Compuestos con actividad biocontroladora frente a la garrapata común del ganado Rhipicephalus (Boophilus) microplus obtenidos de aislamientos microbianos

dc.contributor.advisorRamos Rodríguez, Freddy Alejandro
dc.contributor.authorCaicedo Ortega, Ana Ruth
dc.contributor.researchgroupEstudio y Aprovechamiento de Productos Naturales Marinos y Frutas de Colombia
dc.date.accessioned2025-09-03T15:28:38Z
dc.date.available2025-09-03T15:28:38Z
dc.date.issued2025
dc.descriptionilustraciones, diagramas, fotografías a colorspa
dc.description.abstractLa garrapata común del ganado, Rhipicephalus (Boophilus) microplus, es un ectoparásito hematófago que afecta gravemente al ganado bovino, provocando anemia severa, pérdida de peso y reducción en la producción lechera y cárnica. Actualmente, para el control de R. microplus se emplean compuestos organoclorados, organofosforados, carbamatos, amidinas y piretroides, sustancias asociadas a contaminación ambiental y de alto impacto en la salud humana y animal. Adicionalmente, su porcentaje de efectividad ha venido disminuyendo debido a su uso indiscriminado. Esto sugiere la necesidad de desarrollar tratamientos seguros para la salud humana y animal, con mínimo impacto ambiental y bajo costo, características de los enfoques basados en biocontrol. Esta tesis buscó contribuir con el desarrollo de dichas alternativas de tratamiento, determinando el potencial de diferentes cepas de microorganismos fúngicos y bacterianos de ambientes marinos y terrestres frente a R. microplus. Se evaluó el potencial de las diferentes cepas bajo la metodología de bioensayo de inmersión de garrapatas evaluando 3 variables (porcentaje de mortalidad, porcentaje de inhibición de la ovoposición y porcentaje de eclosion). Estos ensayos permitieron la selección de la cepa Paenibacillus sp. PNM210 como cepa promisoria para el control biológico de R. Microplus, determinando que la actividad estaba presente en el sobrenadante libre de células y en las fracciones orgánica y butanólica. Se emplearon dos estrategias de análisis para el estudio del potencial metabólico relacionado con la actividad presentada. Por una parte, se evaluó el potencial genómico a partir de la minería del genoma completo de la cepa, donde se determino la presencia de BGCs asociados principalmente a la biosíntesis de péptidos no ribosomales como la pelgipeptina B, la fusaricidina B y la tridecapeptina. En una segunda aproximación, con el objetivo de identificar las moléculas responsables de la actividad observada, se realizo el análisis del perfil metabólico de las fracciones activas, por medio de LC-MS/MS y la construcción de redes moleculares, identificando péptidos como la pelgipeptina A, pelgipeptina B, pelgipeptina C, la surfactina B y la surfactina C15, los cuales podrían ser los responsables de la mortalidad de la garrapata común del ganado observada en los ensayos realizados (Texto tomado de la fuente).spa
dc.description.abstractThe cattle tick, Rhipicephalus (Boophilus) microplus, is a hematophagous ectoparasite that severely affects cattle, causing severe anemia, weight loss, and reduced milk and meat production. Currently, organochlorines, organophosphates, carbamates, amidines, and pyrethroids are used to control R. microplus. However, these substances are associated with environmental pollution and significant risks to human and animal health. Additionally, their effectiveness has declined due to indiscriminate use. This has led to the need for safer treatments with minimal environmental impact and low cost, characteristics of biocontrol-based approaches.This thesis aimed to contribute to the development of such alternative treatments by evaluating the potential of various fungal and bacterial strains from marine and terrestrial environments against R. microplus. The potential of different strains was assessed using the tick immersion bioassay methodology, evaluating three variables: mortality rate, oviposition inhibition rate, and hatching rate. These assays led to the selection of Paenibacillus elgii PNM 210 as a promising strain for the biological control of R. microplus, determining that the activity was presentin the cell-free supernatant, as well as in the organic and butanol fractions. Two analytical strategies were employed to study the metabolic potential related to the observed activity. On one hand, the genomic potential was evaluated through wholegenome mining, which revealed the presence of biosynthetic gene clusters (BGCs) associated mainly with the biosynthesis of non-ribosomal peptides, such as pelgipeptin B, fusaricidin B, and tridecapeptin. In a second approach, aimed at identifying the molecules responsible for the observed activity, metabolic profiling of the active fractions was performed using LC-MS/MS and molecular networking, identifying peptides such as pelgipeptin A, pelgipeptin B, pelgipeptin C, surfactin B, and surfactin C15, wich may be responsible for the mortality of cattle ticks observed in the conducted assays.eng
dc.description.degreelevelMaestría
dc.description.degreenameMagister en Ciencias Bioquímica
dc.description.researchareaProductos Naturales
dc.format.extentxvii, 120 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88575
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Bioquímica
dc.relation.referencesFAO, Fondo Internacional de Desarrollo Agrícola (FIDA), Organización Panamericana de Salud (OPS), Programa Mundial de Alimentos (WFP) y Fondo de las Naciones Unidas para la Infancia (UNICEF). 2020. Panorama de la seguridad alimentaria y nutrición en América Latina y el Caribe. Roma, FAO. https:// doi.org/10.4060/cb2242es.
dc.relation.referencesFAO. Avances y desafíos en la ganadería de América Latina y el Caribe - Medidas de mitigación apropiadas para cada país. Santiago,FAO.2023 https://doi.org/10.4060/cc8210es.
dc.relation.referencesAcosta A, Valdés A. Situación y perspectivas del sector ganadero en Centroamérica.FAO.2013.https://openknowledge.fao.org/server/api/core/bitstreams/144e bc5d-9d87-4506-82ae-752e08ca101d/content
dc.relation.referencesICA. Censo pecuario nacional 2020. In: Agricultura Md, editor. Colombia: Instituto Colombiano Agropecuario; 2020.
dc.relation.referencesnformes Sectorial IS sectorial . Ganadero .Agosto 2023 . Cámara de Comercio de Bogotá. https://bibliotecadigital.ccb.org.co/server/api/core/bitstreams/8084ec30-c67b4ad8-8ccd-755a0c8e0ac9/content.
dc.relation.referencesVecino JAC, Echeverri JAB, Cárdenas JA, Herrera LAPJCyTA. Distribución de garrapatas Rhipicephalus (Boophilus) microplus en bovinos y fincas del Altiplano cundiboyacense (Colombia). 2010;11(1):73-84.
dc.relation.referencesPulido-Herrera LA, Rudas-Ll A, Betancourt JA, Grant WE, Vilchez SJJBC. Distribución inusual y potencial de la garrapata común del ganado, Rhipicephalus (Boophilus) microplus, en zonas tropicales de alta montaña de los Andes colombianos. 2015;16(2):75- 95.
dc.relation.referencesEcheverri Alzate, S., Rojas Zapata, M., Rúa Gomez, M., Sepúlveda Correa, M., Tuberquia Lopez, B., Mazo Velasquez, R., & Castano Gonzalez, A. Presencia de la garrapata Rhipicephalus (Boophilus) microplus en municipios seleccionados del Altiplano Norte de Antioquia. Revista Sinergia, 1(12), 34-45.2022.
dc.relation.referencesAcevedo-Gutiérrez LY, Paternina LE, Pérez-Pérez JC, Londoño AF, López G, Rodas JD. Garrapatas duras (Acari: Ixodidae) de Colombia, una revisión a su conocimiento en el país. Acta Biológica Colombiana. 2020;25(1):126-39.
dc.relation.references) Ruiz-Carbonell, L. A. “Effects of Climate Change on the Tick Rhipicephalus (Boophilus) microplus”. Efectos del cambio climático en garrapatas Rhipicephalus (Boophilus) microplus. Revisión de literatura, MVZ Ibagué Tolima universidad cooperativa de Colombia. enero 2023.
dc.relation.referencesSingh K, Kumar S, Sharma AK, Jacob SS, RamVerma M, Singh NK, Shakya M, Sankar M, Ghosh S. Economic impact of predominant ticks and tick-borne diseases on Indian dairy production systems. Exp Parasitol. 2022 Dec;243:108408. doi: 10.1016/j.exppara.2022.108408. Epub 2022 Nov 4. PMID: 36336025.
dc.relation.referencesSonenshine D.E., Roe R.M. Biology of ticks. 2nd ed. Oxford University Press, new york. vol. 1: isbn 978-0-19-974405-3 . 2013.
dc.relation.referencesValeria C. Onofrio, Alberto A. Guglielmone, Darci M. Barros-Battesti, Sergio L. Gianizella, Arlei Marcili, Rosiléia M. Quadros, Sandro Marques, Marcelo B. Labruna,Description of a new species of Ixodes (Acari: Ixodidae) and first report of Ixodes lasallei and Ixodes bocatorensis in Brazil,Ticks and Tick-borne Diseases,Volume 11, Issue 4, 2020.
dc.relation.referencesBenavides E.,Romero J., Villamil Jiménez, L. Las garrapatas del ganado bovino y los agentes de enfermedad que transmiten en escenarios epidemiológicos de cambio climático. Libro. 978-92-9248-655-6.2016.
dc.relation.referencesEcheverry DNP, Osorio LARJC, Agropecuaria T. Aspectos biológicos y ecológicos de las garrapatas duras. 2016;17(1):81-95.
dc.relation.referencesPacheco, F., Peniche Cardeña, A. E. de J., Sánchez Otero, M. G., MondragónVásquez, K., & Domínguez Chávez, J. G. La garrapata común del ganado: antecedentes, problemática actual y alternativa de control. UVserva, 3,2018
dc.relation.referencesRodríguez-Vivas, Roger Iván, Rosado-Aguilar, José Alberto, Ojeda-Chi, Melina Maribel, Pérez-Cogollo, Luis Carlos, Trinidad-Martínez, Iris, & Bolio-González, Manuel Emilio. Control integrado de garrapatas en la ganadería bovina. Ecosistemas y recursos agropecuarios. 2014 1(3), 295-308.
dc.relation.referencesSalazar Benjumea, R. Variación de la población de garrapatas Rhipicephalus microplus sobre bovinos pastoreando en sistemas silvopastoriles y monocultivos tradicionales. Trabajo de grado – Maestría Universidad Nacional de Colombia . 2015.
dc.relation.referencesAlmazan C, Tipacamu GA, Rodriguez S, Mosqueda J, Perez de Leon A. Immunological control of ticks and tickborne diseases that impact cattle health and production. Frontiers in Bioscience. 2018;23:1535-51.
dc.relation.referencesLópez, G.; Vizcaíno, O. . Transmisión transovárica de Anaplasma marginale por la garrapata Boophilus microplus. revista IcA, 27, 437-443.1992.
dc.relation.referencesBenavides, E. Consideraciones con relación a la epizootiología de anaplasmosis y babesiosis en los bovinos. revista IcA, 20(1), 69-75.1985.
dc.relation.referencesPedraza-Cubillos O, Osorio-Neira C, Ayala-Duarte O, Polania-Pardo E, CortesDueñas R. Ganaderia Colombiana. Hoja de ruta 2018-2022. In: FEDEGAN, editor. Colombia Federación Colombiana de Ganaderos; 2018.
dc.relation.referencesLópez, E, López, G, Orduz, S. Control de la garrapata Boophilus microplus con Metarhizium anisopliae, estudios de laboratorio y campo. Revista Colombiana de Entomología , 35 (1), 42-46 2009.
dc.relation.referencesRodríguez-Vivas RI, Grisi L, de León AAP, Villela HS, de Jesús Torres-Acosta JF, Sánchez HF, et al. Potential economic impact assessment for cattle parasites in Mexico. Review. 2017;8(1):61-74.
dc.relation.referencesRodríguez Vivas RI ., Rosado Aguilar JA., Ojeda Chi MM., Pérez Cogollo LC., Trinidad Martínez I., Bolio González ME. Control integrado de garrapatas en la ganadería bovina. Ecosistemas y recursos agropecuarios, 1(3), 295-308.2014.
dc.relation.referencesPadgett KA, Casher LE, Stephens SL, Lane RS Efect of prescribed re for tick control in California chaparral. Journal of Medical Entomology 46(5): 1138-45.2009.
dc.relation.referencesDíaz Rivera, Edgar. Mecanismos moleculares y bioquímicos de resistencia a acaricidas en la garrapata común de los bovinos Rhipicephalus microplus. Revista Colombiana de Ciencia Animal; V5-N1. Ibagué : Universidad del Tolima, 2012. <http://repository.ut.edu.co/handle/001/1311>
dc.relation.referencesParra MH, Peláez S, Segura C, Arcos JC, Londoño A, Díaz E, et al. Manejo integrado de garrapatas en bovinos. Serie modular para la capacitación en tecnologías agropecuarias. 1999;2:72-7.
dc.relation.referencesFernández-Salas A, Alonso-Díaz MA, Alonso-Morales RA. Effect of entomopathogenic native fungi from paddock soils against Rhipicephalus microplus larvae with different toxicological behaviors to acaricides. Experimental Parasitology. 2019;204:107729.
dc.relation.referencesMondal DB, Sarma K, Saravanan M.Upcoming of the integrated tick control program of ruminants with special emphasis on livestock farming system in India. Ticks Tick Borne Dis. 4(1-2):1-10.2013.
dc.relation.referencesRodriguez-Vivas RI, Jonsson NN, Bhushan C. Strategies for the control of Rhipicephalus microplus ticks in a world of conventional acaricide and macrocyclic lactone resistance. Parasitology research. 2018;117(1):3-29.
dc.relation.referencesCastro-Janer E, Rifran L, González P, Niell C, Piaggio J, Gil A, et al. Determination of the susceptibility of Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) to ivermectin and fipronil by Larval Immersion Test (LIT) in Uruguay. Veterinary Parasitology. 2011;178(1):148-55.
dc.relation.referencesVillar D, Klafke GM, Rodríguez-Durán A, Bossio F, Miller R, Pérez de León AA, et al. Resistance profile and molecular characterization of pyrethroid resistance in a Rhipicephalus microplus strain from Colombia. Medical and Veterinary Entomology. 2020;34(1):105-15.
dc.relation.referencesÁlvarez V, Bonilla R, Chacón I.Distribución de la garrapata Amblyomma cajennense (Acari:Ixodidae) sobre Bostaurus y Bos indicus en Costa Rica. Rev Biol Trop. 48(1):129- 135.2000.
dc.relation.referencesÁlvarez V, Bonilla R, Chacón I .Frecuencia relativa de Boophilus microplus (Acari:Ixodidae) en bovinos (Bostaurus y B.indicus) en ocho zonas ecológicas de Costa Rica. Rev Biol Trop. 51(2): 427-434.2003.
dc.relation.referencesMondal DB, Sarma K, Saravanan M.Upcoming of the integrated tick control program of ruminants with special emphasis on livestock farming system in India. Ticks Tick Borne Dis. 4(1-2):1-10.2013.
dc.relation.referencesSolanke P, Narladkar B. Status of bacterial biocontrol agents against cattle tick Rhipicephalus (B.) microplus (Acarina: Ixodidiae). 2018.
dc.relation.referencesSamish M, Ginsberg H, Glazer I. Biological control of ticks. Parasitology.;129 Suppl:S389-403. doi: 10.1017/s0031182004005219. PMID: 15938520.2004
dc.relation.referencesardá-Ribeiro VLC, Tiogo E, Bordignon SAL, Goncalves K, Poser. Acaricidal propieties of extraes from the aerial parts of Hypericum polyanthemun on the cattle tick Boophilus microplus. Veterinary Parasitology 147: 199-203.2007.
dc.relation.referencesGarcía-Montes Y, Castro-García M, López-Mantuano M, Cárdenas-Reyes E, MolinaBasurto R. Efecto del extracto de hoja de neem (Azadirachta indica) para control de ectoparásitos en perros. Rev Cient Fac Cienc Vet Univ Zulia. 2017;27(3):154-61.
dc.relation.referencesRibeiro, Vera & Avancini, César & Gonçalves, Karla & Toigo, Eduardo & Poser, Gilsane. Acaricidal activity of Calea serrata (Asteraceae) on Boophilus microplus and Rhipicephalus sanguineus. Veterinary parasitology. 151. 351-4. 10.1016/j.vetpar.2007.11.007.2008.
dc.relation.referencesRosado-Aguilar JA, Aguilar-Caballero AJ, Rodriguez-Vivas RI, Borges-Argaez R, García-Vázquez Z, Méndez-González M Screening of the acaricidal efficacy of phytochemical extracts on the cattle tick Rhipicephalus (Boophilus) microplus (acari: ixodidae) by larval immersion test. Tropical and Subtropical Agroecosystem 12(1): 417- 422.2010b.
dc.relation.referencesRosado-Aguilar JA, Aguilar-Caballero A, Rodriguez-Vivas RI, Borges-Argaez R, Garcia-Vazquez Z, Mendez-Gonzalez M Acaricidal activity of extracts from Petiveria alliacea (Phytolaccaceae) against the cattle tick, Rhipicephalus (Boophilus) microplus (Acari: ixodidae). Veterinary Parasitology 168 (3-4): 299-303.2010a..
dc.relation.referencesMartinez-Velazquez M, Rosario-Cruz R, Castillo-Herrera G, Flores-Fernandez JM, Alvarez AH, Lugo-Cervantes E Acaricidal effect of essential oils from Lippia graveolens (Lamíales: Verbenaceae), Rosmarinus officinalis (Lamíales: Lamiaceae), and Allium sativum (Liliales: Liliaceae) Against Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Journal of Medical Entomology 48(4): 822-827.2011b.
dc.relation.referencesFernandez-Salas A, Alonso-Diaz MA, Acosta-Rodriguez R, Torres-Acosta F, Sandoval-Castro C, Rodriguez-Vivas RI. In vitro acaricidal effect of tannin-rich plants against the cattle tick Rhipicephalus (Boophilus) microplus (Acari: ixodidae). Veterinary Parasitology 175(1-2): 113-118.2010.
dc.relation.referencesEbani VV, Mancianti F. Entomopathogenic Fungi and Bacteria in a Veterinary Perspective. Biology (Basel). 2021 May 28;10(6):479. doi: 10.3390/biology10060479. PMID: 34071435; PMCID: PMC8229426.
dc.relation.referencesFiorotti J, Menna-Barreto RFS, Golo PS, Coutinho-Rodrigues CJB, Bitencourt ROB, Spadacci-Morena DD, et al. Ultrastructural and Cytotoxic Effects of Metarhizium robertsii Infection on Rhipicephalus microplus Hemocytes. Front Physiol. 2019;10:654.
dc.relation.referencesFernandes ÉK, Bittencourt VR, Roberts DW. Perspectives on the potential of entomopathogenic fungi in biological control of ticks. Experimental parasitology. 2012;130(3):300-5.
dc.relation.referencesLormendez C, Fernandez-Ruvalcaba M, Adames-Mancebo M, Hernandez-Velazquez VM, Zuñiga-Navarrete F, Flores-Ramirez G, et al. Mass production of a S-layer protein of Bacillus thuringiensis and its toxicity to the cattle tick Rhipicephalus microplus. Scientific Reports. 2019;9(1):17586.
dc.relation.referencesDa Silva WOB, Santi L, Schrank A, Vainstein MHJFB. Metarhizium anisopliae lipolytic activity plays a pivotal role in Rhipicephalus (Boophilus) microplus infection. 2010;114(1):10-5.
dc.relation.referencesBenavides, E.; Romero, A. . Consideraciones para el control integral de parásitos externos del ganado. Anexo coleccionable “manejo integrado de plagas y enfermedades en explotaciones ganaderas 7”. Carta Fedegan., 70, 64-86.2001.
dc.relation.referencesChandler D, Davidson G, Pell J, Ball B, Shaw K, Sunderland K. Fungal biocontrol of Acari. Biocontrol Science Technology. ;10(4):357-84.2000.
dc.relation.referencesKaaya GP, Hassan .Entomogenous fungi as promising biopesticides for tick control. Experimental and Applied Acarology 24: 913-926.2000
dc.relation.referencesBeys-da-Silva WO, Rosa RL, Berger M, Coutinho-Rodrigues CJ, Vainstein MH, Schrank A, et al. Updating the application of Metarhizium anisopliae to control cattle tick Rhipicephalus microplus (Acari: Ixodidae). 2020;208:107812.
dc.relation.referencesTofiño Rivera, A, Pedraza Claros, B, Ortega Cuadros, M, Perdomo Ayola, S y Moya Romero, D. Efectividad de Beauveria bassiana (Baubassil®) sobre la garrapata común del ganado bovino Rhipicephalus microplus en el Departamento de la Guajira, Colombia. 2018.
dc.relation.referencesPulido-Medellín, Martín O, Rodríguez-Vivas, Roger I, García-Corredor, Diego J, DíazAnaya, Adriana M, & Andrade-Becerra, Roy J.. Evaluación de la eficacia de la CEPA MAF1309® de Metarhizium anisopliae en el control biológico de garrapatas adultas de Rhipicephalus microplus en Tunja, Colombia. Revista de la Facultad de Ciencias Veterinarias, 56(2), 80-86. 2015.
dc.relation.referencesMarín Cruz, VH, Rodríguez Navarro, S., Barranco Florido, JE, Cibrián Tovar, D. Hongos entomopatógenos y sus metabolitos, una alternativa sustentable para el control de plagas en viveros forestales y agricultura protegida: caso Bradysia impatiens (Johannsen).Sociedades rurales, producción y medio ambiente VOL.15 NÚM 30. 2015.
dc.relation.referencesFranco Chávez, KG, Rodríguez Navarro, S., Cervantes Mayagoitia, JF, Barranco Florido, JE, Enzimas y toxinas de hongos entomopatógenos, su aplicación potencial como insecticidas y fungicidas.Sociedades rurales, producción y medio ambiente vol.11 núm 22.2011.
dc.relation.referencesLoganathan K, Kumar G, Kirthi AV, Rao KV, Rahuman AA. Entomopathogenic marine actinomycetes as potential and low-cost biocontrol agents against bloodsucking arthropods. Parasitol Res. Nov;112(11):3951-9. 2013 .
dc.relation.referencesSaurav, K., Rajakumar, G., Kannabirán, K., Rahuman, AA, Velayutham, K., Elango, G., Kamaraj, C. y Zahir, AA . Larvicidal activity of isolated compound 5-(2,4-dimethylbenzyl) pyrrolidin-2-one from marine Streptomyces VITSVK5 sp. against Rhipicephalus (Boophilus) microplus, Anopheles stephensi, and Culex tritaeniorhynchus. parasitol Res 112:215– 226.2011.
dc.relation.referencesSullivan CF, Parker BL, Skinner M. A Review of Commercial Metarhiziumand Beauveria-Based Biopesticides for the Biological Control of Ticks in the USA. Insects. 2022 Mar 5;13(3):260. doi: 10.3390/insects13030260. PMID: 35323558; PMCID: PMC8952794.
dc.relation.referencesVecino JAC, Echeverri JAB, Cárdenas JA, Herrera LAPJCyTA. Distribución de garrapatas Rhipicephalus (Boophilus) microplus en bovinos y fincas del Altiplano Cundiboyacense (Colombia). 2010;11(1):73-84. 2.
dc.relation.referencesPulido-Herrera LA, Rudas-Ll A, Betancourt JA, Grant WE, Vilchez SJJBC. Distribución inusual y potencial de la garrapata común del ganado, Rhipicephalus (Boophilus) microplus, en zonas tropicales de alta montaña de los Andes colombianos. 2015;16(2):75-95.
dc.relation.referencesRodriguez-Vivas RI, Jonsson NN, Bhushan C. Strategies for the control of Rhipicephalus microplus ticks in a world of conventional acaricide and macrocyclic lactone resistance. Parasitology research. 2018;117(1):3-29.
dc.relation.referencesKöhl J, Kolnaar R, Ravensberg WJ. Mode of Action of Microbial Biological Control Agents Against Plant Diseases: Relevance Beyond Efficacy. 2019;10(845).
dc.relation.referencesSun M, Ren Q, Guan G, Liu Z, Ma M, Gou H, et al. Virulence of Beauveria bassiana, Metarhizium anisopliae and Paecilomyces lilacinus to the engorged female Hyalomma anatolicum anatolicum tick (Acari: Ixodidae). 2011;180(3- 4):389-93.
dc.relation.referencesFernandes ÉK, Bittencourt VR, Roberts DW. Perspectives on the potential of entomopathogenic fungi in biological control of ticks. Experimental parasitology. 2012;130(3):300-5.
dc.relation.referencesDrummond R. O., Ernst S. E., Trevino J. L., Gladney W. J., Graham O. H., Boophilus annulatus and B. microplus: Laboratory Tests of Insecticides, Journal of Economic Entomology, Volume 66, Issue 1, 1 February 1973, Pages 130–133.
dc.relation.referencesGonzález Coloma A., Olmeda S., Burillo J., Sanz J., Sanz P. Umpiérrez ML., Rossini S. Desarrollo de métodos de bioensayo con garrapatas aplicados a la detección de potenciales bioplaguicidas botánicos.Productos naturales contra parásitos externos del ganado bovino y ovino, tales como mosca de los cuernos y garrapatas.2013.
dc.relation.referencesTofiño Rivera, A, Pedraza Claros, B, Ortega Cuadros, M, Perdomo Ayola, S y Moya Romero, D. Efectividad de Beauveria bassiana (Baubassil®) sobre la garrapata común del ganado bovino Rhipicephalus microplus en el Departamento de la Guajira, Colombia. 2018.
dc.relation.referencesChandler D, Davidson G, Pell J, Ball B, Shaw K, Sunderland K. Fungal biocontrol of Acari. Biocontrol Science Technology. ;10(4):357-84.2000.
dc.relation.referencesAngelo IC, Fernandes ÉK, Bahiense TC, Perinotto WM, Golo PS, Moraes AP, Bittencourt VR. Virulence of Isaria sp. and Purpureocillium lilacinum to Rhipicephalus microplus tick under laboratory conditions. Parasitol Res. 2012 Oct;111(4):1473-80. doi: 10.1007/s00436-012-2982-y. Epub 2012 Jun 19.
dc.relation.referencesCota Guajardo S.d.C. Control biológico e integrado de la garrapata" Hyalomma lusitanicum" en explotaciones silvo-agro-cinegéticas de ecosistema mesomediterráneo: Universidad Complutense de Madrid; 2015. Tesis inédita de la Universidad Complutense de Madrid, Facultad de Veterinaria, Departamento de Sanidad Animal.
dc.relation.referencesSamish M, Ginsberg H, Glazer IJP. Biological control of ticks. 2004;129(S1):S389.
dc.relation.referencesLormendez CC, Fernandez-Ruvalcaba M, Adames-Mancebo M, HernandezVelazquez VM, Zuñiga-Navarrete F, Flores-Ramirez G, et al. Mass production of a S-layer protein of Bacillus thuringiensis and its toxicity to the cattle tick Rhipicephalus microplus. Scientific Reports. 2019;9(1):17586. a (15)S-layer protein of Bacillus thuringiensis and its toxicity to the cattle tick Rhipicephalus microplus. Scientific Reports. 2019;9(1):17586.
dc.relation.referencesFernández-Ruvalcaba M, Peña-Chora G, Romo-Martínez A, HernándezVelázquez V, de la Parra AB, De La Rosa DP. Evaluation of Bacillus thuringiensis pathogenicity for a strain of the tick, Rhipicephalus microplus, resistant to chemical pesticides. J Insect Sci. 2010;10:186-.
dc.relation.referencesSolanke P, Narladkar B. Status of bacterial biocontrol agents against cattle tick Rhipicephalus (B.) microplus (Acarina: Ixodidiae). 2018.
dc.relation.referencesRomero-Otero A. Búsqueda de compuestos con actividad antimicrobiana a partir de hongos aislados de ambientes marinos. Fase I. Bogotá, Colombia: Universidad Nacional de Colombia 2016.
dc.relation.referencesPuentes Acosta, C. Bacterias marinas como fuente de compuestos con actividad insecticida contra Collaria Scenica. Bogotá, Colombia: Universidad NAcional de Colombia; 2018.
dc.relation.referencesVinchira D.,“Evaluación de tres aislamientos bacterianos como potenciales promotores de crecimiento vegetal en plantas de arroz (Oryza sativa),” Universidad Nacional de Colombia, 2014.
dc.relation.referencesValencia GL., Do Nacimento CG., Oquendo IG., Agudelo LAV., Carrasquilla DGJRCMVYZ.Evaluación de una mezcla de cipermetrina+ clorpirifós sobre la garrapata Rhipicephalus (boophilus) microplus en pruebas de campo y de laboratorio en el predio esteban Jaramillo Román Gómez del politécnico colombiano de Marinilla, Antioquia. ;4(2):57-65.2009.
dc.relation.referencesLópez, E. López,, G, Orduz, S. Control de la garrapata Boophilus microplus con Metarhizium anisopliae, estudios de laboratorio y campo. Revista Colombiana de Entomología , 35 (1), 42-46.2009.
dc.relation.referencesPulido-Medellín, Martín O, Rodríguez-Vivas, Roger I, García-Corredor, Diego J, Díaz-Anaya, Adriana M, & Andrade-Becerra, Roy J.. Evaluación de la eficacia de la CEPA MAF1309® de Metarhizium anisopliae en el control biológico de garrapatas adultas de Rhipicephalus microplus en Tunja, Colombia. Revista de la Facultad de Ciencias Veterinarias, 56(2), 80-86. 2015.
dc.relation.referencesArora D, Gupta P, Jaglan S, Roullier C, Grovel O, Bertrand S. Expanding the chemical diversity through microorganisms co-culture: Current status and outlook. Biotechnology Advances. 2020;40:107521.
dc.relation.referencesMarmann A, Aly AH, Lin W, Wang B, Proksch P. Co-cultivation--a powerful emerging tool for enhancing the chemical diversity of microorganisms. Mar Drugs. 2014;12(2):1043-65.
dc.relation.referencesPacheco, F., Peniche Cardeña, A. E. de J., Sánchez Otero, M. G., MondragónVásquez, K., & Domínguez Chávez, J. G. La garrapata común del ganado: antecedentes, problemática actual y alternativa de control. UVserva, 3,2018.
dc.relation.referencesCastro-Saines, E., Lagunes-Quintanilla, R. & Hernández-Ortiz, R. Microbial agents for the control of ticks Rhipicephalus microplus. Parasitol Res 123, 275.2024.
dc.relation.referencesGrady, E.N., MacDonald, J., Liu, L. et al. Current knowledge and perspectives of Paenibacillus: a review. Microb Cell Fact 15, 203 . 2016.
dc.relation.referencesRuiu L. Insect Pathogenic Bacteria in Integrated Pest Management. Insects.6(2):352-67. 2015.
dc.relation.referencesNeung, S., Nguyen, X.H.,Naing, K.W et al. Insecticidal potential of Paenibacillus elgii HOA73 and its combination with organic sulfur pesticide on diamondback moth, Plutella xylostella., J Korean Soc Appl Biol Chem 57, 181– 186. 2014. https://doi.org/10.1007/s13765-013-4273-4.
dc.relation.referencesBeys-da-Silva WO, Rosa RL, Berger M, Coutinho-Rodrigues CJ, Vainstein MH, Schrank A, et al. Updating the application of Metarhizium anisopliae to control cattle tick Rhipicephalus microplus (Acari: Ixodidae). 2020;208:107812.
dc.relation.referencesLoganathan K, Kumar G, Kirthi AV, Rao KV, Rahuman AA. Entomopathogenic marine actinomycetes as potential and low-cost biocontrol agents against bloodsucking arthropods. Parasitol Res. Nov;112(11):3951-9. 2013.
dc.relation.referencesValerio Garcia M., Monteiro, Matias A C., Szabó P j., Alves Mochi D., Detogni Simi(L., Mendes Carvalho W., Akemi Tsuruta S., Barbosa J C., Effect of Metarhizium anisopliae fungus on off-host Rhipicephalus (Boophilus) microplus from tick-infested pasture under cattle grazing in Brazil,Veterinary Parasitology,Volume 181, Issues 2-4,Pages 267-273,2011.
dc.relation.referencesGarcia MV, Monteiro AC, Szabó MPJ, Mochi DA, Simi LD, Carvalho WM, et al. Effect of Metarhizium anisopliae fungus on off-host Rhipicephalus (Boophilus) microplus from tick-infested pasture under cattle grazing in Brazil. 2011;181(2- 4):267-73.
dc.relation.referencesLópez, G. d. , Técnicas de investigación de garrapatas en el laboratorio y en el campo., 1980 . Instituto Colombiano Agropecuario (Agrosavia), http://hdl.handle.net/20.500.12324/22325.
dc.relation.referencesRaza W, Yuan J, Wu YC, Rajer FU, Huang Q, Qirong S. Biocontrol traits of two Paenibacillus polymyxa strains SQR-21 and WR-2 in response to fusaric acid, a phytotoxin produced by Fusarium species. Plant Pathol. 2015;64(5):1041.
dc.relation.referencesKröber T, Guerin PM, In vitro feeding assays for hard ticks, Trends in Parasitology, Volume 23, Issue 9, Pages 445-449,2007ISSN 14714922,https://doi.org/10.1016/j.pt.2007.07.010.
dc.relation.referencesAw KMS, Hue SM. Mode of Infection of Metarhizium spp. Fungus and Their Potential as Biological Control Agents. J Fungi (Basel). 2017 Jun 7;3(2):30. doi: 10.3390/jof3020030. PMID: 29371548; PMCID: PMC5715920.
dc.relation.referencesCastro EJ., Rifran, L.,Piaggio J., Gil A.,Miller RJ., Schumaker TTS,In vitro tests to establish LC50 and discriminating concentrations for fipronil against Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) and their standardization,Veterinary Parasitology, Volume 162, Issues 1–2, Pages 120-128, 2009,ISSN 0304-4017,https://doi.org/10.1016/j.vetpar.2009.02.013.
dc.relation.referencesSamish, M., Ginsberg, H., Glazer, I.,Biological Control Parasitol. Cambridge University Press. S389-S403. 2004.
dc.relation.referencesCota Guajardo SdC. Control biológico e integrado de la garrapata" Hyalomma lusitanicum" en explotaciones silvo-agro-cinegéticas de ecosistema mesomediterráneo: Universidad Complutense de Madrid; 2015.
dc.relation.referencesLormendez CC, Fernandez-Ruvalcaba M, Adames-Mancebo M, HernandezVelazquez VM, Zuñiga-Navarrete F, Flores-Ramirez G, et al. Mass production of a S-layer protein of Bacillus thuringiensis and its toxicity to the cattle tick Rhipicephalus microplus. Scientific Reports. 2019.
dc.relation.referencesNaranjo-Gaybor SJ, Vinchira-Villarraga DM, Moreno-Sarmiento NC, Maldonado LA, SuarezMoreno ZR, et al. Marine Actinobacteria as a source of compounds for phytopathogen control: An integrative metabolicprofiling / bioactivity and taxonomical approach. PLOS ONE. 2017;12(2):e0170148.
dc.relation.referencesE. A. Barka et al., “Taxonomy, Physiology, and Natural Products of Actinobacteria,” Microbiol. Mol. Biol. Rev., vol. 80, no. 1, pp. 1–43, 2016.
dc.relation.referencesAgudelo Guerrero AM., Caracterización de Paenibacillus sp. JH1 aislada del agua de mar de la Bahía de Cartagena., Universidad de los Andes, Junio 2015 https://repositorio.uniandes.edu.co/server/api/core/bitstreams/8e5bb326-75a449f2-ac8b-95ee94b7114d/content.
dc.relation.referencesGrady EN., Macdonald J.,Liu L.,Richman, A., Yuan, ZC., Current knowledge and perspectives of Paenibacillus: A review. Microbial Cell Factories. 15. 2016 10.1186/s12934-016-0603-7.
dc.relation.referencesVon der Weid, I., Duarte, GF., Van Elsas, JD., Seldin, L. Paenibacillus brasilensis sp. nov., a novel nitrogen-fixing species isolated from the maize rhizosphere in Brazil. International Journal of Systematic and Evolutionary Microbiology, 52(6), 2147–2152. 2002 https://doi.org/10.1099/ijs.0.02313-0.
dc.relation.referencesPriest FG., Goodfellow M., Todd C., A numerical classification of the genus Bacillus. J Gen Microbiol. 1988 Jul;134(7):1847-82. doi: 10.1099/00221287-134-71847. PMID: 3246588.
dc.relation.referencesLijie S,Matin N.,Tilmann W., Ákos T. K., Unlocking the biosynthetic potential of Paenibacilli through a genus-wide exploration of gene clusters forsecondary metabolite production., bioRxiv.01.22.634348. 2025.
dc.relation.referencesMei L, Liang Y, Zhang L, Wang Y, Guo Y. Induced systemic resistance and growth promotion in tomato by an indole-3-acetic acid-producing strain of Paenibacillus polymyxa. Annals of Applied Biology. 2014;165(2):270-9.
dc.relation.referencesGoswami D, Parmar S, Vaghela H, Dhandhukia P, Thakker JN. Describing Paenibacillus mucilaginosus strain N3 as an efficient plant growth promoting rhizobacteria (PGPR). J Cogent Food Agriculture. 2015;1(1):1000714.
dc.relation.referencesomoko Y., Masao T., Makoto H.,Novel cry gene from Paenibacillus lentimorbus strain Semadara inhibits ingestion and promotes insecticidal activity in Anomala cuprea larvae,Journal of Invertebrate Pathology,Volume 85, Issue 1,2004,Pages 25-32,ISSN 0022-2011, https://doi.org/10.1016/j.jip.2003.12.009.
dc.relation.referencesM. Shaheen, J. Li, A. C. Ross, J. C. Vederas, and S. E. Jensen, “Paenibacillus polymyxa PKB1 produces variants of polymyxin B-type antibiotics,” Chem. Biol., vol. 18, no. 12, pp. 1640–1648, Dec. 2011.
dc.relation.referencesCochrane SA, Vederas JC. Lipopeptides from Bacillus and Paenibacillus spp.: A Gold Mine of Antibiotic Candidates. Medicinal Research Reviews. 2016;36(1):4- 31.
dc.relation.referencesVater, J., Herfort, S., Doellinger, J., Weydmann, M., Dietel, K., Faetke, S., and Lasch, P. Fusaricidins from Paenibacillus polymyxa M-1, a family of lipohexapeptides of unusual complexity—a mass spectrometric study. J. Mass Spectrom., 52: 7–15.2017.. doi: 10.1002/jms.3891.
dc.relation.referencesMedina J., Paciel D., Noceti Ofelia., Rieppi G . Actualización acerca de colistina (polimixina E): aspectos clínicos, PK/PD y equivalencias. Revista Médica del Uruguay, 33(3), 79-114. 2017 https://doi.org/10.29193/rmu.33.3.5.
dc.relation.referencesHsu LH, Wang HF, Sun PL, Hu FR, Chen YL. The antibiotic polymyxin B exhibits novel antifungal activity against Fusarium species. Int J Antimicrob Agents. 2017 Jun;49(6):740-748. doi: 10.1016/j.ijantimicag.2017.01.029. Epub 2017 Apr 19. PMID: 28433743.
dc.relation.referencesFulgêncio DLA., Da Costa R., Guilhelmelli F., Silva CMS.,Ortega DB., De Araujo TF., Silva PS., Silva-Pereira I., Albuquerque P.,Barreto CC. In vitro antifungal activity of pelgipeptins against human pathogenic fungi and Candida albicans biofilms. AIMS Microbiol. 2021 Jan 19;7(1):28-39. doi: 10.3934/microbiol.2021003. PMID: 33659767; PMCID: PMC7921374.
dc.relation.referencesRuiu L.,“Insect pathogenic bacteria in integrated pest management,” Insects, vol. 6, no. 2, pp. 352–367, 2015.
dc.relation.referencesHe Z., Kisla D., Zhang L., Yuan C ., Green-Church KB., and Yousef., AB. “Isolation and identification of a Paenibacillus polymyxa strain that coproduces a novel lantibiotic and polymyxin,” Appl. Environ. Microbiol., vol. 73, no. 1, pp. 168178, Jan. 2007.
dc.relation.referencesKim DS.,“Paenibacillus elgii sp. nov., with broad antimicrobial activity,” Int. J. Syst. Evol. Microbiol., vol. 54, no. 6, pp. 2031–2035, Nov. 2004.
dc.relation.referencesKim, M.S., Jeong, DE., Jang, JP. et al. Mining biosynthetic gene clusters in Paenibacillus genomes to discover novel antibiotics. BMC Microbiol 24, 226 2024.
dc.relation.referencesGosse JT. , Ghosh S., Sproule A., Overy D.,Cheeptham N., Boddy CN.,Whole Genome Sequencing and Metabolomic Study of Cave Streptomyces Isolates ICC1 and ICC4,.Frontiers in Microbiology, volume10,2019.
dc.relation.referencesMedema, M., Kottmann, R., Yilmaz, P. et al. Minimum Information about a Biosynthetic Gene cluster. Nat Chem Biol 11, 625–631.2015. https://doi.org/10.1038/nchembio.1890.
dc.relation.referencesWen, Y., Wu, X., Teng, Y., Qian, C., Zhan, Z., Zhao, Y., & Li, O. ( Identification and analysis of the gene cluster involved in biosynthesis of paenibactin, a catecholate siderophore produced by Paenibacillus elgii B69. Environmental Microbiology, 13(10), 2726–2737, 2011.
dc.relation.referencesQian CD, Liu TZ, Zhou SL, Ding R, Zhao WP, Li O, Wu XC. Identification and functional analysis of gene cluster involvement in biosynthesis of the cyclic lipopeptide antibiotic pelgipeptin produced by Paenibacillus elgii. BMC Microbiol. 2012 Sep 8;12:197. doi: 10.1186/1471-2180-12-197. PMID: 22958453; PMCID: PMC3479019.
dc.relation.referencesBlin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP, Medema MH, Weber T. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res. 2021 Jul 2;49(W1):W29-W35. doi: 10.1093/nar/gkab335. PMID: 33978755; PMCID: PMC826275
dc.relation.referencesBlin K, Shaw S, Augustijn HE, Reitz ZL, Biermann F, Alanjary M, Fetter A, Terlouw BR, Metcalf WW, Helfrich EJN, van Wezel GP, Medema MH, Weber T. antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res. 2023 Jul 5;51(W1):W46-W50. doi: 10.1093/nar/gkad344. PMID: 37140036; PMCID: PMC10320115.
dc.relation.referencesSnape, R., "Análisis de antibióticos y metabolitos secundarios SHell (antiSMASH) como herramienta para detectar posibles nuevos antibióticos" Tesis. Instituto Tecnológico deRochester.2023 https://repository.rit.edu/theses/11480.
dc.relation.referencesLeesa KJ., et al. The Natural Product Domain Seeker version 2 (NaPDoS2) webtool relates ketosynthase phylogeny to biosynthetic function Journal of Biological Chemistry, Volume 298, Issue 10, 102480. 2022.
dc.relation.referencesStarcevic A., Zucko J., Simunkovic J., Long PF., Cullum J., Hranueli D., ClustScan : an integrated program package for the semi-automatic annotation of modular biosynthetic gene clusters and in silico prediction of novel chemical structures , Nucleic Acids Research, Volume 36, Issue 21, 1 December 2008, Pages 6882–6892, https://doi.org/10.1093/nar/gkn685
dc.relation.referencesTerlouw BR., Blin K., Navarro-Muñoz JC., Avalon Nicole E., Chevrette Marc G., Egbert. Susan., Lee S., Meijer D., Recchia MJ., et al., MIBiG 3.0: a community-driven effort to annotate experimentally validated biosynthetic gene clusters, Nucleic Acids Research, Volume 51, Issue D1, 6 January 2023, Pages D603–D610, https://doi.org/10.1093/nar/gkac1049.
dc.relation.referencesGosselin S., Fullmer MS., Feng Y., Gogarten JP. Improving Phylogenies Based on Average Nucleotide Identity, Incorporating Saturation Correction and Nonparametric Bootstrap Support, Systematic Biology, Volume 71, Issue 2, March 2022, Pages 396–409, https://doi.org/10.1093/sysbio/syab060.
dc.relation.referencesGosselin S., Fullmer MS., Feng Y., Gogarten JP. Improving Phylogenies Based on Average Nucleotide Identity, Incorporating Saturation Correction and Nonparametric Bootstrap Support, Systematic Biology, Volume 71, Issue 2, March 2022, Pages 396–409, https://doi.org/10.1093/sysbio/syab060.
dc.relation.referencesZiemert, N., Alanjary, M., & Weber, T..The evolution of genome mining in microbes – a review.Natural Product Reports, 33(8), 988–1005. 2016 https://doi.org/10.1039/C6NP00025H.(37) Mistry J., Chuguransky S., Williams L., Qureshi M., Salazar GA., Sonnhammer ELL., Tosatto SCE., Paladin L., Raj S., Richardson LJ., Finn RD.,Bateman A.,Pfam: The protein families database in , Nucleic Acids Research, Volume 49, Issue D1, 8 January 2021, Pages D412D419, https://doi.org/10.1093/nar/gkaa913.
dc.relation.referencesWick RR, Judd LM, Holt KE. Assembling the perfect bacterial genome using Oxford Nanopore and Illumina sequencing. PLoS Comput Biol 19(3): e1010905. 2023. https://doi.org/10.1371/journal.pcbi.1010905.
dc.relation.referencesAguilar Bultet L., Falquet L. Secuenciación y ensamblaje de novo de genomas bacterianos: una alternativa para el estudio de nuevos patógenos. Revista de Salud Animal, 37(2), 125-132. 2015.
dc.relation.referencesDing R, Li Y, Qian C, Wu X. Draft genome sequence of Paenibacillus elgii B69, a strain with broad antimicrobial activity. J Bacteriol. 2011 Sep;193(17):4537. doi: 10.1128/JB.00406-11. Epub 2011 Jun 24. PMID: 21705583; PMCID: PMC3165517.
dc.relation.referencesYoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek. 2017 Oct;110(10):1281-1286. doi: 10.1007/s10482-017-0844-4. Epub 2017 Feb 15. PMID: 28204908.
dc.relation.referencesHarayama, S., Kasai, H. Bacterial Phylogeny Reconstruction from Molecular Sequences. In: Stackebrandt, E. (eds) Molecular Identification, Systematics, and Population Structure of Prokaryotes. Springer, Berlin, Heidelberg. 2006. https://doi.org/10.1007/978-3-540-31292-5_5.
dc.relation.referencesPlakys G, Gasparavičiūtė R, Vaitekūnas J, Rutkienė R, Meškys R. Characterization of Paenibacillus sp. GKG Endo-β-1, 3-Glucanase, a Member of Family 81 Glycoside Hydrolases. Microorganisms. 2022 Sep 28;10(10):1930. doi: 10.3390/microorganisms10101930. PMID: 36296206; PMCID: PMC9609564.
dc.relation.referencesSoni R., Nanjani S., Keharia H.,Genome analysis reveals probiotic propensities of Paenibacillus polymyxa HK4, Genomics,Volume 113, Issue 1, Part 2, Pages 861-873, SSN 0888-7543,2021 https://doi.org/10.1016/j.ygeno.2020.10.017.
dc.relation.referencesBGC0001715: grupo de genes biosintéticos de octapeptina C4 de Bacillus circulans pagina web Consorcio MIBiG recuperado de https://mibig.secondarymetabolites.org/repository/BGC0001715.4/#r1c1.
dc.relation.referencesVelkov T., Gallardo-Godoy A., Swarbrick JD., Owen J., LiJ., Cooper MA.,Structure, Function, and Biosynthetic Origin of Octapeptin Antibiotics Active against Extensively Drug-Resistant Gram-Negative Bacteria .Cell Chemical Biology, Volume 25, Issue 4, 380 - 391.e5.2018.
dc.relation.referencesChitty JL., Butler MS., Suboh A., Edwards DJ.,Cooper MA.,Fraser JA., Robertson AAB. Antimicrobial Octapeptin C4 Analogues Active against Cryptococcus Species. Antimicrob Agents Chemother.. vol 62 . No 2 :e00986-17.
dc.relation.referencesDuban M., Cociancich S., Leclère V., Nonribosomal Peptide Synthesis Definitely Working Out of the Rules. Microorganisms.,10(3):577.,2022.PMID: 35336152; PMCID: PMC8949500.
dc.relation.referencesBGC0000403: Grupo de genes biosintéticos de pelgipeptina A de Paenibacillus elgii pagina web Consorcio MIBiG recuperado de https://mibig.secondarymetabolites.org/repository/BGC0000403.5/#r1c1.
dc.relation.referencesAnálisis Blastp de la región del gen plpA del BCG6 de PNM 210 Resultados para RID-09WTUHG0013 ID de secuencia: AFJ14790.1 recuperado de https://www.ncbi.nlm.nih.gov/protein/AFJ14790.1?report=genbank&log$=protalign &blast_rank=1&RID=09WTUHG0013.
dc.relation.referencesBaindara P, Chaudhry V, Mittal G, Liao LM, Matos CO, Khatri N, Franco OL, Patil PB, Korpole S. Characterization of the Antimicrobial Peptide Penisin, a Class Ia Novel Lantibiotic from Paenibacillus sp. Strain A3. Antimicrob Agents Chemother. 2015 Nov 16;60(1):580-91. doi: 10.1128/AAC.01813-15. PMID: 26574006; PMCID: PMC4704198.
dc.relation.referencesLohans CT, Huang Z, van Belkum MJ, Giroud M, Sit CS, Steels EM, Zheng J, Whittal RM, McMullen LM, Vederas JC. Structural characterization of the highly cyclized lantibiotic paenicidin A via a partial desulfurization/reduction strategy. J Am Chem Soc. 2012 Dec 5;134(48):19540-3. doi: 10.1021/ja3089229. Epub 2012 Nov 20. PMID: 23167271.
dc.relation.referencesBGC0001289: grupo de genes biosintéticos de la penisina de Paenibacillus ehimensis pagina web Consorcio MIBiG recuperado de https://mibig.secondarymetabolites.org/repository/BGC0001289.5/index.html#r1c1.
dc.relation.referencesBGC0000449: grupo de genes biosintéticos de tridecaptina de Paenibacillus terrae pagina web Consorcio MIBiG recuperado de https://mibig.secondarymetabolites.org/repository/BGC0000449.5/#r1c1.
dc.relation.referencesLohans CT, van Belkum MJ, Cochrane SA, Huang Z, Sit CS, McMullen LM, Vederas JC. Biochemical, structural, and genetic characterization of tridecaptin A₁, an antagonist of Campylobacter jejuni. Chembiochem. 2014 Jan 24;15(2):243-9. doi: 10.1002/cbic.201300595. Epub 2013 Dec 30. PMID: 24382692
dc.relation.referencesGarcía Ausencio C.,GuzmánChávez F., Aguilar Cabrera A., Sánchez S., Descubrimiento de lantipéptidos por minería genómica: un nuevo enfoque en la búsqueda de nuevos fármacos. BioTecnología , Vol. 27 No. 5. 2023.
dc.relation.referencesMatsui, T., Ooya, K. et al. Una péptido ligasa y el ribosoma cooperan para sintetizar el péptido pheganomicina. Nat Chem Biol 11 , 71–76. 2015. https://doi.org/10.1038/nchembio.1697.
dc.relation.referencesLi JH, Cho W, Hamchand R, Oh J, Crawford JM. A Conserved Nonribosomal Peptide Synthetase in Xenorhabdus bovienii Produces Citrulline-Functionalized Lipopeptides. J Nat Prod. 2021 Oct 22;84(10):2692-2699. doi: 10.1021/acs.jnatprod.1c00573. Epub 2021 Sep 28. PMID: 34581573; PMCID: PMC9970011.
dc.relation.referencesMay JJ.,Wendrich TM., Marahiel MA ,The dhb operon of Bacillus subtilis encodes the biosynthetic template for the catecholic siderophore 2,3dihydroxybenzoate-glycine-threonine trimeric ester bacillibactin. The Journal of Biological Chemistry, 276(10), 7209-7217., 2001.
dc.relation.referencesDavidson AL, Dassa E, Orelle C, Chen J. Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol Mol Biol Rev. 2008 Jun;72(2):317-64, table of contents. doi: 10.1128/MMBR.00031-07. PMID: 18535149; PMCID: PMC2415747.
dc.relation.referencesBusenlehner LS, Pennella MA, Giedroc DP. The SmtB/ArsR family of metalloregulatory transcriptional repressors: Structural insights into prokaryotic metal resistance. FEMS Microbiol Rev. 2003 Jun;27(2-3):131-43. doi: 10.1016/S0168-6445(03)00054-8. PMID: 12829264.
dc.relation.referencesJingru Li., Susan E. Jensen., Nonribosomal Biosynthesis of Fusaricidins by Paenibacillus polymyxa PKB1 Involves Direct Activation of a d-Amino Acid, Chemistry & Biology., Volume 15, Issue 2., 2008.
dc.relation.referencesDella Sala G.,Mangoni A., Costantino V., Teta R., Identification of the Biosynthetic Gene Cluster of Thermoactinoamides and Discovery of New Congeners by Integrated Genome Mining and MS-Based Molecular Networking.Front. Chem. 8:397.2020.
dc.relation.referencesBGC0000433 grupo de genes biosintéticos de la surfactina de Bacillus velezensis FZB42 pagina web Consorcio MIBiG recuperado de https://mibig.secondarymetabolites.org/repository/BGC0000433.5/index.html#r1c1
dc.relation.referencesRui P; Xuelian B; Jianwei C; Huawei Zhang; Hong W; Exploring Structural Diversity of Microbe Secondary Metabolites Using OSMAC Strategy; A Literature Review; Frontiers in Microbiology Volume 10 Article 294. February 2019.
dc.relation.referencesAmberg A, Riefke B, Schlotterbeck G, Ross A, Senn H, Dieterle F, et al. NMR and MS Methods for Metabolomics. Methods Mol Biol [Internet]. 2017 [cited 2024 Mar 9];1641:229–58. Available from: https://pubmed.ncbi.nlm.nih.gov/28748468/
dc.relation.referencesLuo Y, Cobb RE, Zhao H. Recent advances in natural product discovery. Vol. 30, Current Opinion in Biotechnology. Elsevier Ltd; 2014. p. 230–7.
dc.relation.referencesJohnson SR, Lange BM. Open-access metabolomics databases for natural product research: Present capabilities and future potential. Vol. 3, Frontiers in Bioengineering and Biotechnology. Frontiers Media S.A.; 2015.
dc.relation.referencesSusana P. Gaudêncio SP., Pereira F.,Dereplication: racing to speed up the natural products discovery process,Natural Product Reports,Volume 32, Issue 6, Pages 779-810,ISSN 0265-0568,2015,https://doi.org/10.1039/c4np00134f.
dc.relation.referencesQuinn RA, Nothias LF, Vining O, Meehan M, Esquenazi E, Dorrestein PC. Molecular Networking As a Drug Discovery, Drug Metabolism, and Precision Medicine Strategy. Trends Pharmacol Sci. 2017 Feb;38(2):143-154. doi: 10.1016/j.tips.2016.10.011. Epub 2016 Nov 11. PMID: 2784288.
dc.relation.referencesTania M; Manoj B; In Silico Approach to Analyze the BiochemicalnPathways of Bacterial Metabolite Synthesis; Springer Nature SingaporenPte Ltd. 2018
dc.relation.referencesDührkop K, Shen H, Meusel M, Rousu J, Böcker S. Searching molecular structure databases with tandem mass spectra using CSI:FingerID. Proc Natl Acad Sci U S A. 2015 Oct 13;112(41):12580-5. doi: 10.1073/pnas.1509788112. Epub 2015 Sep 21. PMID: 26392543; PMCID: PMC4611636.
dc.relation.referencesAron AT, Gentry EC, McPhail KL, Nothias LF, Nothias-Esposito M, Bouslimani A, Petras D, Gauglitz JM, Sikora N, Vargas F, van der Hooft JJJ, Ernst M, Kang KB, Aceves CM, Caraballo-Rodríguez AM, Koester I, Weldon KC, Bertrand S, Roullier C, Sun K, Tehan RM, Boya P CA, Christian MH, Gutiérrez M, Ulloa AM, Tejeda Mora JA, Mojica-Flores R, Lakey-Beitia J, Vásquez-Chaves V, Zhang Y, Calderón AI, Tayler N, Keyzers RA, Tugizimana F, Ndlovu N, Aksenov AA, Jarmusch AK, Schmid R, Truman AW, Bandeira N, Wang M, Dorrestein PC. Reproducible molecular networking of untargeted mass spectrometry data using GNPS. Nat Protoc. 2020 Jun;15(6):19541991. doi: 10.1038/s41596-020-0317-5. Epub 2020 May 13. PMID: 32405051.
dc.relation.referencesBlunt J., Munro M., Upjohn M., The Role of Databases in Marine Natural Products Research. Handbook of Marine Natural Products.2012 10.1007/978-90-481-3834-0_6.
dc.relation.referencesYang JY, Sanchez LM, Rath CM, Liu X, Boudreau PD, Bruns N, Glukhov E, Wodtke A, de Felicio R, Fenner A, Wong WR, Linington RG, Zhang L, Debonsi HM, Gerwick WH, Dorrestein PC. Molecular networking as a dereplication strategy. J Nat Prod. 2013 Sep 27;76(9):1686-99. doi: 10.1021/np400413s. Epub 2013 Sep 11. PMID: 24025162; PMCID: PMC3936340.
dc.relation.referencesWang M, Carver JJ, Phelan VV, Sanchez LM, Garg N, Peng Y, Nguyen DD, Watrous J, Kapono CA, Luzzatto-Knaan T, Porto C, Bouslimani A, Melnik AV, Meehan MJ, Liu WT, Crüsemann M, et al., and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat Biotechnol. 2016 Aug 9;34(8):828-837. doi: 10.1038/nbt.3597. PMID: 27504778; PMCID: PMC5321674.
dc.relation.referencesMohimani H, Gurevich A, Mikheenko A, Garg N, Nothias LF, Ninomiya A, Takada K, Dorrestein PC, Pevzner PA. Dereplication of peptidic natural products through database search of mass spectra. Nat Chem Biol. 2017 Jan;13(1):30-37. doi: 10.1038/nchembio.2219. Epub 2016 Oct 31. PMID: 27820803; PMCID: PMC5409158.
dc.relation.referencesL.-F. Nothias, D. Petras, R. Schmid et al., “Feature-based molecular networking in the GNPS analysis environment,” en, Nature Methods, vol. 17, n.o 9, págs. 905-908, sep. de 2020, issn: 1548-7091, 1548-7105. doi: 10 . 1038 / s41592 - 020 - 0933 - 6. dirección: https://www.nature.com/articles/s41592-020-0933-6.
dc.relation.referencesR. Schmid, D. Petras, L.-F. Nothias et al., “Ion identity molecular networking for mass spectrometry-based metabolomics in the GNPS environment,” en, Nature Communications, vol. 12, n.o 1, pág. 3832, jun.2021, issn: 2041-1723. doi: 10.1038/s41467- 021-23953-9. dirección: https://www.nature.com/articles/s41467-02123953- 9.
dc.relation.referencesHeuckeroth S, Damiani T, Smirnov A, Mokshyna O, Brungs C, Korf A, et al. Reproducible mass spectrometry data processing and compound annotation in MZmine 3. Nat Protoc.9(19):2597–641.2024 doi: 10.1038/s41596-024-00996.
dc.relation.referencesWang M, Carver JJ, Phelan V v., Sanchez LM, Garg N, Peng Y, et al. Sharing and community curation of mass spectrometry data with GNPS. Nat Biotechnol. 34(8):828.2016 /pmc/articles/PMC5321674/.
dc.relation.referencesErnst M, Kang K Bin, Caraballo-Rodríguez AM, Nothias LF, Wandy J, Chen C, et al. Molnetenhancer: Enhanced molecular networks by integrating metabolome mining and annotation tools. Metabolites. 2019 Jul 1;9.
dc.relation.referencesMolecular Networking datos PNM 210 Metabolomics Spectrum Resolver Web Service del GNPS2 (https://gnps2.org/status?task=db8ad95ce7704e5b9b8a749405befbc3
dc.relation.referencesWu XC, Shen XB, Ding R, Qian CD, Fang HH, Li O. Isolation and partial characterization of antibiotics produced by Paenibacillus elgii B69. FEMS Microbiol Lett. 2010;310(1):32-8.
dc.relation.referencesQian CD, Liu TZ, Zhou SL, Ding R, Zhao WP, Li O, Wu XC. Identification and functional analysis of gene cluster involvement in biosynthesis of the cyclic lipopeptide antibiotic pelgipeptin produced by Paenibacillus elgii. BMC Microbiol. 2012 Sep 8;12:197. doi: 10.1186/1471-2180-12-197. PMID: 22958453; PMCID: PMC3479019.
dc.relation.referencesTakeuchi Y, Murai A, Takahara Y, Kainosho M. The structure of permetin A, anew polypeptin type antibiotic produced by Bacillus circulans. J Antibiot (Tokyo). 1979;32(2):121-9. 503.
dc.relation.referencesHuang E, Yang X, Zhang L, Moon SH, Yousef AE. New Paenibacillus strain produces a family of linear and cyclic antimicrobial lipopeptides: cyclization is not essential for their antimicrobial activity. FEMS Microbiol Lett. 2017;364.
dc.relation.referencesAktuganov G, Jokela J, Kivela H, Khalikova E, Melentjev A, Galimzianova N, et al.Isolation and identification of cyclic lipopeptides from Paenibacillus ehimensis, strain IB-Xb. J Chromatogr B Analyt Technol Biomed Life Sci. 2014;973C:9-16.
dc.relation.referencesDing R, Wu XC, Qian CD, Teng Y, Li O, Zhan ZJ, et al. Isolation and identification of lipopeptide antibiotics from Paenibacillus elgii B69 with inhibitory activity against methicillin-resistant Staphylococcus aureus. J Microbiol. 2011;49(6):942-9.
dc.relation.referencesMa Y, Kong Q, Qin C, Chen Y, Chen Y, Lv R, Zhou G. Identification of lipopeptides in Bacillus megaterium by two-step ultrafiltration and LC-ESI-MS/MS. AMB Express. 2016 Dec;6(1):79. doi: 10.1186/s13568-016-0252-6. Epub 2016 Sep 17. PMID: 27639854; PMCID: PMC5026979.
dc.relation.referencesJasim B, Sreelakshmi S, Mathew J, Radhakrishnan EK. Identification of endophytic Bacillus mojavensis with highly specialized broad spectrum antibacterial activity. 3 Biotech. 2016 Dec;6(2):187. doi: 10.1007/s13205-016-0508-5. Epub 2016 Sep 1. PMID: 28330259; PMCID: PMC5009053
dc.relation.referencesPecci Y, Rivardo F, Martinotti MG, Allegrone G. LC/ESI-MS/MS characterisation of lipopeptide biosurfactants produced by the Bacillus licheniformis V9T14 strain. J Mass Spectrom. 2010 Jul;45(7):772-8. doi: 10.1002/jms.1767. PMID: 20623484.
dc.relation.referencesChen, Z., Wu, Q., Wang, L., Chen, S., Lin, L., Wang, H., & Xu, Y. Identification and quantification of surfactin, a nonvolatile lipopeptide in Moutai liquor. International Journal of Food Properties. 2020. 23(1), 189–198. https://doi.org/10.1080/10942912.2020.1716791.
dc.relation.referencesGrady, E.N., MacDonald, J., Liu, L. et al. Current knowledge and perspectives of Paenibacillus: a review. Microb Cell Fact 15, 203. https://doi.org/10.1186/s12934016-0603-7. 2016.
dc.relation.referencesKim J, Le KD, Yu NH, Kim JI, Kim JC, Lee CW. Structure and antifungal activity of pelgipeptins from Paenibacillus elgii against phytopathogenic fungi. Pestic Biochem Physiol. 2020;163:154-63.
dc.relation.referencesKim J, Il Kim P, Bong KM, Il Kim J, Shin SY, Song J, Min HJ, Lee CW. Isolation and structural elucidation of pelgipeptin E, a novel pore-forming pelgipeptin analog from Paenibacillus elgii with low hemolytic activity. J Antibiot (Tokyo). 2018 Nov;71(12):1008-1017.
dc.relation.referencesTsan P, Volpon L, Besson F, Lancelin JM. Structure and dynamics of surfactin studied by NMR in micellar media. J Am Chem Soc. 2007 Feb 21;129(7):1968–77.
dc.relation.referencesWu YS, Ngai SC, Goh BH, Chan KG, Lee LH, Chuah LH. Anticancer activities of surfactin potential application of nanotechnology assisted surfactin delivery. Vol. 8,Frontiers in Pharmacology. Frontiers Media S.A.; 2017.
dc.relation.referencesJacques P. Surfactin and Other Lipopeptides from Bacillus spp. In 2011. p. 57–91.
dc.relation.referencesThéatre A, Cano-Prieto C, Bartolini M, Laurin Y, Deleu M, Niehren J, Fida T, Gerbinet S, Alanjary M, Medema MH, Léonard A, Lins L, Arabolaza A, Gramajo H, Gross H, Jacques P. The Surfactin-Like Lipopeptides From Bacillus spp.: Natural Biodiversity and Synthetic Biology for a Broader Application Range. Front Bioeng Biotechnol. 2021 Mar 2;9:623701. doi: 10.3389/fbioe.2021.623701. PMID: 33738277; PMCID: PMC7960918.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc570 - Biología::572 - Bioquímica
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::636 - Producción animal
dc.subject.lembGARRAPATA DE LOS VACUNOSspa
dc.subject.lembCattle-tickeng
dc.subject.lembPIROPLASMOSIS BOVINAspa
dc.subject.lembTexas fevereng
dc.subject.lembENFERMEDADES EN EL GANADO VACUNOspa
dc.subject.lembCattle - diseaseseng
dc.subject.lembSALUD ANIMALspa
dc.subject.lembCattle - healtheng
dc.subject.lembGENOMAS MICROBIANOSspa
dc.subject.lembMicrobial genomeseng
dc.subject.lembBIOQUIMICAspa
dc.subject.lembBiochemistryeng
dc.subject.proposalBicontrolspa
dc.subject.proposalPaenibacillus elgiispa
dc.subject.proposalR. Microplusspa
dc.subject.proposalMinería del genomaspa
dc.subject.proposalRedes molecularesspa
dc.subject.proposalPelgipeptinasspa
dc.subject.proposalSurfactinasspa
dc.subject.proposalBiocontroleng
dc.subject.proposalGenome miningeng
dc.subject.proposalMolecular networkingeng
dc.subject.proposalPelgipeptineng
dc.subject.proposalSurfactinseng
dc.titleCompuestos con actividad biocontroladora frente a la garrapata común del ganado Rhipicephalus (Boophilus) microplus obtenidos de aislamientos microbianosspa
dc.title.translatedCompounds with biocontrol activity against the common cattle tick Rhipicephalus (Boophilus) microplus obtained from microbial isolateseng
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentPúblico general
dcterms.audience.professionaldevelopmentEstudiantes
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1013636276. 2025pdf.pdf
Tamaño:
8.2 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Bioquímica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: