Desarrollo metodológico para obtener un material de referencia “in-house” de cocaína para aplicaciones forenses
dc.contributor.advisor | Garzón Méndez, William Fernando | |
dc.contributor.advisor | Melo Martínez, Sandra Esperanza | |
dc.contributor.author | Álvarez Alarcón, Natalie | |
dc.contributor.orcid | Álvarez Alarcón, Natalie [0000000278479918] | spa |
dc.contributor.researchgate | Álvarez Alarcón, Natalie [Natalie-Alvarez-Alarcon] | spa |
dc.contributor.researchgroup | Grupo de Investigación en Química de Alimentos | spa |
dc.date.accessioned | 2024-01-30T16:46:47Z | |
dc.date.available | 2024-01-30T16:46:47Z | |
dc.date.issued | 2023-08-01 | |
dc.description | ilustraciones, fotografías, diagramas | spa |
dc.description.abstract | En este trabajo se desarrolló una metodología para obtener un material de referencia “in-house” (RMih) de cocaína a partir de una muestra incautada, teniendo en cuenta diferentes lineamientos internacionales, así como los principios de la Química Verde y los Objetivos de Desarrollo Sostenible (ODS). Para llevar a cabo esto, se evaluaron diferentes técnicas de extracción y purificación, tales como (i) cromatografía en columna (CC) y (ii) una estrategia secuencial de extracción con fluidos supercríticos (SFE) y extracción con líquidos presurizados (PLE). Asimismo, se emplearon los parámetros de solubilidad de Hansen (HSP), para seleccionar el mejor disolvente verde a emplear en PLE. Por otro lado, se caracterizaron el material de partida y los materiales obtenidos en las diferentes técnicas de extracción y purificación usadas, por medio de cromatografía de gases acoplada a espectrometría de masas (GC-MS) y cromatografía de gases con detector de ionización de llama (GC-FID). Teniendo en cuenta lo anterior, se realizó la evaluación de dos diseños experimentales para determinar la influencia de los factores empleados en PLE, en torno a la variable respuesta correspondiente a la pureza del analito. La muestra incautada presentó un valor de pureza del 81.3 %. Por CC se logró obtener el analito con una pureza del 96.4 %, en donde se empleó una fase móvil correspondiente a cloroformo-metanol (6:1). Por otro lado, empleando la estimación de los HSP para la cocaína, se determinó que el disolvente más adecuado para emplear en PLE era el acetato de etilo (EtOAc). La estrategia secuencial ambientalmente amigable SFE-PLE (empleando como disolventes CO2 supercrítico y EtOAc, respectivamente) permitió obtener el analito con una pureza del 86.1 %. Finalmente, se propuso un diseño metodológico con el objetivo de evaluar la homogeneidad y la estabilidad del candidato a RMih. (Texto tomado de la fuente) | spa |
dc.description.abstract | In this work, a methodology was developed to obtain an “in-house” reference material (RMih) of cocaine from a seized sample, considering different international guidelines, as well as the principles of Green Chemistry and the Sustainable Development Goals (SDG). To carry out this, different extraction and purification techniques were evaluated, such as (i) column chromatography (CC) and (ii) a sequential strategy of supercritical fluid extraction (SFE) and pressurized liquid extraction (PLE). Likewise, the Hansen solubility parameters (HSP) were used to select the best green solvent in PLE. On the other hand, the starting material and the materials obtained in the different extraction and purification techniques used were characterized using gas chromatography coupled to mass spectrometry (GC-MS) and gas chromatography with a detector flame ionization (GC-FID). Considering the above, the evaluation of two experimental designs was carried out to determine the influence of the factors used in PLE, around the response variable corresponding to the purity of the analyte. The seized sample had a purity value of 81.3 %. By CC, the analyte was obtained with a purity of 96.4 %, where a mobile phase corresponding to chloroform-methanol (6:1) was used. On the other hand, using the estimation of HSP for cocaine, it was determined that the most suitable solvent to use in PLE was ethyl acetate (EtOAc). The environmentally friendly sequential strategy SFE-PLE (using supercritical CO2 and EtOAc as solvents, respectively) allowed obtaining the analyte with a purity of 86.1 %. Finally, a methodological design was proposed with the objective of evaluating the homogeneity and stability of the RMih candidate. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias - Química | spa |
dc.format.extent | xx, 73 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/85528 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Química | spa |
dc.relation.references | Oficina de las Naciones Unidas contra la Droga y el Delito (UNODC). Monitoreo de Territorios Afectados Por Cultivos Ilícitos 2021; 2022. | spa |
dc.relation.references | Junta Internacional de Fiscalización de Estupefacientes (JIFE). Informe de La Junta Internacional de Fiscalización de Estupefacientes Correspondiente a 2021; 2022. | spa |
dc.relation.references | Archer, R. P.; Treble, R.; Williams, K. Reference Materials for New Psychoactive Substances. Drug Test. Anal. 2011, 3 (7–8), 505–514. https://doi.org/10.1002/dta.317. | spa |
dc.relation.references | Su, F.; Dai, X.; Li, H. Development of Certified Reference Materials of Drug Abuse (Heroin, Etc) for Elimination of Measurement Error in Forensic Drugs. Pharm. Anal. Acta 2015, 06 (07). https://doi.org/10.4172/2153-2435.1000390. | spa |
dc.relation.references | Inter American Accreditation Cooperation. ILAC-G9:2005. Guía Para La Selección y Uso de Materiales de Referencia; 2007. | spa |
dc.relation.references | European Network of Forensic Science Institutes. Guidelines on the Use of Reference Materials in Forensic Drug Analysis; 2007. | spa |
dc.relation.references | United Nations Office On Drugs and Crime (UNODC). Terminology and Information on Drugs, Third edit.; 2016. https://doi.org/10.18356/0f5bdc21-en. | spa |
dc.relation.references | Calatayud, J.; González, Á. History of the Development and Evolution of Local Anesthesia since the Coca Leaf. Anesthesiology 2003, 98 (6), 1503–1508. https://doi.org/10.1097/00000542-200306000-00031. | spa |
dc.relation.references | Goldstein, R. A.; DesLauriers, C.; Burda, A. M. Cocaine: History, Social Implications, and Toxicity-A Review. Disease-a-Month 2009, 55 (1), 6–38. https://doi.org/10.1016/j.disamonth.2008.10.002. | spa |
dc.relation.references | National Institute on Drug Abuse (NIDA). Cocaine; 2016. https://doi.org/10.1109/MS.2016.41. | spa |
dc.relation.references | United Nations Office on Drugs and Crime. Drug Market Trends of Cocaine, Amphetamine-Type Stimulants and New Psychoactive Substances; 2022. | spa |
dc.relation.references | United Nations Office on Drugs and Crime. Cocaine: A Spectrum of Products. Cocaine Insigths 2021, 2, 52. | spa |
dc.relation.references | Drent, M.; Wijnen, P.; Bast, A. Interstitial Lung Damage Due to Cocaine Abuse: Pathogenesis, Pharmacogenomics and Therapy. Curr. Med. Chem. 2012, 19 (33), 5607–5611. https://doi.org/10.2174/092986712803988901. | spa |
dc.relation.references | Riezzo, I.; Fiore, C.; De Carlo, D.; Pascale, N.; Neri, M.; Turillazzi, E.; Fineschi, V. Side Effects of Cocaine Abuse: Multiorgan Toxicity and Pathological Consequences. Curr. Med. Chem. 2012, 19 (33), 5624–5646. https://doi.org/10.2174/092986712803988893. | spa |
dc.relation.references | United Nations Office on Drugs and Crime (UNODC). El Informe Mundial Sobre Las Drogas 2022 de La UNODC Destaca Las Tendencias Del Cannabis Posteriores a Su Legalización, El Impacto Ambiental de Las Drogas Ilícitas y El Consumo de Drogas Entre Las Mujeres y Las Personas Jóvenes; 2022. | spa |
dc.relation.references | United Nations Office on Drugs and Crime. Reference Materials https://syntheticdrugs.unodc.org/syntheticdrugs/en/forensics/quality/reference-materials.html. | spa |
dc.relation.references | Jedziniak, P.; Szprengier-Juszkiewicz, T.; Olejnik, M. In-House Reference Materials: 5-Hydroxyflunixin and Meloxicam in Cow Milk-Preparation and Evaluation. Anal. Chim. Acta 2009, 637 (1–2), 346–350. https://doi.org/10.1016/j.aca.2008.10.060. | spa |
dc.relation.references | International Organization for Standardization. ISO/Guide 30:2015. Reference materials — Selected terms and definitions https://www.iso.org/obp/ui#iso:std:iso:guide:30:ed-3:v1:en (accessed Apr 5, 2020). | spa |
dc.relation.references | Valente, A.; Sanches-Silva, A.; Albuquerque, T. G.; Costa, H. S. Development of an Orange Juice In-House Reference Material and Its Application to Guarantee the Quality of Vitamin C Determination in Fruits, Juices and Fruit Pulps. Food Chem. 2014, 154, 71–77. https://doi.org/10.1016/j.foodchem.2013.12.053. | spa |
dc.relation.references | Cunningham, W.; Capar, S. Elemental Analysis Manual for Food and Related Products. In FDA U.S Food and Drug Administration; 2014. | spa |
dc.relation.references | Instituto Nacional de Metrología de Colombia. Materiales de Referencia https://www.inm.gov.co/servicios/materiales-de-referencia/ (accessed Sep 17, 2020). | spa |
dc.relation.references | International Organization for Standardization. ISO 17034:2016. Requisitos generales para la competencia de los productores de materiales de referencia https://www.iso.org/obp/ui#iso:std:iso:17034:ed-1:v1:es (accessed Apr 5, 2020). | spa |
dc.relation.references | International Organization for Standardization. ISO/Guide 31:2015. Reference materials — Contents of certificates, labels and accompanying documentation https://www.iso.org/obp/ui#iso:std:iso:guide:31:ed-3:v1:en (accessed Apr 7, 2020). | spa |
dc.relation.references | International Organization for Standardization. ISO Guide 33:2015. Reference materials — Good practice in using reference materials https://www.iso.org/standard/46212.html (accessed Apr 7, 2020). | spa |
dc.relation.references | International Organization for Standardization. ISO Guide 35:2017. Reference materials — Guidance for characterization and assessment of homogeneity and stability https://www.iso.org/standard/60281.html (accessed Apr 8, 2020). | spa |
dc.relation.references | Aguilar, Y.; Ahumada, D.; Barrios, J.; González, I.; Morales, L.; Salinas, A.; Torres, G. Desarrollo de Materiales de Referencia In-House Para El Control de Calidad de Residuos de Plaguicidas En Alimentos; 2023. | spa |
dc.relation.references | Wood, S.; Botha, A. The New ISO Guide 80: Guidance for the in-House Preparation of Quality Control Materials (QCMs). Accredit. Qual. Assur. 2014, 19 (6), 477–480. https://doi.org/10.1007/s00769-014-1084-1. | spa |
dc.relation.references | Zala, S. P.; Patel, K. P.; Patel, K. S.; Parmar, J. P.; Sen, D. J. Laboratory Techniques of Purification and Isolation. Int. J. Drug Dev. Res. 2012, 4 (2), 41–55. | spa |
dc.relation.references | Gallego, R.; Bueno, M.; Herrero, M. Sub- and Supercritical Fluid Extraction of Bioactive Compounds from Plants, Food-by-Products, Seaweeds and Microalgae – An Update. TrAC - Trends Anal. Chem. 2019, 116, 198–213. https://doi.org/10.1016/j.trac.2019.04.030. | spa |
dc.relation.references | Roge, A. B.; Firke, S. N.; Kawade, R. M.; Sarje, S. K.; Vadvalkar, S. . BRIEF REVIEW ON: FLASH CHROMATOGRAPHY. Int. J. Pharm. Sci. Res. 2011, 2 (8), 1930–1937. | spa |
dc.relation.references | Bajpai, V. K.; Majumder, R.; Park, J. G. Isolation and Purification of Plant Secondary Metabolites Using Column-Chromatographic Technique. Bangladesh J. Pharmacol. 2016, 11 (4), 844–848. https://doi.org/10.3329/bjp.v11i4.28185. | spa |
dc.relation.references | Moore, J. M.; Casale, J. F. In-Depth Chromatographic Analyses of Illicit Cocaine and Its Precursor, Coca Leaves. J. Chromatogr. A 1994, 674 (1–2), 165–205. https://doi.org/10.1016/0021-9673(94)85224-3. | spa |
dc.relation.references | Chemat, F.; Vian, M. A.; Cravotto, G. Green Extraction of Natural Products: Concept and Principles. Int. J. Mol. Sci. 2012, 13 (7), 8615–8627. https://doi.org/10.3390/ijms13078615. | spa |
dc.relation.references | da Silva, R. P. F. F.; Rocha-Santos, T. A. P.; Duarte, A. C. Supercritical Fluid Extraction of Bioactive Compounds. TrAC - Trends Anal. Chem. 2016, 76, 40–51. https://doi.org/10.1016/j.trac.2015.11.013. | spa |
dc.relation.references | Manjare, S. D.; Dhingra, K. Supercritical Fluids in Separation and Purification: A Review. Mater. Sci. Energy Technol. 2019, 2 (3), 463–484. https://doi.org/10.1016/j.mset.2019.04.005. | spa |
dc.relation.references | Pinto, G. M. F.; Pinto, J. F.; Jardim, I. C. S. F. Extração Com Fluido Supercrítico. Rev. Chemkeys 2006, No. 4, 1–13. https://doi.org/10.20396/chemkeys.v0i4.9603. | spa |
dc.relation.references | Wang, S.-M.; Ling, Y.; Giang, Y.-S. Forensic Applications of Supercritical Fluid Extraction and Chromatography. Forensic Sci. J. 2003, 5–18. | spa |
dc.relation.references | Gupta, R.; Mishra, A. K.; Pathak, A. K. Supercritical Fluid Technology a Boon for Pharmaceutical Particle Manufacturing; 2014. https://doi.org/10.13140/RG.2.1.3632.7286. | spa |
dc.relation.references | Brewer, W. E.; Galipo, R. C.; Sellers, K. W.; Morgan, S. L. Analysis of Cocaine, Benzoylecgonine, Codeine, and Morphine in Hair by Supercritical Fluid Extraction with Carbon Dioxide Modified with Methanol. Anal. Chem. 2001, 73 (11), 2371–2376. https://doi.org/10.1021/ac000871r. | spa |
dc.relation.references | Radcliffe, C.; Maguire, K.; Lockwood, B. Applications of Supercritical Fluid Extraction and Chromatography to Food Science. J. Biochem. Biophys. Methods 2000, 43 (2), 261–272. | spa |
dc.relation.references | Wianowska, D.; Gil, M. Critical Approach to PLE Technique Application in the Analysis of Secondary Metabolites in Plants. TrAC - Trends Anal. Chem. 2019, 114, 314–325. https://doi.org/10.1016/j.trac.2019.03.018. | spa |
dc.relation.references | Sergi, M.; Napoletano, S.; Montesano, C.; Iofrida, R.; Curini, R.; Compagnone, D. Pressurized-Liquid Extraction for Determination of Illicit Drugs in Hair by LC-MS-MS. Anal. Bioanal. Chem. 2012. https://doi.org/10.1007/s00216-012-6072-x. | spa |
dc.relation.references | Povilaitis, D.; Šulniute, V.; Venskutonis, P. R.; Kraujaliene, V. Antioxidant Properties of Wheat and Rye Bran Extracts Obtained by Pressurized Liquid Extraction with Different Solvents. J. Cereal Sci. 2015, 62, 117–123. https://doi.org/10.1016/j.jcs.2014.11.004. | spa |
dc.relation.references | Ballesteros-Vivas, D.; Ortega-Barbosa, J. P.; Sánchez-Camargo, A. del P.; Rodríguez-Varela, L. I.; Parada-Alfonso, F. Pressurized Liquid Extraction of Bioactives. In Comprehensive Foodomics; 2021; Vol. 2, pp 754–770. | spa |
dc.relation.references | Mustafa, A.; Turner, C. Pressurized Liquid Extraction as a Green Approach in Food and Herbal Plants Extraction: A Review. Anal. Chim. Acta 2011, 703 (1), 8–18. https://doi.org/10.1016/j.aca.2011.07.018. | spa |
dc.relation.references | Herrero, M.; Castro-Puyana, M.; Mendiola, J. A.; Ibañez, E. Compressed Fluids for the Extraction of Bioactive Compounds. TrAC - Trends Anal. Chem. 2013, 43 (2), 67–83. https://doi.org/10.1016/j.trac.2012.12.008. | spa |
dc.relation.references | Alvarez-Rivera, G.; Bueno, M.; Ballesteros-Vivas, D.; Mendiola, J. A.; Ibañez, E. Pressurized Liquid Extraction. In Liquid-Phase Extraction; 2020; pp 375–398. https://doi.org/10.1016/B978-0-12-816911-7.00013-X. | spa |
dc.relation.references | Herrero, M.; Sánchez-Camargo, A. del P.; Cifuentes, A.; Ibáñez, E. Plants, Seaweeds, Microalgae and Food by-Products as Natural Sources of Functional Ingredients Obtained Using Pressurized Liquid Extraction and Supercritical Fluid Extraction. TrAC - Trends Anal. Chem. 2015, 43, 67–83. https://doi.org/10.1016/j.trac.2015.01.018. | spa |
dc.relation.references | Herrero, M.; Ibáñez, E. Green Processes and Sustainability: An Overview on the Extraction of High Added-Value Products from Seaweeds and Microalgae. J. Supercrit. Fluids 2015, 96, 211–216. https://doi.org/10.1016/j.supflu.2014.09.006. | spa |
dc.relation.references | Pandey, A.; Tripathi, S.; Pandey, C. A. Concept of Standardization, Extraction and Pre Phytochemical Screening Strategies for Herbal Drug. J. Pharmacogn. Phytochem. JPP 2014, 115 (25), 115–119. | spa |
dc.relation.references | Sánchez-Camargo, A. del P.; Bueno, M.; Ballesteros-Vivas, D.; Parada-Alfonso, F.; Cifuentes, A.; Ibañez, E. Hansen Solubility Parameters for Selection of Green Extraction Solvents. Compr. Foodomics 2020, 710–724. https://doi.org/10.1016/b978-0-08-100596-5.22814-x. | spa |
dc.relation.references | Chemat, F.; Rombaut, N.; Meullemiestre, A.; Turk, M.; Perino, S.; Fabiano-Tixier, A. S.; Abert-Vian, M. Review of Green Food Processing Techniques. Preservation, Transformation, and Extraction. Innov. Food Sci. Emerg. Technol. 2017, 41 (February), 357–377. https://doi.org/10.1016/j.ifset.2017.04.016. | spa |
dc.relation.references | Abbott, S.; Hansen, C.; Yamamoto, H.; Valpey, R. Hansen Solubility Parameters in Practice - Complete with EBook, Software and Data, 5th ed.; 2008. | spa |
dc.relation.references | Hansen, C. Hansen Solubility Parameters: A User’s Handbook; 2007. | spa |
dc.relation.references | Clark, J. H.; Farmer, T. J.; Hunt, A. J.; Sherwood, J. Opportunities for Bio-Based Solvents Created as Petrochemical and Fuel Products Transition towards Renewable Resources. Int. J. Mol. Sci. 2015, 16 (8), 17101–17159. https://doi.org/10.3390/ijms160817101. | spa |
dc.relation.references | Calvo-Flores, F. G.; Monteagudo-Arrebola, M. J.; Dobado, J. A.; Isac-García, J. Green and Bio-Based Solvents. Top. Curr. Chem. 2018, 376 (3), 1–40. https://doi.org/10.1007/s41061-018-0191-6. | spa |
dc.relation.references | Anastas, P.; Eghbali, N. Green Chemistry: Principles and Practice. Chem. Soc. Rev. 2010, 39 (1), 301–312. https://doi.org/10.1039/b918763b. | spa |
dc.relation.references | Organización de las Naciones Unidas. Objetivos y metas de desarrollo sostenible https://www.un.org/sustainabledevelopment/es/objetivos-de-desarrollo-sostenible/ (accessed Jun 10, 2021). | spa |
dc.relation.references | Montgomery, D. Diseño y Análisis de Experimentos; 2004. | spa |
dc.relation.references | Melo, O.; López, L.; Melo, S. Diseño de Experimentos: Métodos y Aplicaciones; 2007. | spa |
dc.relation.references | UNODC. Recommended Methods for the Identification and Analysis of Cocaine in Seized Materials. United Nations of Drugs and Crime 2012, 23. | spa |
dc.relation.references | National Institute of Standards and Technology (NIST). Tropacocaine https://webbook.nist.gov/cgi/cbook.cgi?ID=C537268&Units=SI&Mask=200#Mass-Spec (accessed Sep 12, 2023). | spa |
dc.relation.references | Agilent Technologies. GC Column Solvent Retention Table. Tech. Overv. 2014, 1–6. | spa |
dc.relation.references | Secretaría de Programación para la Prevención de la Drogadicción y la Lucha Contra el Narcotráfico (SEDRONAR). Caracterización Química de Las Cocaínas Fumables; 2015. | spa |
dc.relation.references | Clark, W.; Kahn, M.; Mitra, A. Rapid Chromatographic Technique for Preparative Separations with Moderate Resolution. J. Org. Chem. 1978, 43, 2923–2925. | spa |
dc.relation.references | Gupta, R.; Shim, J.-J. Solubility in Supercritical Carbon Dioxide; 2007. | spa |
dc.relation.references | Radcliffe, C.; Maguire, K.; Lockwood, B. Applications of Supercritical Fluid Extraction and Chromatography in Forensic Science. J. Biochem. Biophys. Methods 2000, 43 (1–3), 261–272. https://doi.org/10.1016/S0165-022X(00)00058-0. | spa |
dc.relation.references | Allen, D. L.; Oliver, J. S. The Application of Supercritical Fluid Extraction to Cocaine and Its Metabolites in Blood and Urine. J. Anal. Toxicol. 2000, 24 (3), 228–232. https://doi.org/10.1093/jat/24.3.228. | spa |
dc.relation.references | Kokosa, J. M. Selecting an Extraction Solvent for a Greener Liquid Phase Microextraction (LPME) Mode-Based Analytical Method. TrAC - Trends Anal. Chem. 2019, 118, 238–247. https://doi.org/10.1016/j.trac.2019.05.012. | spa |
dc.relation.references | Pellis, A.; Byrne, F. P.; Sherwood, J.; Comerford, J. W.; Farmer, T. J.; Vastano, M. Safer Bio-Based Solvents to Replace Toluene and Polyesters. Green Chem. 2019, 1686–1694. https://doi.org/10.1039/c8gc03567a. | spa |
dc.relation.references | Ballesteros Vivas, D. Estudio Del Potencial Antiproliferativo de Extractos Obtenidos de Residuos Frutícolas Desde Las Perspectivas de La Química Verde y La Alimentómica, Universidad Nacional de Colombia, 2020. | spa |
dc.relation.references | Mohammad, A.; Inamuddin; El-Desoky, G. Green Solvents I: Properties and Applications in Chemistry; 2012. https://doi.org/10.1007/978-94-007-1712-1. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.agrovoc | Cocaína | spa |
dc.subject.agrovoc | cocaine | eng |
dc.subject.agrovoc | Solubilidad | spa |
dc.subject.agrovoc | solubility | eng |
dc.subject.agrovoc | Extracción | spa |
dc.subject.agrovoc | extraction | eng |
dc.subject.ddc | 540 - Química y ciencias afines::543 - Química analítica | spa |
dc.subject.ddc | 540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales | spa |
dc.subject.proposal | Cocaína | spa |
dc.subject.proposal | Material de referencia | spa |
dc.subject.proposal | Estabilidad | spa |
dc.subject.proposal | Homogeneidad | spa |
dc.subject.proposal | Purificación | spa |
dc.subject.proposal | Diseño experimental | spa |
dc.subject.proposal | Cocaine | eng |
dc.subject.proposal | Reference material | eng |
dc.subject.proposal | Stability | eng |
dc.subject.proposal | Homogeneity | eng |
dc.subject.proposal | Purification | eng |
dc.subject.proposal | Experimental Design | eng |
dc.title | Desarrollo metodológico para obtener un material de referencia “in-house” de cocaína para aplicaciones forenses | spa |
dc.title.translated | Methodological development to obtain an "in-house" reference material of cocaine for forensic applications | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1032458311.2023.pdf
- Tamaño:
- 1.71 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Química
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: