Fortalecimiento de la red nacional de laboratorios que realizan detección de SARS CoV-2 por PCR a través del desarrollo de herramientas metrológicas para el aseguramiento de la calidad de los resultados de medición

dc.contributor.advisorSoto Ospina, Carlos Yesid
dc.contributor.advisorLeguizamón Guerrero, John Emerson
dc.contributor.authorDávila González, Sergio
dc.contributor.orcidDávila González, Sergio Luis [0009000292702159]spa
dc.contributor.researchgroupGrupo de Investigación en Metrología Química y Bioanálisis (GIMQB)spa
dc.contributor.researchgroupBioquímica y Biología Molecular de las Microbacterias (BBMM)spa
dc.coverage.countryColombia
dc.date.accessioned2024-01-16T17:47:21Z
dc.date.available2024-01-16T17:47:21Z
dc.date.issued2022
dc.descriptionilustraciones, diagramas, figuras, fotografíasspa
dc.description.abstractEl virus SARS CoV-2 es el agente etiológico patógeno causante de la enfermedad COVID-19, la que tuvo un rápido surgimiento de nuevos casos alrededor del mundo ocasionando la declaración de pandemia por parte de la Organización Mundial de la Salud (OMS). Hasta la fecha, se han reportado alrededor de 664.9 millones de casos de COVID-19 alrededor del mundo y 6.7 millones de muertes por esta enfermedad; En este sentido, la detección de nuevos casos es una de las herramientas más utilizadas para hacer seguimiento al avance de la pandemia. A pesar de la existencia de varias estrategias para la detección del virus causante de la enfermedad, en la actualidad por su alta sensibilidad y fácil implementación, el método de referencia es la técnica de Reacción en Cadena de la Polimerasa (PCR por sus siglas en inglés). En Colombia se conformó la red nacional de laboratorios para la detección del virus SARS-CoV-2, coordinada por el Instituto Nacional de Salud (INS), como un mecanismo para ampliar la capacidad de detección de casos positivos a nivel nacional. Con el objetivo de fortalecer ésta red nacional de laboratorios, el INS, en convenio con el Instituto Nacional de Metrología (INM), y con el apoyo de la cooperación internacional, desarrollaron un conjunto de herramientas para apoyar las actividades de aseguramiento de la calidad de los resultados de medición que llevan a cabo cada uno de los laboratorios de esta red; en particular se desarrollaron dos materiales de referencia (MR) a nivel de ARN en solución. Estos fueron caracterizados por PCR en tiempo real y PCR digital, ambas con retrotranscripción (RT), los cuales demostraron ser lo suficientemente homogéneos y estables para ser empleados como Item de Ensayo de Aptitud (IEA), asi como Control Positivo en un Ensayo de Aptitud (EA) para la detección de SARS CoV-2 por técnicas basadas en PCR, y un taller de transferencia técnica, respectivamente. El desarrollo y ejecución de estas actividad permitió identificar posibles debilidades metrológicas de los laboratorios en la detección de secuencias de SARS-CoV-2 por RT-PCR y mejorará la calidad de las mediciones desde la perspectiva de la vigilancia de salud pública. (Texto tomado de la fuente)spa
dc.description.abstractThe SARS CoV-2 virus is the pathogen that causes the disease COVID-19, the rapid emergence of new cases around the world led to the declaration of a pandemic by the WHO. Around 664.9 million cases have been reported around the world and 6.7 million deaths, so the detection of new cases is one of the most used tools to monitor the progress of the pandemic. Despite the existence of several strategies for the detection of the virus that causes the disease, currently the reference method is the Polymerase Chain Reaction (PCR) technique due to its high sensitivity and easy implementation. In Colombia, the national network of laboratories for the detection of the SARS-CoV-2 virus was formed, coordinated by the National Institute of Health, as a mechanism to expand the detection of positive cases nationwide. With the objective of strengthening this national network of laboratories, the INS, in agreement with the National Institute of Metrology INM, as well as with the support of international cooperation, developed a set of tools to support the quality assurance activities of the measurement results carried out by each of the laboratories of this network; in particular, two reference materials (RM) were developed at the level of RNA in solution. These were characterized by real-time PCR and digital PCR, both with reverse transcription (RT), which proved to be sufficiently homogeneous and stable to be used as a Proficiency Test Item (IEA), as well as a Positive Control in a Proficiency Assay. (EA) for virus detection by PCR-based techniques, and a technical transfer workshop, respectively. The development and execution of these activities made it possible to identify possible metrological weaknesses of the laboratories in the detection of SARS-CoV-2 sequences by RT-PCR and will improve the quality of the measurements from the perspective of public health surveillance.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Bioquímicaspa
dc.description.researchareaMetrología en bioanálisisspa
dc.format.extent206 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85332
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Bioquímicaspa
dc.relation.referencesOrganizacion Mundial de la Salud, ‘La OMS caracteriza a COVID-19 como una pandemia’, OMS, Mar. 11, 2021. https://www.paho.org/es/noticias/11-3-2020-oms-caracteriza-covid-19-como-pandemia (accessed Jan. 25, 2023).spa
dc.relation.referencesS. Vilcek, ‘SARS-CoV-2: Zoonotic origin of pandemic coronavirus’, Acta Virol, vol. 64, no. 03, pp. 281–287, 2020, doi: 10.4149/av_2020_302.spa
dc.relation.referencesWorld Health Organization, ‘WHO Coronavirus (COVID-19) Dashboard’, Jan. 24, 2023. https://covid19.who.int (accessed Jan. 25, 2023).spa
dc.relation.referencesK. L. Candido et al., ‘Spike protein of SARS-CoV-2 variants: a brief review and practical implications’, Brazilian Journal of Microbiology, vol. 53, no. 3, pp. 1133–1157, Sep. 2022, doi: 10.1007/s42770-022-00743-z.spa
dc.relation.referencesCentro Nacional de Vacunación y Enfermedades Respiratorias, ‘Clasificaciones y definiciones de las variantes del SARS-CoV-2’, Apr. 06, 2022. https://espanol.cdc.gov/coronavirus/2019-ncov/variants/variant-classifications.htmlspa
dc.relation.referencesK. Shirato et al., ‘Development of Genetic Diagnostic Methods for Detection for Novel Coronavirus 2019(nCoV-2019) in Japan’, Jpn J Infect Dis, vol. 73, no. 4, pp. 304–307, Jul. 2020, doi: 10.7883/yoken.JJID.2020.061.spa
dc.relation.referencesNational Instituote For Viral Disease Control and Prevention, ‘Specific primers and probes for detection 2019 novel coronavirus’, China CDC. Jan. 21, 2020. Accessed: Jan. 03, 2023. [Online]. Available: https://ivdc.chinacdc.cn/kyjz/202001/t20200121_211337.htmlspa
dc.relation.referencesM. of P. H. Department of Medical Sciences, ‘Diagnostic detection of Novel coronavirus 2019 by Real time RTPCR’, Thailand, Jan. 2020. Accessed: Jan. 03, 2023. [Online]. Available: https://www.who.int/docs/default-source/coronaviruse/conventional-rt-pcr-followed-by-sequencing-for-detection-of-ncov-rirl-nat-inst-health-t.pdfspa
dc.relation.referencesV. M. Corman et al., ‘Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR’, Eurosurveillance, vol. 25, no. 3, Jan. 2020, doi: 10.2807/1560-7917.ES.2020.25.3.2000045.spa
dc.relation.referencesDivision of Viral Diseases and Centers for Disease Control and Prevention (CDC), ‘2019-Novel Coronavirus (2019-nCoV) Real-time rRT-PCR Panel’, Atlanta, GA, Jan. 2020. Accessed: Jan. 03, 2023. [Online]. Available: https://www.who.int/docs/default-source/coronaviruse/whoinhouseassays.pdfspa
dc.relation.referencesWorld Health Organization, ‘Summary table of available protocols in this document’, Jan. 24, 2020.spa
dc.relation.referencesFDA, ‘Policy for Coronavirus Disease-2019 Tests’, 2020. [Online]. Available: https://www.fda.gov/regulatory-spa
dc.relation.referencesP. Quevauviller, ‘QUALITY ASSURANCE | Reference Materials’, in Encyclopedia of Analytical Science, Elsevier, 2005, pp. 458–462. doi: 10.1016/B0-12-369397-7/00509-4.spa
dc.relation.referencesF. M. de Albano and C. S. ten Caten, ‘Proficiency tests for laboratories: a systematic review’, Accreditation and Quality Assurance, vol. 19, no. 4, pp. 245–257, Aug. 2014, doi: 10.1007/s00769-014-1061-8.spa
dc.relation.referencesF. , Z. , Y. , C. M. , W. , S. G. , H. , T. W. , T. H. , P. Y. , Y. L. , Z. L. , D. H. , L. , W. M. , Z. J. , X. , H. C. and Z. Z. Wu, ‘Severe acute respiratory syndrome coronavirus 2 isolate Wuhan-Hu-1, co - Nucleotide - NCBI’, Nih.gov. 2020. Accessed: Jan. 25, 2023. [Online]. Available: https://www.ncbi.nlm.nih.gov/nuccore/MN908947spa
dc.relation.referencesJoint Reseach Center, ‘COVID-19 In Vitro Diagnostic Devices and Test Methods Database’, Jan. 24, 2023.spa
dc.relation.referencesZ. Iglói et al., ‘Comparison of commercial realtime reverse transcription PCR assays for the detection of SARS-CoV-2’, Journal of Clinical Virology, vol. 129, p. 104510, Aug. 2020, doi: 10.1016/j.jcv.2020.104510.spa
dc.relation.referencesS. Woloshin, N. Patel, and A. S. Kesselheim, ‘False Negative Tests for SARS-CoV-2 Infection — Challenges and Implications’, New England Journal of Medicine, vol. 383, no. 6, p. e38, Aug. 2020, doi: 10.1056/NEJMp2015897.spa
dc.relation.referencesL. M. Kucirka, S. A. Lauer, O. Laeyendecker, D. Boon, and J. Lessler, ‘Variation in False-Negative Rate of Reverse Transcriptase Polymerase Chain Reaction–Based SARS-CoV-2 Tests by Time Since Exposure’, Ann Intern Med, vol. 173, no. 4, pp. 262–267, Aug. 2020, doi: 10.7326/M20-1495.spa
dc.relation.referencesInstituto Nacional de Salud, ‘COVID-19 en Colombia’, Jan. 24, 2023. https://www.ins.gov.co/Noticias/Paginas/coronavirus-laboratorios.aspx (accessed Jan. 25, 2023).spa
dc.relation.referencesH. J. Maier, E. Bickerton, and P. Britton, ‘Coronaviruses.’, Methods Mol Biol, vol. 1282, p. v, 2015, doi: 10.1007/978-1-4939-2438-7.spa
dc.relation.referencesL. Zhao et al., ‘Antagonism of the Interferon-Induced OAS-RNase L Pathway by Murine Coronavirus ns2 Protein Is Required for Virus Replication and Liver Pathology’, Cell Host Microbe, vol. 11, no. 6, pp. 607–616, Jun. 2012, doi: 10.1016/j.chom.2012.04.011.spa
dc.relation.referencesD. R. Beniac, A. Andonov, E. Grudeski, and T. F. Booth, ‘Architecture of the SARS coronavirus prefusion spike’, Nat Struct Mol Biol, vol. 13, no. 8, pp. 751–752, Aug. 2006, doi: 10.1038/nsmb1123.spa
dc.relation.referencesJ. Cui, F. Li, and Z.-L. Shi, ‘Origin and evolution of pathogenic coronaviruses’, Nat Rev Microbiol, vol. 17, no. 3, pp. 181–192, Mar. 2019, doi: 10.1038/s41579-018-0118-9.spa
dc.relation.referencesS. K. P. Lau et al., ‘Coronavirus HKU1 and Other Coronavirus Infections in Hong Kong’, J Clin Microbiol, vol. 44, no. 6, pp. 2063–2071, Jun. 2006, doi: 10.1128/JCM.02614-05.spa
dc.relation.referencesR. L. Graham and R. S. Baric, ‘SARS-CoV-2: Combating Coronavirus Emergence’, Immunity, vol. 52, no. 5, pp. 734–736, May 2020, doi: 10.1016/j.immuni.2020.04.016.spa
dc.relation.referencesN. Zhong et al., ‘Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People’s Republic of China, in February, 2003’, The Lancet, vol. 362, no. 9393, pp. 1353–1358, Oct. 2003, doi: 10.1016/S0140-6736(03)14630-2.spa
dc.relation.referencesY. Guan et al., ‘Molecular epidemiology of the novel coronavirus that causes severe acute respiratory syndrome’, The Lancet, vol. 363, no. 9403, pp. 99–104, Jan. 2004, doi: 10.1016/S0140-6736(03)15259-2.spa
dc.relation.referencesM. Wang et al., ‘SARS-CoV Infection in a Restaurant from Palm Civet’, Emerg Infect Dis, vol. 11, no. 12, pp. 1860–1865, Dec. 2005, doi: 10.3201/eid1112.041293.spa
dc.relation.referencesWHO, ‘Summary of probably SARS cases with onset of illness from 1 November 2002 to 31 July 2003’, 2004. Accessed: Jan. 25, 2023. [Online]. Available: http://www.who.int/csr/sars/country/ table2004_04_21/en/ (2004).spa
dc.relation.referencesE. de Wit, N. van Doremalen, D. Falzarano, and V. J. Munster, ‘SARS and MERS: recent insights into emerging coronaviruses’, Nat Rev Microbiol, vol. 14, no. 8, pp. 523–534, Aug. 2016, doi: 10.1038/nrmicro.2016.81.spa
dc.relation.referencesJ. Wise, ‘Patient with new strain of coronavirus is treated in intensive care at London hospital’, BMJ, vol. 345, no. sep24 2, pp. e6455–e6455, Sep. 2012, doi: 10.1136/bmj.e6455.spa
dc.relation.referencesWorld Health Organization, ‘Coronavirus infections: disease outbreak news.’, 2016. Accessed: Jan. 25, 2023. [Online]. Available: http://www.who.int/csr/don/26-april-2016- mers-saudi-arabia/en/ (2016)spa
dc.relation.referencesJ. S. Kahn and K. McIntosh, ‘History and Recent Advances in Coronavirus Discovery’, Pediatric Infectious Disease Journal, vol. 24, no. 11, pp. S223–S227, Nov. 2005, doi: 10.1097/01.inf.0000188166.17324.60.spa
dc.relation.referencesL. E. Gralinski and V. D. Menachery, ‘Return of the Coronavirus: 2019-nCoV’, Viruses, vol. 12, no. 2, p. 135, Jan. 2020, doi: 10.3390/v12020135.spa
dc.relation.referencesQ. W. Z. Z. Tao Zhang, ‘Pangolin homology associated with 2019-nCoV’, bioRxiv, 2020.spa
dc.relation.referencesK. G. Andersen, A. Rambaut, W. I. Lipkin, E. C. Holmes, and R. F. Garry, ‘The proximal origin of SARS-CoV-2’, Nat Med, vol. 26, no. 4, pp. 450–452, Apr. 2020, doi: 10.1038/s41591-020-0820-9.spa
dc.relation.referencesE. Callaway, H. Ledford, and S. Mallapaty, ‘Six months of coronavirus: the mysteries scientists are still racing to solve’, Nature, vol. 583, no. 7815, pp. 178–179, Jul. 2020, doi: 10.1038/d41586-020-01989-z.spa
dc.relation.referencesJ. Zheng, ‘SARS-CoV-2: an Emerging Coronavirus that Causes a Global Threat’, Int J Biol Sci, vol. 16, no. 10, pp. 1678–1685, 2020, doi: 10.7150/ijbs.45053.spa
dc.relation.referencesE. I. Azhar et al., ‘Evidence for Camel-to-Human Transmission of MERS Coronavirus’, New England Journal of Medicine, vol. 370, no. 26, pp. 2499–2505, Jun. 2014, doi: 10.1056/NEJMoa1401505.spa
dc.relation.referencesK. B. Anand, S. Karade, S. Sen, and R. M. Gupta, ‘SARS-CoV-2: Camazotz’s Curse’, Med J Armed Forces India, vol. 76, no. 2, pp. 136–141, Apr. 2020, doi: 10.1016/j.mjafi.2020.04.008.spa
dc.relation.referencesS. Kang et al., ‘Recent progress in understanding 2019 novel coronavirus (SARS-CoV-2) associated with human respiratory disease: detection, mechanisms and treatment’, Int J Antimicrob Agents, vol. 55, no. 5, p. 105950, May 2020, doi: 10.1016/j.ijantimicag.2020.105950.spa
dc.relation.referencesR. J. Mason, ‘Pathogenesis of COVID-19 from a cell biology perspective’, European Respiratory Journal, vol. 55, no. 4, p. 2000607, Apr. 2020, doi: 10.1183/13993003.00607-2020.spa
dc.relation.referencesE. M. Saied et al., ‘A Comprehensive Review about the Molecular Structure of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): Insights into Natural Products against COVID-19’, Pharmaceutics, vol. 13, no. 11, p. 1759, Oct. 2021, doi: 10.3390/pharmaceutics13111759.spa
dc.relation.referencesF. Wu et al., ‘A new coronavirus associated with human respiratory disease in China’, Nature, vol. 579, no. 7798, pp. 265–269, Mar. 2020, doi: 10.1038/s41586-020-2008-3.spa
dc.relation.referencesD. A. Brian and R. S. Baric, ‘Coronavirus Genome Structure and Replication’, 2005, pp. 1–30. doi: 10.1007/3-540-26765-4_1.spa
dc.relation.referencesP. S. Masters, ‘The Molecular Biology of Coronaviruses’, 2006, pp. 193–292. doi: 10.1016/S0065-3527(06)66005-3.spa
dc.relation.referencesS. Stertz et al., ‘The intracellular sites of early replication and budding of SARS-coronavirus’, Virology, vol. 361, no. 2, pp. 304–315, May 2007, doi: 10.1016/j.virol.2006.11.027.spa
dc.relation.referencesD. Schoeman and B. C. Fielding, ‘Coronavirus envelope protein: current knowledge’, Virol J, vol. 16, no. 1, p. 69, Dec. 2019, doi: 10.1186/s12985-019-1182-0.spa
dc.relation.referencesK. Pervushin et al., ‘Structure and Inhibition of the SARS Coronavirus Envelope Protein Ion Channel’, PLoS Pathog, vol. 5, no. 7, p. e1000511, Jul. 2009, doi: 10.1371/journal.ppat.1000511.spa
dc.relation.referencesG. Mariano, R. J. Farthing, S. L. M. Lale-Farjat, and J. R. C. Bergeron, ‘Structural Characterization of SARS-CoV-2: Where We Are, and Where We Need to Be’, Front Mol Biosci, vol. 7, Dec. 2020, doi: 10.3389/fmolb.2020.605236.spa
dc.relation.referencesW. T. Harvey et al., ‘SARS-CoV-2 variants, spike mutations and immune escape’, Nat Rev Microbiol, vol. 19, no. 7, pp. 409–424, Jul. 2021, doi: 10.1038/s41579-021-00573-0.spa
dc.relation.referencesA. A. T. Naqvi et al., ‘Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach’, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol. 1866, no. 10, p. 165878, Oct. 2020, doi: 10.1016/j.bbadis.2020.165878.spa
dc.relation.referencesM. F. ur Rehman et al., ‘Novel coronavirus disease (COVID-19) pandemic: A recent mini review’, Comput Struct Biotechnol J, vol. 19, pp. 612–623, 2021, doi: 10.1016/j.csbj.2020.12.033.spa
dc.relation.referencesWorld Health Organization, ‘WHO announces simple, easy-to-say labels for SARS-CoV-2 Variants of Interest and Concern’, 2021, Accessed: Jan. 25, 2023. [Online]. Available: https://www.who.int/news/item/31-05-2021-who-announces-simple-easy-to-say-labels-for-sars-cov-2-variants-of-interest-and-concernspa
dc.relation.referencesS. Khare et al., ‘GISAID’s Role in Pandemic Response’, China CDC Wkly, vol. 3, no. 49, pp. 1049–1051, 2021, doi: 10.46234/ccdcw2021.255.spa
dc.relation.referencesA. Rahimi, A. Mirzazadeh, and S. Tavakolpour, ‘Genetics and genomics of SARS-CoV-2: A review of the literature with the special focus on genetic diversity and SARS-CoV-2 genome detection’, Genomics, vol. 113, no. 1, pp. 1221–1232, Jan. 2021, doi: 10.1016/j.ygeno.2020.09.059.spa
dc.relation.referencesB. Jackson et al., ‘Generation and transmission of interlineage recombinants in the SARS-CoV-2 pandemic’, Cell, vol. 184, no. 20, pp. 5179-5188.e8, Sep. 2021, doi: 10.1016/j.cell.2021.08.014.spa
dc.relation.referencesS. Duffy, L. A. Shackelton, and E. C. Holmes, ‘Rates of evolutionary change in viruses: patterns and determinants’, Nat Rev Genet, vol. 9, no. 4, pp. 267–276, Apr. 2008, doi: 10.1038/nrg2323.spa
dc.relation.referencesM. F. Boni et al., ‘Evolutionary origins of the SARS-CoV-2 sarbecovirus lineage responsible for the COVID-19 pandemic’, Nat Microbiol, vol. 5, no. 11, pp. 1408–1417, Jul. 2020, doi: 10.1038/s41564-020-0771-4.spa
dc.relation.referencesC. Kemena and C. Notredame, ‘Upcoming challenges for multiple sequence alignment methods in the high-throughput era’, Bioinformatics, vol. 25, no. 19, pp. 2455–2465, Oct. 2009, doi: 10.1093/bioinformatics/btp452.spa
dc.relation.referencesD.-F. Feng and R. F. Doolittle, ‘Progressive sequence alignment as a prerequisitetto correct phylogenetic trees’, J Mol Evol, vol. 25, no. 4, pp. 351–360, Aug. 1987, doi: 10.1007/BF02603120.spa
dc.relation.referencesJ. Daugelaite, A. O’ Driscoll, and R. D. Sleator, ‘An Overview of Multiple Sequence Alignments and Cloud Computing in Bioinformatics’, ISRN Biomath, vol. 2013, pp. 1–14, Aug. 2013, doi: 10.1155/2013/615630.spa
dc.relation.referencesS. Pickering et al., ‘Comparative performance of SARS-CoV-2 lateral flow antigen tests and association with detection of infectious virus in clinical specimens: a single-centre laboratory evaluation study’, Lancet Microbe, vol. 2, no. 9, pp. e461–e471, Sep. 2021, doi: 10.1016/S2666-5247(21)00143-9.spa
dc.relation.referencesM. di Domenico, A. de Rosa, and M. Boccellino, ‘Detection of SARS-COV-2 Proteins Using an ELISA Test’, Diagnostics, vol. 11, no. 4, p. 698, Apr. 2021, doi: 10.3390/diagnostics11040698.spa
dc.relation.referencesG. Sapkal et al., ‘Development of indigenous IgG ELISA for the detection of anti-SARS-CoV-2 IgG’, Indian Journal of Medical Research, vol. 151, no. 5, p. 444, 2020, doi: 10.4103/ijmr.IJMR_2232_20.spa
dc.relation.referencesM. A. MacMullan et al., ‘ELISA detection of SARS-CoV-2 antibodies in saliva’, Sci Rep, vol. 10, no. 1, p. 20818, Nov. 2020, doi: 10.1038/s41598-020-77555-4.spa
dc.relation.referencesA. Padoan, C. Cosma, L. Sciacovelli, D. Faggian, and M. Plebani, ‘Analytical performances of a chemiluminescence immunoassay for SARS-CoV-2 IgM/IgG and antibody kinetics’, Clinical Chemistry and Laboratory Medicine (CCLM), vol. 58, no. 7, pp. 1081–1088, Jun. 2020, doi: 10.1515/cclm-2020-0443.spa
dc.relation.referencesW. M. Freeman, S. J. Walker, and K. E. Vrana, ‘Quantitative RT-PCR: Pitfalls and Potential’, Biotechniques, vol. 26, no. 1, pp. 112–125, Jan. 1999, doi: 10.2144/99261rv01.spa
dc.relation.referencesS. F. C. Hawkins and P. C. Guest, ‘Multiplex Analyses Using Real-Time Quantitative PCR’, 2017, pp. 125–133. doi: 10.1007/978-1-4939-6730-8_8.spa
dc.relation.referencesJ. Olmsted and D. R. Kearns, ‘Mechanism of ethidium bromide fluorescence enhancement on binding to nucleic acids’, Biochemistry, vol. 16, no. 16, pp. 3647–3654, Aug. 1977, doi: 10.1021/bi00635a022.spa
dc.relation.referencesF. Ponchel et al., ‘Real-time PCR based on SYBR-Green I fluorescence: An alternative to the TaqMan assay for a relative quantification of gene rearrangements, gene amplifications and micro gene deletions’, BMC Biotechnol, vol. 3, no. 1, p. 18, 2003, doi: 10.1186/1472-6750-3-18.spa
dc.relation.referencesN. Younes et al., ‘Challenges in Laboratory Diagnosis of the Novel Coronavirus SARS-CoV-2’, Viruses, vol. 12, no. 6, p. 582, May 2020, doi: 10.3390/v12060582.spa
dc.relation.referencesA. S. Basu, ‘Digital Assays Part I: Partitioning Statistics and Digital PCR’, SLAS Technol, vol. 22, no. 4, pp. 369–386, Aug. 2017, doi: 10.1177/2472630317705680.spa
dc.relation.referencesL. B. Pinheiro et al., ‘Evaluation of a Droplet Digital Polymerase Chain Reaction Format for DNA Copy Number Quantification’, Anal Chem, vol. 84, no. 2, pp. 1003–1011, Jan. 2012, doi: 10.1021/ac202578x.spa
dc.relation.referencesI. Hudecova, ‘Digital PCR analysis of circulating nucleic acids’, Clin Biochem, vol. 48, no. 15, pp. 948–956, Oct. 2015, doi: 10.1016/j.clinbiochem.2015.03.015.spa
dc.relation.referencesJ. Pavšič, J. Žel, and M. Milavec, ‘Assessment of the real-time PCR and different digital PCR platforms for DNA quantification’, Anal Bioanal Chem, vol. 408, no. 1, pp. 107–121, Jan. 2016, doi: 10.1007/s00216-015-9107-2.spa
dc.relation.referencesL. Deprez et al., ‘Validation of a digital PCR method for quantification of DNA copy number concentrations by using a certified reference material’, Biomol Detect Quantif, vol. 9, pp. 29–39, Sep. 2016, doi: 10.1016/j.bdq.2016.08.002.spa
dc.relation.referencesS. Bhat and K. R. Emslie, ‘Digital polymerase chain reaction for characterisation of DNA reference materials’, Biomol Detect Quantif, vol. 10, pp. 47–49, Dec. 2016, doi: 10.1016/j.bdq.2016.04.001.spa
dc.relation.referencesM. C. Kline, E. L. Romsos, and D. L. Duewer, ‘Evaluating Digital PCR for the Quantification of Human Genomic DNA: Accessible Amplifiable Targets’, Anal Chem, vol. 88, no. 4, pp. 2132–2139, Feb. 2016, doi: 10.1021/acs.analchem.5b03692.spa
dc.relation.referencesD. G. Burke et al., ‘Digital Polymerase Chain Reaction Measured pUC19 Marker as Calibrant for HPLC Measurement of DNA Quantity’, Anal Chem, vol. 85, no. 3, pp. 1657–1664, Feb. 2013, doi: 10.1021/ac302925f.spa
dc.relation.referencesW. Richter, ‘Primary methods of measurement in chemical analysis’, Accreditation and Quality Assurance, vol. 2, no. 8, pp. 354–359, Dec. 1997, doi: 10.1007/s007690050165.spa
dc.relation.referencesJCGM, ‘Vocabulario Internacional de Metrología Edición del VIM 2008 con inclusión de pequeñas correcciones’. 2008. Accessed: Jan. 25, 2023. [Online]. Available: https://www.cem.es/sites/default/files/vim-cem-2012web.pdfspa
dc.relation.referencesJ. H. E. S. Tania Nolan, ‘Good practice guide for the application of quantitative PCR (qPCR)’, 2013.spa
dc.relation.referencesInternational Organization for Standardization, ‘ISO Guide 35:2017, Reference materials — Guidance for characterization and assessment of homogeneity and stability’, Geneva. 2017.spa
dc.relation.referencesInternational Organization for Standardization, ‘ISO 17034:2016(es) Requisitos generales para la competencia de los productores de materiales de referencia’. 2016.spa
dc.relation.referencesJCGM 100, ‘Evaluación de datos de medición Guía para la Expresión de la Incertidumbre de Medida’. 2008.spa
dc.relation.referencesInternational Organization for Standardization, ‘ISO/IEC 17025:2017(es) Requisitos generales para la competencia de los laboratorios de ensayo y calibración’. 2017.spa
dc.relation.referencesInternational Organization for Standardization, ‘ISO/IEC 17011:2017(es) Evaluación de la conformidad — Requisitos para los organismos de acreditación que realizan la acreditación de organismos de evaluación de la conformidad’. 2004.spa
dc.relation.referencesInternational Organization for Standardization, ‘] ISO/IEC 17043:2010(es), Evaluación de la conformidad — Requisitos generales para los ensayos de aptitud’, 2010.spa
dc.relation.referencesG. H. White, ‘Metrological traceability in clinical biochemistry’, Annals of Clinical Biochemistry: International Journal of Laboratory Medicine, vol. 48, no. 5, pp. 393–409, Sep. 2011, doi: 10.1258/acb.2011.011079.spa
dc.relation.referencesQ.-X. Long et al., ‘Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections’, Nat Med, vol. 26, no. 8, pp. 1200–1204, Aug. 2020, doi: 10.1038/s41591-020-0965-6.spa
dc.relation.referencesI. A. Mattioli, A. Hassan, O. N. Oliveira, and F. N. Crespilho, ‘On the Challenges for the Diagnosis of SARS-CoV-2 Based on a Review of Current Methodologies’, ACS Sens, vol. 5, no. 12, pp. 3655–3677, Dec. 2020, doi: 10.1021/acssensors.0c01382.spa
dc.relation.referencesJ. Kashir and A. Yaqinuddin, ‘Loop mediated isothermal amplification (LAMP) assays as a rapid diagnostic for COVID-19’, Med Hypotheses, vol. 141, p. 109786, Aug. 2020, doi: 10.1016/j.mehy.2020.109786.spa
dc.relation.referencesU. Ganbaatar and C. Liu, ‘CRISPR-Based COVID-19 Testing: Toward Next-Generation Point-of-Care Diagnostics’, Front Cell Infect Microbiol, vol. 11, Apr. 2021, doi: 10.3389/fcimb.2021.663949.spa
dc.relation.referencesB. Merrick et al., ‘Real-world deployment of lateral flow SARS-CoV-2 antigen detection in the emergency department to provide rapid, accurate and safe diagnosis of COVID-19’, Infection Prevention in Practice, vol. 3, no. 4, p. 100186, Dec. 2021, doi: 10.1016/j.infpip.2021.100186.spa
dc.relation.referencesI. N. de S. MinSalud, ‘LINEAMIENTOS PARA EL USO DE PRUEBAS MOLECULARES RT-PCR, PRUEBAS DE ANTÍGENO Y PRUEBAS SEROLÓGICAS PARA SARS-CoV-2 (COVID-19) EN COLOMBIA’, Aug. 2020.spa
dc.relation.referencesJ. Santaella-Tenorio, ‘SARS-CoV-2 diagnostic testing alternatives for Latin America’, Colomb Med, pp. 1–7, May 2020, doi: 10.25100/cm.v51i2.4272.spa
dc.relation.referencesD. N. Marcone, G. Carballal, C. Ricarte, and M. Echavarria, ‘Diagnóstico de virus respiratorios utilizando un sistema automatizado de PCR múltiples (FilmArray) y su comparación con métodos convencionales’, Rev Argent Microbiol, vol. 47, no. 1, pp. 29–35, Jan. 2015, doi: 10.1016/j.ram.2014.12.003.spa
dc.relation.referencesC. Camacho et al., ‘BLAST+: architecture and applications’, BMC Bioinformatics, vol. 10, no. 1, p. 421, Dec. 2009, doi: 10.1186/1471-2105-10-421.spa
dc.relation.referencesGeorge Quellhorst and Sam Rulli, ‘A systematic guideline for developing the best real-time PCR primers’, QIAGEN, 2018.spa
dc.relation.referencesA. Rodríguez, M. Rodríguez, J. J. Córdoba, and M. J. Andrade, ‘Design of Primers and Probes for Quantitative Real-Time PCR Methods’, 2015, pp. 31–56. doi: 10.1007/978-1-4939-2365-6_3.spa
dc.relation.referencesGenScript, ‘Real-time PCR (TaqMan) Primer and Probes Design Tool’, Jan. 23, 2023.spa
dc.relation.referencesR. J. Dikdan et al., ‘Multiplex PCR Assays for Identifying all Major Severe Acute Respiratory Syndrome Coronavirus 2 Variants’, The Journal of Molecular Diagnostics, vol. 24, no. 4, pp. 309–319, Apr. 2022, doi: 10.1016/j.jmoldx.2022.01.004.spa
dc.relation.referencesL. Peñarrubia et al., ‘Multiple assays in a real-time RT-PCR SARS-CoV-2 panel can mitigate the risk of loss of sensitivity by new genomic variants during the COVID-19 outbreak’, International Journal of Infectious Diseases, vol. 97, pp. 225–229, Aug. 2020, doi: 10.1016/j.ijid.2020.06.027.spa
dc.relation.referencesK. Wernike, M. Keller, F. J. Conraths, T. C. Mettenleiter, M. H. Groschup, and M. Beer, ‘Pitfalls in SARS‐CoV‐2 PCR diagnostics’, Transbound Emerg Dis, vol. 68, no. 2, pp. 253–257, Mar. 2021, doi: 10.1111/tbed.13684.spa
dc.relation.referencesH. Tombuloglu, H. Sabit, E. Al-Suhaimi, R. al Jindan, and K. R. Alkharsah, ‘Development of multiplex real-time RT-PCR assay for the detection of SARS-CoV-2’, PLoS One, vol. 16, no. 4, p. e0250942, Apr. 2021, doi: 10.1371/journal.pone.0250942.spa
dc.relation.referencesT. Phan, ‘Genetic diversity and evolution of SARS-CoV-2’, Infection, Genetics and Evolution, vol. 81, p. 104260, Jul. 2020, doi: 10.1016/j.meegid.2020.104260.spa
dc.relation.referencesL. van Dorp et al., ‘Emergence of genomic diversity and recurrent mutations in SARS-CoV-2’, Infection, Genetics and Evolution, vol. 83, p. 104351, Sep. 2020, doi: 10.1016/j.meegid.2020.104351.spa
dc.relation.referencesI. Saha, N. Ghosh, A. Pradhan, N. Sharma, D. Maity, and K. Mitra, ‘Whole genome analysis of more than 10 000 SARS-CoV-2 virus unveils global genetic diversity and target region of NSP6’, Brief Bioinform, vol. 22, no. 2, pp. 1106–1121, Mar. 2021, doi: 10.1093/bib/bbab025.spa
dc.relation.referencesJ. R. C. Pulliam et al., ‘Increased risk of SARS-CoV-2 reinfection associated with emergence of Omicron in South Africa’, Science (1979), vol. 376, no. 6593, May 2022, doi: 10.1126/science.abn4947.spa
dc.relation.referencesT. McMillen, K. Jani, E. v. Robilotti, M. Kamboj, and N. E. Babady, ‘The spike gene target failure (SGTF) genomic signature is highly accurate for the identification of Alpha and Omicron SARS-CoV-2 variants’, Sci Rep, vol. 12, no. 1, p. 18968, Nov. 2022, doi: 10.1038/s41598-022-21564-y.spa
dc.relation.referencesR. K. Kakhki, M. K. Kakhki, and A. Neshani, ‘COVID-19 target: A specific target for novel coronavirus detection’, Gene Rep, vol. 20, p. 100740, Sep. 2020, doi: 10.1016/j.genrep.2020.100740.spa
dc.relation.referencesJ. Brodin et al., ‘A multiple-alignment based primer design algorithm for genetically highly variable DNA targets’, BMC Bioinformatics, vol. 14, no. 1, p. 255, Dec. 2013, doi: 10.1186/1471-2105-14-255.spa
dc.relation.referencesC. Aranha, V. Patel, V. Bhor, and D. Gogoi, ‘Cycle threshold values in RT‐PCR to determine dynamics of SARS‐CoV‐2 viral load: An approach to reduce the isolation period for COVID‐19 patients’, J Med Virol, vol. 93, no. 12, pp. 6794–6797, Dec. 2021, doi: 10.1002/jmv.27206.spa
dc.relation.referencesD. C. Edson, D. L. Casey, S. E. Harmer, and F. P. Downes, ‘Identification of SARS-CoV-2 in a Proficiency Testing Program’, Am J Clin Pathol, vol. 154, no. 4, pp. 475–478, Sep. 2020, doi: 10.1093/ajcp/aqaa128.spa
dc.relation.referencesL. Vierbaum et al., ‘RNA reference materials with defined viral RNA loads of SARS-CoV-2—A useful tool towards a better PCR assay harmonization’, PLoS One, vol. 17, no. 1, p. e0262656, Jan. 2022, doi: 10.1371/journal.pone.0262656.spa
dc.relation.referencesS. Asai et al., ‘Nationwide external quality assessment of SARS-CoV-2 nucleic acid amplification tests in Japan’, International Journal of Infectious Diseases, vol. 115, pp. 86–92, Feb. 2022, doi: 10.1016/j.ijid.2021.11.022.spa
dc.relation.referencesH. Sung et al., ‘Nationwide External Quality Assessment of SARS-CoV-2 Molecular Testing, South Korea’, Emerg Infect Dis, vol. 26, no. 10, pp. 2353–2360, Oct. 2020, doi: 10.3201/eid2610.202551.spa
dc.relation.referencesLGC Standards, ‘SARS-CoV-2 Clinical Scheme - Proficiency Testing’, 2023.spa
dc.relation.referencesCollege of American Pathologist, ‘SARS-COV-2 MOLECULAR Proficiency testing’, 2021.spa
dc.relation.referencesMerck, ‘SARS-CoV-2 Proficiency Testing Kit’, 2023.spa
dc.relation.referencesK. A. Lau, A. Kaufer, J. Gray, T. Theis, and W. D. Rawlinson, ‘Proficiency testing for SARS-CoV-2 in assuring the quality and overall performance in viral RNA detection in clinical and public health laboratories’, Pathology, vol. 54, no. 4, pp. 472–478, Jun. 2022, doi: 10.1016/j.pathol.2022.01.006.spa
dc.relation.referencesWorld of Health Organization, ‘Collaborative Study for the Establishment of a WHO International Standard for SARS-CoV-2 RNA’, Nov. 2020.spa
dc.relation.referencesNational Institute for Biological Standards and Control, ‘First WHO International Standard for SARS-CoV-2 RNA 20/146’.spa
dc.relation.referencesNational Institute for Biological Standards and Control, ‘Working Reagent for SARS-CoV-2 RNA 20/138’.spa
dc.relation.referencesNational Sharing Platform for Reference Materials, ‘Certified Reference Material of 2019 Novel Corona Virus (2019-nCoV) Ribonucleic Acid Genome’, China.spa
dc.relation.referencesNational Institute of Standards and Technology, ‘SARS-CoV-2 Research Grade Test Material’.spa
dc.relation.referencesJoint Research Centre, ‘EURM-019 single stranded RNA (ssRNA) fragments of SARS-CoV-2’.spa
dc.relation.referencesJoint Research Centre, ‘EURM-014 ssRNA’.spa
dc.relation.referencesSeraCare, ‘AccuPlexTM SARS-CoV-2 Reference Material Kit’.spa
dc.relation.referencesS.-S. Lee, S. Kim, H. M. Yoo, D.-H. Lee, and Y.-K. Bae, ‘Development of SARS-CoV-2 packaged RNA reference material for nucleic acid testing’, Anal Bioanal Chem, vol. 414, no. 5, pp. 1773–1785, Feb. 2022, doi: 10.1007/s00216-021-03846-y.spa
dc.relation.referencesMerck, ‘Single stranded RNA (ssRNA) fragments of SARS-CoV-2’.spa
dc.relation.referencesNational Measurment Institute, ‘SARS-CoV-2 Standard’, 2021.spa
dc.relation.referencesR Core Team, ‘R: A Language and Environment for Statistical Computing’. R Foundation for Statistical Computing, Vienna, Austria, 2022.spa
dc.relation.referencesA. Lievens, S. Jacchia, D. Kagkli, C. Savini, and M. Querci, ‘Measuring Digital PCR Quality: Performance Parameters and Their Optimization’, PLoS One, vol. 11, no. 5, p. e0153317, May 2016, doi: 10.1371/journal.pone.0153317.spa
dc.relation.referencesC. Villamil, M. N. Calderon, M. M. Arias, and J. E. Leguizamon, ‘Validation of Droplet Digital Polymerase Chain Reaction for Salmonella spp. Quantification’, Front Microbiol, vol. 11, Jul. 2020, doi: 10.3389/fmicb.2020.01512.spa
dc.relation.referencesA. M. Waterhouse, J. B. Procter, D. M. A. Martin, M. Clamp, and G. J. Barton, ‘Jalview Version 2--a multiple sequence alignment editor and analysis workbench’, Bioinformatics, vol. 25, no. 9, pp. 1189–1191, May 2009, doi: 10.1093/bioinformatics/btp033.spa
dc.relation.referencesG. A. Pavlopoulos, T. G. Soldatos, A. Barbosa-Silva, and R. Schneider, ‘A reference guide for tree analysis and visualization’, BioData Min, vol. 3, no. 1, p. 1, Dec. 2010, doi: 10.1186/1756-0381-3-1.spa
dc.relation.referencesV. R. Flores-Vega, J. V. Monroy-Molina, L. E. Jiménez-Hernández, A. G. Torres, J. I. Santos-Preciado, and R. Rosales-Reyes, ‘SARS-CoV-2: Evolution and Emergence of New Viral Variants’, Viruses, vol. 14, no. 4, p. 653, Mar. 2022, doi: 10.3390/v14040653.spa
dc.relation.referencesE. W. Myers and W. Miller, ‘Optimal alignments in linear space’, Bioinformatics, vol. 4, no. 1, pp. 11–17, 1988, doi: 10.1093/bioinformatics/4.1.11.spa
dc.relation.referencesF. Yuan, L. Wang, Y. Fang, and L. Wang, ‘Global SNP analysis of 11,183 SARS‐CoV‐2 strains reveals high genetic diversity’, Transbound Emerg Dis, vol. 68, no. 6, pp. 3288–3304, Nov. 2021, doi: 10.1111/tbed.13931.spa
dc.relation.referencesA. Mentes et al., ‘Identification of mutations in SARS-CoV-2 PCR primer regions’, Sci Rep, vol. 12, no. 1, p. 18651, Nov. 2022, doi: 10.1038/s41598-022-21953-3.spa
dc.relation.referencesR. E. Thompson, ‘An Analysis of Efficiency and Melt Curve Effects on Quantitative Polymerase Chain Reaction (qPCR) Inhibition’, Florida International University, 2010. doi: 10.25148/etd.FI10122001.spa
dc.relation.referencesS. Fellahi et al., ‘Comparison of SYBR green I real-time RT-PCR with conventional agarose gel-based RT-PCR for the diagnosis of infectious bronchitis virus infection in chickens in Morocco’, BMC Res Notes, vol. 9, no. 1, p. 231, Dec. 2016, doi: 10.1186/s13104-016-2037-z.spa
dc.relation.referencesD. Svec, A. Tichopad, V. Novosadova, M. W. Pfaffl, and M. Kubista, ‘How good is a PCR efficiency estimate: Recommendations for precise and robust qPCR efficiency assessments’, Biomol Detect Quantif, vol. 3, pp. 9–16, Mar. 2015, doi: 10.1016/j.bdq.2015.01.005.spa
dc.relation.referencesJ. Maier, T. Lange, M. Cross, K. Wildenberger, D. Niederwieser, and G.-N. Franke, ‘Optimized Digital Droplet PCR for BCR-ABL’, The Journal of Molecular Diagnostics, vol. 21, no. 1, pp. 27–37, Jan. 2019, doi: 10.1016/j.jmoldx.2018.08.012.spa
dc.relation.referencesB. Derendinger et al., ‘Widespread use of incorrect PCR ramp rate negatively impacts multidrug-resistant tuberculosis diagnosis (MTBDRplus)’, Sci Rep, vol. 8, no. 1, p. 3206, Feb. 2018, doi: 10.1038/s41598-018-21458-y.spa
dc.relation.referencesS. A. Bustin et al., ‘The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments’, Clin Chem, vol. 55, no. 4, pp. 611–622, Apr. 2009, doi: 10.1373/clinchem.2008.112797.spa
dc.relation.referencesInternational Organization for Standardization, ‘ISO 20395:2019 Biotechnology — Requirements for evaluating the performance of quantification methods for nucleic acid target sequences — qPCR and dPCR’, 2019.spa
dc.relation.referencesA. Forootan, R. Sjöback, J. Björkman, B. Sjögreen, L. Linz, and M. Kubista, ‘Methods to determine limit of detection and limit of quantification in quantitative real-time PCR (qPCR)’, Biomol Detect Quantif, vol. 12, pp. 1–6, Jun. 2017, doi: 10.1016/j.bdq.2017.04.001.spa
dc.relation.referencesD. Hospodsky, N. Yamamoto, and J. Peccia, ‘Accuracy, Precision, and Method Detection Limits of Quantitative PCR for Airborne Bacteria and Fungi’, Appl Environ Microbiol, vol. 76, no. 21, pp. 7004–7012, Nov. 2010, doi: 10.1128/AEM.01240-10.spa
dc.relation.referencesG. B. Barra, T. H. Santa Rita, P. G. Mesquita, R. H. Jácomo, and L. F. A. Nery, ‘Analytical Sensitivity and Specificity of Two RT-qPCR Protocols for SARS-CoV-2 Detection Performed in an Automated Workflow’, Genes (Basel), vol. 11, no. 10, p. 1183, Oct. 2020, doi: 10.3390/genes11101183.spa
dc.relation.referencesP. N. Patrone, E. L. Romsos, M. H. Cleveland, P. M. Vallone, and A. J. Kearsley, ‘Affine analysis for quantitative PCR measurements’, Anal Bioanal Chem, vol. 412, no. 28, pp. 7977–7988, Nov. 2020, doi: 10.1007/s00216-020-02930-z.spa
dc.relation.referencesL. Deprez et al., ‘Validation of a digital PCR method for quantification of DNA copy number concentrations by using a certified reference material’, Biomol Detect Quantif, vol. 9, pp. 29–39, Sep. 2016, doi: 10.1016/j.bdq.2016.08.002.spa
dc.relation.referencesA. S. Basu, ‘Digital Assays Part I: Partitioning Statistics and Digital PCR’, SLAS Technol, vol. 22, no. 4, pp. 369–386, Aug. 2017, doi: 10.1177/2472630317705680.spa
dc.relation.referencesH. N. Vasudevan et al., ‘Digital droplet PCR accurately quantifies SARS-CoV-2 viral load from crude lysate without nucleic acid purification’, Sci Rep, vol. 11, no. 1, p. 780, Jan. 2021, doi: 10.1038/s41598-020-80715-1.spa
dc.relation.referencesC. Schulze, A.-C. Geuthner, and D. Mäde, ‘Development and validation of a method for quantification of common wheat, durum wheat, rye and barley by droplet digital PCR’, European Food Research and Technology, vol. 247, no. 9, pp. 2267–2283, Sep. 2021, doi: 10.1007/s00217-021-03786-y.spa
dc.relation.referencesR. E. Farrell, ‘Resilient Ribonucleases’, in RNA Methodologies, Elsevier, 2010, pp. 155–172. doi: 10.1016/B978-0-12-374727-3.00007-3.spa
dc.relation.referencesJ. T. Millard, ‘Molecular Probes of DNA Structure’, in Comprehensive Natural Products Chemistry, Elsevier, 1999, pp. 81–103. doi: 10.1016/B978-0-08-091283-7.00158-2.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc540 - Química y ciencias afines::543 - Química analíticaspa
dc.subject.ddc570 - Biología::572 - Bioquímicaspa
dc.subject.ddc540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materialesspa
dc.subject.lembTécnicas de laboratorio clínicospa
dc.subject.lembClinical laboratory techniqueseng
dc.subject.lembDiagnóstico de laboratoriospa
dc.subject.lembDiagnosis, laboratoryeng
dc.subject.lembEnfermedades transmisibles-Diagnósticospa
dc.subject.lembCommunicable diseases - Diagnosiseng
dc.subject.lembDiagnóstico virológicospa
dc.subject.lembDiagnostic virologyeng
dc.subject.lembMedición-Métodosspa
dc.subject.lembMensuration-Methodseng
dc.subject.proposalVirus SARS CoV-2spa
dc.subject.proposalEnsayo de Aptitudspa
dc.subject.proposalMaterial de Referenciaspa
dc.subject.proposalValidación de métodosspa
dc.subject.proposalRT-ddPCRspa
dc.subject.proposalProficiency testeng
dc.subject.proposalReference materialeng
dc.subject.proposalMethod validationeng
dc.subject.unescoEpidemiologíaspa
dc.subject.unescoEpidemiologyeng
dc.subject.wikidataPruebas de COVID-19spa
dc.subject.wikidataCOVID-19 testeng
dc.subject.wikidataResultado de mediciónspa
dc.subject.wikidataMeasurement resulteng
dc.titleFortalecimiento de la red nacional de laboratorios que realizan detección de SARS CoV-2 por PCR a través del desarrollo de herramientas metrológicas para el aseguramiento de la calidad de los resultados de mediciónspa
dc.title.translatedStrengthening of the national network of laboratories that perform SARS CoV-2 detection by PCR through the development of metrological tools to ensure the quality of measurement resultseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
dcterms.audience.professionaldevelopmentResponsables políticosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleEnsayo de Aptitud de SARS CoV-2 - Colombia, 2020spa
oaire.fundernameGlobal Quality and Standards Programme (GQSP)spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032468011.2022.pdf
Tamaño:
10.04 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Bioquímica

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: