Oxidación parcial de glicerol sobre catalizadores de Cu-Co soportados en metacaolinita dealuminizada

dc.contributor.advisorVelásquez Márquez, León Mauricio
dc.contributor.advisorCarriazo Baños, José Gregorio
dc.contributor.authorParedes Quevedo, Laura Camila
dc.contributor.researchgroupEstado Sólido y Catálisis Ambientalspa
dc.date.accessioned2021-08-04T23:59:40Z
dc.date.available2021-08-04T23:59:40Z
dc.date.issued2021-07-30
dc.descriptionilustraciones, tablasspa
dc.description.abstractEste trabajo centra su atención en la valorización catalítica de glicerol mediante su transformación en productos de mayor valor comercial. Para alcanzar este objetivo se estudió la reacción de oxidación de glicerol en medio acuoso, ya que la vía oxidativa es una de más promisorias respecto a otro tipo de reacciones. Se sintetizaron catalizadores soportados basados en óxidos mixtos de Cu y Co (espinela CuCo2O4) por medio del método de impregnación húmeda, se utilizó como soporte una metacaolinita dealuminizada, un sólido que se obtiene del tratamiento térmico y ácido a la caolinita natural colombiana, con el fin de generar elevada micro y mesoporosidad. Mediante la aplicación de diferentes técnicas de caracterización se confirma la síntesis exitosa de la espinela CuCo2O4 y la obtención de sólidos con elevada área superficial y dispersión de la fase metálica gracias al tratamiento realizado al soporte. La estrategia experimental se enfocó en el estudio de parámetros como la optimización de temperatura, concentración de peróxido de hidrógeno y tiempo de reacción. Posteriormente se verificó el efecto cooperativo que existe entre el Cu y Co, se evaluaron diferentes cargas de fase metálica sobre el soporte y la estabilidad del mejor catalizador a través de la aplicación de cinco ciclos de reacción. En general, estos materiales demostraron ser catalíticamente activos y selectivos en la oxidación de glicerol. Se observaron 5 productos de reacción, entre ellos la dihidroxiacetona (producto mayoritario), ácido glicérico, gliceraldehído, ácido hidroxipirúvico y ácido mesoxálico. Finalmente, estos catalizadores exhibieron actividad catalítica favorable a condiciones suaves de reacción (80 °C y presión atmosférica). (Texto tomado de la fuente)spa
dc.description.abstractThis work focuses on glycerol catalytic valorization through its transformation into added value products. To achieve this objective, the oxidation reaction of glycerol in aqueous media was studied, the oxidative pathway is one of the most promising compared to other types of reactions. Supported catalysts were synthesized based on mixed oxides of Cu and Co (CuCo2O4 spinel) by the wet impregnation method, a dealuminated metakaolinite was used as support, a solid that is obtained by thermic and acid treatment to enhance micro and mesoporosity. Through the application of different characterization techniques, the successful synthesis of the CuCo2O4 spinel and the solids with high surface area and dispersion of the metallic phase is confirmed. The experimental strategy is focused on the study of parameters such as the optimization of temperature, hydrogen peroxide concentration and reaction time. Subsequently, the cooperative effect that exists between Cu and Co was verified, different loads of the metallic phase on the support and the stability of the best catalyst were evaluated through the application of five reaction cycles. In general, these materials proved to be catalytically active and selective in the oxidation of glycerol. Five reaction products were found, among them dihydroxyacetone (the main product), glyceric acid and glyceraldehyde, hydroxypyruvic acid and mesoxalic acid were identified. Finally, these catalysts have favorable catalytic activity under mild reaction conditions (80 ° C and atmospheric pressure). (Text taken from source)eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Químicaspa
dc.description.researchareaCatálisis Heterogéneaspa
dc.format.extent107 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79889
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Químicaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Químicaspa
dc.relation.references[1] M. Di Serio, R. Tesser, L. Pengmei, and E. Santacesaria, “Heterogeneous Catalysts for Biodiesel Production,” Energy & Fuels, vol. 22, no. 1, pp. 207–217, 2008.spa
dc.relation.references[2] OCDE/FAO, “Biocombustibles, Situación del mercado Aspectos relevantes de la proyección,” in OCDE-FAO Perspectivas Agrícolas 2017-2026, Éditions OCDE, Ed. París, 2017, pp. 130–143.spa
dc.relation.references[3] C. Mota and B. Peres, “Glycerol Utilization,” in Glycerol : A versatile Renewable Feedstock for the Chemical Industry, 1st ed., Springer International Publishing, 2007, pp. 11–19.spa
dc.relation.references[4] G. Dodekatos, S. Schünemann, and H. Tüysüz, “Recent Advances in Thermo-, Photo-, and Electrocatalytic Glycerol Oxidation,” ACS Catal., vol. 8, no. 7, pp. 6301–6333, 2018.spa
dc.relation.references[5] C. Sci et al., “Oxidation of biorenewable glycerol with molecular oxygen over Cu-containing layered double hydroxide-based catalysts,” Catal. Sci. Technol., vol. 1, pp. 111–122, 2011.spa
dc.relation.references[6] X. Deng et al., “Pseudomorphic Generation of Supported Catalysts for Glycerol Oxidation,” ChemCatChem, vol. 7, pp. 3832–3837, 2015.spa
dc.relation.references[7] J. A. Torres-Luna and J. G. Carriazo, “Porous aluminosilicic solids obtained by thermal-acid modification of a commercial kaolinite-type natural clay,” Solid State Sci., vol. 88, pp. 29–35, 2019.spa
dc.relation.references[8] I. E. Sitaras and P. A. Siskos, “The role of primary and secondary air pollutants in atmospheric pollution: Athens urban area as a case study,” Environ. Chem. Lett., vol. 6, no. 2, pp. 59–69, 2008.spa
dc.relation.references[9] J. Skea, “Environmental issues facing the oil industry,” Energy Policy, vol. 20, no. 10, pp. 950–958, 1992. [10] “Global CO2 emissions in 2019 – Analysis - IEA.” [Online]. Available: https://www.iea.org/articles/global-co2-emissions-in-2019. [Accessed: 23-Jul-2020].spa
dc.relation.references[11] “Energías renovables, puerta de acceso de Colombia a la Ocde.” [Online]. Available: https://www.elcolombiano.com/negocios/energias-renovables-puerta-de-acceso-de-colombia-a-la-ocde-HA2705382. [Accessed: 05-Aug-2020].spa
dc.relation.references[12] J. Tollefson, “COVID curbed carbon emissions in 2020 — but not by much,” Nature, vol. 589, pp. 343-undefined, Jan. 2021.spa
dc.relation.references[13] S. Pan, A. Roy, Y. Choi, S. Q. Sun, and H. O. Gao, “The air quality and health impacts of projected long-haul truck and rail freight transportation in the United States in 2050,” Environ. Int., vol. 130, p. 104922, 2019.spa
dc.relation.references[14] P. Yin et al., “Higher Risk of Cardiovascular Disease Associated with Smaller Size-Fractioned Particulate Matter,” Environ. Sci. Technol. Lett., vol. 7, no. 2, pp. 95–101, 2020.spa
dc.relation.references[15] A. Frontera, L. Cianfanelli, K. Vlachos, G. Landoni, and G. Cremona, “Severe air pollution links to higher mortality in COVID-19 patients: The ‘double-hit’ hypothesis.,” J. Infect., vol. 81, no. 2, pp. 255–259, 2020.spa
dc.relation.references[16] N. Ali and F. Islam, “The Effects of Air Pollution on COVID-19 Infection and Mortality—A Review on Recent Evidence,” Front. Public Heal., vol. 8, no. 2, pp. 1–7, 2020.spa
dc.relation.references[17] G. Dodekatos, S. Schünemann, and H. Tüysüz, “Recent Advances in Thermo-, Photo-, and Electrocatalytic Glycerol Oxidation,” ACS Catal., vol. 8, no. 7, pp. 6301–6333, 2018. [18] J. Van Gerpen, “Biodiesel processing and production,” Fuel Process. Technol., vol. 86, pp. 1097–1107, 2005.spa
dc.relation.references[19] F. Ya, “Comparision of fuel properties of biodiesel fuels produced from di ff erent oils to determine the most suitable feedstock type,” vol. 264, no. August 2019, 2020.spa
dc.relation.references[20] H. Wang, S. Zhang, X. Bi, and R. Clift, “Greenhouse gas emission reduction potential and cost of bioenergy in British Columbia , Canada,” Energy Policy, vol. 138, no. July 2019, p. 111285, 2021.spa
dc.relation.references[21] J. Ding, S. Qu, E. Lv, J. Lu, and W. Yi, “Mini review of biodiesel by integrated membrane separation technologies that enhanced esterification/transesterification,” Energy and Fuels, vol. 34, no. 12, pp. 15614–15633, 2020.spa
dc.relation.references[22] I. A. Musa, “The effects of alcohol to oil molar ratios and the type of alcohol on biodiesel production using transesterification process,” Egypt. J. Pet., vol. 25, no. 1, pp. 21–31, 2016.spa
dc.relation.references[23] J. Van Gerpen, “Biodiesel processing and production,” Fuel Process. Technol., vol. 86, pp. 1097–1107, 2005.spa
dc.relation.references[24] M. Hájek and F. Skopal, “Treatment of glycerol phase formed by biodiesel production,” Bioresour. Technol., vol. 101, no. 9, pp. 3242–3245, 2010.spa
dc.relation.references[25] D. T. Johnson and K. A. Taconi, “The glycerin glut: Options for the value-added conversion of crude glycerol resulting from biodiesel production,” Environ. Prog., vol. 26, no. 4, pp. 338–348, 2007.spa
dc.relation.references[26] H. W. Tan, A. R. A. Aziz, and M. K. Aroua, “Glycerol production and its applications as a raw material : A review,” vol. 27, pp. 118–127, 2013.spa
dc.relation.references[27] S. Hu, X. Luo, C. Wan, and Y. Li, “Characterization of Crude Glycerol from Biodiesel Plants,” J. Agric. Food Chem., vol. 60, pp. 5915–5921, 2012.spa
dc.relation.references[28] J. A. Posada-Duque and C. A. Cardona-Alzate, “Validation of glycerin refining obtained as a by-product of biodiesel production,” Ing. y Univ., vol. 14, no. 1, pp. 9–27, 2010.spa
dc.relation.references[29] W. Isahak, M. Ismail, M. Yarmo, J. M. Jahim, and J. Salimon, “Purification of crude glycerol from transesterification RBD Palm oil over homogeneous and heterogeneous catalysts for the biolubricant preparation,” J. Appl. Sci., vol. 21, pp. 2590–2595, 2010.spa
dc.relation.references[30] Y. Xiao, G. Xiao, and A. Varma, “A universal procedure for crude glycerol purification from different feedstocks in biodiesel production: Experimental and simulation study,” Ind. Eng. Chem. Res., vol. 52, no. 39, pp. 14291–14296, 2013.spa
dc.relation.references[31] A. A. Abdul Raman, H. W. Tan, and A. Buthiyappan, “Two-Step Purification of Glycerol as a Value Added by Product From the Biodiesel Production Process,” Front. Chem., vol. 7, Nov. 2019.spa
dc.relation.references[32] H. Mousavi, M. Rahimi, and M. Mohadesi, “Purification of glycerol using organic solvent extraction in a microreactor,” Biomass Convers. Biorefinery, 2020.spa
dc.relation.references[33] J. E. Delgado and J. J. Salgado, “Perspectivas de los biocombustibles en Colombia Prospects of biofuels in Colombia,” Rev. Ing. Univ. Medellín, vol. 14, no. 27, pp. 13–28, 2015. [34] Federación Nacional de Biocombustibles de Colombia, “Precios del Biodiésel,” 2020. [Online]. Available: https://www.fedebiocombustibles.com/estadistica-precios-titulo-Biodiesel.htm. [Accessed: 26-Apr-2020]. [35] Federación Nacional de Biocombustibles de Colombia, “B12: un aliado para mejorar la calidad del aire en Colombia,” 2020. [Online]. Available: https://www.fedebiocombustibles.com/nota-web-id-3202.htm. [Accessed: 26-Apr-2020]. [36] Portafolio, “Por baja en mezcla, cierran once plantas de biodiésel,” 2019. [Online]. Available: https://www.portafolio.co/negocios/por-baja-en-mezcla-cierran-once-plantas-de-biodiesel-534333. [Accessed: 26-Apr-2020]. [37] Federación Nacional de Biocombustibles de Colombia, “Lo que nos dejó el 2020 y lo que promete el 2021.” [Online]. Available: http://www.fedebiocombustibles.com/v3/nota-web-id-3300.htm. [Accessed: 08-Mar-2021]. [38] Federación Nacional de Biocombustibles de Colombia, “2019 un año de retos [Editorial-Boletín 206].” [Online]. Available: http://www.fedebiocombustibles.com/nota-web-id-3252.htm. [Accessed: 08-Mar-2021]. [39] E. Ali, M. Rahman, S. M. Sarkar, S. Bee, and A. Hamid, “Heterogeneous Metal Catalysts for Oxidation Reactions,” J. Nanomater., vol. 2012, pp. 1–23, 2014. [40] C. Y. Ma et al., “Characteristics of Au / HMS catalysts for selective oxidation of benzyl alcohol to benzaldehyde,” Catal. Today, vol. 158, no. 3–4, pp. 246–251, 2010. [41] P. Sudarsanam, L. Katta, G. Thrimurthulu, and B. M. Reddy, “Vapor phase synthesis of cyclopentanone over nanostructured ceria – zirconia solid solution catalysts,” J. Ind. Eng. Chem., vol. 19, no. 5, pp. 1517–1524, 2013.spa
dc.relation.references[42] Y. Wang, Y. Xiao, and G. Xiao, “Sustainable value-added C3 chemicals from glycerol transformations: A mini review for heterogeneous catalytic processes,” Chinese J. Chem. Eng., vol. 27, no. 7, pp. 1536–1542, 2019.spa
dc.relation.references[43] H. Kimura, “Selective oxidation of glycerol on a platinum-bismuth catalyst by using a fixed bed reactor,” Appl. Catal. A Gen., vol. 105, pp. 147–158, 1993.spa
dc.relation.references[44] H. Kimura and K. Tsuto, “Selective oxidation of glycerol on a platinum-bismuth catalyst,” Appl. Catal. A Gen., vol. 96, pp. 217–228, 1993.spa
dc.relation.references[45] R. Garcia, M. Besson, and P. Gallezot, “Chemoslective catalytic oxidation of glycerol with air on platinum metals,” Appl. Catal. A Gen., vol. 127, pp. 165–176, 1995. [46] L. Prati and M. Rossi, “Gold on Carbon as a New Catalyst for Selective Liquid Phase Oxidation of Diols,” J. Catal., vol. 176, no. 2, pp. 552–560, 1998.spa
dc.relation.references[47] S. Carrettin, P. Mcmorn, P. Johnston, K. Griffin, J. Kiely, and G. J. Hutchings, “Oxidation of glycerol using supported Pt , Pd and Au catalysts,” Phys. Chem. Chem. Phys., vol. 5, pp. 1329–1336, 2003.spa
dc.relation.references[48] C. Minero, A. Bedini, and V. Maurino, “Environmental Glycerol as a probe molecule to uncover oxidation mechanism in photocatalysis,” Appl. Catal. B, Environ., vol. 128, pp. 135–143, 2012.spa
dc.relation.references[49] V. Maurino, A. Bedini, M. Minella, F. Rubertelli, E. Pelizzetti, and C. Minero, “Glycerol transformation through photocatalysis: A possible route to value added chemicals,” J. Adv. Oxid. Technol., vol. 11, no. 2, pp. 184–192, 2008.spa
dc.relation.references[50] L. Guo et al., “Photocatalytic glycerol oxidation on AuxCu-CuS@TiO2 plasmonic heterostructures,” J. Mater. Chem. A, vol. 6, no. 44, pp. 22005–22012, 2018.spa
dc.relation.references[51] T. Jedsukontorn, N. Saito, and M. Hunsom, “Photoinduced glycerol oxidation over plasmonic au and aum (M = Pt, Pd and Bi) nanoparticle-decorated TiO2 photocatalysts,” Nanomaterials, vol. 8, no. 4, pp. 1–25, 2018.spa
dc.relation.references[52] X. Han et al., “Electrocatalytic Oxidation of Glycerol to Formic Acid by CuCo 2O4 Spinel Oxide Nanostructure Catalysts,” ACS Appl. Polym. Mater., 2020.spa
dc.relation.references[53] S. Feng, J. Yi, H. Miura, N. Nakatani, M. Hada, and T. Shishido, “Experimental and Theoretical Investigation of the Role of Bismuth in Promoting the Selective Oxidation of Glycerol over Supported Pt − Bi Catalyst under Mild Conditions,” ACS Appl. Polym. Mater., vol. 10, pp. 6071–6083, 2020.spa
dc.relation.references[54] S. Davis, M. Ide, and R. Davis, “Selective oxidation of alcohols and aldehydes over supported metal nanoparticles,” Green Chem., vol. 15, no. 1, pp. 1–268, 2013.spa
dc.relation.references[55] L. Chen, S. Ren, and X. P. Ye, “Glycerol conversion to lactic acid with sodium hydroxide as a homogeneous catalyst in a fed-batch reactor,” React. Kinet. Mech. Catal., vol. 114, no. 1, pp. 93–108, 2015.spa
dc.relation.references[56] P. N. Amaniampong et al., “Unraveling the mechanism of the oxidation of glycerol to dicarboxylic acids over a sonochemically synthesized copper oxide catalyst,” Green Chem., vol. 20, pp. 2730–2741, 2018.spa
dc.relation.references[57] M. Sankar et al., “Role of the Support in Gold-Containing Nanoparticles as Heterogeneous Catalysts,” Chem. Rev., vol. 120, no. 8, pp. 3890–3938, 2020.spa
dc.relation.references[58] L. Liu and A. Corma, “Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles,” Chem. Rev., vol. 118, no. 10, pp. 4981–5079, 2018. [59] P. Munnik, P. E. De Jongh, and K. P. De Jong, “Recent Developments in the Synthesis of Supported Catalysts,” Chem. Rev., vol. 115, no. 14, pp. 6687–6718, 2015.spa
dc.relation.references[60] A. Villa et al., “Tailoring the selectivity of glycerol oxidation by tuning the acid-base properties of Au catalysts,” Catal. Sci. Technol., vol. 5, no. 2, pp. 1126–1132, Feb. 2015.spa
dc.relation.references[61] C. Xu, Y. Du, C. Li, J. Yang, and G. Yang, “Insight into effect of acid/base nature of supports on selectivity of glycerol oxidation over supported Au-Pt bimetallic catalysts,” Appl. Catal. B Environ., vol. 164, pp. 334–343, Mar. 2015.spa
dc.relation.references[62] L. Yang, X. Li, P. Chen, and Z. Hou, “Selective oxidation of glycerol in a base-free aqueous solution: A short review,” Chinese J. Catal., vol. 40, no. 7, pp. 1020–1034, 2019.spa
dc.relation.references[63] T. Ntho, J. Aluha, P. Gqogqa, M. Raphulu, and G. Pattrick, “Au/γ-Al2O3 catalysts for glycerol oxidation: The effect of support acidity and gold particle size,” React. Kinet. Mech. Catal., vol. 109, no. 1, pp. 133–148, 2013.spa
dc.relation.references[64] X. Wang, C. Shang, G. Wu, X. Liu, and H. Liu, “Base-Free Selective Oxidation of Glycerol over LDH Hosted Transition Metal Complexes Using 3 % H2O2 as Oxidant,” 2016.spa
dc.relation.references[65] A. M. Carrillo and J. G. Carriazo, “Cu and Co oxides supported on halloysite for the total oxidation of toluene,” Appl. Catal. B Environ., vol. 164, pp. 443–452, 2015. [66] A. Pérez, M. Montes, R. Molina, and S. Moreno, “Modified clays as catalysts for the catalytic oxidation of ethanol,” Appl. Clay Sci., vol. 95, pp. 18–24, 2014.spa
dc.relation.references[67] J. A. Torres-Luna, G. I. Giraldo-Gómez, N. R. Sanabria-González, and J. G. Carriazo, “Catalytic degradation of real-textile azo-dyes in aqueous solutions by using Cu–Co/halloysite,” Bull. Mater. Sci., vol. 42, no. 137, 2019.spa
dc.relation.references[68] S. Schünemann, F. Schüth, and H. Tüysüz, “Selective glycerol oxidation over ordered mesoporous copper aluminum oxide catalysts,” Catal. Sci. Technol., vol. 7, no. 23, pp. 5614–5624, 2017.spa
dc.relation.references[69] X. Jin et al., “Oxidation of Glycerol to Dicarboxylic Acids Using Cobalt Catalysts,” ACS Catal., vol. 6, pp. 4576–4583, 2016. [70] J. Carriazo, S. Moreno, and R. Molina, “Caracterizacióneestructural y textural de una bentonita Colombiana,” Rev. colomb. quím., vol. 36, no. 1, pp. 213–225, 2007.spa
dc.relation.references[71] M. Caine et al., “The Use of Clays as Sorbents and Catalysts,” in Natural Microporous Materials in Environmental Technology, Dordrecht: Springer, 1999, pp. 49–69. [72] S. B. C. Pergher, A. Corma, and V. Fornes, “Materiales laminares pilareados: preparación y propiedades,” Quim. Nova, vol. 22, no. 5, pp. 693–709, Sep. 1999.spa
dc.relation.references[73] P. Komadel, “Structure and Chemical Characteristics of Modified Clays,” in Natural Microporous Materials in Environmental Technology, Dordrecht: Springer, 1999, pp. 3–18.spa
dc.relation.references[74] D. Zhang, C. Zhou, C. Lin, D. Tong, and W. Yu, “Synthesis of clay minerals,” Appl. Clay Sci., vol. 50, no. 1, pp. 1–11, 2010. [75] A. K. Panda, B. G. Mishra, D. K. Mishra, and R. K. Singh, “Effect of sulphuric acid treatment on the physico-chemical characteristics of kaolin clay,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 363, no. 1–3, pp. 98–104, 2010.spa
dc.relation.references[76] A. K. Chakraborty, “Introduction,” in Phase Transformation of Kaolinite Clay, Kolkata (India): Springer India, 2014, pp. 3–10. [77] Z. Gao, X. Li, H. Wu, S. Zhao, W. Deligeer, and S. Asuha, “Microporous and Mesoporous Materials Magnetic modification of acid-activated kaolin : Synthesis , characterization , and adsorptive properties,” vol. 202, pp. 1–7, 2015.spa
dc.relation.references[78] S. R. Manosalva, “Kaolin’s characterization and potential in the Boyacá Department,” Ing. Investig. y Desarro., vol. 4, no. 1, pp. 48–52, 2007. [79] J. A. Dumesic, G. W. Huber, and M. Boudart, Handbook of Heterogeneous Catalysis, 2nd ed. Wiley-VCH.spa
dc.relation.references[80] G. Leofanti, M. Padovan, G. Tozzola, and B. Venturelli, “Surface area and pore texture of catalysts,” Catal. Today, vol. 41, no. 1–3, pp. 207–219, 1998.spa
dc.relation.references[81] M. Thommes et al., “Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report),” Pure Appl. Chem., vol. 87, no. 9–10, pp. 1051–1069, 2015.spa
dc.relation.references[82] M. E. Awad, A. López-galindo, M. Setti, M. M. El-rahmany, and C. Viseras, “Kaolinite in pharmaceutics and biomedicine,” Int. J. Pharm., vol. 533, no. 1, pp. 34–48, 2017.spa
dc.relation.references[83] G. Ercolino, A. Grodzka, G. Grzybek, P. Stelmachowski, S. Specchia, and A. Kotarba, “The Effect of the Preparation Method of Pd-Doped Cobalt Spinel on the Catalytic Activity in Methane Oxidation Under Lean Fuel Conditions,” Top. Catal., vol. 60, no. 3–5, pp. 333–341, 2017.spa
dc.relation.references[84] Y. Wei, K. W. Nam, K. B. Kim, and G. Chen, “Spectroscopic studies of the structural properties of Ni substituted spinel LiMn2O4,” Solid State Ionics, vol. 177, no. 1–2, pp. 29–35, 2006.spa
dc.relation.references[85] A. Alvarez, S. Ivanova, M. A. Centeno, and J. A. Odriozola, “Sub-ambient CO oxidation over mesoporous Co3O4: Effect of morphology on its reduction behavior and catalytic performance,” Appl. Catal. A Gen., vol. 431–432, pp. 9–17, 2012.spa
dc.relation.references[86] Z. An et al., “Insights into the Multiple Synergies of Supports in the Selective Oxidation of Glycerol to Dihydroxyacetone: Layered Double Hydroxide Supported Au,” ACS Catal., vol. 10, no. 21, pp. 12437–12453, 2020.spa
dc.relation.references[87] M. Valter, E. C. Dos Santos, L. G. M. Pettersson, and A. Hellman, “Selectivity of the first two glycerol dehydrogenation steps determined using scaling relationships,” ACS Catal., vol. 11, no. 6, pp. 3487–3497, 2021.spa
dc.relation.references[88] J. G. Carriazo, L. F. Bossa-Benavides, and E. Castillo, “Actividad catalítica de metales de transición en la descomposición de peróxido de hidrógeno,” Quim. Nova, vol. 35, no. 6, pp. 1101–1106, 2012.spa
dc.relation.references[89] R. F. P. Nogueira, M. C. Oliveira, and W. C. Paterlini, “Simple and fast spectrophotometric determination of hydrogen peroxide in photo-Fenton reactions using metavanadate,” Talanta, vol. 66, pp. 86–91, 2005.spa
dc.relation.references[90] D. A. Svintsitskiy et al., “In Situ XRD, XPS, TEM, and TPR Study of Highly Active in CO Oxidation CuO Nanopowders,” J. Phys. Chem. C, vol. 117, no. 28, pp. 14588–14599, Jul. 2013. [91] D. Pyke, K. K. Mallick, R. Reynolds, and A. K. Bhattacharya, “Surface and bulk phases in substituted cobalt oxide spinels,” J. Mater. Chem., vol. 8, no. 4, pp. 1095–1098, 1998.spa
dc.relation.references[92] S. Zhang, X. Zhu, C. Zheng, D. Hu, J. Zhang, and X. Gao, “Study on catalytic soot oxidation over spinel type ACo2O4 (A = Co, Ni, Cu, Zn) catalysts,” Aerosol Air Qual. Res., vol. 17, no. 9, pp. 2317–2327, 2017.spa
dc.relation.references[93] M. Tao, D. Zhang, X. Deng, X. Li, J. Shi, and X. Wang, “Lewis-acid-promoted catalytic cascade conversion of glycerol to lactic acid by polyoxometalates,” Chem. Commun., vol. 52, no. Scheme 1, pp. 3332–3335, 2016.spa
dc.relation.references[94] S. Gil, M. Marchena, C. María, L. Sánchez-silva, A. Romero, and J. Luís, “General Catalytic oxidation of crude glycerol using catalysts based on Au supported on carbonaceous materials,” Appl. Catal. A, vol. 450, pp. 189–203, 2013.spa
dc.relation.references[95] F. Dumeignil, “Crude glycerol as a raw material for the liquid phase oxidation reaction,” vol. 482, pp. 245–257, 2014.spa
dc.relation.references[96] J. C. Beltrán-Prieto, J. Pecha, V. Kašpárková, and K. Kolomazník, “Development of an HPLC method for the determination of glycerol oxidation products,” J. Liq. Chromatogr. Relat. Technol., vol. 36, no. 19, pp. 2758–2773, 2013.spa
dc.rightsDerechos reservados al autor, 2021spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc540 - Química y ciencias afines::547 - Química orgánicaspa
dc.subject.lembCatalizadores
dc.subject.lembCatalyst
dc.subject.lembCatálisis
dc.subject.lembCatalysis
dc.subject.proposalOxidación de glicerolspa
dc.subject.proposalMetacaolinita dealuminizadaspa
dc.subject.proposalGlicerol crudospa
dc.subject.proposalGlycerol oxidationeng
dc.subject.proposalDealuminized metakaoliniteeng
dc.subject.proposalCrude glyceroleng
dc.titleOxidación parcial de glicerol sobre catalizadores de Cu-Co soportados en metacaolinita dealuminizadaspa
dc.title.translatedPartial glycerol oxidation over Cu-Co catalysts supported on dealuminized metakaolinitespa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audienceGeneralspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleValorización catalítica de glicerol crudo generado como residuo en la producción de biodiésel a partir de aceite de palma. Código HERMES 41397 Convocatoria nacional para el apoyo a proyectos de investigación y creación artística de la Universidad Nacional de Colombia, Bogotá 2017-2018spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
LauraCamilaParedes.2021.pdf
Tamaño:
2.93 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: