En 6 día(s), 2 hora(s) y 33 minuto(s): El Repositorio Institucional UNAL informa a la comunidad universitaria que, con motivo del periodo de vacaciones colectivas, el servicio de publicación estará suspendido: Periodo de cierre: Del 20 de diciembre al 18 de enero de 2026. Sobre los depósitos: Durante este tiempo, los usuarios podrán continuar realizando el depósito respectivo de sus trabajos en la plataforma. Reanudación: Una vez reiniciadas las actividades administrativas, los documentos serán revisados y publicados en orden de llegada.

Desarrollo y validación de una metodología para el análisis de residuos de plaguicidas en productos hortofrutícolas colombianos por cromatografía líquida acoplada a espectrometría de masas de alta resolución, Orbitrap

dc.contributor.advisorGuerrero Dallos, Jairo Arturospa
dc.contributor.authorHuérfano Barco, Iván Mauriciospa
dc.contributor.researchgroupResidualidad y Destino Ambiental de Plaguicidas en Sistemas Agricolasspa
dc.date.accessioned2020-08-19T21:32:04Zspa
dc.date.available2020-08-19T21:32:04Zspa
dc.date.issued2020-06-21spa
dc.description.abstractThepresent work contemplated the development of a method for the analysis of 201 pesticides in fruits and vegetables using liquid chromatography coupled to high-resolution mass spectrometry-orbitrap to provide a tool to evaluate the quality of the food produced and marketed in Colombia. The instrumental analysis was optimized to obtain the greatest sensitivity and selectivity possible using robust and efficient statistical tools, such as design of experiments. The method developed had three different analysis strategies. The former consisted in the validation of a qualitative method (screening), which main objective was to do a quick analysis to get rid of negative samples, focusing on the confirmation of positive samples. This method proved to be highly selective and sensitive since it obtained a low number of false positives and allowed the detection of most of the compounds (94.5%) at a concentration corresponding to the maximum residue limit with a high degree of reliability. As a second strategy, a quantitative method was developed and validated to determine the concentrations of the analytes present in the positive samples. The quantitative method proved to be highly selective and sensitive by obtaining quantification limits equal or lower than the maximum residue limits for most of the validated compounds (92%). This one also proved to be accurate and precise obtaining acceptable recovery percentages and low coefficients of variation at the concentrations evaluated (0.01, 0.03 and 0.1 mg/kg). Finally, the strategy of non-target analysis was implemented. This approach consisted on the search of the compounds present in a sample which were not covered in the methodology’s scope. This strategy was executed using a database with the information of exact mass, fragments and isotopic pattern for more than 600 molecules. This strategy proved to be very useful since it allowed us to identify and estimate the concentration of compounds that had not been included in the screening and quantitative methods. Thanks to the implementation of high-resolution mass spectrometry, it was possible to use these strategies together to create a highly sensitive, robust and versatile method to be used as a tool in quality control of fruits and vegetables for domestic consumption and exportation.spa
dc.description.abstractEl presente trabajo contempló el desarrollo de un método para el análisis de 201 plaguicidas en frutas y hortalizas empleando cromatografía líquida acoplada a espectrometría de masas de alta resolución-orbitrap con el objetivo de brindar una herramienta para evaluar la calidad de los alimentos producidos y comercializados en Colombia. El análisis instrumental se optimizó para obtener la mayor sensibilidad y selectividad posible haciendo uso de herramientas estadísticas robustas y eficientes, como lo es el diseño de experimentos. El método que se desarrolló contempló tres estrategias de análisis distintas. La primera consistió en la validación de un método cualitativo (screening), el cual tuvo como objetivo principal realizar un análisis rápido para eliminar muestras negativas, y enfocarse en la confirmación de las muestras positivas. Este método demostró ser altamente selectivo y sensible, ya que obtuvo un bajo número de falsos positivos y permitió detectar la mayoría de los compuestos (94.5%) a concentraciones por debajo o iguales a su límite máximo permitido con un alto grado de confiabilidad. Como segunda estrategia se desarrolló y validó un método cuantitativo para determinar las concentraciones de los analitos presentes en las muestras positivas. El método cuantitativo demostró ser altamente selectivo y sensible al obtener límites de cuantificación menores o iguales al límite máximo de residuos para la mayoría de los compuestos validados (92%). También este demostró ser veraz y preciso al obtener porcentajes de recuperación aceptables y coeficientes de variación por debajo del 20% a las concentraciones evaluadas (0.01, 0.03 y 0.1 mg/kg).Por último, se implementó la estrategia de análisis de compuestos no objetivo o “non target”. Este método consistió en la búsqueda de compuestos presentes en una muestra de los cuales no hacen parte del alcance de la metodología. Esta estrategia se llevó a cabo a partir de una base de datos con la información de masa exacta, fragmentos y patrón isotópico para más de 600 moléculas. Esta estrategia resultó ser de gran utilidad ya que permitió identificar y estimar la concentración de compuestos que no se habían incluido en los métodos screening y cuantitativo. Gracias a la implementación de la espectrometría de masas de alta resolución se utilizaron estas estrategias en conjunto para crear un método altamente sensible, robusto y versátil para utilizarlo como una herramienta de control en la calidad de frutas y hortalizas de consumo nacional y de exportación.spa
dc.description.additionalLínea de Investigación: Química analíticaspa
dc.description.degreelevelMaestríaspa
dc.format.extent252spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78095
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Químicaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Químicaspa
dc.relation.referencesFernandez, A., Tobon, J. L., Caisedo, L. F., Cardenas, J. & Mojica, A. Mis buenas prácticas agricolas -Guia para agroempresarios. http://www.ica.gov.co/Areas/Agricola/Servicios/Inocuidad-Agricola/Capacitacion/cartillaBPA.aspx (2009).spa
dc.relation.referencesDa Silva, J. G. The International Code of Conduct on Pesticide Management. Food and Agriculture Organization of the United Nations (FAO) (2014) doi:10.1016/B978-0-12-803265-7.00021-X.spa
dc.relation.referencesDANE. Boletin técnico de esportaciones - Diciembre 2017. https://www.dane.gov.co/files/investigaciones/boletines/exportaciones/bol_exp_dic17.pdf (2017).spa
dc.relation.referencesASOHOFRUCOL, A. H. de C. Balance y perspectivas del sector hortifrutícola. Frutas & Hortalizas, Revista de la Asociación Hortifurticola de Colombia, ASOHOFRUCOL vol. 33 23 (2014).spa
dc.relation.referencesPopp, J., Peto, K. & Nagy, J. Pesticide productivity and food security. A review. Agronomy for Sustainable Development vol. 33 243–255 (2013)spa
dc.relation.referencesFAOSTAT. http://www.fao.org/faostat/es/#data/RPspa
dc.relation.referencesSuperintendencia de industria y comercio. Estudio sobre plaguicidas en Colombia. Estud. Económicos Sect. 7, 286 (2013)spa
dc.relation.referencesCodex Alimentarius - International Food Standars - Food and Agriculture Organization of the United Nations. Pesticide Database. http://www.fao.org/fao-who-codexalimentarius/codex-texts/dbs/pestres/en/spa
dc.relation.referencesDG SANCO. EU Pesticides Database. http://ec.europa.eu/sanco_pesticides/public/?event=homepage&CFID=572896&CFTOKEN=96332871&jsessionid=08a026d33671da3ce9c35b624f7f39f55553TRspa
dc.relation.referencesUnited States Environmental Protection Agency. Tolerances for Pesticide Ingredients in the Code of Federal Regulations. https://www.epa.gov/pesticide-tolerances/how-search-tolerances-pesticide-ingredients-code-federal-regulationsspa
dc.relation.referencesFood and Agricultural Materials Inspection Center. FAMIC. http://www.famic.go.jp/english/spa
dc.relation.referencesMinisterio De La Protección Social. Resolucion Número 2906 De 2007 ( 22/08/07). 50 (2007)spa
dc.relation.referencesRamírez Restrepo, A., Gallo Ortiz, A. F., Hoyos Ossa, D. E. & Peñuela Mesa, G. A. QuEChERS GC-MS validation and monitoring of pesticide residues in different foods in the tomato classification group. Food Chem. 158, 153–161 (2014)spa
dc.relation.referencesEspaña Amórtegui, J. C. & Guerrero Dallos, J. A. Practical aspects in gas chromatography-mass spectrometry for the analysis of pesticide residues in exotic fruits. Food Chem. 182, 14–22 (2015)spa
dc.relation.referencesEspaña Amórtegui, J. C. & Guerrero Dallos, J. A. Comparison of QuEChERS official methodologies for the analysis of pesticide residues on Colombian fruit by GC-MS. Food Addit. Contam. - Part A Chem. Anal. Control. Expo. Risk Assess. 31, 676–687 (2014)spa
dc.relation.referencesHuérfano Barco, I. M. & Guerrero Dallos, J. A. Qualitative screening method for pesticide residues detection in fruits and vegetables. Rev. Colomb. Quim. 47, (2018)spa
dc.relation.referencesDallos Corredor, D. & Guerrero Dallos, J. A. Method Development and Validation for the Determination of Pesticides in Green Coffee By Gas Chromatography. Rev. Colomb. Química 34, 175–188 (2005)spa
dc.relation.referencesMasiá, A., Suarez-Varela, M. M., Llopis-Gonzalez, A. & Picó, Y. Determination of pesticides and veterinary drug residues in food by liquid chromatography-mass spectrometry: A review. Anal. Chim. Acta 936, 40–61 (2016)spa
dc.relation.referencesKaufmann, A. et al. Study of high-Resolution mass spectrometry technology as a replacement for tandem mass spectrometry in the field of quantitative pesticide residue analysis. J. AOAC Int. 95, 528–548 (2012)spa
dc.relation.referencesBraslavsky, S. E., Houk, K. N. & Verhoeven, J. W. International Union of Pure and Applied Chemistry: GLOSSARY OF TERMS USED IN PHOTOCHEMISTRY. Pure&Appl. Chem. N. Kurihara (Japan J. Kovacikova (Slovakia Ohlin (Sweden A. V. Rama Rao (India J. Miyamoto (Japan 68, 1167–1193 (1996)spa
dc.relation.referencesYadav, I. & Devi, N. Pesticides Classification and Its Impact on Human and Environment. in Environmental Science and Engineering vol. 6: Toxicol 140–158 (2017)spa
dc.relation.referencesLacorte, S., Agüera, A., Cortina-Puig, M. & Gómez-Canela, C. Recent developments in liquid chromatogrphy-mass spectrometry; mass detectors. in Mass Spectrometry for the Analysis of Pesticide Residues and their Metabolites (eds. Desidero, D., Loo, J. & Nibbering, N.) 291 (Wiley & Sons, Inc, 2015)spa
dc.relation.referencesJoint FAO/IAEA Expert Consultation. Validation of analytical methods for food control. (1998)spa
dc.relation.referencesAgency, I. A. E. (IAEA). Pesticide residue methods. (2020)spa
dc.relation.referencesEuropean commision. Guidance document on analytical quality control and method validation procedures for pesticide residues and analysis in food and feed. SANTE/11813/2017. (2017)spa
dc.relation.referencesU.S. FDA, Cder, Beers & Donald. Analytical Procedures and Methods Validation for Drugs and Biologics Guidance for Industry. http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/default.htmand/orhttp://www.fda.gov/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/Guidances/default.htm (2015)spa
dc.relation.referencesTsipi, D., Botitsi, H. & Economou, A. Pesticide Chemistry and Risk Assessment. in Mass Spectrometry for the Analysis of Pesticide Residues and Their Metabolites (eds. Tsipi, D., Botitsi, H. & Economou, A.) 1–29 (Wiley, 2015)spa
dc.relation.referencesHorwitz, W. The potential use of quality control data to validate pesticide residue method performance.spa
dc.relation.referencesEURACHEM. The Fitness for Purpose of Analytical Methods- A Laboratory Guide to Method Validation and Related Topics. (1998)spa
dc.relation.referencesMishalanie, E. A. et al. Validation and Peer Review of U.S. Environmental Protection Agency Chemical Methods of Analysis. https://www.epa.gov/sites/production/files/2016-02/documents/chemical_method_guide_revised_020316.pdf (2005)spa
dc.relation.referencesSANTE/EU. Method Validation and Quality Control Procedures for Pesticide Residues Analysis in food and feed. 11945, 1–42 (2015)spa
dc.relation.referencesEurachem. Guide to Quality in Analytical Chemistry - An Aid to Accreditation. Eurachem vol. 17 (2002)spa
dc.relation.referencesCGM. Vocabulario Internacional de Metrología - Conceptos fundamentales y generales, y términos asociados (VIM). Int. Organ. Stand. Geneva ISBN 3a Edición, 104 (2012)spa
dc.relation.referencesZweig, G. & Sherma, J. Paper and thin-layer chromatography. Anal. Chem. 48, 66–83 (1976)spa
dc.relation.referencesSherma, J. & Beroza, M. Manual of Analytical Quality Control for Pesticides and Related Compounds in Human and Environmental Samples. (USDA National Agricultural Library, 1981)spa
dc.relation.referencesPeter, H. & Kirchhoff, J. Manual of Pesticide Residue Analysis. Deutsche Forschungsgemeinschaft vol. I (VCH Verlagsgesellschaft mbH, 1992)spa
dc.relation.referencesRoos, A. H., Van Munsteren, A. J., Nab, F. M. & Tuinstra, L. G. M. T. Universal extraction/clean-up procedure for screening of pesticides by extraction with ethyl acetate and size exclusion chromatography. Anal. Chim. Acta 196, 95–102 (1987)spa
dc.relation.referencesvan der Heeft, E. et al. Full-Scan Accurate Mass Selectivity of Ultra-Performance Liquid Chromatography Combined with Time-of-Flight and Orbitrap Mass Spectrometry in Hormone and Veterinary Drug Residue Analysis. J. Am. Soc. Mass Spectrom. 20, 451–463 (2009)spa
dc.relation.referencesGross, J. H. Direct Analysis in Real Time—A Critical Review on DART‐MS. Anal. Bioanal. Chem. 406, 63–80 (2014)spa
dc.relation.referencesWang, L., Zhao, P., Zhang, F., Li, Y. & Pan, C. Direct Analysis in Real Time Mass Spectrometry for the Rapid Identification of Four Highly Hazardous Pesticides in Agrochemicals. Rapid Commun. Mass Spectrom. 26, 1859–1867 (2012)spa
dc.relation.referencesFarré, M., Picó, Y. & Barceló, D. Direct Peel Monitoring of Xenobiotics in Fruit by Direct Analysis in Real Time Coupled to a Linear Quadrupole Ion Trap‐Orbitrap Mass Spectrometer. Anal. Chem. 85, 2638–2644 (2013)spa
dc.relation.referencesStoka, J., Tankiewicz, M., Biziuk, M. & Namiesnik, J. Green Aspects of Techniques for the Determination of Currently Used Pesticides in Environmental Samples. Int. J. Mol. Sci. 12, 7785–7805 (2011)spa
dc.relation.referencesPicó, Y. Advanced Sample Preparation Techniques for MS Analysis. in Mass Spectrometry for the Analysis of Pesticide Residues and Their Metabolites (eds. Tsipi, D., Botitsi, H. & Economou, A.) 53–65 (Wiley, 2015)spa
dc.relation.referencesCapprioti, A. et al. Recent Developments in Matrix Solid‐Phase Dispersion Extraction. J. Chromatogr. A 1217, 2521–2532 (2010)spa
dc.relation.referencesLuke M.A., Froberg J.E., M. H. T. Extraction and cleanup of organochlorine, organophosphate, organonitrogen, and hydrocarbon pesticides in produce for determination by gas-liquid chromatography. J. Assoc. Off. Anal. Chem. 58, 1020–1026 (1975)spa
dc.relation.referencesLuke M.A., Froberg J.E., Doose G.M., M. H. T. Improved multiresidue gas chromatographic determination of organophosphorus, organonitrogen, and organohalogen pesticides in produce, using flame photometric and electrolytic conductivity detectors. J. Assoc. Off. Anal. Chem. 64, 1187–1195 (1981)spa
dc.relation.referencesSpecht, W. & Tillkes, M. Gas-chromatographische Bestimmung von Riickst inden an Pflanzenbehandlungsmitteln nach Clean-up fiber Gel-Chromatographic und Mini-Kieselgel-S iulen-Chromatographie. Fresenius Zeitschrift Anal. Chem. 322, 443–455 (1985)spa
dc.relation.referencesLozano, A. et al. Miniaturisation and optimisation of the Dutch mini-Luke extraction method for implementation in the routine multi-residue analysis of pesticides in fruits and vegetables. Food Chem. 192, (2016)spa
dc.relation.referencesde Kok, A., Hiemstra, M. & Vreeker, C. Improved cleanup method for the multiresidue analysis of N-methylcarbamates in grains, fruits and vegetables by means of HPLC with postcolumn reaction and fluorescence detection. Chromatographia 24, 469–476 (1987)spa
dc.relation.referencesPizzutti, I. R., de Kok, A., Hiemstra, M., Wickert, C. & Prestes, O. D. Method validation and comparison of acetonitrile and acetone extraction for the analysis of 169 pesticides in soya grain by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 1216, 4539—4552 (2009)spa
dc.relation.referencesLozano, A. et al. Evaluation of zirconium dioxide-based sorbents to decrease the matrix effect in avocado and almond multiresidue pesticide analysis followed by gas chromatography tandem mass spectrometry. Talanta 118, 68–83 (2014)spa
dc.relation.referencesSannino, A., Bandini, M. & Bolzoni, L. Multiresidue determination of 19 fungicides in processed fruits and vegetables by capillary gas chromatography after gel permeation chromatography. J. AOAC Int. 82, 1229—1238 (1999)spa
dc.relation.referencesPihlström, T., Blomkvist, G., Friman, P., Pagard, U. & Österdahl, B. G. Analysis of pesticide residues in fruit and vegetables with ethyl acetate extraction using gas and liquid chromatography with tandem mass spectrometric detection. Anal. Bioanal. Chem. (2007) doi:10.1007/s00216-007-1425-6spa
dc.relation.referencesJansson, C., Pihlström, T., Österdahl, B. G. & Markides, K. E. A new multi-residue method for analysis of pesticide residues in fruit and vegetables using liquid chromatography with tandem mass spectrometric detection. J. Chromatogr. A 1023, 93–104 (2004)spa
dc.relation.referencesAnasstasiades, M., Lehotay, S., Stajnbaher, D. & Schenck, F. J. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and ‘dispersive solid-phase extraction’ for the determination of pesticide residues in produce. J. AOAC Int. 86, 412–431 (2003)spa
dc.relation.referencesPrestes, O., Friggi, C., Adamine, M. & Zanella, R. QuEChERS—A Modern Sample Preparation Method for Pesticide Multiresidue Determination in Food by Chromatographic Methods Coupled to Mass Spectrometry. Quim. Nova 32, 1620–1634 (2009)spa
dc.relation.referencesPesticide Residues in Foods by Acetonitrile Extraction and Partitioning with Magnesium Sulfate - Official Method 2007.01. http://www.eoma.aoac.org/methods/info.asp?ID=48938spa
dc.relation.referencesFoods of plant origin - Determination of pesticide residues using GC-MS and/or LC-MS/MS following acetonitrile extraction/partitioning and clean-up by dispersive SPE - QuEChERS-method - CSN EN 15662spa
dc.relation.referencesPicó, Y. Advance sample preparation techniques for MS analysis. in Mass Spectrometry for the Analysis of Pesticide Residues and their Metabolites (ed. Picó, Y.) 64–68 (Wiley & Sons, Inc, 2015)spa
dc.relation.referencesPortolés, T., Mol, J. G. J., Sancho, J. V., López, F. J. & Hernández, F. Development and validation of a rapid and wide-scope qualitative screening method for detection and identification of organic pollutants in natural water and wastewater by gas chromatography time-of-flight mass spectrometry. J. Chromatogr. A 1218, 303–315 (2011)spa
dc.relation.referencesPortolés, T., Mol, J. G. J., Sancho, J. V. & Hernández, F. Use of electron ionization and atmospheric pressure chemical ionization in gas chromatography coupled to time-of-flight mass spectrometry for screening and identification of organic pollutants in waters. J. Chromatogr. A 1339, 145–153 (2014)spa
dc.relation.referencesBanerjee, K. & Utture, S. Recent Developments in Gas Chro matograp hy– Mass Spectro metry. in Mass Spectrometry for the Analysis of Pesticide Residues and Their Metabolites (eds. Tsipi, D., Botitsi, H. & Economou, A.) 92–112 (Wiley, 2015)spa
dc.relation.referencesHird, S. J. Analysis of pesticides by chromatographic tech- niques coupled with mass spectrometry. in Analysis of Pesticides in Food and Environmental Samples (ed. Raton, B.) (CRC Press, 2008)spa
dc.relation.referencesAsimakopoulos, A., Bletsou, A., Kannan, K. & Thomaidis, N. Recent developments in liquid chromatography-mass spectroemtry: Adavances in liquid cromatography separations and ionization techniques/interfaces. in Mass Spectrometry for the Analysis of Pesticide Residues and their Metabolites (eds. Tsipi, D., Botitsi, H. & Economou, A.) 113–120 (Wiley, 2015)spa
dc.relation.referencesMeyer, V. Theoretical Principles. in Practical High-Performance Liquid Chromatography (ed. Meyer, V.) 17–23 (2010)spa
dc.relation.referencesRodriguez-Aller, M., Gurny, R., Veuthey, J.-L. & Guillarme, D. Coupling ultra high-pressure liquid chromatography with mass spectrometry: Constraints and possible applications. J. Chromatogr. A 1292, 2–18 (2013)spa
dc.relation.referencesPetrovic, M. et al. Recent trends in the liquid chromatography and mass spectrometry analysis of organic contaminants in environmental samples. J. Chromatogr. A 1217, 4004–4017 (2010)spa
dc.relation.referencesLeandro, C. C., Hancock, P., Fussell, R. J. & Keely, B. J. Comparison of ultra-performance liquid chromatography and high-performance liquid chromatography for the determination of priority pesticides in baby foods by tandem quadrupole mass spectrometry. J. Chromatogr. A 1103, 94–101 (2006)spa
dc.relation.referencesMezcua, M. et al. Application of ultra performance liquid chromatography–tandem mass spectrometry to the analysis of priority pesticides in groundwater. J. Chromatogr. A 1109, 222–227 (2006)spa
dc.relation.referencesGervais, G., Brosillon, S., Laplanche, A. & Helen, C. Ultra-pressure liquid chromatography–electrospray tandem mass spectrometry for multiresidue determination of pesticides in water. J. Chromatogr. A 1202, 163–172 (2008)spa
dc.relation.referencesVidal, J., Padilla-Sánchez, J., Plaza-Bolaños, P., Frenich, A. & Romero-González, R. Use of pressurized liquid extraction for the simultaneous analysis of 28 polar and 94 non-polar pesticides in agricultural soils by GC/QqQ-MS/MS and UPLC/QqQ-MS/MS. J. AOAC Int. 93, 1715–1731 (2010)spa
dc.relation.referencesKebarle, P. & Verkerk, U. On the Mechanism of Electrospray Ionization Mass Spectrometry (ESIMS). in Electrospray and MALDI Mass Spectrometry Fundamentals, Instrumentation, Practicalities, and Biological Applications (ed. Cole, R.) 3–31 (Wiley, 2010)spa
dc.relation.referencesGross, J. H. Electrospray Ionization. in Mass Spectrometry (ed. Gross, J. H.) 604–607 (Springer International Publishing, 2010). doi:10.1007/978-3-642-10711-5spa
dc.relation.referencesUclés Moreno, A. et al. Microflow Liquid Chromatography Coupled to Mass Spectrometry—An Approach to Significantly Increase Sensitivity, Decrease Matrix Effects, and Reduce Organic Solvent Usage in Pesticide Residue Analysis. Anal. Chem. 87, 1018–1025 (2015)spa
dc.relation.referencesReichert, B. et al. Validation and application of micro flow liquid chromatography–tandem mass spectrometry for the determination of pesticide residues in fruit jams. Talanta 134, 415–424 (2015)spa
dc.relation.referencesLozowicka, B. et al. Multi-residue methods for the determination of over four hundred pesticides in solid and liquid high sucrose content matrices by tandem mass spectrometry coupled with gas and liquid chromatograph. Talanta 151, 51–61 (2016)spa
dc.relation.referencesGilbert-López, B., García-Reyes, J. F. & Molina-Díaz, A. Determination of fungicide residues in baby food by liquid chromatography–ion trap tandem mass spectrometry. Food Chem. 135, 780–786 (2012)spa
dc.relation.referencesLiu, Z.-Y. et al. Development of a Rapid Method for the Confirmatory Analysis of Flunixin Residue in Animal Tissues Using Liquid Chromatography–Tandem Mass Spectrometry. Food Anal. Methods 8, 352–362 (2015)spa
dc.relation.referencesPatterson, D., Welch, S., Turner, W., Sjödin, A. & Focant, J.-F. Cryogenic zone compression for the measurement of dioxins in human serum by isotope dilution at the attogram level using modulated gas chromatography coupled to high resolution magnetic sector mass spectrometry. J. Chromatogr. A 1218, 3274–3281 (2011)spa
dc.relation.referencesGross, J. H. Isotopic composition and Accurate Mass. in Mass Spectrometry 89–95 (Springer International Publishing, 2011). doi:10.1201/9781420040340.axaspa
dc.relation.referencesFuture perspectives in OrbitrapTM-high-resolution mass spectrometry in food analysis: a review Hamide Z. Senyuva, Vural Gökmen & Ebru Ates Sarikaya. (2015) doi:10.1080/19440049.2015.1057240spa
dc.relation.referencesGross, J. H. Instrumentation. in Mass Spectrometry (ed. Gross, J. H.) 118–202 (Springer International Publishing, 2011)spa
dc.relation.referencesLópez, M. G. et al. Evaluation and validation of an accurate mass screening method for the analysis of pesticides in fruits and vegetables using liquid chromatography-quadrupole-time of flight-mass spectrometry with automated detection. J. Chromatogr. A 1373, 40–50 (2014)spa
dc.relation.referencesRajski, Gómez-Ramos, M. M. & Fernández-Alba, A. R. Application of LC-Time-of-Flight and Orbitrap-MS/MS for Pesticide Residues in Fruits and Vegetables. in Comprehensive Analytical Chemistry vol. 71 119–154 (2016)spa
dc.relation.referencesPortolés, T., Sancho, J. V., Hernández, F., Newton, A. & Hancock, P. Potential of atmospheric pressure chemical ionization source in GC-QTOF MS for pesticide residue analysis. J. Mass Spectrom. (2010) doi:10.1002/jms.1784spa
dc.relation.referencesMezcua, M. et al. Evaluation of relevant time-of-flight-MS parameters used in HPLC/MS full-scan screening methods for pesticide residues. J. AOAC Int. 94, 1674–1684 (2011)spa
dc.relation.referencesMezcua, M. et al. Evaluation of relevant time-of-flight-MS parameters used in HPLC/MS full-scan screening methods for pesticide residues. J. AOAC Int. 94, 1674–1684 (2011)spa
dc.relation.referencesEliuk, S. & Makarov, A. Evolution of Orbitrap Mass Spectrometry Instrumentation. Annu. Rev. Anal. Chem. 8, 61–80 (2015)spa
dc.relation.referencesInc, T. F. S. Exactive Series - Operating Manual. (Thermo Fisher Scientific, 2015)spa
dc.relation.referencesInc., T. F. S. Q Exactive Software Manual. (Thermo Fisher Scientific Inc., 2016)spa
dc.relation.referencesGómez-Ramos, M. M. M., Ferrer, C., Malato, O., Agüera, A. & Fernández-Alba, A. R. R. Liquid chromatography-high-resolution mass spectrometry for pesticide residue analysis in fruit and vegetables: Screening and quantitative studies. J. Chromatogr. A 1287, 24–37 (2013)spa
dc.relation.referencesDzuman, Z., Zachariasova, M., Veprikova, Z., Godula, M. & Hajslova, J. Multi-analyte high performance liquid chromatography coupled to high resolution tandem mass spectrometry method for control of pesticide residues, mycotoxins, and pyrrolizidine alkaloids. Anal. Chim. Acta 863, 29–40 (2015)spa
dc.relation.referencesDzuman, Z., Zachariasova, M., Veprikova, Z., Godula, M. & Hajslova, J. Multi-analyte high performance liquid chromatography coupled to high resolution tandem mass spectrometry method for control of pesticide residues, mycotoxins, and pyrrolizidine alkaloids HPLC-HRMS/MS method for analysis. Anal. Chim. Acta 863, 29–40 (2015)spa
dc.relation.referencesRajski, L., Del Mar Gómez Ramos, M. & Fernández-Alba, A. R. Evaluation of MS2 workflows in LC-Q-Orbitrap for pesticide multi-residue methods in fruits and vegetables. Anal. Bioanal. Chem. 409, 5389–5400 (2017)spa
dc.relation.referencesKaufmann, A. High Mass Resolution Versus MS/MS. Comprehensive Analytical Chemistry vol. 58 (Elsevier B.V., 2012)spa
dc.relation.referencesKaufmann, A., Butcher, P., Maden, K., Walker, S. & Widmer, M. Quantitative and confirmative performance of liquid chromatography coupled to high-resolution mass spectrometry compared to tandem mass spectrometry. Rapid Commun. Mass Spectrom. 25, 979–992 (2011)spa
dc.relation.referencesKaufmann, A., Butcher, P., Maden, K., Walker, S. & Widmer, M. Quantification of anthelmintic drug residues in milk and muscle tissues by liquid chromatography coupled to Orbitrap and liquid chromatography coupled to tandem mass spectrometry. Talanta 85, 991–1000 (2011)spa
dc.relation.referencesKellmann, M., Muenster, H., Zomer, P. & Mol, H. Full Scan MS in Comprehensive Qualitative and Quantitative Residue Analysis in Food and Feed Matrices: How Much Resolving Power is Required? J. Am. Soc. Mass Spectrom. 20, 1464–1476 (2009)spa
dc.relation.referencesRajski, Ł., Ia Del Mar Omez-Ramos, M. & Fer Andez-Alba, A. R. Simultaneous combination of MS2 workflows for pesticide multiresidue analysis with LC-QOrbitrap. doi:10.1039/c7ay00480jspa
dc.relation.referencesRajski, Ł., Gómez-Ramos, M. del M. & Fernández-Alba, A. R. Large pesticide multiresidue screening method by liquid chromatography-Orbitrap mass spectrometry in full scan mode applied to fruit and vegetables. J. Chromatogr. A 1360, 119–127 (2014)spa
dc.relation.referencesReinholds, I., Pugajeva, I. & Bartkevics, V. A reliable screening of mycotoxins and pesticide residues in paprika using ultra-high performance liquid chromatography coupled to high resolution Orbitrap mass spectrometry. Food Control 60, e69–e70 (2016)spa
dc.relation.referencesLuz Gómez-Pérez, M., Romero-González, R., Luis, J., Vidal, M. & Frenich, A. G. Analysis of pesticide and veterinary drug residues in baby food by liquid chromatography coupled to Orbitrap high resolution mass spectrometry. Talanta 131, 1–7 (2014)spa
dc.relation.referencesWang, J., Chow, W., Chang, J. & Wong, J. W. Ultrahigh-performance liquid chromatography electrospray ionization Q-orbitrap mass spectrometry for the analysis of 451 pesticide residues in fruits and vegetables: Method development and validation. J. Agric. Food Chem. 62, 10375–10391 (2014)spa
dc.relation.referencesDel Mar Gómez-Ramos, M., Rajski, Ł., Heinzen, H. & Fernández-Alba, A. R. Liquid chromatography Orbitrap mass spectrometry with simultaneous full scan and tandem MS/MS for highly selective pesticide residue analysis. Anal. Bioanal. Chem. 407, 6317–6326 (2015)spa
dc.relation.referencesJia, W., Chu, X., Ling, Y., Huang, J. & Chang, J. High-throughput screening of pesticide and veterinary drug residues in baby food by liquid chromatography coupled to quadrupole Orbitrap mass spectrometry. J. Chromatogr. A 1347, 122–128 (2014)spa
dc.relation.referencesJia, W., Chu, X., Ling, Y., Huang, J. & Chang, J. High-throughput screening of pesticide and veterinary drug residues in baby food by liquid chromatography coupled to quadrupole Orbitrap mass spectrometry. J. Chromatogr. A 1347, 122–128 (2014)spa
dc.relation.referencesGómez-Pérez, M. L., Plaza-Bolaños, P., Romero-González, R., Martínez-Vidal, J. L. & Garrido-Frenich, A. Comprehensive qualitative and quantitative determination of pesticides and veterinary drugs in honey using liquid chromatography-Orbitrap high resolution mass spectrometry. J. Chromatogr. A 1248, 130–138 (2012)spa
dc.relation.referencesNácher-Mestre, J. et al. Screening of pesticides and polycyclic aromatic hydrocarbons in feeds and fish tissues by gas chromatography coupled to high-resolution mass spectrometry using atmospheric pressure chemical ionization. J. Agric. Food Chem. 62, 2165–2174 (2014)spa
dc.relation.referencesLehotay, S. J., Koesukwiwat, U., Van Der Kamp, H., Mol, H. G. J. & Leepipatpiboon, N. Qualitative Aspects in the Analysis of Pesticide Residues in Fruits and Vegetables Using Fast, Low-Pressure Gas ChromatographyÀ Time-of-Flight Mass Spectrometry. J. Agric. Food Chem 59, 7544–7556 (2011)spa
dc.relation.referencesDiaz, R., Ibáñez, M., Sancho, J. V. & Hernández, F. Qualitative validation of a liquid chromatography-quadrupole-time of flight mass spectrometry screening method for organic pollutants in waters. J. Chromatogr. A 1276, 47–57 (2013)spa
dc.relation.referencesRaro, M. et al. Potential of atmospheric pressure chemical ionization source in gas chromatography tandem mass spectrometry for the screening of urinary exogenous androgenic anabolic steroids. Anal. Chim. Acta 906, 128–138 (2016)spa
dc.relation.referencesMol, H. G. J., Reynolds, S. L., Fussell, R. J. & Štajnbaher, D. Guidelines for the validation of qualitative multi-residue methods used to detect pesticides in food. Drug Test. Anal. 4, 10–16 (2012)spa
dc.relation.referencesMunaretto, J. S., May, M. M., Saibt, N. & Zanella, R. Liquid chromatography with high resolution mass spectrometry for identification of organic contaminants in fish fillet: screening and quantification assessment using two scan modes for data acquisition. J. Chromatogr. A 1456, 205–216 (2016)spa
dc.relation.referencesPortolés, T., Mol, J. G. J., Sancho, J. V., López, F. J. & Hernández, F. Validation of a qualitative screening method for pesticides in fruits and vegetables by gas chromatography quadrupole-time of flight mass spectrometry with atmospheric pressure chemical ionization. Anal. Chim. Acta 838, 76–85 (2014)spa
dc.relation.referencesNácher-Mestre, J., Ibáñez, M., Serrano, R., Pérez-Sánchez, J. & Hernández, F. Qualitative screening of undesirable compounds from feeds to fish by liquid chromatography coupled to mass spectrometry. J. Agric. Food Chem. 61, 2077–2087 (2013)spa
dc.relation.referencesMol, H. G. J. J., Zomer, P. & De Koning, M. Qualitative aspects and validation of a screening method for pesticides in vegetables and fruits based on liquid chromatography coupled to full scan high resolution (Orbitrap) mass spectrometry. Anal. Bioanal. Chem. 403, 2891–2908 (2012)spa
dc.relation.referencesPolgár, L. et al. Retrospective screening of relevant pesticide metabolites in food using liquid chromatography high resolution mass spectrometry and accurate-mass databases of parent molecules and diagnostic fragment ions. J. Chromatogr. A 1249, 83–91 (2012)spa
dc.relation.referencesDe Dominicis, E., Commissati, I., Gritti, E., Catellani, D. & Suman, M. Quantitative targeted and retrospective data analysis of relevant pesticides, antibiotics and mycotoxins in bakery products by liquid chromatography-single-stage Orbitrap mass spectrometry. Food Addit. Contam. Part A (2015) doi:10.1080/19440049.2015.1061703spa
dc.relation.referencesMezcua, M., Malato, O., Garci, J. F., Molina-di, A. & Ferna, A. R. Accurate-Mass Databases for Comprehensive Screening of Pesticide Residues in Food by Fast Liquid Accurate-Mass Databases for Comprehensive Screening of Pesticide Residues in Food by Fast Liquid Chromatography Time-of-Flight Mass. Anal. Chem. 81, 913–929 (2009)spa
dc.relation.referencesGarcía-Reyes, J. F., Hernando, M. D., Molina-Díaz, A. & Fernández-Alba, A. R. Comprehensive screening of target, non-target and unknown pesticides in food by LC-TOF-MS. TrAC - Trends Anal. Chem. 26, 828–841 (2007)spa
dc.relation.referencesZomer, P. & Mol, H. G. J. J. Simultaneous quantitative determination , identification and qualitative screening of pesticides in fruits and vegetables using LC-Q- Orbitrap TM -MS. Food Addit. Contam. Part A 32, 1628–1636 (2015)spa
dc.relation.referencesJia, W. et al. High-throughput untargeted screening of veterinary drug residues and metabolites in tilapia using high resolution orbitrap mass spectrometry. Anal. Chim. Acta 957, 29–39 (2017)spa
dc.relation.referencesFarré, M., Picó, Y. & Barceló, D. Application of ultra-high pressure liquid chromatography linear ion-trap orbitrap to qualitative and quantitative assessment of pesticide residues. J. Chromatogr. A 1328, 66–79 (2014)spa
dc.relation.referencesGoon, A. et al. A simultaneous screening and quantitative method for the multiresidue analysis of pesticides in spices using ultra-high performance liquid chromatography-high resolution (Orbitrap) mass spectrometry. J. Chromatogr. A 1532, 105–111 (2018)spa
dc.relation.referencesia, W., Shi, L. & Chu, X. Untargeted screening of sulfonamides and their metabolites in salmon using liquid chromatography coupled to quadrupole Orbitrap mass spectrometry. Food Chem. 239, 427–433 (2018)spa
dc.relation.referencesFarre, M., Pico, Y. & Barcelo, D. Application of ultra-high pressure liquid chromatography linear ion trap orbitrap to qualitative and quantitative assesment of pesticide residues. J. Chromatogr. A 1328, 66–79 (2014)spa
dc.relation.referencesPolgár, L. et al. Retrospective screening of relevant pesticide metabolites in food using liquid chromatography high resolution mass spectrometry and accurate-mass databases of parent molecules and diagnostic fragment ions. J. Chromatogr. A 1249, 83–91 (2012)spa
dc.relation.referencesKnolhoff, A. M. & Croley, T. R. Non-targeted screening approaches for contaminants and adulterants in food using liquid chromatography hyphenated to high resolution mass spectrometry. J. Chromatogr. A 1428, 86–96 (2016)spa
dc.relation.referencesFu, Y., Zhao, C., Lu, X. & Xu, G. Nontargeted screening of chemical contaminants and illegal additives in food based on liquid chromatography–high resolution mass spectrometry. TrAC - Trends Anal. Chem. 96, 89–98 (2017)spa
dc.relation.referencesGago-Ferrero, P., Schymanski, E. L., Hollender, J. & Thomaidis, N. S. Nontarget Analysis of Environmental Samples Based on Liquid Chromatography Coupled to High Resolution Mass Spectrometry (LC-HRMS). Comprehensive Analytical Chemistry vol. 71 (Elsevier Ltd, 2016)spa
dc.relation.referencesHogenboom, A. C., van Leerdam, J. A. & de Voogt, P. Accurate mass screening and identification of emerging contaminants in environmental samples by liquid chromatography-hybrid linear ion trap Orbitrap mass spectrometry. J. Chromatogr. A 1216, 510–519 (2009)spa
dc.relation.referencesKaufmann, A. Strategy for the elucidation of elemental compositions of trace analytes based on a mass resolution of 100 000 full width at half maximum. Rapid Commun. Mass Spectrom. 24, 2035–2045 (2010)spa
dc.relation.referencesMontgomery, D. Introduction. in Desing and Analysis of experiments (ed. Mongomery, D.) 3–21 (Wiley, 2017)spa
dc.relation.referencesRiter, L. S., Vitek, O., Gooding, K. M., Hodge, B. D. & Julian, R. K. Statistical design of experiments as a tool in mass spectrometry. J. Mass Spectrom. 40, 565–579 (2005)spa
dc.relation.referencesMontgomery, D. Introduction to Factorial Desings. in Desing and Analysis of experiments (ed. Montgomery, D.) 180–220 (Wiley, 2017)spa
dc.relation.referencesMontgomery, D. Two-Level Fractional Factorial Designs. in Desing and Analysis of experiments (ed. Montgomery, D.) 329–386 (Wiley, 2017)spa
dc.relation.referencesMontgomery, D. Response Surface Methods and Deigns. in Desing and Analysis of experiments (ed. Montgomery, D.) 490–558 (Wiley, 2017)spa
dc.relation.referencesJia, W., Chu, X., Ling, Y., Huang, J. & Chang, J. High-throughput screening of pesticide and veterinary drug residues in baby food by liquid chromatography coupled to quadrupole Orbitrap mass spectrometry. J. Chromatogr. A 1347, 122–128 (2014)spa
dc.relation.referencesHu, M., Krauss, M., Brack, W. & Schulze, T. Optimization of LC-Orbitrap-HRMS acquisition and MZmine 2 data processing for nontarget screening of environmental samples using design of experiments. Anal. Bioanal. Chem. 408, 7905–7915 (2016)spa
dc.relation.referencesLemonakis, N., Skaltsounis, A. L., Tsarbopoulos, A. & Gikas, E. Optimization of parameters affecting signal intensity in an LTQ-orbitrap in negative ion mode: A design of experiments approach. Talanta 147, 402–409 (2016)spa
dc.relation.referencesRoca, M., Leon, N., Pastor, A. & Yusà, V. Comprehensive analytical strategy for biomonitoring of pesticides in urine by liquid chromatography–orbitrap high resolution mass spectrometry. J. Chromatogr. A 1374, 66–76 (2014)spa
dc.relation.referencesOberg, A. L. & Vitek, O. Statistical Design of Quantitative Mass Spectrometry-Based Proteomic Experiments. doi:10.1021/pr8010099spa
dc.relation.referencesPrado, C., Garrido, J. & Periago, J. F. Urinary benzene determination by SPME/GC-MS A study of variables by fractional factorial design and response surface methodology. J. Chromatogr. B 804, 255–261 (2004)spa
dc.relation.referencesRudaz, S., Cherkaoui, S., Gauvrit, J.-Y., Lantri, P. & Veuthey, J.-L. Experimental desings to investigate capillary eletrophoresis-electrospray ionization-mass spectrometry enantioseparation with the partial.filling technique. Electrophoresis 22, 3316–3326 (2001spa
dc.relation.referencesRandall, S. M., Cardasis, H. L. & Muddiman, D. C. Factorial experimental designs elucidate significant variables affecting data acquisition on a quadrupole orbitrap mass spectrometer. J. Am. Soc. Mass Spectrom. 24, 1501–1512 (2013)spa
dc.relation.referencesCoscollà, C., León, N., Pastor, A. & Yusà, V. Combined target and post-run target strategy for a comprehensive analysis of pesticides in ambient air using liquid chromatography-Orbitrap high resolution mass spectrometry. J. Chromatogr. A 1368, 132–142 (2014)spa
dc.relation.referencesAndrews, G. L., Dean, R. A., Hawkridge, A. M. & Muddiman, D. C. Improving Proteome Coverage on a LTQ-Orbitrap Using Design of Experiments. J. Am. Soc. Mass Spectrom 22, 773–783 (2011)spa
dc.relation.referencesKalli, A., Smith, G. T., Sweredoski, M. J. & Hess, S. Evaluation and optimization of mass spectrometric settings during data-dependent acquisition mode: Focus on LTQ-orbitrap mass analyzers. J. Proteome Res. 12, 3071–3086 (2013)spa
dc.relation.referencesEuropea, L. C. II REGLAMENTOS REGLAMENTO (UE) N o 752/2014 DE LA COMISIÓN de 24 de junio de 2014 por el que se sustituye el anexo I del Reglamento (CE) n o 396/2005 del Parlamento Europeo y del Consejo (Texto pertinente a efectos del EEE). https://eur-lex.europa.eu/legal-content/ES/TXT/PDF/?uri=CELEX:32014R0752&from=GAspa
dc.relation.referencesUnion, E. The 2017 European Union report on pesticide residues in food. EFSA J. 17, (2019)spa
dc.relation.referencesInc., T. F. S. Ion Max and Ion Max-S API Source Hardware Manual. (Inc., Thermo Fisher Scientific, 2009)spa
dc.relation.referencesGómez-Ramos, M. del M., Rajski, Ł., Lozano, A. & Fernández-Alba, A. R. The evaluation of matrix effects in pesticide multi-residue methods via matrix fingerprinting using liquid chromatography electrospray high-resolution mass spectrometry. Anal. Methods 8, 4664–4673 (2016)spa
dc.relation.referencesZhan, J. et al. Multi-class method for determination of veterinary drug residues and other contaminants in infant formula by ultra performance liquid chromatography-tandem mass spectrometry. Food Chem. 138, 827–34 (2013)spa
dc.relation.referencesWilliams, L. J. & Abdi, H. Fisher’s Least Significant Difference (LSD) Test. Encyclopedia of Research Design 1–6 (2010)spa
dc.relation.referencesMongomery, D. Response Surface Methods and Desings. in Desing and Analysis of experiments 489–558 (Wiley & Sons, Inc, 2017)spa
dc.relation.referencesDerringer, G. & Suich, R. Simultaneous Optimization of Several Response Variables. J. Qual. Technol. 12, 214–219 (1980)spa
dc.relation.referencesVera Candioti, L., De Zan, M. M., Cámara, M. S. & Goicoechea, H. C. Experimental design and multiple response optimization. Using the desirability function in analytical methods development. Talanta 124, 123–138 (2014)spa
dc.relation.referencesWang, J., Chow, W., Leung, D. & Chang, J. Application of Ultrahigh-Performance Liquid Chromatography and Electrospray Ionization Quadrupole Orbitrap High-Resolution Mass Spectrometry for Determination of 166 Pesticides in Fruits and Vegetables. (2012) doi:10.1021/jf303939sspa
dc.relation.referencesWang, J., Chow, W., Chang, J. & Wong, J. W. Ultrahigh-performance liquid chromatography electrospray ionization Q-orbitrap mass spectrometry for the analysis of 451 pesticide residues in fruits and vegetables: Method development and validation. J. Agric. Food Chem. 62, 10375–10391 (2014)spa
dc.relation.referencesRuta, J., Rudaz, S., Mccalley, D. V, Veuthey, J.-L. & Guillarme, D. A systematic investigation of the effect of sample diluent on peak shape in hydrophilic interaction liquid chromatography. J. Chromatogr. A 1217, 8230–8240 (2010)spa
dc.relation.referencesKeunchkarian, S., Reta, M., Romero, L. & Castells, C. Effect of sample solvent on the chromatographic peak shape of analytes eluted under reversed-phase liquid chromatogaphic conditions. J. Chromatogr. A 1119, 20–28 (2006)spa
dc.relation.referencesRajski, Ł., María Del Mar, &, Ramos, G. & Fernández-Alba, A. R. Evaluation of MS 2 workflows in LC-Q-Orbitrap for pesticide multi-residue methods in fruits and vegetables. doi:10.1007/s00216-017-0220-2spa
dc.relation.referencesCaruso, J. A. et al. Orbitrap and TOF aplications. (2016)spa
dc.relation.referencesCorley, J. Best practices in establishing detection and quantification limits for pesticide residues in foods. Handb. Residue Anal. Methods Agrochem. 409, 1–18 (2003)spa
dc.relation.referencesRajski, Ł., Del Mar Gómez-Ramos, M. & Fernández-Alba, A. R. Large pesticide multiresidue screening method by liquid chromatography-Orbitrap mass spectrometry in full scan mode applied to fruit and vegetables. J. Chromatogr. A 1360, 119–127 (2014)spa
dc.relation.referencesFerrer, C., Lozano, A., Agüera, A., Girón, A. J. & Fernández-Alba, A. R. Overcoming matrix effects using the dilution approach in multiresidue methods for fruits and vegetables. J. Chromatogr. A 1218, 7634–7639 (2011)spa
dc.relation.referencesBesil, N., Cesio, V., Heinzen, H. & Fernandez-Alba, A. R. Matrix Effects and Interferences of Different Citrus Fruit Coextractives in Pesticide Residue Analysis Using Ultrahigh-Performance Liquid Chromatography-High-Resolution Mass Spectrometry. J. Agric. Food Chem. 65, 4819–4829 (2017spa
dc.relation.referencesKruve, A., Leito, I. & Herodes, K. Combating matrix effects in LC/ESI/MS: The extrapolative dilution approach. Anal. Chim. Acta 651, 75–80 (2009)spa
dc.relation.referencesKittlaus, S., Schimanke, J., Kempe, G. & Speer, K. Assessment of sample cleanup and matrix effects in the pesticide residue analysis of foods using postcolumn infusion in liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 1218, 8399–8410 (2011)spa
dc.relation.referencesHepperle, J., Mack, D., Sigalov, I., Schüler, S. & Anastassiades, M. Analysis of “Amitraz (sum)” in pears with incurred residues – Comparison of the approach covering the individual metabolites via LC–MS/MS with the approach involving cleavage to 2,4-dimethylaniline. Food Chem. 166C, 240–247 (2015)spa
dc.relation.referencesEU Reference Laboratory for Pesticides Requiring Single Residue Methods. Analysis of Residues of Carbofuran - Analytical Observations and Method Report. https://www.eurl-pesticides.eu/docs/public/tmplt_article.asp?LabID=200&CntID=1011&Theme_ID=1&Pdf=False&Lang=EN (2016)spa
dc.relation.referencesLehotay, S. J., Maštovská, K. & Lightfield, A. R. Use of buffering and other means to improve results of problematic pesticides in a fast and easy method for residue analysis of fruits and vegetables. J. AOAC Int. (2005)spa
dc.relation.referencesAnastassiades, M. et al. Quick Method for the Analysis of Numerous Highly Polar Pesticides in Foods of Plant Origin via LC-MS/MS Involving Simultaneous Extraction with Methanol (QuPPe-Method) I. Food of Plant Origin (QuPPe-PO-Method). (2019)spa
dc.relation.referencesCitac & Eurachem. Quantifying Uncertainty in Analytical Measurement. English vol. 2nd http://www.eurachem.org/index.php/publications/guides/quam (2000)spa
dc.relation.referencesJCGM. Evaluation of measurement data-Guide to the expression of uncertainty in measurement Évaluation des données de mesure-Guide pour l’expression de l’incertitude de mesure. www.bipm.org (2008)spa
dc.relation.referencesValverde, A., Aguilera, A. & Valverde-Monterreal, A. Practical and valid guidelines for realistic estimation of measurement uncertainty in multi-residue analysis of pesticides. Food Control 71, 1–9 (2017)spa
dc.relation.referencesCodex Alimentarius - International Food Standars - Food and Agriculture Organization of the United Nations. DIRECTRICES SOBRE LA ESTIMACIÓN DE LA INCERTIDUMBRE DE LOS RESULTADOS - CAC/GL 59 - 2006. 1–17 (2011)spa
dc.relation.referencesPihlström, T. et al. Guidance document on analytical quality control and validation procedures for pesticide residues analysis in food and feed. Leg. Depos. 1133–2009 (2013)spa
dc.relation.referencesEuropean Commission. EU Pesticides database. http://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/public/?event=homepage&language=ENspa
dc.relation.referencesGuide, C. & Edition, F. Use of uncertainty information in compliance assessment First Edition 2007. Interpret. A J. Bible Theol. 18 (2007)spa
dc.relation.referencesmzCloud – Advanced Mass Spectral Database. https://www.mzcloud.org/spa
dc.relation.referencesAccurate Mass Pesticide Database by LC-HRMS. https://www.eurl-pesticides.eu/userfiles/file//HRMs-LC-Accurate Mass Pesticide Database .pdfspa
dc.relation.referencesInstituto Colombiano Agropecuario (ICA). Listado de registros nacionales de plaguicidas químicos de uso agrícola. (2019)spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc540 - Química y ciencias afinesspa
dc.subject.proposalPlaguicidasspa
dc.subject.proposalPesticideseng
dc.subject.proposalFrutas y hortalizasspa
dc.subject.proposalFruits and vegetableseng
dc.subject.proposalValidaciónspa
dc.subject.proposalValidationeng
dc.subject.proposalCromatografía líquidaspa
dc.subject.proposalLiquid chromatographyeng
dc.subject.proposalEspectrometría de masasspa
dc.subject.proposalMass spectrometryeng
dc.titleDesarrollo y validación de una metodología para el análisis de residuos de plaguicidas en productos hortofrutícolas colombianos por cromatografía líquida acoplada a espectrometría de masas de alta resolución, Orbitrapspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1020767826.2020.pdf
Tamaño:
7.85 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: