigueral, S. Essential Oil of Satureja Viminea L. From Costa Rica. J. Essent. Oil Res 2000, 12, 279–282, doi:10.1080/10412905.2000.9699515.spa
dc.relation.referencesEbadollahi, A.; Taghinezhad, E.; Setzer, W.N.; Chen, G. Susceptibility of Tribolium Castaneum (Coleoptera: Tenebrionidae) to the Fumigation of Two Essential Satureja Oils: Optimization and Modeling. Processes 2021, 9, 1243, doi:10.3390/PR9071243.spa
dc.relation.referencesEbadollahi, A.; Setzer, W.N. Evaluation of the Toxicity of Satureja intermedia C. A. Mey Essential Oil to Storage and Greenhouse Insect Pests and a Predator Ladybird. Foods 2020, 9, 1-20, doi:10.3390/FOODS9060712.spa
dc.relation.referencesXU, L. wei; CHEN, J.; QI, H. yang; SHI, Y. ping Phytochemicals and Their Biological Activities of Plants in Tagetes L. Chin Herb Med 2012, 4, 103–117, doi:10.3969/J.ISSN.1674-6384.2012.02.004.spa
dc.relation.referencesSingh, B., Joshi, V. P., Kaul, V. K., & Csir, C. O. S. a. I. R. (2001, October 24). US6492567B1 - Dihydrotagetone alcohol and a method for preparation thereof from Tagetes minuta oil - Google Patents. https://patents.google.com/patent/US6492567B1/enspa
dc.relation.referencesBurlec, A.F.; Pecio, Ł.; Kozachok, S.; Mircea, C.; Corciovă, A.; Vereştiuc, L.; Cioancă, O.; Oleszek, W.; Hăncianu, M. Phytochemical Profile, Antioxidant Activity, and Cytotoxicity Assessment of Tagetes Erecta L. Flowers. Molecules 2021, 26, 201, doi:10.3390/MOLECULES26051201.spa
dc.relation.referencesÁlvarez S., D.E.; Botina J., J.A.; Ortiz C., A.J.; Botina J., L.L. Nematicide Evaluation of the Essential Oil from Tagetes zypaquirensis in the Control of the Nematode Meloidogyne Spp. Revista de Ciencias Agrícolas 2016, 33, 22–33, doi:10.22267/RCIA.163301.3.spa
dc.relation.referencesAttique Babri, R.; Khokhar, I.; Mahmood, Z.; Mahmud, S. Chemical Composition And Insecticidal Activity Of The Essential Oil Of Anethum graveolens L. Sci.Int.(Lahore) 2012, 24, 453–455.spa
dc.relation.referencesChahal, K.; Monika; Kumar, A.; Bhardwaj, U.; Kaur, R. Chemistry and Biological Activities of Anethum graveolens L. (Dill) Essential Oil: A Review. J Pharmacogn Phytochem 2017, 6, 295–306.spa
dc.relation.referencesSanchez-Tito, M.A.; Cartagena-Cutipa, R.; Flores-Valencia, E.; Collantes-Diaz, Ingrit. Chemical Composition And Antimicrobial Activity Of Essential Oil From Minthostachys mollis Against Oral Pathogens. Rev Cubana Estomatol 2021, 58, 1-15.spa
dc.relation.referencesMahran, G.H.; Kadry, H.A.; Isaac, Z.G.; Thabet, C.K.; Al‐Azizi, M.M.; El‐Olemy, M.M. Investigation of Diuretic Drug Plants. 1. Phytochemical Screening and Pharmacological Evaluation of Anethum graveolens L., Apium graveolens L., Daucus Carota L. and Eruca Sativa Mill. Phytotherapy Research 1991, 5, 169–172, doi:10.1002/PTR.2650050406.spa
dc.relation.referencesRana, V.S.; Blazquez, M.A. Chemical Composition of the Essential Oil of Anethum Graveolens Aerial Parts. J. Essent. Oil-Bear. Plants 2014, 17, 1219–1223, doi:10.1080/0972060X.2014.894894.spa
dc.relation.referencesSoltani, R.; Ktari, R.; Barhoumi, L.; Chouaibi, M.H. Chemical Composition and Bio-Insecticidal Activity of the Dill, Anethum graveolens, Essential Oils against the Red Flour, Tribolium castaneum. Tunis J Plant Prot 2024, 19, 27–42, doi:10.4314/tjpp.v19i1.3.spa
dc.relation.referencesAzuero M., J.David. Caracterización Química de Aceites Esenciales Comerciales y Evaluación de Su Capacidad Antialimentaria y Fumigante Contra Tribolium castaneum. Tesis pregrado, Pontificia Universidad Javeriana: Bogotá, 2019.spa
dc.relation.referencesGleiser, R.M.; Bonino, M.A.; Zygadlo, J.A. Bioactividad De Aceites Esenciales De Minthostachys mollis Contra Mosquitos. Bol Latinoam Caribe Plantas Med Aromat 2007, 6, 350–351.spa
dc.relation.referencesTorrenegra-Alarcón, M.; Granados-Conde, C.; Durán-Lengua, M.; León-Méndez, G.; Yáñez-Rueda, X.; Martínez, C.; Pájaro-Castro, N. Composición Química y Actividad Antibacteriana Del Aceite Esencial de Minthostachys mollis. ORINOQUIA 2016, 20, 69–74.spa
dc.relation.referencesLinares-Otoya, V. Consideraciones Para El Uso y Estudio de La “Muña” Peruana Minthostachys mollis (Benth.) Griseb y Minthostachys Setosa (Briq.) Epling. Ethnobot. Res. Appl 2020, 19, 1-9, doi:10.32859/ERA.19.29.1-9.spa
dc.relation.referencesBenites, J.; Guerrero-Castilla, A.; Salas, F.; Martinez, J.L.; Jara-Aguilar, R.; Venegas-Casanova, E.A.; Suarez-Rebaza, L.; Guerrero-Hurtado, J.; Calderon, P.B. Composición Química, Actividades Citotóxicas y Antioxidantes in Vitro Del Aceite Esencial de Minthostachys Mollis Griseb Peruano. Bol Latinoam Caribe Plantas Med Aromat 2018, 17, 566–574.spa
dc.relation.referencesBenavente Mina, Q. Evaluación de La Actividad Biocida Del Aceite Esencial de Hojas de Muña (Minthostachys mollis) En El Gorgojo de Maíz (Sitophilus zeamais). Trabajo pregrado. Universidad Nacional Micaela Bastidas de Apurimac: Abancay, 2018.spa
dc.relation.referencesTucker, A.O.; Libbey, L.M. Essential Oil of Satureja viminea L. (Lamiaceae). J. Essent. Oil Res. 2000, 12, 283–284, doi:10.1080/10412905.2000.9699516.spa
dc.relation.referencesVila, R.; Clcció, J.F.; Cañigueral, S. Essential Oil of Satureja viminea L. from Costa Rica. J. Essent. Oil Res. 2000, 12, 279–282, doi:10.1080/10412905.2000.9699515.spa
dc.relation.referencesPatiño-Bayona, W.R.; Nagles Galeano, L.J.; Bustos Cortes, J.J.; Delgado Ávila, W.A.; Herrera Daza, E.; Suárez, L.E.C.; Prieto-Rodríguez, J.A.; Patiño-Ladino, O.J. Effects of Essential Oils from 24 Plant Species on Sitophilus zeamais Motsch (Coleoptera, Curculionidae). Insects 2021, 12, 532, 1-20, doi:10.3390/INSECTS12060532/S1.spa
dc.relation.referencesZapata-Maldonado, C.I.; Serrato Cruz, M.A.; Ibarra Emmanuel; Naranjo Puente, B. Chemical Compounds of Essential Oil of Tagetes Species of Ecuador. Ecorfan journal 2015, 1, 19–26.spa
dc.relation.referencesChaudhari, A.K.; Singh, V.K.; Kedia, A.; Das, S.; Dubey, N.K. Essential Oils and Their Bioactive Compounds as Eco-Friendly Novel Green Pesticides for Management of Storage Insect Pests: Prospects and Retrospects. Environ Sci Pollut Res Int 2021, 28, 18918–18940, doi:10.1007/S11356-021-12841-W.spa
dc.relation.referencesAssadpour, E.; Can Karaça, A.; Fasamanesh, M.; Mahdavi, S.A.; Shariat-Alavi, M.; Feng, J.; Kharazmi, M.S.; Rehman, A.; Jafari, S.M. Application of Essential Oils as Natural Biopesticides; Recent Advances. Crit Rev Food Sci Nutr 2024, 64, 6477–6497, doi:10.1080/10408398.2023.2170317.spa
dc.relation.referencesYammine, J.; Chihib, N.E.; Gharsallaoui, A.; Ismail, A.; Karam, L. Advances in Essential Oils Encapsulation: Development, Characterization and Release Mechanisms. Polymer Bulletin 2023, 81, 3837–3882, doi:10.1007/S00289-023-04916-0.spa
dc.relation.referencesShetta, A.; Kegere, J.; Mamdouh, W. Comparative Study of Encapsulated Peppermint and Green Tea Essential Oils in Chitosan Nanoparticles: Encapsulation, Thermal Stability, in-Vitro Release, Antioxidant and Antibacterial Activities. Int J Biol Macromol 2019, 126, 731–742, doi:10.1016/J.IJBIOMAC.2018.12.161.spa
dc.relation.referencesde Souza Simões, L.; Madalena, D.A.; Pinheiro, A.C.; Teixeira, J.A.; Vicente, A.A.; Ramos, Ó.L. Micro- and Nano Bio-Based Delivery Systems for Food Applications: In Vitro Behavior. Adv Colloid Interface Sci 2017, 243, 23–45, doi:10.1016/J.CIS.2017.02.010.spa
dc.relation.referencesEsteso, M.A.; Romero, C.M. Cyclodextrins: Properties and Applications. Int J Mol Sci 2024, 25, 45-47, doi:10.3390/IJMS25084547.spa
dc.relation.referencesConceptos Básicos | Programa Especial Para La Seguridad Alimentaria (PESA) Centroamérica | Organización de Las Naciones Unidas Para La Alimentación y La Agricultura Available online: https://www.fao.org/in-action/pesa-centroamerica/temas/conceptos-basicos/es/ (accessed on 5 July 2024).spa
dc.relation.referencesPorres Foulquie, J.M.; López-Jurado Romero de la Cruz, M.; Martínez Martínez, R. Tratado de Nutrición. Composición y Calidad Nutritiva de Los Alimentos. Tomo 3. Composición y calidad nutritiva de los alimentos. Tratado de nutrición. 2017, 3, 22–87.spa
dc.relation.referencesFenalce Cereales Colombia Available online: https://fenalce.co/fenalce-pidio-a-minagricultura-nueva-de-coberturas-para-cereales/ (accessed on 8 April 2023).spa
dc.relation.referencesHuang, Y.; Ho, S.H.; Lee, H.C.; Yap, Y.L. Insecticidal Properties of Eugenol, Isoeugenol and Methyleugenol and Their Effects on Nutrition of Sitophilus zeamais Motsch. (Coleoptera: Curculionidae) and Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J Stored Prod Res 2002, 38, 403–412, doi:10.1016/S0022-474X(01)00042-X.spa
dc.relation.referencesAvila, M.; Patiño, O.; Prieto, J.; Delgado, W.; Cuca, L.E. Flavonoides Con Actividad Antifúngica Aislados De Piper septuplinervium (Miq.) C. DC. (Piperaceae). Revista Colombiana de Química 2011, 40, 25–33.spa
dc.relation.referencesLee, S.; Peterson, C.J.; Coats, J.R. Fumigation Toxicity of Monoterpenoids to Several Stored Product Insects. J Stored Prod Res 2003, 39, 77–85, doi:10.1016/S0022-474X(02)00020-6.spa
dc.relation.referencesWang, J.L.; Li, Y.; Lei, C.L. Evaluation of Monoterpenes for the Control of Tribolium castaneum (Herbst) and Sitophilus zeamais Motschulsky. Nat Prod Res 2009, 23, 1080–1088, doi:10.1080/14786410802267759.spa
dc.relation.referencesRamiro, W.; Bayona, P. Aceites Esenciales Como Potenciales Agentes Fitosanitarios Para El Control de Sitophilus Zeamais. Tesis maestría. Universidad Nacional de Colombia, Bogotá D.C. 2018.spa
dc.relation.referencesE.l. Lorenia, S.; Mazón, L.; Navarrete, G.G.; Ibarra Gutiérrez, B.N. El Maíz (Zea Mays L.) Y La Cultura Maya. Biotecnia 2012, 14, 3–8, doi:10.18633/BT.V14I3.123.spa
dc.relation.referencesBBC News La FAO Necesita Que América Alimente al Mundo - BBC News Mundo Available online: https://www.bbc.com/mundo/noticias/2012/03/120329_argentina_fao_aumento_alimentos_vs (accessed on 8 April 2023).spa
dc.relation.referencesAlcanzar El Hambre Cero: Combinar La Protección Social Con Las Inversiones a Favor de Los Pobres | World Food Programme Available online: https://es.wfp.org/noticias/alcanzar-el-hambre-cero-combinar-la-proteccion-social-con-las-inversiones-favor-de-los (accessed on 8 April 2023).spa
dc.relation.referencesNota Informativa de La FAO Sobre La Oferta y La Demanda de Cereales | Situación Alimentaria Mundial | Organización de Las Naciones Unidas Para La Alimentación y La Agricultura Available online: https://www.fao.org/worldfoodsituation/csdb/es/ (accessed on 8 April 2023).spa
dc.relation.referencesColombia Other Worked Grains of Maize (Corn), Nes Imports by Country | 2023 | Data Available online: https://wits.worldbank.org/trade/comtrade/en/country/COL/year/2023/tradeflow/Imports/partner/ALL/product/110423 (accessed on 7 July 2024).spa
dc.relation.referencesKumar, D.; Kalita, P. Reducing Postharvest Losses during Storage of Grain Crops to Strengthen Food Security in Developing Countries. Foods 2017, 6, 1–22, doi:10.3390/FOODS6010008.spa
dc.relation.referencesSebayang, A.; Rohimatun; Salim; Rubiana, R.; Sipi, S.; Manwan, S.W.; Fattah, A.; Arrahman, A.; Yasin, M.; Saenong, M.S. Sitophilus zeamais (Motschulsky): The Primary Obstacles in the Maize Quality and Quantity. IOP Conf Ser Earth Environ Sci 2023, 1230, 012089, doi:10.1088/1755-1315/1230/1/012089.spa
dc.relation.referencesPeschiutta, M.L.; Achimón, F.; Brito, V.D.; Pizzolitto, R.P.; Zygadlo, J.A.; Zunino, M.P. Fumigant Toxicity of Essential Oils against Sitophilus zeamais (Motschulsky) (Coleoptera: Curculionidae): A Systematic Review and Meta-Analysis. J. Pest Sci. 2021, 95, 1037–1056, doi:10.1007/S10340-021-01457-1.spa
dc.relation.referencesInsect Pests of Stored Grain | Agriculture and Food Available online: https://www.agric.wa.gov.au/pest-insects/insect-pests-stored-grain (accessed on 8 September 2024).spa
dc.relation.referencesMoirangthem, T.T.; Baik, O.D. Disinfestation of Stored Grains Using Non-Chemical Technologies – A Review. Trends Food Sci. Technol. 2021, 107, 299–308, doi:10.1016/J.TIFS.2020.11.002.spa
dc.relation.referencesPhokwe, O.J.; Manganyi, M.C. Medicinal Plants as a Natural Greener Biocontrol Approach to “The Grain Destructor” Maize Weevil (Sitophilus zeamais) Motschulsky. Plants (Basel) 2023, 12, doi:10.3390/PLANTS12132505.spa
dc.relation.referencesMikami, A.Y.; Carpentieri-Pípolo, V.; Ventura, M.U. Resistance of Maize Landraces to the Maize Weevil Sitophilus zeamais Motsch. (Coleoptera: Curculionidae). Neotrop Entomol 2012, 41, 404–408, doi:10.1007/S13744-012-0054-8/METRICS.spa
dc.relation.referencesLópez-Castillo, L.M.; Silva-Fernández, S.E.; Winkler, R.; Bergvinson, D.J.; Arnason, J.T.; García-Lara, S. Postharvest Insect Resistance in Maize. J Stored Prod Res 2018, 77, 66–76, doi:10.1016/J.JSPR.2018.03.004.spa
dc.relation.referencesSebayang, A.; Rohimatun; Salim; Rubiana, R.; Sipi, S.; Manwan, S.W.; Fattah, A.; Arrahman, A.; Yasin, M.; Saenong, M.S. Sitophilus zeamais (Motschulsky): The Primary Obstacles in the Maize Quality and Quantity. IOP Conf Ser Earth Environ Sci 2023, 1230, 012089, doi:10.1088/1755-1315/1230/1/012089.spa
dc.relation.referencesNika, E.P.; Kavallieratos, N.G.; Malesios, C. Dangerous Liaisons of Three Key Secondary Stored-Product Pests in Cracked Maize. J Stored Prod Res 2022, 99, 102037, doi:10.1016/J.JSPR.2022.102037.spa
dc.relation.referencesAhmad Mir, S.; Bashir Mir, M.; Ahmad Shah, M.; Mumtaz Hamdani, A.; Valiyapeediyekkal Sunooj, K.; Phimolsiripol, Y.; Mousavi Khaneghah, A. New Prospective Approaches in Controlling the Insect Infestation in Stored Grains. J Asia Pac Entomol 2023, 26, 102058, doi:10.1016/J.ASPEN.2023.102058.spa
dc.relation.referencesGerken, A.R.; Campbell, J.F. Oviposition and Development of Tribolium castaneum Herbst (Coleoptera: Tenebrionidae) on Different Types of Flour. Agronomy 2020, 10, 1593, doi:10.3390/AGRONOMY10101593.spa
dc.relation.referencesGao, F.; Zhang, Q.; Hamadou, A.H.; Xu, B. The Feeding Preference of Red Flour Beetle Tribolium castaneum Herbst (Coleoptera: Tenebrionidae) on Wheat Flour Stored at Varied Temperatures: The Perspective of Volatile Components. J Stored Prod Res 2024, 108, 102397, doi:10.1016/J.JSPR.2024.102397.spa
dc.relation.referencesTrematerra, P.; Throne, J. Insect and Mite Pests of Durum Wheat. Durum Wheat Chemistry and Technology: Second Edition 2012, 73–83, doi:10.1016/B978-1-891127-65-6.50010-6.spa
dc.relation.referencesMoutassem, D.; Boubellouta, T.; Bellik, Y.; Rouis, Z.; Kucher, D.E.; Utkina, A.O.; Kucher, O.D.; Mironova, O.A.; Kavhiza, N.J.; Rebouh, N.Y. Insecticidal Activity of Thymus pallescens de Noe and Cymbogon citratus Essential Oils against Sitophilus zeamais and Tribolium castaneum. Scientific Reports 2024, 14, 1–12, doi:10.1038/s41598-024-64757-3.spa
dc.relation.referencesRees, D. Insects Of Stored Grain A Pocket Reference Second Edition, Csiro Publishing. 2007.spa
dc.relation.referencesParisot, N.; Vargas-Chávez, C.; Goubert, C.; Baa-Puyoulet, P.; Balmand, S.; Beranger, L.; Blanc, C.; Bonnamour, A.; Boulesteix, M.; Burlet, N.; et al. The Transposable Element-Rich Genome of the Cereal Pest Sitophilus oryzae. BMC Biology 2021, 19, 1–28, doi:10.1186/S12915-021-01158-2.spa
dc.relation.referencesMaize Weevil (Sitophilus zeamais) Available online: https://www.insectimages.org/browse/detail.cfm?imgnum=5380354 (accessed on 29 May 2024).spa
dc.relation.referencesArrahman, A.; Mirsam, H.; Djaenuddin, N.; Suriani; Pakki, S.; Saenong, M.S.; Sebayang, A. An In-Depth Study on Sitophilus zeamais Motsch (Coleoptera: Curculionidae) Pests on Corn Plants. IOP Conf Ser Earth Environ Sci 2022, 1107, 012060, doi:10.1088/1755-1315/1107/1/012060.spa
dc.relation.referencesRangel-Fajardo, M.A.; Tucuch-Haas, J.I.; Gómez-Montiel, N.O.; Basto-Barbudo, D. de la C.; Burgos-Díaz, J.A.; Rangel-Fajardo, M.A.; Tucuch-Haas, J.I.; Gómez-Montiel, N.O.; Basto-Barbudo, D. de la C.; Burgos-Díaz, J.A. Control de Gorgojo (Sitophilus zeamais Motschulsky) Con Polvos de Epazote (Dysphania ambrosioides (L.) Mosyakin & Clemants) En Diferentes Genotipos de Maíz. Revista fitotecnia mexicana 2020, 43, 307–315, doi:10.35196/RFM.2020.3.307.spa
dc.relation.referencesHigueras, C.; Silva-Aguayo, G.; Urbina, A.; Figueroa, I.; Rodríguez-Maciel, J.C.; Lagunes-Tejeda, A.; Rodríguez, M.; Aguilar-Marcelino, L.; Higueras, C.; Silva-Aguayo, G.; Et Al. Control De Sitophilus zeamais Motschulsky Con Polvos De Follaje De Dos Especies Del Género Eucalyptus. Chil. J. Agric. Res. 2021, 37, 101–111, Doi:10.29393/Chjass37-12cscl80012.spa
dc.relation.referencesRodríguez, A.; Beato, M.; Usseglio, V.L.; Camina, J.; Zygadlo, J.A.; Dambolena, J.S.; Zunino, M.P. Phenolic Compounds as Controllers of Sitophilus zeamais: A Look at the Structure-Activity Relationship. J Stored Prod Res 2022, 99, 102038, doi:10.1016/J.JSPR.2022.102038.spa
dc.relation.referencesGarcia-Lara, S.; Espinosa-Carrillo, C.; Bergvinson, D. Manual de Plagas En Granos Almacenados y Tecnologías Alternas Para Su Manejo y Control; 1st ed.; CIMMYT.: México D.F., 2007; Vol. 1.spa
dc.relation.referencesPei, Y.; Tao, T.; Yang, G.; Wang, Y.; Yan, W.; Ding, C. Lethal Effects and Mechanism of Infrared Radiation on Sitophilus zeamais and Tribolium castaneum in Rough Rice. Food Control 2018, 88, 149–158, doi:10.1016/J.FOODCONT.2018.01.012.spa
dc.relation.referencesSaeed, M.B.; Laing, M.D. Biocontrol of Maize Weevil, Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae), in Maize over a Six-Month Storage Period. Microorganisms 2023, 11, doi:10.3390/MICROORGANISMS11051261.spa
dc.relation.referencesPimentel, M.A.G.; Faroni, L.R.D.A.; Batista, M.D.; Silva, F.H. da Resistance of Stored-Product Insects to Phosphine. Pesqui Agropecu Bras 2008, 43, 1671–1676, doi:10.1590/S0100-204X2008001200005.spa
dc.relation.referencesJiménez-Galindo, J.C.; Castillo-Rosales, A.; Castellanos-Pérez, G.; Orozco-González, F.; Ortega-Ortega, A.; Padilla-Chacón, D.; Butrón, A.; Revilla, P.; Malvar, R.A. Identification of Resistance to the Corn Weevil (Sitophilus zeamais M.) in Mexican Maize Races (Zea mays L.). Agronomy 2023, 13, 312, doi:10.3390/AGRONOMY13020312.spa
dc.relation.referencesAttia, M.A.; Wahba, T.F.; Shaarawy, N.; Moustafa, F.I.; Guedes, R.N.C.; Dewer, Y. Stored Grain Pest Prevalence and Insecticide Resistance in Egyptian Populations of the Red Flour Beetle Tribolium castaneum (Herbst) and the Rice Weevil Sitophilus oryzae (L.). J Stored Prod Res 2020, 87, 101611, doi:10.1016/J.JSPR.2020.101611.spa
dc.relation.referencesLiang, J.; Ning, A.; Lu, P.; An, Y.; Wang, Z.; Zhang, J.; He, C.; Wang, Y. Biological Activities and Synergistic Effects of Elsholtzia Stauntoni Essential Oil from Flowers and Leaves and Their Major Constituents against Tribolium castaneum. Eur. Food Res. Technol. 2021, 247, 2609–2619, doi:10.1007/S00217-021-03829-4/METRICS.spa
dc.relation.referencesKlingler, M.; Bucher, G. The Red Flour Beetle T. Castaneum: Elaborate Genetic Toolkit and Unbiased Large Scale RNAi Screening to Study Insect Biology and Evolution. EvoDevo 2022, 13, 1–11, doi:10.1186/S13227-022-00201-9.spa
dc.relation.referencesRed Flour Beetle (Tribolium castaneum) Available online: https://www.insectimages.org/browse/detail.cfm?imgnum=5495459 (accessed on 29 May 2024).spa
dc.relation.referencesMurugesan, S. Life Cycle, Morphometrics, Fungal Identification and Effect of Preventive Treatments in Sesame Seeds of Tribolium castaneum. Int. J. Entomol. Res. 2021, 6, 221–228.spa
dc.relation.referencesSmith, C.W.; Frederiksen, R.A. Sorghum: Origin, History, Technology- John Wiley & Sons. 2000, 824.spa
dc.relation.referencesPhankaen, Y.; Manaprasertsak, A.; Pluempanupat, W.; Koul, O.; Kainoh, Y.; Bullangpoti, V. Toxicity and Repellent Action of Coffea Arabica against Tribolium castaneum (Herbst) Adults under Laboratory Conditions. J Stored Prod Res 2017, 71, 112–118, doi:10.1016/J.JSPR.2017.01.006.spa
dc.relation.referencesOviedo Sarmiento, J.S. Efectos Insecticidas y Bioquímicos de Aceites Esenciales Obtenidos de Plantas Colombianas Sobre El Gorgojo Rojo de La Harina, Tribolium castaneum (Coleoptera : Tenebrionidae). Tesis maestría. Pontificia Universidad Javeriana: Bogotá D.C., 2019.spa
dc.relation.referencesSouza, N.T. de; Frederico, B.L.B.; Mendonça, G.R.Q.; Araujo, A.V. de; Sousa, A.H.; Carvalho, C.M. Biological Control of Tribolium castaneum (Herbst, 1797) (Coleoptera: Tenebrionidae) with Fungi from Brazilian Amazon. EntomoBrasilis 2024, 17, e1091, doi:10.12741/ebrasilis.v17.e1091.spa
dc.relation.referencesNerio, L.S.; Olivero-Verbel, J.; Stashenko, E.E. Repellent Activity of Essential Oils from Seven Aromatic Plants Grown in Colombia against Sitophilus zeamais Motschulsky (Coleoptera). J Stored Prod Res 2009, 45, 212–214, doi:10.1016/J.JSPR.2009.01.002.spa
dc.relation.referencesAzeem, M.; Zaman, T.; Abbasi, A.M.; Abid, M.; Mozūratis, R.; Alwahibi, M.S.; Elshikh, M.S. Pesticidal Potential of Some Wild Plant Essential Oils against Grain Pests Tribolium castaneum (Herbst, 1797) and Aspergillus flavus (Link, 1809). Arab. J. Chem. 2022, 15, 103482, doi:10.1016/J.ARABJC.2021.103482.spa
dc.relation.referencesMssillou, I.; Saghrouchni, H.; Saber, M.; Zannou, A.J.; Balahbib, A.; Bouyahya, A.; Allali, A.; Lyoussi, B.; Derwich, E. Efficacy and Role of Essential Oils as Bio-Insecticide against the Pulse Beetle Callosobruchus maculatus (F.) in Post-Harvest Crops. Ind Crops Prod 2022, 189, 115786, doi:10.1016/J.INDCROP.2022.115786.spa
dc.relation.referencesRíos, J.L. Essential Oils: What They Are and How the Terms Are Used and Defined. Essential Oils in Food Preservation, Flavor and Safety 2016, 1, 3–10, doi:10.1016/B978-0-12-416641-7.00001-8.spa
dc.relation.referencesSharma, A.; Gumber, K.; Gohain, A.; Bhatia, T.; Sohal, H.S.; Mutreja, V.; Bhardwaj, G. Importance of Essential Oils and Current Trends in Use of Essential Oils (Aroma Therapy, Agrofood, and Medicinal Usage). Essential Oils: Extraction, Characterization and Applications 2023, 53–83, doi:10.1016/B978-0-323-91740-7.00002-5.spa
dc.relation.referencesIsman, M.B. Botanical Insecticides, Deterrents, and Repellents in Modern Agriculture and an Increasingly Regulated World. Annu Rev Entomol 2006, 51, 45–66, doi:10.1146/ANNUREV.ENTO.51.110104.151146.spa
dc.relation.referencesMossa, A.T.H. Green Pesticides: Essential Oils as Biopesticides in Insect-Pest Management. Journal of Environmental Science and Technology 2016, 9, 354–378, doi:10.3923/JEST.2016.354.378.spa
dc.relation.referencesCurrent Status of Plant Products as Botanical Pesticides in Storage Pest Management | Request PDF Available online: https://www.researchgate.net/publication/254441900_Current_Status_of_Plant_Products_as_Botanical_Pesticides_in_storage_pest_management (accessed on 8 April 2023).spa
dc.relation.referencesDubey, N. K. Natural Products in Plant Pest Management. CABI 2011, 1, 1-15, doi:10.1079/9781845936716.0000.spa
dc.relation.referencesPathak, V.M.; Verma, V.K.; Rawat, B.S.; Kaur, B.; Babu, N.; Sharma, A.; Dewali, S.; Yadav, M.; Kumari, R.; Singh, S.; et al. Current Status of Pesticide Effects on Environment, Human Health and It’s Eco-Friendly Management as Bioremediation: A Comprehensive Review. Front Microbiol 2022, 13, 962619, doi:10.3389/FMICB.2022.962619/BIBTEX.spa
dc.relation.referencesJyotsna, B.; Patil, S.; Prakash, Y.S.; Rathnagiri, P.; Kavi Kishor, P.B.; Jalaja, N. Essential Oils from Plant Resources as Potent Insecticides and Repellents: Current Status and Future Perspectives. Biocatal Agric Biotechnol 2024, 103395, doi:10.1016/J.BCAB.2024.103395.spa
dc.relation.referencesFu, J.T.; Tang, L.; Li, W.S.; Wang, K.; Cheng, D.M.; Zhang, Z.X. Fumigant Toxicity and Repellence Activity of Camphor Essential Oil from Cinnamonum Camphora Siebold Against Solenopsis Invicta Workers (Hymenoptera:Formicidae). Journal of Insect Science 2015, 15, 129, doi:10.1093/JISESA/IEV112.spa
dc.relation.referencesSouto, R.N.P.; Harada, A.Y.; Andrade, E.H.A.; Maia, J.G.S. Insecticidal Activity of Piper Essential Oils from the Amazon Against the Fire Ant Solenopsis saevissima (Smith) (Hymenoptera: Formicidae). Neotrop Entomol 2012, 41, 510–517, doi:10.1007/S13744-012-0080-6/METRICS.spa
dc.relation.referencesOladipupo, S.O.; Hu, X.P.; Appel, A.G. Essential Oils in Urban Insect Management—A Review. J Econ Entomol 2022, 115, 1375–1408, doi:10.1093/JEE/TOAC083.spa
dc.relation.referencesOviedo Sarmiento, J.S. Efectos Insecticidas y Bioquímicos de Aceites Esenciales Obtenidos de Plantas Colombianas Sobre El Gorgojo Rojo de La Harina, Tribolium castaneum (Coleoptera : Tenebrionidae). Tesis maestría. Pontificia Universidad Javeriana: Bogotá D.C., 2019.spa
dc.relation.referencesPrieto, J.A.; Patiño, O.J.; Delgado, W.A.; Moreno, J.P.; Cuca, L.E. Chemical Composition, Insecticidal, and Antifungal Activities of Fruit Essential Oils of Three Colombian Zanthoxylum Species. Chil J Agric Res 2011, 71, 73–82, doi:10.4067/S0718-58392011000100009.spa
dc.relation.referencesAbou-Taleb, H.K.; Mohamed, M.I.E.; Shawir, M.S.; Abdelgaleil, S.A.M. Insecticidal Properties of Essential Oils against Tribolium Castaneum (Herbst) and Their Inhibitory Effects on Acetylcholinesterase and Adenosine Triphosphatases. Nat Prod Res 2016, 30, 710–714, doi:10.1080/14786419.2015.1038999.spa
dc.relation.referencesElnabawy, E.S.M.; Hassan, S.; Taha, E.K.A. Repellent and Toxicant Effects of Eight Essential Oils against the Red Flour Beetle, Tribolium castaneum Herbst (Coleoptera: Tenebrionidae). Biology 2021, 11, 1-30, doi:10.3390/BIOLOGY11010003.spa
dc.relation.referencesHerrera, J.M.; Zunino, M.P.; Massuh, Y.; Pizzollito, R.P.; Dambolena, J.S.; Gañan, N.A.; Zygadlo, J.A. Fumigant Toxicity of Five Essential Oils Rich in Ketones against Sitophilus zeamais (Motschulsky). Agriscientia 2014, 31, 35–41.spa
dc.relation.referencesChaubey, M.K. Insecticidal Activities of Anethum graveolens L. and Illicium verum Hook. f. Essential Oils against Sitophilus zeamais Motschulsky. Revista de Ciencias Agrícolas 2021, 38, 38–49, doi:10.22267/RCIA.213801.143.spa
dc.relation.referencesOdeyemi, O.O.; Masika, P.; Afolayan, A.J. Insecticidal Activities of Essential Oil from the Leaves of Mentha Longifolia L. Subsp. Capensis against Sitophilus Zeamais (Motschulsky) (Coleoptera: Curculionidae). African Entomology 2008, 16, 220–225, doi:10.4001/1021-3589-16.2.220.spa
dc.relation.referencesKhani, A.; Asghari, J. Insecticide Activity of Essential Oils of Mentha longifolia, Pulicaria Gnaphalodes and Achillea Wilhelmsii against Two Stored Product Pests, the Flour Beetle, Tribolium castaneum, and the Cowpea Weevil, Callosobruchus maculatus. J Insect Sci 2012, 12, doi:10.1673/031.012.7301.spa
dc.relation.referencesRibeiro, I.A.T. de A.; da Silva, R.; da Silva, A.G.; Milet-Pinheiro, P.; Paiva, P.M.G.; Navarro, D.M. do A.F.; da Silva, M.V.; Napoleão, T.H.; Correia, M.T. dos S. Chemical Characterization and Insecticidal Effect against Sitophilus zeamais (Maize Weevil) of Essential Oil from Croton rudolphianus Leaves. Crop Protection 2020, 129, 105043, doi:10.1016/J.CROPRO.2019.105043.spa
dc.relation.referencesPeixoto, M.G.; Bacci, L.; Fitzgerald Blank, A.; Araújo, A.P.A.; Alves, P.B.; Silva, J.H.S.; Santos, A.A.; Oliveira, A.P.; da Costa, A.S.; Arrigoni-Blank, M. de F. Toxicity and Repellency of Essential Oils of Lippia alba Chemotypes and Their Major Monoterpenes against Stored Grain Insects. Ind Crops Prod 2015, 71, 31–36, doi:10.1016/J.INDCROP.2015.03.084.spa
dc.relation.referencesLee, H.K.; Lee, H.S. Toxicities of Active Constituent Isolated from Thymus vulgaris Flowers and Its Structural Derivatives against Tribolium castaneum (Herbst). Appl Biol Chem 2016, 59, 821–826, doi:10.1007/S13765-016-0230-3/METRICS.spa
dc.relation.referencesAnnaz, H.; Annaz, H.; Ajaha, A.; Bouayad, N.; Fakhouri, K. El; Laglaoui, A.; El Bouhssini, M.; Sobeh, M.; Rharrabe, K. Chemical Profiling and Bioactivities of Essential Oils from Thymus capitatus and Origanum compactum against Tribolium castaneum. Heliyon 2024, 10, e26102, doi:10.1016/j.heliyon.2024.e26102.spa
dc.relation.referencesBorugă, O.; Jianu, C.; Mişcă, C.; Goleţ, I.; Gruia, A.T.; Horhat, F.G. Thymus vulgaris Essential Oil: Chemical Composition and Antimicrobial Activity. J Med Life 2014, 7, 56-60.spa
dc.relation.referencesKačániová, M.; Čmiková, N.; Vukovic, N.L.; Verešová, A.; Bianchi, A.; Garzoli, S.; Ben Saad, R.; Ben Hsouna, A.; Ban, Z.; Vukic, M.D. Citrus limon Essential Oil: Chemical Composition and Selected Biological Properties Focusing on the Antimicrobial (In Vitro, In Situ), Antibiofilm, Insecticidal Activity and Preservative Effect against Salmonella enterica Inoculated in Carrot. Plants 2024, 13, 524-532, doi:10.3390/PLANTS13040524.spa
dc.relation.referencesNagles Galeano, L.J. Estudio de La Acción Insecticida de Constituyentes Químicos Presentes En Aceites Esenciales y Su Efecto Sobre Enzimas Desintoxicantes y de Función Motora Para Sitophilus zeamais. Tesis maestría, Universidad Nacional de Colombia: Bogotá, 2021.spa
dc.relation.referencesAbdelgaleil, S.A.M.; Mohamed, M.I.E.; Badawy, M.E.I.; El-Arami, S.A.A. Fumigant and Contact Toxicities of Monoterpenes to Sitophilus oryzae (L.) and Tribolium castaneum (Herbst) and Their Inhibitory Effects on Acetylcholinesterase Activity. J Chem Ecol 2009, 35, 518–525, doi:10.1007/S10886-009-9635-3/METRICS.spa
dc.relation.referencesYew, J.Y.; Chung, H. Insect Pheromones: An Overview of Function, Form, and Discovery. Prog Lipid Res 2015, 59, 88–105, doi:10.1016/J.PLIPRES.2015.06.001.spa
dc.relation.referencesPerdomo Cedeño, L.F. Determinación Del Potencial Insecticida y Repelente de Mezclas de Constituyentes Químicos Bioactivos Presentes En Aceites Esenciales Para El Control de Tribolium castaneum. Tesis maestría. Universidad Nacional de Colombia: Bogotá D.C., 2020.spa
dc.relation.referencesHerrera, J.M.; Zunino, M.P.; Dambolena, J.S.; Pizzolitto, R.P.; Gañan, N.A.; Lucini, E.I.; Zygadlo, J.A. Terpene Ketones as Natural Insecticides against Sitophilus Zeamais. Ind Crops Prod 2015, 70, 435–442, doi:10.1016/J.INDCROP.2015.03.074.spa
dc.relation.referencesReis, D.R.; Ambrosi, A.; Luccio, M. Di Encapsulated Essential Oils: A Perspective in Food Preservation. Future Foods 2022, 5, 100126, doi:10.1016/J.FUFO.2022.100126.spa
dc.relation.referencesAlves, S.F.; Borges, L.L.; dos Santos, T.O.; de Paula, J.R.; Conceição, E.C.; Bara, M.T.F. Microencapsulation of Essential Oil from Fruits of Pterodon Emarginatus Using Gum Arabic and Maltodextrin as Wall Materials: Composition and Stability. Drying Technology 2014, 32, 96–105, doi:10.1080/07373937.2013.816315.spa
dc.relation.referencesAhmed, M.M.; El-Rasoul, S.A.; Auda, S.H.; Ibrahim, M.A. Emulsification/Internal Gelation as a Method for Preparation of Diclofenac Sodium–Sodium Alginate Microparticles. Saudi Pharmaceutical Journal 2013, 21, 61–69, doi:10.1016/J.JSPS.2011.08.004.spa
dc.relation.referencesRoos, Y.H. Glass Transition Temperature and Its Relevance in Food Processing. Annu Rev Food Sci Technol 2010, 1, 469–496, doi:10.1146/ANNUREV.FOOD.102308.124139/CITE/REFWORKS.spa
dc.relation.referencesAugustin, M.A.; Hemar, Y. Nano- and Micro-Structured Assemblies for Encapsulation of Food Ingredients. Chem Soc Rev 2009, 38, 902–912, doi:10.1039/B801739P.spa
dc.relation.referencesEmadzadeh, B.; Ghorani, B.; Naji-Tabasi, S.; Charpashlo, E.; Molaveisi, M. Fate of β-Cyclodextrin-Sugar Beet Pectin Microcapsules Containing Garlic Essential Oil in an Acidic Food Beverage. Food Biosci 2021, 42, 101029, doi:10.1016/J.FBIO.2021.101029.spa
dc.relation.referencesHou, K.; Xu, Y.; Cen, K.; Gao, C.; Feng, X.; Tang, X. Nanoemulsion of Cinnamon Essential Oil Co-Emulsified with Hydroxypropyl-β-Cyclodextrin and Tween-80: Antibacterial Activity, Stability and Slow Release Performance. Food Biosci 2021, 43, 101232, doi:10.1016/J.FBIO.2021.101232.spa
dc.relation.referencesde Meneses, A.C.; Marques, E.B.P.; Leimann, F.V.; Gonçalves, O.H.; Ineu, R.P.; de Araújo, P.H.H.; de Oliveira, D.; Sayer, C. Encapsulation of Clove Oil in Nanostructured Lipid Carriers from Natural Waxes: Preparation, Characterization and in Vitro Evaluation of the Cholinesterase Enzymes. Colloids Surf A Physicochem Eng Asp 2019, 583, 123879, doi:10.1016/J.COLSURFA.2019.123879.spa
dc.relation.referencesGharsan, F.N.; Kamel, W.M.; Alghamdi, T.S.; Alghamdi, A.A.; Althagafi, A.O.; Aljassim, F.J.; Al-Ghamdi, S.N. Toxicity of Citronella Essential Oil and Its Nanoemulsion against the Sawtoothed Grain Beetle Oryzaephilus surinamensis (Coleoptera: Silvanidae). Ind Crops Prod 2022, 184, 115024, doi:10.1016/J.INDCROP.2022.115024.spa
dc.relation.referencesAhmadi, Z.; Saber, M.; Akbari, A.; Mahdavinia, G.R. Encapsulation of Satureja hortensis L. (Lamiaceae) in Chitosan/TPP Nanoparticles with Enhanced Acaricide Activity against Tetranychus urticae Koch (Acari: Tetranychidae). Ecotoxicol Environ Saf 2018, 161, 111–119, doi:10.1016/J.ECOENV.2018.05.051.spa
dc.relation.referencesLópez, A.; Castro, S.; Andina, M.J.; Ures, X.; Munguía, B.; Llabot, J.M.; Elder, H.; Dellacassa, E.; Palma, S.; Domínguez, L. Insecticidal Activity of Microencapsulated Schinus Molle Essential Oil. Ind Crops Prod 2014, 53, 209–216, doi:10.1016/J.INDCROP.2013.12.038.spa
dc.relation.referencesAhsaei, S.M.; Rodríguez-Rojo, S.; Salgado, M.; Cocero, M.J.; Talebi-Jahromi, K.; Amoabediny, G. Insecticidal Activity of Spray Dried Microencapsulated Essential Oils of Rosmarinus officinalis and Zataria multiflora against Tribolium confusum. Crop Protection 2020, 128, 104996, doi:10.1016/J.CROPRO.2019.104996.spa
dc.relation.referencesCristina e Santos, P.; Granero, F.O.; Junior, J.L.B.; Pavarini, R.; Pavarini, G.M.P.; Chorilli, M.; Zambom, C.R.; Silva, L.P.; Silva, R.M.G. da Insecticidal Activity of Tagetes erecta and Tagetes patula Extracts and Fractions Free and Microencapsulated. Biocatal Agric Biotechnol 2022, 45, 102511, doi:10.1016/J.BCAB.2022.102511.spa
dc.relation.referencesBarros, F.A.P.; Radünz, M.; Scariot, M.A.; Camargo, T.M.; Nunes, C.F.P.; de Souza, R.R.; Gilson, I.K.; Hackbart, H.C.S.; Radünz, L.L.; Oliveira, J.V.; et al. Efficacy of Encapsulated and Non-Encapsulated Thyme Essential Oil (Thymus vulgaris L.) in the Control of Sitophilus zeamais and Its Effects on the Quality of Corn Grains throughout Storage. Crop Protection 2022, 153, 105885, doi:10.1016/J.CROPRO.2021.105885.spa
dc.relation.referencesGolden, G.; Quinn, E.; Shaaya, E.; Kostyukovsky, M.; Poverenov, E. Coarse and Nano Emulsions for Effective Delivery of the Natural Pest Control Agent Pulegone for Stored Grain Protection. Pest Manag Sci 2018, 74, 820–827, doi:10.1002/PS.4787.spa
dc.relation.referencesCampos, E.V.R.; Proença, P.L.F.; Oliveira, J.L.; Pereira, A.E.S.; De Morais Ribeiro, L.N.; Fernandes, F.O.; Gonçalves, K.C.; Polanczyk, R.A.; Pasquoto-Stigliani, T.; Lima, R.; et al. Carvacrol and Linalool Co-Loaded in β-Cyclodextrin-Grafted Chitosan Nanoparticles as Sustainable Biopesticide Aiming Pest Control. Sci Rep 2018, 8, 1-14, doi:10.1038/S41598-018-26043-X.spa
dc.relation.referencesPascual-Villalobos, M.J.; Castañé, C.; Martín, F.; López, M.D.; Guirao, P.; Riudavets, J. (E)-Anethole Microspheres as an Alternative Insecticide in Funnel Traps. J Stored Prod Res 2021, 93, 101862, doi:10.1016/J.JSPR.2021.101862.spa
dc.relation.referencesCiobanu, A.; Landy, D.; Fourmentin, S. Complexation Efficiency of Cyclodextrins for Volatile Flavor Compounds. Int. Food Res 2013, 53, 110–114, doi:10.1016/J.FOODRES.2013.03.048.spa
dc.relation.referencesAnethum Graveolens (Dill). PlantwisePlus Knowledge Bank 2022, Species Pages, doi:10.1079/PWKB.SPECIES.3472.spa
dc.relation.referencesAnethum Graveolens L. Available online: https://www.gbif.org/es/species/3034646/metrics (accessed on 13 August 2024).spa
dc.relation.referencesTropical Plants Database Anethum Graveolens L. Apiaceae Available online: https://tropical.theferns.info/viewtropical.php?id=Anethum+graveolens (accessed on 10 August 2024).spa
dc.relation.referencesVictoria T, J.A.; Bonilla C, C.R.; Sánchez O, M.S. Morfoanatomía y Efecto Del Secado En La Germinación de Semillas de Caléndula y Eneldo. Acta Agron 2007, 56, 61–68.spa
dc.relation.referencesAnethum Graveolens L. | Plants of the World Online | Kew Science Available online: https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:837530-1 (accessed on 13 August 2024).spa
dc.relation.referencesGómez, R.F. Plantas Medicinales: Y Otros Recursos Naturales Aprobados En Colombia Con Fines Terapéuticos. Editorial Universidad de Antioquia 2024.spa
dc.relation.referencesFetrow, C.; Avila, J. Manual de Medicina Alternativa Para o Profissional; 1st ed.; Editora Guanabara Koogan S.A.: Rio de Janeiro, 2000; Vol. 1; 1- 235.spa
dc.relation.referencesTaddeo, V.A.; Epifano, F.; Preziuso, F.; Fiorito, S.; Caron, N.; Rives, A.; De Medina, P.; Poirot, M.; Silvente-Poirot, S.; Genovese, S. HPLC Analysis and Skin Whitening Effects of Umbelliprenin-Containing Extracts of Anethum graveolens, Pimpinella anisum, and Ferulago campestris. Molecules 2019, 24, 501, doi:10.3390/MOLECULES24030501.spa
dc.relation.referencesTaddeo, V.A.; Genovese, S.; Medina, P. de; Palmisano, R.; Epifano, F.; Fiorito, S. Quantification of Biologically Active O-Prenylated and Unprenylated Phenylpropanoids in Dill (Anethum graveolens), Anise (Pimpinella Anisum), and Wild Celery (Angelica Archangelica). J Pharm Biomed Anal 2017, 134, 319–324, doi:10.1016/J.JPBA.2016.11.048.spa
dc.relation.referencesOsanloo, M.; Ghaznavi, G.; Abdollahi, A. Surveying the Chemical Composition and Antibacterial Activity of Essential Oils from Selected Medicinal Plants against Human Pathogens. Iran J Microbiol 2020, 12, 577, doi:10.18502/IJM.V12I6.5032.spa
dc.relation.referencesNoumi, E.; Ahmad, I.; Adnan, M.; Merghni, A.; Patel, H.; Haddaji, N.; Bouali, N.; Alabbosh, K.F.; Ghannay, S.; Aouadi, K.; et al. GC/MS Profiling, Antibacterial, Anti-Quorum Sensing, and Antibiofilm Properties of Anethum Graveolens L. Essential Oil: Molecular Docking Study and In-Silico ADME Profiling. Plants 2023, 12, 1997, doi:10.3390/PLANTS12101997.spa
dc.relation.referencesKarimi, K.; Arzanlou, M.; Pertot, I. Antifungal Activity of the Dill (Anethum Graveolens L.) Seed Essential Oil against Strawberry anthracnose under in Vitro and in Vivo Conditions. Arch. Phytopathol. Pflanzenschutz 2016, 49, 554–566, doi:10.1080/03235408.2016.1243999.spa
dc.relation.referencesTian, J.; Ban, X.; Zeng, H.; He, J.; Chen, Y.; Wang, Y. The Mechanism of Antifungal Action of Essential Oil from Dill (Anethum graveolens L.) on Aspergillus flavus. PLoS One 2012, 7, e30147, doi:10.1371/JOURNAL.PONE.0030147.spa
dc.relation.referencesSadeghi, M.; Kabiri, S.; Amerizadeh, A.; Heshmat-Ghahdarijani, K.; Masoumi, G.; Teimouri-Jervekani, Z.; Amirpour, A. Anethum graveolens L. (Dill) Effect on Human Lipid Profile: An Updated Systematic Review. Curr Probl Cardiol 2022, 47, 101072, doi:10.1016/J.CPCARDIOL.2021.101072.spa
dc.relation.referencesHammod, A.J.; Abd El-Aziz, A.H.; Areaaer, A.H.; Hakim Al Masoody, I.; Khalil Alarkwazi, R.; Shanshol Al Yasssiry, A. Pharmaceutical and Biological Properties of Dill : A Review. IOP Conf Ser Earth Environ Sci 2023, 1158, 062005, doi:10.1088/1755-1315/1158/6/062005.spa
dc.relation.referencesAl-Oqail, M.M.; Farshori, N.N. Antioxidant and Anticancer Efficacies of Anethum graveolens against Human Breast Carcinoma Cells through Oxidative Stress and Caspase Dependency. Biomed Res Int 2021, 2021, 1-12, doi:10.1155/2021/5535570.spa
dc.relation.referencesEbadollahi, A.; Nouri-Ganbalani, G.; Hoseini, S.A.; Sadeghi, G.R. Insecticidal Activity of Essential Oils of Five Aromatic Plants Against Callosobruchus maculatus F. (Coleoptera: Bruchidae) Under Laboratory Conditions. . Essent. Oil-Bear. Plants 2012, 15, 256–262, doi:10.1080/0972060X.2012.10644044.spa
dc.relation.referencesNajafzadeh, R.; Ghasemzadeh, S.; Mirfakhraie, S. Effect of Essential Oils from Nepeta Crispa, Anethum graveolens and Satureja hortensis Against the Stored-Product Insect. Int. J. Med. Plants By-Prod 2019, 8, 163–169, doi:10.22092/JMPB.2019.120494.spa
dc.relation.referencesOzliman, S.; Yaldiz, G.; Camlica, M.; Ozsoy, N. Chemical Components of Essential Oils and Biological Activities of the Aqueous Extract of Anethum graveolens L. Grown under Inorganic and Organic Conditions. Chem. biol. technol. agric. 2021, 8, 1–16, doi:10.1186/S40538-021-00224-9/TABLES/6.spa
dc.relation.referencesOtoya, V.L. Considerations for the Use and Study of the Peruvian “Muña” Minthostachys mollis (Benth.) Griseb and Minthostachys setosa (Briq.) Epling. Ethnobot. Res. Appl. 2020, 19, 1–9, doi:10.32859/era.19.29.1-9.spa
dc.relation.referencesScandaliaris, M.; Fuentes, E.; Lovey, R.J. Dos Especies de Lamiáceas Comercializadas En Córdoba (Argentina) Bajo El Nombre de “Peperina.” Multequina 2007, 16, 73–81.spa
dc.relation.referencesMenta Chiquita (Minthostachys mollis) · NaturaLista Colombia Available online: https://colombia.inaturalist.org/taxa/704436-Minthostachys-mollis (accessed on 10 August 2024).spa
dc.relation.referencesCultivo de Peperina (Minthostachys mollis) y Usos, Herbotecnia Available online: http://www.herbotecnia.com.ar/aut-peperina.html (accessed on 15 July 2024).spa
dc.relation.referencesMenta Chiquita (Minthostachys mollis) · INaturalist Ecuador Available online: https://ecuador.inaturalist.org/taxa/704436-Minthostachys-mollis (accessed on 14 August 2024).spa
dc.relation.referencesSchmidt-Lebuhn, A.N. Ethnobotany, Biochemistry and Pharmacology of Minthostachys (Lamiaceae). J Ethnopharmacol 2008, 118, 343–353, doi:10.1016/J.JEP.2008.05.030.spa
dc.relation.referencesRojas-Armas, J.P.; Arroyo-Acevedo, J.L.; Ortiz-Sánchez, J.M.; Palomino-Pacheco, M.; Hilario-Vargas, H.J.; Herrera-Calderón, O.; Hilario-Vargas, J. Potential Toxicity of the Essential Oil from Minthostachys mollis: A Medicinal Plant Commonly Used in the Traditional Andean Medicine in Peru. J Toxicol 2019, 2019, 1-9, doi:10.1155/2019/1987935.spa
dc.relation.referencesLa Muña: ¿qué Es?, Historia, Cultivo, Valor Nutricional, Usos, Recetas y Más... - Superalimentos Del Perú Available online: https://foods.pe/la-muna/ (accessed on 10 August 2024).spa
dc.relation.referencesSerrano, C.A.; Villena, G.K.; Rodríguez, E.F.; Calsino, B.; Ludeña, M.A.; Ccana-Ccapatinta, G. V. Phytochemical Analysis for Ten Peruvian Mentheae (Lamiaceae) by Liquid Chromatography Associated with High Resolution Mass Spectrometry. Sci Rep 2023, 13, 1-10, doi:10.1038/S41598-023-37830-6.spa
dc.relation.referencesGranados-Conde, C.; Iván Arrieta-Llamas, A.; Torrenegra-Alarcón, M.; León-Méndez, G.; Paola Pájaro-Castro, N.; Villalba-Vimos, V. Effect of the Antioxidant Activity of the Essential Oil of Minthostachys mollis G in a Meat Product Type Sausage. Contemp. Eng. Sci 2018, 11, 3991–3998, doi:10.12988/ces.2018.85244.spa
dc.relation.referencesHuamaní, K.; Vilchez, L.; Mauricio, F.; Jáuregui, H.; Munive-Degregori, A.; Mayta-Tovalino, F. Comparison of the Antifungal Efficacy of Four Concentrations of Minthostachys mollis (Muña) Essential Oil against Candida albicans: An In Vitro Study. J Contemp Dent Pract 2021, 22, 1227–1231, doi.org/10.5005/jp-journals-10024-3225.spa
dc.relation.referencesAchimón, F.; Beato, M.; Brito, V.D.; Peschiutta, M.L.; Herrera, J.M.; Merlo, C.; Pizzolitto, R.P.; Zygadlo, J.A.; Zunino, M.P. Insecticidal and Repellent Effects of the Essential Oils Obtained from Argentine Aromatic Flora. Boletín de la Sociedad Argentina de Botánica 2022, 57, 1–10, doi:10.31055/1851.2372.V57.N4.37995.spa
dc.relation.referencesCisneros, F. Estrategias de Control de Las Polillas de La Papa Dentro de Un Esquema de Control Integrado. Agrosavia 1988.spa
dc.relation.referencesRamírez-Mancilla, R., Mora-Vivas, F., Domínguez-Guerrero, I., Rojas-Fermín, L., Ramírez-Méndez, W., Peña-Albornoz, J., & Pérez-Colmenares, A. Actividad Larvicida de Los Aceites Esenciales de Minthostachys mollis y Lepechinia bullata Contra Tecia solanivora Povolny. Revista de la Facultad de Farmacia 2019, 61, 19–25.spa
dc.relation.referencesTropicos | Name - Satureja Viminea Available online: https://www.tropicos.org/name/50047263 (accessed on 10 August 2024).spa
dc.relation.referencesJosé, J.; Román, M.; Aguilar, J.O.; Morales-Torres, K.; Mora-Román, J.J.; Fallas-Ramírez, J.M.; Alexander Rodríguez-Arrieta, J.; Orozco-Aguilar, J. Absence of Nephroprotective Effect: Evaluation of an Aqueous Extact of Clinopodium vimineum (L.) Kuntze (Lamiaceae) Using a Renal Failure Model with Female Wistar Rats Absence Of Nephroprotective Effect: Evaluation Of An Aqueous Extract Of Clinopodium vimineum (L.) Kuntze (Lamiaceae) Using A Renal Failure Model With Female Wistar Rats. European Journal Of Pharmaceutical And Medical Research 2022, 9, 1-20.spa
dc.relation.referencesEpling, C.; Játiva, C. Revision Del Genero Satureja En América Del Sur. Brittonia 1964, 16, 393–416, doi:10.2307/2805308/METRICS.spa
dc.relation.referencesMenta de Jamaica (Clinopodium vimineum) · NaturaLista Colombia Available online: https://colombia.inaturalist.org/taxa/1008570-Clinopodium-vimineum (accessed on 14 August 2024).spa
dc.relation.referencesCarolina, D.; Barragán -María, C.; Torres, E.; Esperanza, C.-J.; Murcia, R.; Gutiérrez Hernández -Ricardo, D.; Pacheco, A.; Soledad Hernández, S.-M.; Segura, Y.Q. Especies Vegetales Altoandinas Con Potencial Agroindustrial Y Gastronómico. Universidad Industrial De Santander 2023, 1, 1-15.spa
dc.relation.referencesTucker, A.O.; Libbey, L.M. Essential Oil of Satureja viminea L. (Lamiaceae). J. Essent. Oil Res 2000, 12, 283–284, doi:10.1080/10412905.2000.9699516.spa
dc.relation.referencesSuárez, A.; Echandi, M.M.; Ulate, G.; Cicció, J.F. Pharmacological Activity of the Essential Oil of Satureja viminea (Lamiaceae). Rev Biol Trop 2003, 51, 247–252.spa
dc.relation.referencesVila, R.; Clcció, J.F.; Cañigueral, S. Essential Oil of Satureja viminea L. from Costa Rica. J. Essent. Oil Res 2000, 12, 279–282, doi:10.1080/10412905.2000.9699515.spa
dc.relation.referencesPérez-Ochoa, M.L.; Vera-Guzmán, A.M.; Chávez-Servia, J.L. Antioxidant Compounds and Activity of the Medicinal Plants Tagetes Sp. and Clinopodium Sp. from Indigenous Communities in Mexico. J. Med. Plants By-Prod 2024, 13, 417–428, doi:10.22034/JMPB.2023.358021.1460.spa
dc.relation.referencesRudón (Tagetes zypaquirensis) · NaturaLista Colombia Available online: https://colombia.inaturalist.org/taxa/280481-Tagetes-zypaquirensis (accessed on 11 August 2024).spa
dc.relation.referencesTagetes zypaquirensis Humb. & Bonpl. Available online: https://www.gbif.org/es/species/4933718 (accessed on 11 August 2024).spa
dc.relation.referencesAnaya-Gutiérrez, E.J.; Gutiérrez, J.; Serrato-Cruz, M.A.; Vázquez-Sánchez, M.; Anaya-Gutiérrez, E.J.; Gutiérrez, J.; Serrato-Cruz, M.A.; Vázquez-Sánchez, M. Anatomía Foliar de Nueve Especies de Tagetes L. (Tageteae: Asteraceae). Bot Sci 2022, 100, 667–684, doi:10.17129/BOTSCI.2985.spa
dc.relation.referencesHerrera-Moreno, A.M.; Carranza, C.E.; Chacón-Sánchez, M.I. Establishment of Propagation Methods for Growing Promising Aromatic Plant Species of the Lippia (Verbenaceae) and Tagetes (Asteraceae) Genera in Colombia. Agron Colomb 2013, 31, 27–37.spa
dc.relation.referencesMendoza Hernandez, A.H.; Niño Hernandez, M.A.; Chaloupkova, P.; Fernandez-Cusimamani, E. Ethnobotanical Study of the Use of Medicinal Plants in the Indigenous Pijao Community in Natagaima, Colombia. Bol Latinoam Caribe Plantas Med Aromat 2021, 20, 482–495, doi:10.37360/blacpma.21.20.5.35.spa
dc.relation.referencesTsay, T.T.; Wu, S.T.; Lin, Y.Y. Evaluation of Asteraceae Plants for Control of Meloidogyne incognita. J Nematol 2004, 36, 36–41.spa
dc.relation.referencesÁlvarez S., D.E.; Botina J., J.A.; Ortiz C., A.J.; Botina J., L.L. Evaluación Nematicida Del Aceite Esencial de Tagetes zypaquirensis En El Manejo Del Nematodo Meloidogyne Spp. Revista de Ciencias Agrícolas, 2016, 33, 22–33.spa
dc.relation.referencesOlovacha Chipantiza, G.V.; Curay, S. Evaluación de Extractos Vegetales de Zorroyuyo (Tagetes zypaquirensis) Higuerilla (Ricinus communis) Para El Control in Vitro de Paratrioza (Bactericera cockerelli Sulc). Tesis pregrado, Universidad técnica de Ambato: Ambato, 2020.spa
dc.relation.referencesPherobase The Pherobase: Database of Pheromones and Semiochemicals | The World Largest Database of Behavioural Modifying Chemicals Available online: https://pherobase.com/ (accessed on 6 May 2024).spa
dc.relation.referencesAdams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry; 4th ed.; Baylor University: Texas, 2017; Vol. 3; 1-809.spa
dc.relation.referencesSerra, S.; Fuganti, C. Natural P-Menthene Monoterpenes: Synthesis of the Enantiomeric Forms of Wine Lactone, Epi-Wine Lactone, Dill Ether, and Epi-Dill Ether Starting from a Common Intermediate. Helv Chim Acta 2004, 87, 2100–2109, doi:10.1002/HLCA.200490189.spa
dc.relation.referencesBensel, N.; Höhn, J.; Marschall, H.; Weyerstahl, P. γ‐Lactone aus α, β‐ungesättigten Ketonen durch P-O‐Olefinierung. Chem Ber 1979, 112, 2256–2277, doi:10.1002/CBER.19791120632.spa
dc.relation.referencesEngel, W. In Vivo Studies on the Metabolism of the Monoterpene Pulegone in Humans Using the Metabolism of Ingestion-Correlated Amounts (MICA) Approach: Explanation for the Toxicity Differences between (S)-(−)- and (R)-(+)-Pulegone. J Agric Food Chem 2003, 51, 6589–6597, doi:10.1021/JF034702U.spa
dc.relation.referencesKumar, R.; Maurya, S.K. Synthesis of γ-Butyrolactone Derivatives from Dihydrotagetone and Evaluation of Their Antidiabetic Activity. ChemistrySelect 2022, 7, e202203064, doi:10.1002/SLCT.202203064.spa
dc.relation.referencesKon, Y.; Hachiya, H.; Ono, Y.; Matsumoto, T.; Sato, K. An Effective Synthesis of Acid-Sensitive via Oxidation of Terpenes and Styrenes Using Hydrogen Peroxide under Organic Solvent-Free Conditions. Synthesis (Stuttg) 2011, 2011, 1092–1098, doi:10.1055/S-0030-1258467.spa
dc.relation.referencesLiu, Z.L.; Goh, S.H.; Ho, S.H. Screening of Chinese Medicinal Herbs for Bioactivity against Sitophilus zeamais Motschulsky and Tribolium castaneum (Herbst). J Stored Prod Res 2007, 43, 290–296, doi:10.1016/J.JSPR.2006.06.010.spa
dc.relation.referencesMa, G.; Xu, C.; Yang, S.; Zhu, Y.; Ye, S.; Qin, R.; Zeng, C.; Du, W.; Zhang, H.; Chen, J. The Trading of Space for Time under Weakly Activated Catalysis: Expeditious Synthesis of β-NH2 Alcohols via a Direct Ammonolysis of Epoxides with Ammonia. Green Chemistry 2023, 25, 720–727, doi:10.1039/D2GC04647D.spa
dc.relation.referencesYadav, V.K.; Babu, K.G. A Remarkably Efficient Markovnikov Hydrochlorination of Olefins and Transformation of Nitriles into Imidates by Use of AcCl and an Alcohol. European J Org Chem 2005, 2005, 452–456, doi:10.1002/EJOC.200400591.spa
dc.relation.referencesCardozo-Muñoz, J.; Cuca-Suárez, L.E.; Prieto-Rodríguez, J.A.; Lopez-Vallejo, F.; Patiño-Ladino, O.J. Multitarget Action of Xanthones from Garcinia mangostana against α-Amylase, α-Glucosidase and Pancreatic Lipase. Molecules 2022, 27, 3283, doi:10.3390/MOLECULES27103283/S1.spa
dc.relation.referencesYang, J.; Lee, S.; Choi, W.J.; Seo, H.; Kim, P.; Kim, G.J.; Kim, Y.W.; Shin, J. Thermoset Elastomers Derived from Carvomenthide. Biomacromolecules 2015, 16, 246–256, doi.org/10.1021/bm501450c.spa
dc.relation.referencesPlummer, C.M.; Gericke, R.; Kraft, P.; Raynor, A.; Froese, J.; Hudlický, T.; Rook, T.J.; Jones, O.A.H.; Hügel, H.M. Synthesis of Saturated Benzodioxepinone Analogues: Insight into the Importance of the Aromatic Ring Binding Motif for Marine Odorants. European J Org Chem 2015, 2015, 486–495, doi:10.1002/EJOC.201403142.spa
dc.relation.referencesTymann, D.; Bednarzick, U.; Iovkova-Berends, L.; Hiersemann, M. Progress toward the Total Synthesis of Gukulenin A: Photochemically Triggered Two-Carbon Ring Expansion Key to α-Tropolonic Ether Synthesis. Org Lett 2018, 20, 4072–4076, doi.org/10.1021/acs.orglett.8b01629.spa
dc.relation.referencesMang, H.; Gross, J.; Lara, M.; Goessler, C.; Schoemaker, H.E.; Guebitz, G.M.; Kroutil, W. Biocatalytic Single-Step Alkene Cleavage from Aryl Alkenes: An Enzymatic Equivalent to Reductive Ozonization. Angewandte Chemie International Edition 2006, 45, 5201–5203, doi:10.1002/ANIE.200601574.spa
dc.relation.referencesBaragliu, A.; Grandolini, G.; Rossi, C.; Casinovi, C.G. Synthesis of 1,2,3-Trihydroxy-p-Menthanes. Tetrahedron 1980, 36, 645–649, doi:10.1016/0040-4020(80)88007-0.spa
dc.relation.referencesKimbaris, A.C.; González-Coloma, A.; Andrés, M.F.; Vidali, V.P.; Polissiou, M.G.; Santana-Méridas, O. Biocidal Compounds from Mentha Sp. Essential Oils and Their Structure–Activity Relationships. Chem Biodivers 2017, 14, e1600270, doi:10.1002/CBDV.201600270.spa
dc.relation.referencesOguro, D.; Mori, N.; Takikawa, H.; Watanabe, H. A Novel Synthesis of (−)-Callicarpenal. Tetrahedron 2018, 74, 5745–5751, doi:10.1016/J.TET.2018.08.012.spa
dc.relation.referencesShull, B.K.; Koreeda, M. Halogen Effect on the Ring Opening of Pulegone Hydrohalides. Journal of Organic Chemistry 1990, 55, 2249–2251, doi.org/10.1021/jo00294a054.spa
dc.relation.referencesPaquette, L.A.; Doehner, R.F. Synthesis of Optically Active Triazolinediones and Examination of Their Utility for Inducing Asymmetry in Diels-Alder Cycloaddition Reaction. Journal of Organic Chemistry 1980, 45, 5105–5113, doi.org/10.1021/jo01313a018.spa
dc.relation.referencesKotronia, M.; Kavetsou, E.; Loupassaki, S.; Kikionis, S.; Vouyiouka, S.; Detsi, A. Encapsulation of Oregano (Origanum onites L.) Essential Oil in β-Cyclodextrin (β-CD): Synthesis and Characterization of the Inclusion Complexes. Bioengineering 2017, 4, 74, doi:10.3390/BIOENGINEERING4030074.spa
dc.relation.referencesHalahlah, A.; Kavetsou, E.; Pitterou, I.; Grigorakis, S.; Loupassaki, S.; Tziveleka, L.A.; Kikionis, S.; Ioannou, E.; Detsi, A. Synthesis and Characterization of Inclusion Complexes of Rosemary Essential Oil with Various β-Cyclodextrins and Evaluation of Their Antibacterial Activity against Staphylococcus aureus. J Drug Deliv Sci Technol 2021, 65, 102660, doi:10.1016/J.JDDST.2021.102660.spa
dc.relation.referencesList of Compounds in the Essential Oil Components Library Available online: https://diabloanalytical.com/ms-software/essentialoilcomponentsbygcms/list-of-compounds-in-the-essential-oil-components-database/ (accessed on 30 May 2024).spa
dc.relation.referencesCharles, D.J.; Simon, J.E.; Widrlechner, M.P. Characterization of Essential Oil of Dill (Anethum graveolens L.). Essent. Oil Res 1995, 7, 11–20, doi:10.1080/10412905.1995.9698456.spa
dc.relation.referencesElechosa, M.A.; Molina, A.M.; Juárez, M.A.; Baren, C.M. van; Di Leo Lira, P.; Bandoni, A.L. Estudio Comparativo Del Aceite Esencial de Minthostachys mollis (KUNTH.) Griseb “Peperina” Obtenido de Colectas En 21 Poblaciones de Las Provincias de Tucuman, Cordoba, San Luis y Catamarca. Bol Latinoam Caribe Plantas Med Aromat 2007, 6, 244–245.spa
dc.relation.referencesStashenko, E.E.; Gutiérrez-Avella, D.M.; Martínez, J.R.; Manrique-López, D.L. Análisis Por GC/FID y GC/MS de La Composición Química y Estudio de La Actividad Antioxidante de Los Metabolitos Secundarios Volátiles, Aislados Por Diferentes Técnicas, de Satureja viminea L. Cultivada En Colombia. Scientia Chromatographica 2017, 9, 25–39, doi.org/10.4322/sc.2017.003.spa
dc.relation.referencesEscobar, P.; Herrera, L.; Leal, M.; Duran, C.; Stashenko Elena Composición Química y Actividad Anti- Tripanosomal de Aceites Esenciales Obtenidos de Tagetes (Fam. Asteraceae), Recolectados En Colombia. Revista de la Universidad Industrial de Santander. Salud 2009, 41, 1-15.spa
dc.relation.referencesPizzolitto, R.P.; Herrera, J.M.; Zaio, Y.P.; Dambolena, J.S.; Zunino, M.P.; Gallucci, M.N.; Zygadlo, J.A. Bioactivities of Ketones Terpenes: Antifungal Effect on F. Verticillioides and Repellents to Control Insect Fungal Vector, S. zeamais. Microorganisms 2015, 3, 851, doi:10.3390/microorganisms3040851.spa
dc.relation.referencesDambolena, J.S.; Zunino, M.P.; Herrera, J.M.; Pizzolitto, R.P.; Areco, V.A.; Zygadlo, J.A. Terpenes: Natural Products for Controlling Insects of Importance to Human Health—A Structure-Activity Relationship Study. Psyche (Camb Mass) 2016, 2016, 4595823, doi:10.1155/2016/4595823.spa
dc.relation.referencesChitiva-Chitiva, L.C.; Ladino-Vargas, C.; Cuca-Suárez, L.E.; Prieto-Rodríguez, J.A.; Patiño-Ladino, O.J. Antifungal Activity of Chemical Constituents from Piper pesaresanum C. DC. and Derivatives against Phytopathogen Fungi of Cocoa. Molecules 2021, 26, 3256, doi:10.3390/MOLECULES26113256.spa
dc.relation.referencesMaestro, A.; Nagy, B.S.; Ötvös, S.B.; Kappe, C.O. A Telescoped Continuous Flow Enantioselective Process for Accessing Intermediates of 1-Aryl-1,3-Diols as Chiral Building Blocks. J. Org. Chem 2023, 88, 15523–15529, doi.org/10.1021/acs.joc.3c02040.spa
dc.relation.referencesOlivier, A.; Müller, D.S. Hydrochlorination of Alkenes with Hydrochloric Acid. Org Process Res Dev 2024, 28, 305–309, doi.org/10.1021/acs.oprd.3c00418.spa
dc.relation.referencesSu, S.; Lin, C.; Zhai, H. Divergent Total Syntheses of (−)-Daphnezomines A and B and (+)-Dapholdhamine B. Angewandte Chemie International Edition 2023, 62, e202303402, doi:10.1002/ANIE.202303402.spa
dc.relation.referencesYildirim, E.; Emsen, B.; Kordali, S. İnsecticidal Effects of Monoterpenes on Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae). Journal of Applied Botany and Food Quality 2013, 86, 198–204, doi:10.5073/JABFQ.2013.086.027.spa
dc.relation.referencesAggarvval, K.K.; Tripathi, A.K.; Ahmad, A.; Frajapati, V.; Verma, N.; Kumar, S. Toxicity of L-Menthol and Its Derivatives against Four Storage Insects. Int J Trop Insect Sci 2001, 21, 229–235, doi:10.1017/S1742758400007621.spa
dc.relation.referencesSaad, M.M.G.; El-Deeb, D.A.; Abdelgaleil, S.A.M. Insecticidal Potential and Repellent and Biochemical Effects of Phenylpropenes and Monoterpenes on the Red Flour Beetle, Tribolium castaneum Herbst. Environ Sci Pollut Res Int 2019, 26, 6801–6810, doi:10.1007/S11356-019-04151-Z/METRICS.spa
dc.relation.referencesBossou, A.D.; Ahoussi, E.; Ruysbergh, E.; Adams, A.; Smagghe, G.; De Kimpe, N.; Avlessi, F.; Sohounhloue, D.C.K.; Mangelinckx, S. Characterization of Volatile Compounds from Three Cymbopogon Species and Eucalyptus citriodora from Benin and Their Insecticidal Activities against Tribolium castaneum. Ind Crops Prod 2015, 76, 306–317, doi:10.1016/J.INDCROP.2015.06.031.spa
dc.relation.referencesGrodnitzky, J.A.; Coats, J.R. QSAR Evaluation of Monoterpenoids’ Insecticidal Activity. J Agric Food Chem 2002, 50, 4576–4580, doi:10.1021/JF0201475.spa
dc.relation.referencesSantos, S.R.L.; Melo, M.A.; Cardoso, A.V.; Santos, R.L.C.; de Sousa, D.P.; Cavalcanti, S.C.H. Structure–Activity Relationships of Larvicidal Monoterpenes and Derivatives against Aedes aegypti Linn. Chemosphere 2011, 84, 150–153, doi:10.1016/J.CHEMOSPHERE.2011.02.018.spa
dc.relation.referencesKimbaris, A.C.; González-Coloma, A.; Andrés, M.F.; Vidali, V.P.; Polissiou, M.G.; Santana-Méridas, O. Biocidal Compounds from Mentha Sp. Essential Oils and Their Structure–Activity Relationships. Chem Biodivers 2017, 14, e1600270, doi:10.1002/CBDV.201600270.spa
dc.relation.referencesDambolena, J.S.; Zunino, M.P.; Herrera, J.M.; Pizzolitto, R.P.; Areco, V.A.; Zygadlo, J.A. Terpenes: Natural Products for Controlling Insects of Importance to Human Health—A Structure-Activity Relationship Study. Psyche (Camb Mass) 2016, 2016, 4595823, doi:10.1155/2016/4595823.spa
dc.relation.referencesZaio, Y.P.; Gatti, G.; Ponce, A.A.; Saavedra Larralde, N.A.; Martinez, M.J.; Zunino, M.P.; Zygadlo, J.A. Cinnamaldehyde and Related Phenylpropanoids, Natural Repellents, and Insecticides against Sitophilus zeamais (Motsch.). A Chemical Structure-Bioactivity Relationship. J Sci Food Agric 2018, 98, 5822–5831, doi:10.1002/JSFA.9132.spa
dc.relation.referencesHaloci, E.; Toska, V.; Shkreli, R.; Goci, E.; Vertuani, S.; Manfredini, S. Encapsulation of Satureja Montana Essential Oil in β-Cyclodextrin. J Incl Phenom Macrocycl Chem 2015, 80, 147–153, doi:10.1007/S10847-014-0437-Z/TABLES/3.spa
dc.relation.referencesHalahlah, A.; Kavetsou, E.; Pitterou, I.; Grigorakis, S.; Loupassaki, S.; Tziveleka, L.A.; Kikionis, S.; Ioannou, E.; Detsi, A. Synthesis and Characterization of Inclusion Complexes of Rosemary Essential Oil with Various β-Cyclodextrins and Evaluation of Their Antibacterial Activity against Staphylococcus aureus. J Drug Deliv Sci Technol 2021, 65, 102660, doi:10.1016/J.JDDST.2021.102660.spa
dc.relation.referencesKotronia, M.; Kavetsou, E.; Loupassaki, S.; Kikionis, S.; Vouyiouka, S.; Detsi, A. Encapsulation of Oregano (Origanum onites L.) Essential Oil in β-Cyclodextrin (β-CD): Synthesis and Characterization of the Inclusion Complexes. Bioengineering 2017, 4, 74, doi:10.3390/bioengineering4030074.spa
dc.relation.referencesVenuti, V.; Crupi, V.; Fazio, B.; Majolino, D.; Acri, G.; Testagrossa, B.; Stancanelli, R.; De Gaetano, F.; Gagliardi, A.; Paolino, D.; et al. Physicochemical Characterization and Antioxidant Activity Evaluation of Idebenone/Hydroxypropyl-β-Cyclodextrin Inclusion Complex. Biomolecules 2019, 9, 531, doi:10.3390/BIOM9100531.spa
dc.relation.referencesHalahlah, A.; Kavetsou, E.; Pitterou, I.; Grigorakis, S.; Loupassaki, S.; Tziveleka, L.A.; Kikionis, S.; Ioannou, E.; Detsi, A. Synthesis and Characterization of Inclusion Complexes of Rosemary Essential Oil with Various β-Cyclodextrins and Evaluation of Their Antibacterial Activity against Staphylococcus aureus. J Drug Deliv Sci Technol 2021, 65, 102660, doi:10.1016/J.JDDST.2021.102660.spa
dc.relation.referencesBen Amara, F.; Akermi, S.; Driss, F.; Marques, H.C.; Costa, N.; Smaoui, S.; Mellouli, L.; Bejar, S.; Jemli, S. Exploring the Bio-Insecticidal Activity of Eucalyptus globulus Essential Oil/β-Cyclodextrin Inclusion Complexes: In Vitro and in Silico Assessment against Ephestia kuehniella Larvae. Pestic Biochem Physiol 2024, 202, 105917, doi:10.1016/J.PESTBP.2024.105917.spa
dc.relation.referencesLópez, M.D.; Pascual-Villalobos, M.J. Mode of Inhibition of Acetylcholinesterase by Monoterpenoids and Implications for Pest Control. Ind Crops Prod 2010, 31, 284–288, doi:10.1016/J.INDCROP.2009.11.005.spa
dc.relation.referencesNolazco–Cama, D.; Sánchez-Contreras, A.; Tellez-Monzón, L.; Vargas-Delgado, L.; Condezo-Hoyos, L. Influence of Essential Oil: Cyclodextrin Ratio and Stirring Rate on Physicochemical Characteristics of Orange Essential Oil: β-Cyclodextrin Microparticles. CyTA - Journal of Food 2023, 21, 366–373, doi:10.1080/19476337.2023.2205916.spa
dc.relation.referencesCapelezzo, A. P., Mohr, L. C., Dalcanton, F., Mello, J. M. M. de, & Fiori, M. A. β-Cyclodextrins as Encapsulating Agents of Essential Oils. Cyclodextrin - A Versatile Ingredient 2018, 1, 1-332, doi:10.5772/INTECHOPEN.73568.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::628 - Ingeniería sanitariaspa
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetalesspa
dc.subject.ddc660 - Ingeniería química::664 - Tecnología de alimentosspa
dc.subject.lembINSECTICIDAS DE ORIGEN VEGETALspa
dc.subject.lembBotanical insecticideseng
dc.subject.lembPLANTAS INSECTICIDASspa
dc.subject.lembPlants, insecticidaleng
dc.subject.lembALMACENAMIENTO DE ALIMENTOSspa
dc.subject.lembFood - Storageeng
dc.subject.lembPLAGAS DE ALIMENTOS ALMACENADOSspa
dc.subject.lembFood storage pestseng
dc.subject.lembALMACENAMIENTO DE PRODUCTOS AGRICOLAS-ENFERMEDADES Y DAÑOSspa
dc.subject.lembFarm produce - storage - diseases and injurieseng
dc.subject.proposalMinthostachys mollisspa
dc.subject.proposalTagetes zypaquirensisspa
dc.subject.proposalAnethum graveolensspa
dc.subject.proposalSatureja vimineaspa
dc.subject.proposalToxicidad fumigantespa
dc.subject.proposalToxicidad por contactospa
dc.subject.proposalMonoterpenoidesspa
dc.subject.proposalMinthostachys molliseng
dc.subject.proposalTagetes zypaquirensiseng
dc.subject.proposalAnethum graveolenseng
dc.subject.proposalSatureja vimineaeng
dc.subject.proposalFumigant toxicityeng
dc.subject.proposalContact toxicityeng
dc.subject.proposalMonoterpenoidseng
dc.titleEstudio de potenciales insecticidas derivados de especies aromáticas con alto contenido de monoterpenoides para el control de Sitophilus Zeamais y Tribolium Castaneumspa
dc.title.translatedStudy of insecticidal potentials derived from aromatic species with high monoterpenoid content for the control of Sitophilus Zeamais and Tribolium Castaneumeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1031163306.2025.pdf
Tamaño:
5.26 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Químicas

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: