Desarrollo metodológico para obtener un material de referencia “in-house” de cocaína para aplicaciones forenses

dc.contributor.advisorGarzón Méndez, William Fernando
dc.contributor.advisorMelo Martínez, Sandra Esperanza
dc.contributor.authorÁlvarez Alarcón, Natalie
dc.contributor.orcidÁlvarez Alarcón, Natalie [0000000278479918]spa
dc.contributor.researchgateÁlvarez Alarcón, Natalie [Natalie-Alvarez-Alarcon]spa
dc.contributor.researchgroupGrupo de Investigación en Química de Alimentosspa
dc.date.accessioned2024-01-30T16:46:47Z
dc.date.available2024-01-30T16:46:47Z
dc.date.issued2023-08-01
dc.descriptionilustraciones, fotografías, diagramasspa
dc.description.abstractEn este trabajo se desarrolló una metodología para obtener un material de referencia “in-house” (RMih) de cocaína a partir de una muestra incautada, teniendo en cuenta diferentes lineamientos internacionales, así como los principios de la Química Verde y los Objetivos de Desarrollo Sostenible (ODS). Para llevar a cabo esto, se evaluaron diferentes técnicas de extracción y purificación, tales como (i) cromatografía en columna (CC) y (ii) una estrategia secuencial de extracción con fluidos supercríticos (SFE) y extracción con líquidos presurizados (PLE). Asimismo, se emplearon los parámetros de solubilidad de Hansen (HSP), para seleccionar el mejor disolvente verde a emplear en PLE. Por otro lado, se caracterizaron el material de partida y los materiales obtenidos en las diferentes técnicas de extracción y purificación usadas, por medio de cromatografía de gases acoplada a espectrometría de masas (GC-MS) y cromatografía de gases con detector de ionización de llama (GC-FID). Teniendo en cuenta lo anterior, se realizó la evaluación de dos diseños experimentales para determinar la influencia de los factores empleados en PLE, en torno a la variable respuesta correspondiente a la pureza del analito. La muestra incautada presentó un valor de pureza del 81.3 %. Por CC se logró obtener el analito con una pureza del 96.4 %, en donde se empleó una fase móvil correspondiente a cloroformo-metanol (6:1). Por otro lado, empleando la estimación de los HSP para la cocaína, se determinó que el disolvente más adecuado para emplear en PLE era el acetato de etilo (EtOAc). La estrategia secuencial ambientalmente amigable SFE-PLE (empleando como disolventes CO2 supercrítico y EtOAc, respectivamente) permitió obtener el analito con una pureza del 86.1 %. Finalmente, se propuso un diseño metodológico con el objetivo de evaluar la homogeneidad y la estabilidad del candidato a RMih. (Texto tomado de la fuente)spa
dc.description.abstractIn this work, a methodology was developed to obtain an “in-house” reference material (RMih) of cocaine from a seized sample, considering different international guidelines, as well as the principles of Green Chemistry and the Sustainable Development Goals (SDG). To carry out this, different extraction and purification techniques were evaluated, such as (i) column chromatography (CC) and (ii) a sequential strategy of supercritical fluid extraction (SFE) and pressurized liquid extraction (PLE). Likewise, the Hansen solubility parameters (HSP) were used to select the best green solvent in PLE. On the other hand, the starting material and the materials obtained in the different extraction and purification techniques used were characterized using gas chromatography coupled to mass spectrometry (GC-MS) and gas chromatography with a detector flame ionization (GC-FID). Considering the above, the evaluation of two experimental designs was carried out to determine the influence of the factors used in PLE, around the response variable corresponding to the purity of the analyte. The seized sample had a purity value of 81.3 %. By CC, the analyte was obtained with a purity of 96.4 %, where a mobile phase corresponding to chloroform-methanol (6:1) was used. On the other hand, using the estimation of HSP for cocaine, it was determined that the most suitable solvent to use in PLE was ethyl acetate (EtOAc). The environmentally friendly sequential strategy SFE-PLE (using supercritical CO2 and EtOAc as solvents, respectively) allowed obtaining the analyte with a purity of 86.1 %. Finally, a methodological design was proposed with the objective of evaluating the homogeneity and stability of the RMih candidate.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Químicaspa
dc.format.extentxx, 73 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85528
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Químicaspa
dc.relation.referencesOficina de las Naciones Unidas contra la Droga y el Delito (UNODC). Monitoreo de Territorios Afectados Por Cultivos Ilícitos 2021; 2022.spa
dc.relation.referencesJunta Internacional de Fiscalización de Estupefacientes (JIFE). Informe de La Junta Internacional de Fiscalización de Estupefacientes Correspondiente a 2021; 2022.spa
dc.relation.referencesArcher, R. P.; Treble, R.; Williams, K. Reference Materials for New Psychoactive Substances. Drug Test. Anal. 2011, 3 (7–8), 505–514. https://doi.org/10.1002/dta.317.spa
dc.relation.referencesSu, F.; Dai, X.; Li, H. Development of Certified Reference Materials of Drug Abuse (Heroin, Etc) for Elimination of Measurement Error in Forensic Drugs. Pharm. Anal. Acta 2015, 06 (07). https://doi.org/10.4172/2153-2435.1000390.spa
dc.relation.referencesInter American Accreditation Cooperation. ILAC-G9:2005. Guía Para La Selección y Uso de Materiales de Referencia; 2007.spa
dc.relation.referencesEuropean Network of Forensic Science Institutes. Guidelines on the Use of Reference Materials in Forensic Drug Analysis; 2007.spa
dc.relation.referencesUnited Nations Office On Drugs and Crime (UNODC). Terminology and Information on Drugs, Third edit.; 2016. https://doi.org/10.18356/0f5bdc21-en.spa
dc.relation.referencesCalatayud, J.; González, Á. History of the Development and Evolution of Local Anesthesia since the Coca Leaf. Anesthesiology 2003, 98 (6), 1503–1508. https://doi.org/10.1097/00000542-200306000-00031.spa
dc.relation.referencesGoldstein, R. A.; DesLauriers, C.; Burda, A. M. Cocaine: History, Social Implications, and Toxicity-A Review. Disease-a-Month 2009, 55 (1), 6–38. https://doi.org/10.1016/j.disamonth.2008.10.002.spa
dc.relation.referencesNational Institute on Drug Abuse (NIDA). Cocaine; 2016. https://doi.org/10.1109/MS.2016.41.spa
dc.relation.referencesUnited Nations Office on Drugs and Crime. Drug Market Trends of Cocaine, Amphetamine-Type Stimulants and New Psychoactive Substances; 2022.spa
dc.relation.referencesUnited Nations Office on Drugs and Crime. Cocaine: A Spectrum of Products. Cocaine Insigths 2021, 2, 52.spa
dc.relation.referencesDrent, M.; Wijnen, P.; Bast, A. Interstitial Lung Damage Due to Cocaine Abuse: Pathogenesis, Pharmacogenomics and Therapy. Curr. Med. Chem. 2012, 19 (33), 5607–5611. https://doi.org/10.2174/092986712803988901.spa
dc.relation.referencesRiezzo, I.; Fiore, C.; De Carlo, D.; Pascale, N.; Neri, M.; Turillazzi, E.; Fineschi, V. Side Effects of Cocaine Abuse: Multiorgan Toxicity and Pathological Consequences. Curr. Med. Chem. 2012, 19 (33), 5624–5646. https://doi.org/10.2174/092986712803988893.spa
dc.relation.referencesUnited Nations Office on Drugs and Crime (UNODC). El Informe Mundial Sobre Las Drogas 2022 de La UNODC Destaca Las Tendencias Del Cannabis Posteriores a Su Legalización, El Impacto Ambiental de Las Drogas Ilícitas y El Consumo de Drogas Entre Las Mujeres y Las Personas Jóvenes; 2022.spa
dc.relation.referencesUnited Nations Office on Drugs and Crime. Reference Materials https://syntheticdrugs.unodc.org/syntheticdrugs/en/forensics/quality/reference-materials.html.spa
dc.relation.referencesJedziniak, P.; Szprengier-Juszkiewicz, T.; Olejnik, M. In-House Reference Materials: 5-Hydroxyflunixin and Meloxicam in Cow Milk-Preparation and Evaluation. Anal. Chim. Acta 2009, 637 (1–2), 346–350. https://doi.org/10.1016/j.aca.2008.10.060.spa
dc.relation.referencesInternational Organization for Standardization. ISO/Guide 30:2015. Reference materials — Selected terms and definitions https://www.iso.org/obp/ui#iso:std:iso:guide:30:ed-3:v1:en (accessed Apr 5, 2020).spa
dc.relation.referencesValente, A.; Sanches-Silva, A.; Albuquerque, T. G.; Costa, H. S. Development of an Orange Juice In-House Reference Material and Its Application to Guarantee the Quality of Vitamin C Determination in Fruits, Juices and Fruit Pulps. Food Chem. 2014, 154, 71–77. https://doi.org/10.1016/j.foodchem.2013.12.053.spa
dc.relation.referencesCunningham, W.; Capar, S. Elemental Analysis Manual for Food and Related Products. In FDA U.S Food and Drug Administration; 2014.spa
dc.relation.referencesInstituto Nacional de Metrología de Colombia. Materiales de Referencia https://www.inm.gov.co/servicios/materiales-de-referencia/ (accessed Sep 17, 2020).spa
dc.relation.referencesInternational Organization for Standardization. ISO 17034:2016. Requisitos generales para la competencia de los productores de materiales de referencia https://www.iso.org/obp/ui#iso:std:iso:17034:ed-1:v1:es (accessed Apr 5, 2020).spa
dc.relation.referencesInternational Organization for Standardization. ISO/Guide 31:2015. Reference materials — Contents of certificates, labels and accompanying documentation https://www.iso.org/obp/ui#iso:std:iso:guide:31:ed-3:v1:en (accessed Apr 7, 2020).spa
dc.relation.referencesInternational Organization for Standardization. ISO Guide 33:2015. Reference materials — Good practice in using reference materials https://www.iso.org/standard/46212.html (accessed Apr 7, 2020).spa
dc.relation.referencesInternational Organization for Standardization. ISO Guide 35:2017. Reference materials — Guidance for characterization and assessment of homogeneity and stability https://www.iso.org/standard/60281.html (accessed Apr 8, 2020).spa
dc.relation.referencesAguilar, Y.; Ahumada, D.; Barrios, J.; González, I.; Morales, L.; Salinas, A.; Torres, G. Desarrollo de Materiales de Referencia In-House Para El Control de Calidad de Residuos de Plaguicidas En Alimentos; 2023.spa
dc.relation.referencesWood, S.; Botha, A. The New ISO Guide 80: Guidance for the in-House Preparation of Quality Control Materials (QCMs). Accredit. Qual. Assur. 2014, 19 (6), 477–480. https://doi.org/10.1007/s00769-014-1084-1.spa
dc.relation.referencesZala, S. P.; Patel, K. P.; Patel, K. S.; Parmar, J. P.; Sen, D. J. Laboratory Techniques of Purification and Isolation. Int. J. Drug Dev. Res. 2012, 4 (2), 41–55.spa
dc.relation.referencesGallego, R.; Bueno, M.; Herrero, M. Sub- and Supercritical Fluid Extraction of Bioactive Compounds from Plants, Food-by-Products, Seaweeds and Microalgae – An Update. TrAC - Trends Anal. Chem. 2019, 116, 198–213. https://doi.org/10.1016/j.trac.2019.04.030.spa
dc.relation.referencesRoge, A. B.; Firke, S. N.; Kawade, R. M.; Sarje, S. K.; Vadvalkar, S. . BRIEF REVIEW ON: FLASH CHROMATOGRAPHY. Int. J. Pharm. Sci. Res. 2011, 2 (8), 1930–1937.spa
dc.relation.referencesBajpai, V. K.; Majumder, R.; Park, J. G. Isolation and Purification of Plant Secondary Metabolites Using Column-Chromatographic Technique. Bangladesh J. Pharmacol. 2016, 11 (4), 844–848. https://doi.org/10.3329/bjp.v11i4.28185.spa
dc.relation.referencesMoore, J. M.; Casale, J. F. In-Depth Chromatographic Analyses of Illicit Cocaine and Its Precursor, Coca Leaves. J. Chromatogr. A 1994, 674 (1–2), 165–205. https://doi.org/10.1016/0021-9673(94)85224-3.spa
dc.relation.referencesChemat, F.; Vian, M. A.; Cravotto, G. Green Extraction of Natural Products: Concept and Principles. Int. J. Mol. Sci. 2012, 13 (7), 8615–8627. https://doi.org/10.3390/ijms13078615.spa
dc.relation.referencesda Silva, R. P. F. F.; Rocha-Santos, T. A. P.; Duarte, A. C. Supercritical Fluid Extraction of Bioactive Compounds. TrAC - Trends Anal. Chem. 2016, 76, 40–51. https://doi.org/10.1016/j.trac.2015.11.013.spa
dc.relation.referencesManjare, S. D.; Dhingra, K. Supercritical Fluids in Separation and Purification: A Review. Mater. Sci. Energy Technol. 2019, 2 (3), 463–484. https://doi.org/10.1016/j.mset.2019.04.005.spa
dc.relation.referencesPinto, G. M. F.; Pinto, J. F.; Jardim, I. C. S. F. Extração Com Fluido Supercrítico. Rev. Chemkeys 2006, No. 4, 1–13. https://doi.org/10.20396/chemkeys.v0i4.9603.spa
dc.relation.referencesWang, S.-M.; Ling, Y.; Giang, Y.-S. Forensic Applications of Supercritical Fluid Extraction and Chromatography. Forensic Sci. J. 2003, 5–18.spa
dc.relation.referencesGupta, R.; Mishra, A. K.; Pathak, A. K. Supercritical Fluid Technology a Boon for Pharmaceutical Particle Manufacturing; 2014. https://doi.org/10.13140/RG.2.1.3632.7286.spa
dc.relation.referencesBrewer, W. E.; Galipo, R. C.; Sellers, K. W.; Morgan, S. L. Analysis of Cocaine, Benzoylecgonine, Codeine, and Morphine in Hair by Supercritical Fluid Extraction with Carbon Dioxide Modified with Methanol. Anal. Chem. 2001, 73 (11), 2371–2376. https://doi.org/10.1021/ac000871r.spa
dc.relation.referencesRadcliffe, C.; Maguire, K.; Lockwood, B. Applications of Supercritical Fluid Extraction and Chromatography to Food Science. J. Biochem. Biophys. Methods 2000, 43 (2), 261–272.spa
dc.relation.referencesWianowska, D.; Gil, M. Critical Approach to PLE Technique Application in the Analysis of Secondary Metabolites in Plants. TrAC - Trends Anal. Chem. 2019, 114, 314–325. https://doi.org/10.1016/j.trac.2019.03.018.spa
dc.relation.referencesSergi, M.; Napoletano, S.; Montesano, C.; Iofrida, R.; Curini, R.; Compagnone, D. Pressurized-Liquid Extraction for Determination of Illicit Drugs in Hair by LC-MS-MS. Anal. Bioanal. Chem. 2012. https://doi.org/10.1007/s00216-012-6072-x.spa
dc.relation.referencesPovilaitis, D.; Šulniute, V.; Venskutonis, P. R.; Kraujaliene, V. Antioxidant Properties of Wheat and Rye Bran Extracts Obtained by Pressurized Liquid Extraction with Different Solvents. J. Cereal Sci. 2015, 62, 117–123. https://doi.org/10.1016/j.jcs.2014.11.004.spa
dc.relation.referencesBallesteros-Vivas, D.; Ortega-Barbosa, J. P.; Sánchez-Camargo, A. del P.; Rodríguez-Varela, L. I.; Parada-Alfonso, F. Pressurized Liquid Extraction of Bioactives. In Comprehensive Foodomics; 2021; Vol. 2, pp 754–770.spa
dc.relation.referencesMustafa, A.; Turner, C. Pressurized Liquid Extraction as a Green Approach in Food and Herbal Plants Extraction: A Review. Anal. Chim. Acta 2011, 703 (1), 8–18. https://doi.org/10.1016/j.aca.2011.07.018.spa
dc.relation.referencesHerrero, M.; Castro-Puyana, M.; Mendiola, J. A.; Ibañez, E. Compressed Fluids for the Extraction of Bioactive Compounds. TrAC - Trends Anal. Chem. 2013, 43 (2), 67–83. https://doi.org/10.1016/j.trac.2012.12.008.spa
dc.relation.referencesAlvarez-Rivera, G.; Bueno, M.; Ballesteros-Vivas, D.; Mendiola, J. A.; Ibañez, E. Pressurized Liquid Extraction. In Liquid-Phase Extraction; 2020; pp 375–398. https://doi.org/10.1016/B978-0-12-816911-7.00013-X.spa
dc.relation.referencesHerrero, M.; Sánchez-Camargo, A. del P.; Cifuentes, A.; Ibáñez, E. Plants, Seaweeds, Microalgae and Food by-Products as Natural Sources of Functional Ingredients Obtained Using Pressurized Liquid Extraction and Supercritical Fluid Extraction. TrAC - Trends Anal. Chem. 2015, 43, 67–83. https://doi.org/10.1016/j.trac.2015.01.018.spa
dc.relation.referencesHerrero, M.; Ibáñez, E. Green Processes and Sustainability: An Overview on the Extraction of High Added-Value Products from Seaweeds and Microalgae. J. Supercrit. Fluids 2015, 96, 211–216. https://doi.org/10.1016/j.supflu.2014.09.006.spa
dc.relation.referencesPandey, A.; Tripathi, S.; Pandey, C. A. Concept of Standardization, Extraction and Pre Phytochemical Screening Strategies for Herbal Drug. J. Pharmacogn. Phytochem. JPP 2014, 115 (25), 115–119.spa
dc.relation.referencesSánchez-Camargo, A. del P.; Bueno, M.; Ballesteros-Vivas, D.; Parada-Alfonso, F.; Cifuentes, A.; Ibañez, E. Hansen Solubility Parameters for Selection of Green Extraction Solvents. Compr. Foodomics 2020, 710–724. https://doi.org/10.1016/b978-0-08-100596-5.22814-x.spa
dc.relation.referencesChemat, F.; Rombaut, N.; Meullemiestre, A.; Turk, M.; Perino, S.; Fabiano-Tixier, A. S.; Abert-Vian, M. Review of Green Food Processing Techniques. Preservation, Transformation, and Extraction. Innov. Food Sci. Emerg. Technol. 2017, 41 (February), 357–377. https://doi.org/10.1016/j.ifset.2017.04.016.spa
dc.relation.referencesAbbott, S.; Hansen, C.; Yamamoto, H.; Valpey, R. Hansen Solubility Parameters in Practice - Complete with EBook, Software and Data, 5th ed.; 2008.spa
dc.relation.referencesHansen, C. Hansen Solubility Parameters: A User’s Handbook; 2007.spa
dc.relation.referencesClark, J. H.; Farmer, T. J.; Hunt, A. J.; Sherwood, J. Opportunities for Bio-Based Solvents Created as Petrochemical and Fuel Products Transition towards Renewable Resources. Int. J. Mol. Sci. 2015, 16 (8), 17101–17159. https://doi.org/10.3390/ijms160817101.spa
dc.relation.referencesCalvo-Flores, F. G.; Monteagudo-Arrebola, M. J.; Dobado, J. A.; Isac-García, J. Green and Bio-Based Solvents. Top. Curr. Chem. 2018, 376 (3), 1–40. https://doi.org/10.1007/s41061-018-0191-6.spa
dc.relation.referencesAnastas, P.; Eghbali, N. Green Chemistry: Principles and Practice. Chem. Soc. Rev. 2010, 39 (1), 301–312. https://doi.org/10.1039/b918763b.spa
dc.relation.referencesOrganización de las Naciones Unidas. Objetivos y metas de desarrollo sostenible https://www.un.org/sustainabledevelopment/es/objetivos-de-desarrollo-sostenible/ (accessed Jun 10, 2021).spa
dc.relation.referencesMontgomery, D. Diseño y Análisis de Experimentos; 2004.spa
dc.relation.referencesMelo, O.; López, L.; Melo, S. Diseño de Experimentos: Métodos y Aplicaciones; 2007.spa
dc.relation.referencesUNODC. Recommended Methods for the Identification and Analysis of Cocaine in Seized Materials. United Nations of Drugs and Crime 2012, 23.spa
dc.relation.referencesNational Institute of Standards and Technology (NIST). Tropacocaine https://webbook.nist.gov/cgi/cbook.cgi?ID=C537268&Units=SI&Mask=200#Mass-Spec (accessed Sep 12, 2023).spa
dc.relation.referencesAgilent Technologies. GC Column Solvent Retention Table. Tech. Overv. 2014, 1–6.spa
dc.relation.referencesSecretaría de Programación para la Prevención de la Drogadicción y la Lucha Contra el Narcotráfico (SEDRONAR). Caracterización Química de Las Cocaínas Fumables; 2015.spa
dc.relation.referencesClark, W.; Kahn, M.; Mitra, A. Rapid Chromatographic Technique for Preparative Separations with Moderate Resolution. J. Org. Chem. 1978, 43, 2923–2925.spa
dc.relation.referencesGupta, R.; Shim, J.-J. Solubility in Supercritical Carbon Dioxide; 2007.spa
dc.relation.referencesRadcliffe, C.; Maguire, K.; Lockwood, B. Applications of Supercritical Fluid Extraction and Chromatography in Forensic Science. J. Biochem. Biophys. Methods 2000, 43 (1–3), 261–272. https://doi.org/10.1016/S0165-022X(00)00058-0.spa
dc.relation.referencesAllen, D. L.; Oliver, J. S. The Application of Supercritical Fluid Extraction to Cocaine and Its Metabolites in Blood and Urine. J. Anal. Toxicol. 2000, 24 (3), 228–232. https://doi.org/10.1093/jat/24.3.228.spa
dc.relation.referencesKokosa, J. M. Selecting an Extraction Solvent for a Greener Liquid Phase Microextraction (LPME) Mode-Based Analytical Method. TrAC - Trends Anal. Chem. 2019, 118, 238–247. https://doi.org/10.1016/j.trac.2019.05.012.spa
dc.relation.referencesPellis, A.; Byrne, F. P.; Sherwood, J.; Comerford, J. W.; Farmer, T. J.; Vastano, M. Safer Bio-Based Solvents to Replace Toluene and Polyesters. Green Chem. 2019, 1686–1694. https://doi.org/10.1039/c8gc03567a.spa
dc.relation.referencesBallesteros Vivas, D. Estudio Del Potencial Antiproliferativo de Extractos Obtenidos de Residuos Frutícolas Desde Las Perspectivas de La Química Verde y La Alimentómica, Universidad Nacional de Colombia, 2020.spa
dc.relation.referencesMohammad, A.; Inamuddin; El-Desoky, G. Green Solvents I: Properties and Applications in Chemistry; 2012. https://doi.org/10.1007/978-94-007-1712-1.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.agrovocCocaínaspa
dc.subject.agrovoccocaineeng
dc.subject.agrovocSolubilidadspa
dc.subject.agrovocsolubilityeng
dc.subject.agrovocExtracciónspa
dc.subject.agrovocextractioneng
dc.subject.ddc540 - Química y ciencias afines::543 - Química analíticaspa
dc.subject.ddc540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materialesspa
dc.subject.proposalCocaínaspa
dc.subject.proposalMaterial de referenciaspa
dc.subject.proposalEstabilidadspa
dc.subject.proposalHomogeneidadspa
dc.subject.proposalPurificaciónspa
dc.subject.proposalDiseño experimentalspa
dc.subject.proposalCocaineeng
dc.subject.proposalReference materialeng
dc.subject.proposalStabilityeng
dc.subject.proposalHomogeneityeng
dc.subject.proposalPurificationeng
dc.subject.proposalExperimental Designeng
dc.titleDesarrollo metodológico para obtener un material de referencia “in-house” de cocaína para aplicaciones forensesspa
dc.title.translatedMethodological development to obtain an "in-house" reference material of cocaine for forensic applicationseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032458311.2023.pdf
Tamaño:
1.71 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: