Evaluation of materials and micro shot peening to increase resistance to failure due to cyclic fatigue in rotary endodontic files

dc.contributor.advisorCortes-Rodriguez, Carlos Julio
dc.contributor.authorNiño Barrera, Javier Laureano
dc.contributor.researchgroupGrupo de Investigación en Biomecánica / Universidad Nacional de Colombia Gibm-Uncbspa
dc.date.accessioned2022-06-14T15:35:37Z
dc.date.available2022-06-14T15:35:37Z
dc.date.issued2022-06-03
dc.descriptionilustraciones, fotografías, graficasspa
dc.description.abstractThis thesis tackles the problem of endodontic fi les fractures from two views; In the fi rst instance, alternative materials to the classic Nickel-Titanium alloy such as Titanium-Niobium and Titanium-Molybdenum were analyzed. This analysis found that Titanium-Niobium could be proposed as an alternative for manufacturing endodontic files. Secondly, the shot peening procedure was proposed and analyzed to increase the resistance to fatigue fracture both in the proposed alternative alloys and in Nickel-Titanium fi les, fi nding a signi cant increase in the resistance to a fatigue fracture in the fi les and wires subjected to shot peening.eng
dc.description.abstractEsta tesis aborda el problema de las fracturas de las limas endodonticas desde dos puntos de vista; En primera instancia se analizaron materiales alternativos a la clasica aleacion de Niquel-Titanio como son el Titanio-Niobio y el Titanio-Molibdeno. Este analisis encontro que el Titanio-Niobio se puede proponer como una alternativa para la fabricacion de limas endodonticas. En segundo lugar, se propuso y analizado el procedimiento de shot peening para aumentar la resistencia a la fractura por fatiga tanto en las aleaciones alternativas propuestas como en las limas de Niquel-Titanio, encontrando un aumento signi cativo de la resistencia a la fractura por fatiga en las limas y alambres sometidos al shot peening. (Texto tomado de la fuente)spa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.description.researchareaBiomecanicaspa
dc.format.extentxvi, 136 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81578
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería Mecánica y Mecatrónicaspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Ciencia y Tecnología de Materialesspa
dc.relation.references[1] Schilder H. Cleaning and shaping the root canal. Dent Clin North Am. 1974;18(2):269-96.spa
dc.relation.references[2] Nair PN. On the causes of persistent apical periodontitis: a review. Int Endod J. 2006;39(4):249-81.spa
dc.relation.references[3] Fouad AF. Endodontic Microbiology and Pathobiology: Current State of Knowledge. Dent Clin North Am. 2017;61(1):1-15.spa
dc.relation.references[4] Garcia-Godoy F, Pulver F. Treatment of trauma to the primary and young permanent dentitions. Dent Clin North Am. 2000;44(3):597-632.spa
dc.relation.references[5] Torabinejad M, Eby WC, Naidorf IJ. Inflammatory and immunological aspects of the pathogenesis of human periapical lesions. J Endod. 1985;11(11):479-88.spa
dc.relation.references[6] Peters O. Current Challenges and Concepts in the Preparation of Root Canal Systems: A Review. J Endod. 2004;30(8):559-67.spa
dc.relation.references[7] Hulsmann M, Peters OA, Dummer PMH. Mechanical preparation of root canals: shaping goals, techniques and means. Endodontic Topics. 2005;10(1):30-76.spa
dc.relation.references[8] Schafer E. Root canal instruments for manual use: a review. Endod Dent Traumatol. 1997;13(2):51-64.spa
dc.relation.references[9] Craig RG, Mc Ilwain ED, Peyton FA. Comparison of Theoretical and Experimental Bending and Torsional Moments of Endodontic Files and Reamers. J Dent Res. 2016;46(5):1058-63.spa
dc.relation.references[10] Barrs JT, Miller DA, Howard JR, Gilbert JL, Lautenschlager EP. The evaluation of corrosion in stainless steel endodontic files. Northwest Dent Res. 1996;7(1):27- 31. [spa
dc.relation.references[11] Walia HM, Brantley WA, Gerstein H. An initial investigation of the bending and torsional properties of Nitinol root canal fi les. J Endod. 1988;14(7):346-51.spa
dc.relation.references[12] Peters, Ove A., Rotary Instrumentation: An Endodontic Perspective. American association of endodontists. 2008. All Dugoni School of Dentistry Faculty Books and Book Chapters. 22.spa
dc.relation.references[13] Buchanan S. New additions to the NiTi rotary file market: What to bring in and what to leave out. Dental Tribune. 2011.spa
dc.relation.references[14] International academy for rotary endodontics U. Types of Rotary Endodontic Instruments. http://wwwhealthmantracom/rotary/typesshtml2016.spa
dc.relation.references[15] Sattapan B, Nervo GJ, Palamara JE, Messer HH. Defects in rotary nickel - titanium les after clinical use. J Endod. 2000;26(3):161-5.spa
dc.relation.references[16] Parashos P, Messer HH. Rotary NiTi instrument fracture and its consequences. J Endod. 2006;32(11):1031-43.spa
dc.relation.references[17] Cheung GSP. Instrument fracture: mechanisms, removal of fragments, and clinical outcomes. Endodontic Topics. 2007;16(1):1-26.spa
dc.relation.references[18] Nino-Barrera J, Sanchez-Aleman J, Acosta-Humanez M, Gamboa-Martinez L, Cortes-Rodriguez C. Shot peening increases resistance to cyclic fatigue fracture of endodontic fi les. Sci Rep. 2021;11(1):12961.spa
dc.relation.references[19] Nino-Barrera J, Aguilera-Canon M, Cortes-Rodriguez C. Utilidad de la conformación del túnel liso antes de usar limas rotatorias endodónticas de níquel titanio. Rev Cubana Estomatol [Internet]. 2014 ; 51 (3) :[aprox. 6 p.]. Disponible en: http://www.revestomatologia.sld.cu/index.php/est/article/view/371spa
dc.relation.references[20] Niño-Barrera J. Analisis comparativo del comportamiento biomecanico de dos limas rotatorias de niquel titanio Bogota, Colombia: Tesis de Maestria. Universidad Nacional de Colombia; 2013. [spa
dc.relation.references[21] Shen Y, Zhou HM, Zheng YF, Peng B, Haapasalo M. Current challenges and concepts of the thermomechanical treatment of nickel-titanium instruments. J Endod. 2013;39(2):163-72.spa
dc.relation.references[22] Kosti E, Zinelis S, Molyvdas I, Lambrianidis T. Effect of root canal curvature on the failure incidence of ProFile rotary Ni-Ti endodontic instruments. Int Endod J. 2011 Oct;44(10):917-25.spa
dc.relation.references[23] Pawar AM, Barwala D, Pawar M, Metzger Z, Kr A, Jain N. Assessment of the fracture resistance of teeth instrumented using 2 rotary and 2 reciprocating files versus the Self-Adjusting File (SAF): An ex vivo comparative study on mandibular premolars. J Conserv Dent. 2016 Mar-Apr;19(2):138-42.spa
dc.relation.references[24] Ha JH, Cheung GS, Versluis A, Lee CJ, Kwak SW, Kim HC. 'Screw-in' tendency of rotary nickel-titanium files due to design geometry. Int Endod J. 2015 Jul;48(7):666-72.spa
dc.relation.references[25] Wyco RC, Berzins DW. An in vitro comparison of torsional stress properties of three different rotary nickel-titanium fi les with a similar cross-sectional design. J Endod. 2012 Aug;38(8):1118-20.spa
dc.relation.references[26] Inan U, Gonulol N. Deformation and fracture of Mtwo rotary nickel-titanium instruments after clinical use. J Endod. 2009 Oct;35(10):1396-9.spa
dc.relation.references[27] Topcuoglu HS, Topcuoglu G, Akti A, Duzgun S. In Vitro Comparison of Cyclic Fatigue Resistance of ProTaper Next, HyFlex CM, OneShape, and ProTaper Universal Instruments in a Canal with a Double Curvature. J Endod. 2016 Jun;42(6):969-71.spa
dc.relation.references[28] Bueno CSP, Oliveira DP, Pelegrine RA, Fontana CE, Rocha DGP, Bueno C. Fracture Incidence of WaveOne and Reciproc Files during Root Canal Preparation of up to 3 Posterior Teeth: A Prospective Clinical Study. J Endod. 2017 May;43(5):705-8.spa
dc.relation.references[29] Plotino G, Grande NM, Porciani PF. Deformation and fracture incidence of Reciproc instruments: a clinical evaluation. Int Endod J. 2015 Feb;48(2):199- 205.spa
dc.relation.references[30] Bouska J, Justman B, Williamson A, DeLong C, Qian F. Resistance to cyclic fatigue failure of a new endodontic rotary file. J Endod. 2012 May;38(5):667-9.spa
dc.relation.references[31] Craig RG, McIlwain ED, Peyton FA. Bending and torsion properties of endodontic instruments. Oral Surg, Oral Med, Oral Pathol. 1968;25(2):239-54.spa
dc.relation.references[32] Kuhn G, Tavernier B, Jordan L. Influence of structure on nickel-titanium endodontic instruments failure. J Endod. 2001 Aug;27(8):516-20.spa
dc.relation.references[33] Kuhn G, Jordan L. Fatigue and mechanical properties of nickel-titanium endodontic instruments. J Endod. 2002 Oct;28(10):716-20.spa
dc.relation.references[34] Peters OA, Gluskin AK, Weiss RA, Han JT. An in vitro assessment of the physical properties of novel Hyflex nickel-titanium rotary instruments. Int Endod J. 2012 Nov;45(11):1027-34.spa
dc.relation.references[35] Iacono F, Pirani C, Generali L, Bolelli G, Sassatelli P, Lusvarghi L, et al. Structural analysis of HyFlex EDM instruments. Int Endod J. 2017 Mar;50(3):303-13.spa
dc.relation.references[36] Haapasalo M, Shen Y. Evolution of nickel-titanium instruments: from past to future. Endodontic Topics. 2013;29(1):3-17.spa
dc.relation.references[37] Gambarini G, Grande NM, Plotino G, Somma F, Garala M, De Luca M, et al. Fatigue resistance of engine-driven rotary nickel-titanium instruments produced by new manufacturing methods. J Endod. 2008 Aug;34(8):1003-5.spa
dc.relation.references[38] Hatch D, Gutmann JL. Meyer L. Rhein and Mortarization - Controlling the Root Apex During Focal Infection. J Hist Dent. 2020;68(2):93-100.spa
dc.relation.references[39] Sayed ME, Jurado CA, Tsujimoto A. Factors Affecting Clinical Decision-Making and Treatment Planning Strategies for Tooth Retention or Extraction: An Exploratory Review. Niger J Clin Pract. 2020;23(12):1629-38.spa
dc.relation.references[40] Strindberg L.Z.The dependence of the results of pulp therapy on certain factors. An analytic study based on radiographic and clinical follow-up examinations. Acta Odontol Scand.1956; 14: 1175.spa
dc.relation.references[41] Kitchens GG, Jr., Liewehr FR, Moon PC. The effect of operational speed on the fracture of nickel-titanium rotary instruments. J Endod. 2007 Jan;33(1):52-4.spa
dc.relation.references[42] Grossman LI. Guidelines for the prevention of fracture of root canal instruments. Oral Surg Oral Med Oral Pathol. 1969 Nov;28(5):746-52.spa
dc.relation.references[43] Jonker CH, Van der Vyver PJ, De Wet FA. The influence of glide path preparation on the failure rate of WaveOne reciprocating instruments. SADJ : J South African Dent Assoc . 2014 Jul;69(6):266-9.spa
dc.relation.references[44] Leeb J. Canal orifice enlargement as related to biomechanical preparation. J Endod. 1983 Nov;9(11):463-70.spa
dc.relation.references[45] Martin B, Zelada G, Varela P, Bahillo JG, Magan F, Ahn S, et al. Factors influencing the fracture of nickel-titanium rotary instruments. Int Endod J. 2003 Apr;36(4):262-6.spa
dc.relation.references[46] Madarati AA,Watts DC, Qualtrough AJ. Factors contributing to the separation of endodontic files. Br Dent J. 2008 Mar 08;204(5):241-5.spa
dc.relation.references[47] Pruett JP, Clement DJ, Carnes DL, Jr. Cyclic fatigue testing of nickel-titanium endodontic instruments. J Endod. 1997 Feb;23(2):77-85.spa
dc.relation.references[48] Fava LR. The double-flared technique: an alternative for biomechanical preparation. J Endod. 1983 Feb;9(2):76-80.spa
dc.relation.references[49] Suter B, Lussi A, Sequeira P. Probability of removing fractured instruments from root canals. Int Endod J. 2005 Feb;38(2):112-23.spa
dc.relation.references[50] Leroy AM, Bahia MG, Ehrlacher A, Buono VT. An analytical mechanical model to describe the response of NiTi rotary endodontic files in a curved root canal. Mater Sci Eng C Mater Biol Appl. 2012 Aug 01;32(6):1594-600.spa
dc.relation.references[51] Capar ID, Arslan H. A review of instrumentation kinematics of engine-driven nickel-titanium instruments. Int Endod J. 2016 Feb;49(2):119-35.spa
dc.relation.references[52] Yared GM, Bou Dagher FE, Machtou P. Influence of rotational speed, torque and operator's proficiency on ProFile failures. Int Endod J. 2001 Jan;34(1):47- 53.spa
dc.relation.references[53] Bardsley S, Peters CI, Peters OA. The effect of three rotational speed settings on torque and apical force with vortex rotary instruments in vitro. J Endod. 2011 Jun;37(6):860-4.spa
dc.relation.references[54] Koch KA, Brave DG. Real World Endo Sequence File. Dent Clin North Am. 2004 Jan;48(1):159-82.spa
dc.relation.references[55] Nino-Barrera J, Sanchez-Aleman J, Lopez L, Cortes-Rodriguez C. Application of Cutting-Tool Concepts to Endodontic Files to Achieve Better Design: A Review. Crit Rev Biomed Eng. 2020;48(4):223-34.spa
dc.relation.references[56] Versluis A, Kim HC, Lee W, Kim BM, Lee CJ. Flexural stiffness and stresses in nickel-titanium rotary files for various pitch and cross-sectional geometries. J Endod. 2012 Oct;38(10):1399-403.spa
dc.relation.references[57] Baek SH, Lee CJ, Versluis A, Kim BM, Lee W, Kim HC. Comparison of torsional stiffness of nickel-titanium rotary files with different geometric characteristics. J Endod. 2011 Sep;37(9):1283-6.spa
dc.relation.references[58] He R, Ni J. Design improvement and failure reduction of endodontic files through finite element analysis: application to V-Taper file designs. J Endod. 2010 Sep;36(9):1552-7.spa
dc.relation.references[59] Nino-Barrera JL, Aguilera-Canon MC, Cortes-Rodriguez CJ. Theoretical evaluation of Nickel-Titanium Mtwo series rotary files. Acta Odontol Latinoam. 2013;26(2):90-6.spa
dc.relation.references[60] Prieto-Cárdenas SM, Cortés-Rodríguez CJ, Gamboa-Martínez LF, Niño-Barrera JL. Evaluación de la resistencia teórica a la flexión de tres instrumentos utilizados en endodoncia mediante análisis de elementos finitos. Universitas Odontologica. 2015;34(73):23-8.spa
dc.relation.references[61] Lee MH, Versluis A, Kim BM, Lee CJ, Hur B, Kim HC. Correlation between experimental cyclic fatigue resistance and numerical stress analysis for nickel-titanium rotary files. J Endod. 2011 Aug;37(8):1152-7.spa
dc.relation.references[62] Mohd-Jani J, Leary M, Subic A, Gibson MA. A review of shape memory alloy research, applications and opportunities. Mater and Design. 2014;56:1078- 113.spa
dc.relation.references[63] Thompson SA. An overview of nickel-titanium alloys used in dentistry. Int Endod J. 2000 Jul;33(4):297-310.spa
dc.relation.references[64] Miyazaki S, Kim HY. Basic characteristics of titanium-nickel (TiNi)-based and titanium-niobium (TiNb)-based alloys. In: K.Yamauchi, Ohkata I, Tsuchiya K, Miyazaki S, editors. Shape Memory and Superelastic Alloys: Applications and Technologies: Elsevier; 2011. p. 15-42.spa
dc.relation.references[65] Buehler WJ, Wang FE. A summary of recent research on the nitinol alloys and their potential application in ocean engineering. Ocean Engineering. 1968;1(1):105-20.spa
dc.relation.references[66] Zhou H, Peng B, Zheng Y-F. An overview of the mechanical properties of nickel-titanium endodontic instruments. Endodontic Topics. 2013;29(1):42-54.spa
dc.relation.references[67] Cash A, Curtis R, Garrigia-Majo D, McDonald F. A comparative study of the static and kinetic frictional resistance of titanium molybdenum alloy archwires in stainless steel brackets. Eur J Orthod. 2004 Feb;26(1):105-11.spa
dc.relation.references[68] Aldana-Ojeda LM, Niño-Barrera J, Cortés-Rodríguez C. Comparación de las propiedades mecánicas y estructurales en tres tipos de alambre: aleación níquel titanio convencional, aleación titanio-molibdeno y aleación titanio niobio Bogotá Colombia: Universidad Nacional de Colombia; 2016.spa
dc.relation.references[69] Burstone CJ, Goldberg AJ. Beta titanium: a new orthodontic alloy. Am J Orthod. 1980;77(2):121-32.spa
dc.relation.references[70] Kuroda S, Watanabe H, Nakajima A, Shimizu N, Tanaka E. Evaluation of torque moment in a novel elastic bendable orthodontic wire. Dent Mater J. 2014;33(3):363-7.spa
dc.relation.references[71] Polák J. - Cyclic Deformation, Crack Initiation, and Low-cycle Fatigue. In: Milne I, Ritchie RO, Karihaloo B, editors. Comprehensive Structural Integrity. Oxford: Pergamon; 2003. p. 1-39.spa
dc.relation.references[72] Figueiredo A, Modenesi P, Buono V. Low-cycle fatigue life of superelastic NiTi wires. Int J Fatigue. 2009;31(4):751-8.spa
dc.relation.references[73] Meyers MA, Chawla KK. Mechanical Behavior of Materials. 2 ed. Cambridge: Cambridge University Press; 2008.spa
dc.relation.references[74] Jaramillo H. El Shot Peening y la vida a la fatiga de elementos de máquinas. Universidad Autónoma de Occidente. 2013.spa
dc.relation.references[75] Jaramillo H, Suarez N, Sanchez A, Canizales J, Toro A, Introducción a la mecánica de la fractura y análisis de fallas En: Colombia 2008. ed: Programa Editorial Universidad Autónoma de Occidente.spa
dc.relation.references[76] Hernández Albañil, H, Espejo Mora, E. Mecánica de fractura y análisis de falla. [Internet]. Universidad Nacional de Colombia; 2002 . Universidad Nacional de Colombia Editorial UN.spa
dc.relation.references[77] López Montero, T. Efecto del envejecimiento y de la acción del agua en la fisuración de las mezclas asfálticas. Tesis doctoral, UPC, Departament d'Enginyeria Civil i Ambiental, 2018.spa
dc.relation.references[78] Castellucci AWJD. Endodontics. Vol. 2 Vol. 2. Florence: IL Tridente; 2005.spa
dc.relation.references[79] https://present5.com/separated-instruments-why-access-canal-curvature/spa
dc.relation.references[80] Plotino G, Grande NM, Cordaro M, Testarelli L, Gambarini G. A Review of Cyclic Fatigue Testing of Nickel-Titanium Rotary Instruments. J Endod. 2009;35(11):1469-76.spa
dc.relation.references[81] De-Deus, G., Moreira, E. J., Lopes, H. P. & Elias, C. N. Extended cyclic fatigue life of F2 ProTaper instruments used in reciprocating movement. Int. Endod. J. 43, 1063{1068.spa
dc.relation.references[82] Yao JH, Schwartz SA, Beeson TJ. Cyclic fatigue of three types of rotary nickel-titanium files in a dynamic model. J Endod. 2006;32(1):55-7.spa
dc.relation.references[83] Anderson ME, Price JW, Parashos P. Fracture resistance of electropolished rotary nickel-titanium endodontic instruments. J Endod. 2007;33(10):1212-6.spa
dc.relation.references[84] Cheung GS, Shen Y, Darvell BW. Does electropolishing improve the low-cycle fatigue behavior of a nickel-titanium rotary instrument in hypochlorite? J Endod. 2007;33(10):1217-21.spa
dc.relation.references[85] Bui TB, Mitchell JC, Baumgartner JC. Effect of electropolishing ProFile nickel-titanium rotary instruments on cyclic fatigue resistance, torsional resistance, and cutting efficiency. J Endod. 2008;34(2):190-3.spa
dc.relation.references[86] Cheung GS, Darvell BW. Low-cycle fatigue of rotary NiTi endodontic instruments in hypochlorite solution. Dent Mater. 2008;24(6):753-9.spa
dc.relation.references[87] Gambarini G, Galli M, Seracchiani M, Di Nardo D, Versiani MA, Piasecki L, Testarelli L. In Vivo Evaluation of Operative Torque Generated by Two Nickel- Titanium Rotary Instruments during Root Canal Preparation. Eur J Dent. 2019 Oct;13(4):556-562.spa
dc.relation.references[88] Pirani C, Iacono F, Generali L, Sassatelli P, Nucci C, Lusvarghi L, et al. HyFlex EDM: superficial features, metallurgical analysis and fatigue resistance of innovative electro-discharge machined NiTi rotary instruments. Int Endod J. 2016;49(5):483-93.spa
dc.relation.references[89] Kirk D. Shot peening. Aircraft Engineering and Aerospace Technology: An International Journal. 1999;71(4):349-61.spa
dc.relation.references[90] McGuigan MB, Louca C, Duncan HF. Endodontic instrument fracture: causes and prevention. Br Dent J. 2013;214(7):341-8.spa
dc.relation.references[91] Zupanc J, Vahdat-Pajouh N, Schafer E. New thermomechanically treated NiTi alloys - a review. Int Endod J. 2018;51(10):1088-103.spa
dc.relation.references[92] Jyothikiran H, Shantharaj R, Batra P, Subbiah P, Lakshmi B, Kudagi V. Total recall: an update on orthodontic wires. Int J Orthod Milwaukee. 2014;25(3):47- 56.spa
dc.relation.references[93] Dalstra M, Denes G, Melsen B. Titanium-niobium, a new finishing wire alloy. Clin Orthod Res. 2000;3(1):6-14.spa
dc.relation.references[94] Wood RM. Martensitic alpha and omega phases as deformation products in a titanium-15% molybdenum alloy. Acta Metallurgica. 1963;11(8):907-14.spa
dc.relation.references[95] Saito T, Furuta T, Hwang JH, Kuramoto S, Nishino K, Suzuki N, et al. Multifunctional Alloys Obtained via a Dislocation-Free Plastic Deformation Mechanism. Science. 2003;300(5618):464-7.spa
dc.relation.references[96] Nino-Barrera JL, Aldana-Ojeda L, Gamboa-Martínez LF, Acosta-Humanez M, Silva-Castellanos C, Cortés-Rodríguez CJ. Comparison of Mechanical and Structural Properties of Nickel-titanium Alloy with Titanium-molybdenum Alloy and Titanium-niobium Alloy as Potential Metals for Endodontic Files. Iranian Endod J. 2021;16(1):49-55.spa
dc.relation.references[97] Divakarla SK, Yamaguchi S, Kokubo T, Han DW, Lee JH, Chrzanowski W. Improved bioactivity of GUMMETAL((R)), Ti59Nb36Ta2Zr3O0.3, via formation of nanostructured surfaces. J Tissue Eng. 2018;9:2041731418774178.spa
dc.relation.references[98] Mishchenko O, Ovchynnykov O, Kapustian O, Pogorielov M. New Zr-Ti-Nb Alloy for Medical Application: Development, Chemical and Mechanical Properties, and Biocompatibility. Materials (Basel). 2020;13(6).spa
dc.relation.references[99] Es-Souni M, Es-Souni M, Fischer-Brandies H. Assessing the biocompatibility of NiTi shape memory alloys used for medical applications. Anal Bioanal Chem. 2005;381(3):557-67.spa
dc.relation.references[100] Puertolas S, Perez-Garcia JM, Gracia L, Cegonino J, Ibarz E, Puertolas JA, et al. Design of splints based on the NiTi alloy for the correction of joint deformities in the fingers. Biomed Eng Online. 2010;9:49.spa
dc.relation.references[101] Stepan LL, Levi DS, Carman GP. A thin film nitinol heart valve. J Biomech Eng. 2005;127(6):915-8.spa
dc.relation.references[102] Andreasen GF, Hilleman TB. An evaluation of 55 cobalt substituted Nitinol wire for use in orthodontics. J Am Dent Assoc. 1971;82(6):1373-5.spa
dc.relation.references[103] ANSI/ADA Speci cation N° 28-2002. Root canal files and reamers, type K for hand use. Chicago, IL: American Dental Association.spa
dc.relation.references[104] Nino-Barrera JL, Sánchez-Aleman JA, Gamboa-Martínez L, Cortés-Rodríguez C. Resistance to fracture due to cyclic fatigue of stainless steel manual files and its association to surface roughness. Acta Odontol Latinoam. 2021;34(1):18-26.spa
dc.relation.references[105] Larsen CM, Watanabe I, Glickman GN, He J. Cyclic fatigue analysis of a new generation of nickel-titanium rotary instruments. J Endod. 2009;35(3):401-3.spa
dc.relation.references[106] Rodrigues RC, Lopes HP, Elias CN, Amaral G, Vieira VT, De Martin AS. Influence of different manufacturing methods on the cyclic fatigue of rotary nickel-titanium endodontic instruments. J Endod. 2011;37(11):1553-7.spa
dc.relation.references[107] Lopes HP, Elias CN, Vieira MV, Vieira VT, de Souza LC, Dos Santos AL. Influence of Surface Roughness on the Fatigue Life of Nickel-Titanium Rotary Endodontic Instruments. J Endod. 2016 Jun;42(6):965-8.spa
dc.relation.references[108] Cheung GS, Zhang EW, Zheng YF. A numerical method for predicting the bending fatigue life of NiTi and stainless steel root canal instruments. Int Endod J. 2011;44(4):357-61.spa
dc.relation.references[109] Kruml T, Petrenec M, Obrtlíka K, Polák J, Bucek P. Influence of niobium alloying on the low cycle fatigue of cast TiAl alloys at room and high temperatures. Procedia Engineering. 2010;2(1):2297-305.spa
dc.relation.references[110] Cao J, Bai F, Li Z. High temperature low cycle fatigue behavior of titanium aluminide Ti{24Al{15Nb{1Mo alloy. Materials Science and Engineering: A. 2006;424(1-2):47-52.spa
dc.relation.references[111] Murakami T, Iijima M, Muguruma T, Yano F, Kawashima I, Mizoguchi I. High-cycle fatigue behavior of beta-titanium orthodontic wires. Dent Mater J. 2015;34(2):189-95.spa
dc.relation.references[112] Viana AC, Chaves Craveiro de Melo M, Guiomar de Azevedo Bahia M, Lopes Buono VT. Relationship between flexibility and physical, chemical, and geometric characteristics of rotary nickel-titanium instruments. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010;110(4):527-33.spa
dc.relation.references[113] Goldberg J, Burstone CJ. An evaluation of beta titanium alloys for use in orthodontic appliances. J Dent Res. 1979;58(2):593-99.spa
dc.relation.references[114] Nagasako N, Asahi R, Isheim D, Seidman DN, Kuramoto S, Furuta T. Microscopic study of gum-metal alloys: A role of trace oxygen for dislocation-free deformation. Acta Materialia. 2016;105:347-54.spa
dc.relation.references[115] Cheung GS, Darvell BW. Fatigue testing of a NiTi rotary instrument. Part 2: Fractographic analysis. Int Endod J. 2007;40(8):619-25.spa
dc.relation.references[116] Elnaghy AM, Elsaka SE. Laboratory comparison of the mechanical properties of TRUShape with several nickel-titanium rotary instruments. Int Endod J. 2017;50(8):805-12.spa
dc.relation.references[117] Sugano M, Tsuchida Y, Satake T, Ikeda M. A microstructural study of fatigue fracture in titanium molybdenum alloys. Materials Science and Engineering A structural Materials Properties Microstructure and Processing. 1998;243:163-8.spa
dc.relation.references[118] Acosta EC, Resende PD, Peixoto IF, Pereira ES, Buono VT, Bahia MG. Influence of Cyclic Flexural Deformation on the Torsional Resistance of Controlled Memory and Conventional Nickel-titanium Instruments. J Endod. 2017;43(4):613-8.spa
dc.relation.references[119] Grande NM, Plotino G, Pecci R, Bedini R, Malagnino VA, Somma F. Cyclic fatigue resistance and three-dimensional analysis of instruments from two nickel-titanium rotary systems. Int Endod J. 2006;39(10):755-63.spa
dc.relation.references[120] Azimi S, Delvari P, Hajarian HC, Saghiri MA, Karamifar K, Lot M. Cyclic Fatigue Resistance and Fractographic Analysis of Race and Protaper Rotary NiTi Instruments. Iran Endod J. 2011;6(2):80-6.spa
dc.relation.references[121] Montalvao D, Shengwen Q, Freitas M. A study on the influence of NiTi MWire in the flexural fatigue life of endodontic rotary files by using Finite Element Analysis. Materials Science and Engineering: C. 2014;40:172-9.spa
dc.relation.references[122] Scattina A, Alovisi M, Paolino DS, Pasqualini D, Scotti N, Chiandussi G, et al. Prediction of Cyclic Fatigue Life of Nickel-Titanium Rotary Files by Virtual Modeling and Finite Elements Analysis. J Endod. 2015;41(11):1867-70.spa
dc.relation.references[123] Mohammadi Z, Soltani MK, Shalavi S, Asgary S. A review of the various surface treatments of NiTi instruments. Iran Endod J. 2014;9(4):235-40.spa
dc.relation.references[124] da Silva MA, Ponciano Gomes JA, Ormiga F. Influence of electrochemical polishing on the mechanical behaviour of nickel-titanium rotary files. Aust Endod J. 2013 Aug;39(2):73-7.spa
dc.relation.references[125] Vaara J, Kunnari A, Frondelius T. Literature review of fatigue assessment methods in residual stressed state. Engineering Failure Analysis. 2020;110:104379.spa
dc.relation.references[126] Dalaei K, Karlsson B, Svensson LE. Stability of residual stresses created by shot peening of pearlitic steel and their influence on fatigue behaviour. Proced Eng. 2010;2(1):613-22.spa
dc.relation.references[127] Li X, Zhang J, Yang B, Zhang J, Wu M, Lu L. Effect of micro-shot peening, conventional shot peening and their combination on fatigue property of EA4T axle steel. J Mater Process Techn. 2020;275:116320.spa
dc.relation.references[128] Kumar D, Idapalapati S, Wang W, Child DJ, Haubold T, Wong CC. Microstructure-mechanical property correlation in shot peened and vibro-peened Ni-based superalloy. J Mater Process Tech. 2019;267:215-29.spa
dc.relation.references[129] Ipar-Blast SL, Vázquez. E. El Shot Peening y sus aplicaciones. AIAS Informativo de la Asociación de industrias de acabados de superficies. 2009;79(Abril):3-9.spa
dc.relation.references[130] Burrell NK. Controlled Shot Peening of Automotive Components. SAE Transactions. 1985;94:44-51.spa
dc.relation.references[131] Watanabe Y. Effective production techniques designed to improve the contact fatigue strength of automatic transmission gear teeth. JSAE Review. 2003;24(2):215-20.spa
dc.relation.references[132] Zebrowski R, Walczak M, Korga A, Iwan M, Szala M. Effect of Shot Peening on the Mechanical Properties and Cytotoxicity Behaviour of Titanium Implants Produced by 3D Printing Technology. Journal of Healthcare Engineering. 2019;2019:8169538.spa
dc.relation.references[133] Tokue A, Hayakawa T, Ohkubo C. Fatigue resistance and retentive force of cast clasps treated by shot peening. J Prosth Res. 2013;57(3):186-94.spa
dc.relation.references[134] Zhou F, Jiang W, Du Y, Xiao C. A Comprehensive Numerical Approach for Analyzing the Residual Stresses in AISI 301LN Stainless Steel Induced by Shot Peening. Materials. 2019;12(20):3338.spa
dc.relation.references[135] Kirk D, Abyaneh M. Theoretical basis of shot peening coverage control. Shot Peener(USA). 1995;9(2):28-30.spa
dc.relation.references[136] Gundogar M, Uslu G, Ozyurek T, Plotino G. Comparison of the cyclic fatigue resistance of VDW.ROTATE, TruNatomy, 2Shape, and HyFlex CM nickel-titanium rotary les at body temperature. Restor Dent Endod. 2020;45(3):e37-e.spa
dc.relation.references[137] Sathyajith S, Kalainathan S. Effect of laser shot peening on precipitation hardened aluminum alloy 6061-T6 using low energy laser. Opt Las Eng. 2012;50(3):345-8.spa
dc.relation.references[138] Chen M, Jiang C, Xu Z, Zhan K, Ji V. Experimental study on macro- and microstress state, microstructural evolution of austenitic and ferritic steel processed by shot peening. Surf Coat Tech. 2019;359:511-9.spa
dc.relation.references[139] Chateigner D. Thin film analysis by X-ray scattering. By Mario Birkholz, with contributions by P. F. Fewster and C. Genzel. Pp. xxii+356. Weinheim: Wiley- VCH Verlag GmbH Co., 2005. Price (hardcover) EUR 119, SFR 188. ISBN-10: 3-527-31052-5; ISBN-13: 978-3-527-31052-4. J Appl Crystallogr. 2006;39(6):925- 6.spa
dc.relation.references[140] Rogers KD, Daniels P. An X-ray diffraction study of the effects of heat treatment on bone mineral microstructure. Biomaterials. 2002;23(12):2577-85.spa
dc.relation.references[141] Zhang Z, Zhou F, Lavernia EJ. On the analysis of grain size in bulk nanocrystalline materials via x-ray diffraction. Metall Mater Transactions A. 2003;34(6):1349-55.spa
dc.relation.references[142] Dorset DL. X-ray Diffraction: A Practical Approach. Microsc Microanal. 2005;4(5):513-5.spa
dc.relation.references[143] Ceglias RB, Alves JM, Botelho RA, Baeta Junior EdS, Santos ICd, Moraes NRDCd, et al. Residual Stress Evaluation by X-Ray Diffraction and Hole-Drilling in an API 5L X70 Steel Pipe Bent by Hot Induction. Mater Res. 2016;19(5):1176- 9.spa
dc.relation.references[144] Lai H-H, Cheng H-C, Lee C-Y, Lin C-M, Wu W. Effect of shot peening time on d/g residual stress profiles of AISI 304 weld. J Mater Process Tech. 2020;284:116747.spa
dc.relation.references[145] Deng Z, Ma J, Yin B, Li W, Liu J, Yang J, et al. Surface characteristics of and in vitro behavior of osteoblast-like cells on titanium with nanotopography prepared by high-energy shot peening. International J Nanomed. 2014:5565.spa
dc.relation.references[146] Jindal S, Bansal R, Singh BP, Pandey R, Narayanan S,Wani MR, et al. Enhanced Osteoblast Proliferation and Corrosion Resistance of Commercially Pure Titanium Through Surface Nanostructuring by Ultrasonic Shot Peening and Stress Relieving. J Oral Implantol. 2014;40(S1):347-55.spa
dc.relation.references[147] Benedetti M, Torresani E, Leoni M, Fontanari V, Bandini M, Pederzolli C, et al. The effect of post-sintering treatments on the fatigue and biological behavior of Ti-6Al-4V ELI parts made by selective laser melting. J Mech Behav Biomed Mater. 2017;71:295-306.spa
dc.relation.references[148] Martins JNR, Nogueira Leal Silva EJ, Marques D, Ginjeira A, Braz Fernandes FM, De Deus G, et al. Influence of Kinematics on the Cyclic Fatigue Resistance of Replicalike and Original Brand Rotary Instruments. J Endod. 2020;46(8):1136- 43.spa
dc.relation.references[149] Al-Qudah AA, Mitchell CA, Biagioni PA, Hussey DL. Thermographic investigation of contemporary resin-containing dental materials. J Dent. 2005;33(7):593- 602.spa
dc.relation.references[150] Kwon S-J, Park Y-J, Jun S-H, Ahn J-S, Lee I-B, Cho B-H, et al. Thermal irritation of teeth during dental treatment procedures. Restor Dent Endod. 2013;38(3):105-12.spa
dc.relation.references[151] Keles A, Eymirli A, Uyanik O, Nagas E. Influence of static and dynamic cyclic fatigue tests on the lifespan of four reciprocating systems at different temperatures. Int Endod J. 2019 Jun;52(6):880-886.spa
dc.relation.references[152] Dosanjh A, Paurazas S, Askar M. The Effect of Temperature on Cyclic Fatigue of Nickel-titanium Rotary Endodontic Instruments. J Endod. 2017 May;43(5):823- 826.spa
dc.relation.references[153] Huang X, Shen Y, Wei X, Haapasalo M. Fatigue Resistance of Nickel titanium Instruments Exposed to High-concentration Hypochlorite. J Endod. 2017 Nov;43(11):1847-1851.spa
dc.relation.references[154] Peral LB, Zafra A, Bagherifard S, Guagliano M, Fern andez-Pariente I. Effect of warm shot peening treatments on surface properties and corrosion behavior of AZ31 magnesium alloy. Surf Coat Tech. 2020;401:126285.spa
dc.relation.references[155] Lopes HP, Elias CN, Siqueira JF Jr, Soares RG, Souza LC, Oliveira JC, Lopes WS, Mangelli M. Mechanical behavior of pathfinding endodontic instruments. J Endod. 2012 Oct;38(10):1417-21.spa
dc.relation.references[156] Capar ID, Kaval ME, Ertas H, Sen BH. Comparison of the cyclic fatigue resistance of 5 different rotary pathfinding instruments made of conventional nickel-titanium wire, M-wire, and controlled memory wire. J Endod. 2015 Apr;41(4):535-8.spa
dc.relation.references[157] Canalda-Sahli C, Brau-Aguade E, Berastegui-Jimeno E. A comparison of bending and torsional properties of K- files manufactured with different metallic alloys. Int Endod J. 1996 May;29(3):185-9.spa
dc.relation.references[158] Ratti, G., Mariani, U., Giglio, M. & Guagliano, M. In ICAF 2009, Effect of residual stresses from shot peening on fatigue strength and threshold to crack propagation of al 7475 alloy components Bridging the Gap between Theory and Operational Practice (ed. Bos M.J.) 859{870 (Springer).spa
dc.relation.references[159] Lin Q, Liu H, Zhu C, Chen D, Zhou S. Effects of different shot peening parameters on residual stress, surface roughness and cell size. Surf Coat Tech. 2020;398:126054.spa
dc.relation.references[160] Soyama H, Chighizola CR, Hill MR. Effect of compressive residual stress introduced by cavitation peening and shot peening on the improvement of fatigue strength of stainless steel. J Mater Process Tech. 2021;288:116877.spa
dc.relation.references[161] Shen X, Shukla P, Nath S, Lawrence J. Improvement in mechanical properties of titanium alloy (Ti-6Al-7Nb) subject to multiple laser shock peening. Surf Coat Tech. 2017;327:101-9.spa
dc.relation.references[162] Dorr T., Wagner L, editor Fatigue response of various titanium alloys to shot peening. Transactions on Engineering Sciences 1999; Germany.spa
dc.relation.references[163] Prevey, P. S. In Shot Peening Theory and Application (ed IITT-International A. Niku-Lari) 81{93 (www.lambdatechs.com, Gournay-Sur-Marne, France, 1990).spa
dc.relation.references[164] Wang Z, Luan W, Huang J, Jiang C. XRD investigation of microstructure strengthening mechanism of shot peening on laser hardened 17-4PH. Mater Sci Eng: A. 2011;528(21):6417-25spa
dc.relation.references[165] Karimbaev R, Pyun Y-S, Maleki E, Unal O, Amanov A. An improvement in fatigue behavior of AISI 4340 steel by shot peening and ultrasonic nanocrystal surface modifi cation. Mater Sci Eng: A. 2020;791:139752.spa
dc.relation.references[166] Shen J-N, Zeng Y-B, Xu M-H, Zhu L-H, Liu B-L, Guo H. Effects of annealing parameters on residual stress and piezoelectric performance of ZnO thin films studied by X-ray diffraction and atomic force microscopy. J Appl Crystallogr. 2019;52(5):951-9.spa
dc.relation.references[167] Townsend A, Senin N, Blunt L, Leach RK, Taylor JS. Surface texture metrology for metal additive manufacturing: a review. Precis Eng. 2016;46:34-47.spa
dc.relation.references[168] Kaplonek W, Nadolny K, Krolczyk GM. The Use of Focus-Variation Microscopy for the Assessment of Active Surfaces of a New Generation of Coated Abrasive Tools. Sci Review. 2016;16(2):42-53.spa
dc.relation.references[169] Scholtes B, Voehringer O. Mechanical Surface Treatment. In: Buschow KHJ, Cahn RW, Flemings MC, Ilschner B, Kramer EJ, Mahajan S, et al., editors. Encyclopedia of Materials: Science and Technology. Oxford: Elsevier; 2001. p. 5253-61.spa
dc.relation.references[170] Haikel Y, Serfaty R, Bateman G, Senger B, Allemann C. Dynamic and cyclic fatigue of engine-driven rotary nickel-titanium endodontic instruments. J Endod. 1999 Jun;25(6):434-40.spa
dc.relation.references[171] Tu ST, Zhang XC. Fatigue Crack Initiation Mechanisms. Reference Module in Materials Science and Materials Engineering: Elsevier; 2016.spa
dc.relation.references[172] Bogachev I, Knowles KM, Gibson GJ. Electron backscattered diffraction analysis of cold work in a shot peened single crystal nickel superalloy. Materialia. 2020;14:100860.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.lembALEACIONES DE TITANIOspa
dc.subject.lembTitanium alloyseng
dc.subject.lembMATERIALES DENTALESspa
dc.subject.lembDental materialseng
dc.subject.proposalFatiga Cíclicaspa
dc.subject.proposalLimas Endodónticasspa
dc.subject.proposalNíquel-Titaniospa
dc.subject.proposalShot peeningspa
dc.subject.proposalTitanioMolibdenospa
dc.subject.proposalTitanio-Niobiospa
dc.subject.proposalCyclic Fatigueeng
dc.subject.proposalEndodontic Fileseng
dc.subject.proposalNickel-Titaniumeng
dc.subject.proposalShot Peeningeng
dc.subject.proposalTitaniumMolybdenumeng
dc.subject.proposalTitanium-Niobiumeng
dc.titleEvaluation of materials and micro shot peening to increase resistance to failure due to cyclic fatigue in rotary endodontic fileseng
dc.title.translatedEvaluacion de materiales y de micro shot peening para aumentar la resistancia a la falla debido a fatiga ciclica en limas rotatorias de endodonciaspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
tesis doctorado javier niño def.pdf
Tamaño:
2.57 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: