Efecto de enmiendas con biocarbones sobre propiedades físicas, químicas y Fitoabsorción de Cadmio en suelos disímiles sembrados con lechuga

dc.contributor.advisorCuervo Andrade, Jairo Leonardo
dc.contributor.advisorMartínez Cordón, María José
dc.contributor.authorRivera, Julio César
dc.contributor.researchgroupSISTEMAS INTEGRADOS DE PRODUCCIÓN AGRICOLA Y FORESTALspa
dc.contributor.researchgroupLABORATORIO DE INVESTIGACIÓN EN COMBUSTIBLES Y ENERGÍAspa
dc.date.accessioned2021-10-12T21:04:57Z
dc.date.available2021-10-12T21:04:57Z
dc.date.issued2021-10-11
dc.descriptionilustraciones, fotografías, gráficas, mapas, tablasspa
dc.description.abstractEl biocarbón actualmente es un material de interés, rico en carbono que cuenta con propiedades potenciales para uso como enmienda de suelos y remediación de la contaminación con metales pesados. Se obtiene por pirólisis (descomposición térmica en ausencia de oxígeno) a partir de residuos de biomasas. Esta investigación utilizó biocarbones producidos con raquis de palma (BRP), cuesco de palma (BCP), poda de árboles (BP), pulpa de café (BC) y tallos de rosa (BTR), con el objetivo de caracterizarlos, evaluarlos como enmiendas sobre el crecimiento de lechuga (Lactuca sativa) y determinar su efecto en propiedades físico-químicas de suelos disímiles (Ferralsol, Umbrisol, Andosoles y Tecnosol) contaminados con cadmio. Después establecer las propiedades físicas y químicas de las biocarbones; en cinco ensayos en matera se evaluaron los tratamientos 0, 3, 6, 9 y 12 ton ha-1 de biocarbón y fertilización convencional durante dos ciclos de siembra. Se encontró que BTR, BC y BRP presentan potencial para uso agrícola, mientras que BCP y BP tienen potencial ambiental. BC y BTR muestran una alta correlación negativa en la concentración de cadmio en el tejido foliar de plantas de lechuga frente al aumento de las dosis de biocarbón aplicadas, indicando que mitiga el efecto fitotóxico del cadmio en las plantas; se encontró que el uso de biocarbón mejora la densidad aparente y real, porosidad, capacidad de retención de humedad. Finalmente, se encontró que el pH y Capacidad de Intercambio Catiónico, aumentaron con la aplicación de los biocarbones. Los biocarbones en estudio permiten la enmienda de suelos, mitigar los efectos de la contaminación con cadmio y el aprovechamiento de biomasas contaminantes. (Texto tomado de la fuente)spa
dc.description.abstractCurrently biochar is a material of interest, rich in carbon with potential properties that allow its use as soil amendment and remediation for heavy metals contamination. The Biochars were obtained by pyrolysis (thermal decomposition in the absence of oxygen) using biomass residues. This research used palm rachis (BRP), palm kernel (BCP), wood waste (BP), coffee pulp (BC) and rose stems (BTR) biochars in order to characterize them and evaluate them as amendments in the growth of lettuce (Lactuca sativa), and determine its effect on physicochemical properties of dissimilar soils (Ferralsols, Umbrisols, Andosols, and Technosols) contaminated with cadmium. In five pot trials, treatments 0, 3, 6, 9 & 12- ton ha-1 of biochar and conventional fertilization were evaluated during two lettuce planting cycles. BTR, BC and BRP were found to have potential for agricultural use, while BCP and BP have environmental potential. BC and BTR show a high negative correlation in cadmium concentration in the leaf tissue of lettuce plants compared to the increase in the doses of biochar applied, indicating that it mitigates the phytotoxic effect of cadmium in plants. It was found that the use of biochar improves bulk and real density, porosity, water holding capacity. Finally, pH, cationic exchange capacity, increased with the application of biochar. The biochar under study allow the amendment of soils, mitigate the effects of cadmium contamination and the use of polluting biomass.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Agrariasspa
dc.description.methodsPara la investigación los biocarbones se produjeron por medio del proceso de pirólisis lenta, en un horno rotatorio de 7 m de largo y un diámetro de 0.6 m, con una tasa de calentamiento de 5.5 ° C s-1 hasta llegar a una temperatura de 450 °C con un tiempo de residencia de 45 min; posteriormente se caracterizaron en el Laboratorio de Investigación en Combustibles y Energía y el de Química Agrícola del Departamento de Química de la Universidad Nacional de Colombia, sede Bogotá. Se estableció un cultivo de lechugas en los invernaderos de la Facultad de Ciencias Agrarias ubicado en las coordenadas 4° 38´11.89" N, y a 74° 05' 17.65" O a una altura de 2656 m.s.n.m., se registró una temperatura promedio de 19.2ºC, con una máxima promedio de 24.7ºC y una mínima promedio de 14.6 ºC. Las lechugas se sembraron en materas de 20 cm de diámetro y 20 cm de alto en un sistema de riego por goteo, estableciendo cinco ensayos bajo diseños experimentales completamente al azar, uno para cada tipo de suelo muestreado en las zonas agroecológicas donde se encuentran problemas ambientales por desechos agroindustriales; se evaluaron seis tratamientos que consistieron cinco dosis de biocarbón de 0, 3, 6, 9 y 12 ton ha-1 y fertilización convencional con cuatro repeticiones y un total de 120 unidades experimentales. Posteriormente, se determinó el efecto en el crecimiento de lechuga en dos ciclos de siembra y después de nueve meses se evaluaron los efectos de las enmiendas con biocarbón en las propiedades físicas y químicas de cuatro suelos disímiles (Ferralsol, Andosol, Umbrisol y Tecnosol) contaminados artificialmente con cadmio en el Laboratorio de suelos de la Universidad Jorge Tadeo Lozano, el resumen del proceso metodológico se puede ver en el Anexo 1. 1) En el capítulo 1 se describe la Producción y caracterización de biocarbones: La producción del biocarbón se realizó a partir de cinco biomasas de residuos agroindustriales de palma, café, rosas y residuos de podas; para la caracterización de los biocarbones se utilizaron metodologías reconocidas por la Sociedad Americana para Pruebas y Materiales ASTM: En cuanto a las propiedades físicas se valoró densidad aparente (cilindro) y real (picnómetro), distribución de tamaño de partículas, capacidad de retención de humedad y se tomaron imágenes de microscopía electrónica SEM; para las propiedades químicas se realizó: Análisis próximo y último, espectroscopía de Raman e infrarroja (FTIR), capacidad de intercambio catiónico, pH, conductividad eléctrica, contenido de bases intercambiables (absorción atómica) y contenido de Nitrógeno, Fósforo y Azufre, 2) En el capítulo 2 se evaluó el efecto en variables fisiológicas de lechuga por el uso de biocarbones en suelos disímiles contaminados con cadmio: Se realizaron cinco experimentos en materas con dos kilogramos de suelos disímiles (Ferralsol, Andosol, Umbrisol y Tecnosol) + biocarbón (5 dosis) y fertilización convencional, estos suelos proceden de los lugares donde se tomaron los desechos agroindustriales. Se midió altura, número de hojas, área de cobertura del follaje, contenido relativo de clorofila, conductancia estomática, longitud de raíz, peso fresco, peso seco y relación de peso foliar (RPF). Finalmente se valoró el contenido de cadmio en las hojas en el primer ciclo de siembra. Para el segundo ciclo de siembra se midió altura, número de hojas, peso fresco y peso seco. 3) En el capítulo 3 se evaluó el efecto en las propiedades físicas y químicas del suelo por el uso de biocarbones Después de dos ciclos de siembra (nueve meses), se tomaron muestras de los suelos sometidos a la contaminación con cadmio y tratados con biocarbón; con el objetivo de evaluar el efecto de la aplicación de los biocarbones fabricados en la propiedades físicas y químicas de suelos disímiles (Ferralsol, Andosol, Umbrisol y Tecnosol). Se caracterizaron los siguientes parámetros: a. Propiedades Físicas: densidad aparente (método del cilindro) y real (método del picnómetro) y capacidad de retención de humedad. b. Propiedades Químicas: pH (Suspensión en agua 1:1, CIC (acetato - NH4 1M pH 7 y NaCl; volumétrico). Conductividad eléctrica (Extracto de la pasta saturada), Carbono orgánico oxidable (Walkley y Black), nitrógeno mineral y amoniacal (Kjeldahl), bases de cambio Mg, K, Ca y Na (absorción atómica) y fósforo disponible (Bray II).spa
dc.description.researchareaSuelos y aguasspa
dc.description.researchareaMateriales carbonososspa
dc.format.extent164 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80523
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentEscuela de posgradosspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Ciencias Agrariasspa
dc.relation.referencesAbenza, D. P., 2012. Evaluación de efectos de varios tipos de biochar en suelo y planta, 111.spa
dc.relation.referencesAlloway, B.J., Steinnes, E., 1999. Anthropogenic Additions of Cadmium to Soils. Cadmium in Soils and Plants 97–123. https://doi.org/10.1007/978-94-011-4473-5_5spa
dc.relation.referencesBiswas, B., Pandey, N., Bisht, Y., Singh, R., Kumar, J., Bhaskar, T., 2017. Pyrolysis of agricultural biomass residues: Comparative study of corn cob, wheat straw, rice straw and rice husk. Bioresour. Technol. 237, 57–63. https://doi.org/10.1016/j.biortech.2017.02.046spa
dc.relation.referencesCadavid, L., Bolaños, I., 2015. Aprovechamiento de residuos orgánicos para la producción de energía renovable en una ciudad colombiana. Energética 0, 23–28.spa
dc.relation.referencesCooper, J., Greenberg, I., Ludwig, B., Hippich, L., Fischer, D., Glaser, B., Kaiser, M., 2020. Effect of biochar and compost on soil properties and organic matter in aggregate size fractions under field conditions. Agriculture, Ecosystems and Environment, 295. 9 pp.spa
dc.relation.referencesCuervo, G., Gomeéz, C., 2003. Vista de La desertificación en Colombia y el cambio global.pdf.spa
dc.relation.referencesEscalante, A., Pérez, G. Hidalgo, C., López J., Campo J., Valtierra, E., Etchevers, J., 2016. Biocarbón (Biochar) I: Naturaleza, fabricación y uso en el suelo. Red de Revistas Científicas de América Latina, Volumen 34, numero3, 367– 382.spa
dc.relation.referencesEspinoza, Jorge, and Yolanda Rubiano. 2015. “Procesos Específicos De Formación En Andisoles, Alfisoles Y Ultisoles En Colombia.” Revista EIA (spe2): 85–97.spa
dc.relation.referencesFAO. 2014. Actualización 2015 Base Referencial Mundial Del Recurso Suelo 2014: Sistema Internacional de Clasificación de Suelos. https://www.iec.cat/mapasols/DocuInteres/PDF/Llibre59.pdf.spa
dc.relation.referencesFAO, 2015. World’ s Soil Resources. Food and Agriculture Organization of the United Nations (FAO).spa
dc.relation.referencesGarcía, Clara Roa et al. 2021. “Relationship of Soil Water Retention Characteristics and Soil Properties: A Case Study from the Colombian Andes.” Canadian Journal of Soil Science 101(1): 144–56.spa
dc.relation.referencesGlaser B, Lehmann J, and Zech W. 2002. Ameliorating pHysical and chemical properties of highly weathered soils in the tropics with charcoal: a review. Biol Fert Soils 35: 219–30.spa
dc.relation.referencesHernandez-Mena, L.E., Pecora, A. a B., Beraldo, A.L., 2014. Slow pyrolysis of bamboo biomass: Analysis of biochar properties. Chem. Eng. Trans. 37, 115–120. https://doi.org/10.3303/CET1437020.spa
dc.relation.referencesIDEAM, U.D.C.A 2015. Síntesis del estudio nacional de la degradación de suelos por erosión en Colombia. IDEAM - MADS. Bogotá D.C., Colombia. Publicación aprobada por el IDEAM, Diciembre de 2015, pp. 25. Bogotá D.C., Colombia.spa
dc.relation.referencesKubier, A., Wilkin, R.T., Pichler, T., 2019. Cadmium in soils and groundwater: A review. Appl. Geochemistry 108. https://doi.org/10.1016/j.apgeochem.2019.104388spa
dc.relation.referencesLeguédois, S., Sèéré, G., Auclrec, A., Cortet, J., Huot, H., Ouvrard, S., Watteau, F., Schwartz, C., Morel, J. 2016. “Modelling Pedogenesis of Technosols.” Geoderma 262: 199–212. http://dx.doi.org/10.1016/j.geoderma.2015.08.008.spa
dc.relation.referencesLEHMANN, J. 2009 Biochar for Environmental Management: Science and Technology. Ed Earthscan, London, UK, 404spa
dc.relation.referencesLiu, X., Zhong, L., Meng, J., Wang, F., Zhang, J., Zhi, Y., Zeng, Z., Tang, X., Xu, J., 2018. A multi-medium chain modeling approach to estimate the cumulative effects of cadmium pollution on human health. Environmental Pollution, 239. 302 - 317 Pp.spa
dc.relation.referencesMahecha, J., Trujillo-gonzález, J.M., Torres-mora, M.A., 2017. Analysis of Studies in Heavy Metals in Agricultural Areas of Colombia. Revista Orinoquia Vol. 21 83–9.spa
dc.relation.referencesMalagón Castro, Dimas. 2003. “Ensayo Sobre Tipología De Suelos Colombianos - Énfasis En Génesis Y Aspectos Ambientales.” Rev. Acad. Colomb. Cienc. 27(104): 319–41.spa
dc.relation.referencesMarrugo, G., Valdés, C.F., Chejne, F., 2016. Characterization of Colombian Agroindustrial Biomass Residues as Energy Resources. Energy and Fuels 30, 8386–8398. https://doi.org/10.1021/acs.energyfuels.6b01596spa
dc.relation.referencesMoreno, J., Moral, R., Garcia, J., Pascual, J and Bernal M., 2014. De residuo a recurso el camino hacia la sostenibilidad. Edisiones mundi prensa Madrid, España pp. aña pp. 62-85.spa
dc.relation.referencesParedes, M., Silva-Agredo, J., Torres-Palma, R.A., 2018. Removal of norfloxacin in deionized, municipal water and urine using rice (Oryza sativa) and coffee (Coffea arabica) husk wastes as natural adsorbents. J. Environ. Manage. 213, 98–108. https://doi.org/10.1016/j.jenvman.2018.02.047spa
dc.relation.referencesPhiri, S., E. Amézquita, I. M. Rao, and B. R. Singh. 2001. “Disc Harrowing Intensity and Its Impact on Soil Properties and Plant Growth of Agropastoral Systems in the Llanos of Colombia.” Soil and Tillage Research 62(3–4): 131–43.spa
dc.relation.referencesQuevedo, B., Narváez-Rincón, P.C., Pedroza-Rodríguez, A.M., Velásquez-Lozano, M.E., 2015. Production of lignocellulolytic enzymes from floriculture residues using Pleurotus ostreatus. Univ. Sci. 20, 117–127. https://doi.org/10.11144/Javeriana.SC20-1.eplespa
dc.relation.referencesSohi, S. P., Krull, E., Lopez-Capel, E., and Bol, R. 2010. A review of biochar and its use and function in soil. Advances in Agronomy (1st ed., Vol. 105). Elsevier Inc. https://doi.org/10.1016/S0065-2113(10)05002-9spa
dc.relation.referencesTan, X., Liu, Y., Zeng, G., Wang, X., Hu, X., Gu, Y., Yang, Z., 2015. Application of biochar for the removal of pollutants from aqueous solutions. ChemospHere 125, 70–85. https://doi.org/10.1016/j.chemospHere.2014.12.058spa
dc.relation.referencesTsai, C.C.; Chen, Z.S.; Kao, C.I.; Ottner, F;, Kao, S.J.; Zehetner,F. (2010). Pedogenic Development of Volcanic Ash Soils.spa
dc.relation.referencesVan Ranst, E., Doube, M., Mees, F., Dumon, M., Ye, L., Delvaux, B., 2019. Andosolization of ferrallitic soils in the Bambouto Mountains, West Cameroon. Geoderma 340, 81–93. https://doi.org/10.1016/j.geoderma.2018.12.024spa
dc.relation.referencesYazdi, M., Kolahi, M., Mohajel, E., Goldson, A., 2019. Study of the contamination rate and change in growth features of lettuce (Lactuca sativa Linn.) in response to cadmium and a survey of its pHytochelatin synthase gene. Ecotoxicology and Environmental Safety, 180. 295 - 308 Pp.spa
dc.relation.referencesZhang, D., Pan, G., Wu, G., Kibue, G. W., Li, L., Zhang, X., Liu, X., 2015. Biochar helps enhance maize productivity and reduce greenhouse gas emissions under balanced fertilization in a rainfed low fertility Umbrisol. ChemospHere. https://doi.org/10.1016/j.chemospHere.2015.04.088spa
dc.relation.referencesAgronet. 2020. Red de información y comunicación del sector agro-pecuario colombiano (Agronet). Área cosechada, producción y rendimiento de Rosa 2007-2018. URL: http://www.agronet.gov.co (accessed 10 May 2020).spa
dc.relation.referencesAmin, F.R., Huang, Y., He, Y., Zhang, R., Liu, G., Chen, C., 2016. Biochar applications and modern techniques for characterization. Clean Technol. Environ. Policy 18, 1457–1473. https://doi.org/10.1007/s10098-016-1218-8spa
dc.relation.referencesAmonette, J.E., & Joseph, S. (2009). Characteristics of biochar: microchemical properties. In: Lehmann J, Joseph S, Eds. Biochar for environmental management: science and technology., Earthscan: London. p. 33-52.spa
dc.relation.referencesAsocolflores. (2002). Guía Ambiental para la Floricultura. DOI: 10.1088/0957- 4484/24/32/325602.spa
dc.relation.referencesASTM, D1762.-84, 2013. Standard test method for chemical analysis of wood charcol. Am. Soc. Test. Mater. 84, 1–2. https://doi.org/10.1520/D1762-84R13.2spa
dc.relation.referencesASTM, D.-87, 2007. ASTM D4749-87 Standard Test Methods for Performing the Sieve Analysis of Coal and Designating Coal Size. ASTM D4749-87 Stand. Test Methods Perform. Sieve Anal. Coal Des. Coal Size 87, 1–10. https://doi.org/10.1520/D4749-87R12.Copyrightspa
dc.relation.referencesASTM, D., 2000. D854 - Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer. Astm D854 2458000, 1–7. https://doi.org/10.1520/D0854-10.2spa
dc.relation.referencesBerek, A.K., Hue, N. V., 2016. Characterization of biochars and their use as an amendment to acid soils. Soil Sci. 181, 412–426. https://doi.org/10.1097/SS.0000000000000177spa
dc.relation.referencesBeusch, C., Cierjacks, A., Böhm, J., Mertens, J., Bischoff, W.A., de Araújo Filho, J.C., Kaupenjohann, M., 2019. Biochar vs. clay: Comparison of their effects on nutrient retention of a tropical Arenosol. Geoderma 337, 524–535. https://doi.org/10.1016/j.geoderma.2018.09.043spa
dc.relation.referencesBiswas, B., Pandey, N., Bisht, Y., Singh, R., Kumar, J., Bhaskar, T., 2017. Pyrolysis of agricultural biomass residues: Comparative study of corn cob, wheat straw, rice straw and rice husk. Bioresour. Technol. 237, 57–63. https://doi.org/10.1016/j.biortech.2017.02.046spa
dc.relation.referencesBrassard, P., Godbout, S., Raghavan, V., 2016. Soil biochar amendment as a climate change mitigation tool: Key parameters and mechanisms involved. J. Environ. Manage. 181, 484–497. https://doi.org/10.1016/j.jenvman.2016.06.063spa
dc.relation.referencesBray RH, Kurtz LT. 1945. Determination of total, organic, and available forms of phosphorus in soils. Soil Sci. 59:39–46.spa
dc.relation.referencesBrockhoff, S.R., Christians, N.E., Killorn, R.J., Horton, R., Davis, D.D., 2010. Physical and mineral-nutrition properties of sand-based turfgrass root zones amended with biochar. Agron. J. 102, 1627–1631. https://doi.org/10.2134/agronj2010.0188spa
dc.relation.referencesBuss, W., Shepherd, J.G., Heal, K. V, 2018. Geoderma Spatial and temporal microscale pH change at the soil-biochar interface 331, 50–52.spa
dc.relation.referencesCadavid, L., Bolaños, I., 2015. Aprovechamiento de residuos orgánicos para la producción de energía renovable en una ciudad colombiana. Energética 0, 23–28.spa
dc.relation.referencesCheng, F., Bayat, H., Jena, U., Brewer, C.E., 2020. Impact of feedstock composition on pyrolysis of low-cost, protein- and lignin-rich biomass: A review. J. Anal. Appl. Pyrolysis 147, 104780. https://doi.org/10.1016/j.jaap.2020.104780spa
dc.relation.referencesColantoni, A., Evic, N., Lord, R., Retschitzegger, S., Proto, A.R., Gallucci, F., Monarca, D., 2016. Characterization of biochars produced from pyrolysis of pelletized agricultural residues. Renew. Sustain. Energy Rev. 64, 187–194. https://doi.org/10.1016/j.rser.2016.06.003spa
dc.relation.referencesCrombie, K., Mašek, O., Sohi, S.P., Brownsort, P., Cross, A., 2013. The effect of pyrolysis conditions on biochar stability as determined by three methods. GCB Bioenergy 5, 122–131. https://doi.org/10.1111/gcbb.12030spa
dc.relation.referencesCzajczyńska, D., Nannou, T., Anguilano, L., Krzyzyńska, R., Ghazal, H., Spencer, N., Jouhara, H., 2017. Potentials of pyrolysis processes in the waste management sector. Energy Procedia 123, 387–394. https://doi.org/10.1016/j.egypro.2017.07.275spa
dc.relation.referencesCzajka, K.M., 2018. Proximate analysis of coal by micro-TG method. J. Anal. Appl. Pyrolysis 133, 82–90. https://doi.org/10.1016/j.jaap.2018.04.017spa
dc.relation.referencesEl-Naggar, A., Lee, S.S., Rinklebe, J., Farooq, M., Song, H., Sarmah, A.K., Zimmerman, A.R., Ahmad, M., Shaheen, S.M., Ok, Y.S., 2019. Biochar application to low fertility soils: A review of current status, and future prospects. Geoderma 337, 536–554. https://doi.org/10.1016/j.geoderma.2018.09.034spa
dc.relation.referencesElkhalifa, S., Al-Ansari, T., Mackey, H.R., McKay, G., 2019. Food waste to biochars through pyrolysis: A review. Resour. Conserv. Recycl. 144, 310–320. https://doi.org/10.1016/j.resconrec.2019.01.024spa
dc.relation.referencesElkhalifa, S., Al-Ansari, T., Mackey, H.R., McKay, G., 2019. Food waste to biochars through pyrolysis: A review. Resour. Conserv. Recycl. 144, 310–320. https://doi.org/10.1016/j.resconrec.2019.01.024spa
dc.relation.referencesF1815-11, A., 2020. Standard Test Methods for Saturated Hydraulic Conductivity , Water Retention , Porosity , and Bulk Density of Athletic Field Rootzones 1 i, 1–6. https://doi.org/10.1520/F1815-11R18.2spa
dc.relation.referencesFerreira, S.D., Manera, C., Silvestre, W.P., Pauletti, G.F., Altafini, C.R., Godinho, M., 2019. Use of Biochar Produced from Elephant Grass by Pyrolysis in a Screw Reactor as a Soil Amendment. Waste and Biomass Valorization 10, 3089–3100. https://doi.org/10.1007/s12649-018-0347-1spa
dc.relation.referencesFerreira, M.F.P., Oliveira, B.F.H., Pinheiro, W.B.S., Correa, N.F., França, L.F., Ribeiro, N.F.P., 2020. Generation of biofuels by slow pyrolysis of palm empty fruit bunches: Optimization of process variables and characterization of physical-chemical products. Biomass and Bioenergy 140. https://doi.org/10.1016/j.biombioe.2020.105707spa
dc.relation.referencesGiffin, S., Littke, R., Klaver, J., Urai, J.L., 2013. Application of BIB-SEM technology to characterize macropore morphology in coal. Int. J. Coal Geol. 114, 85–95. https://doi.org/10.1016/j.coal.2013.02.009spa
dc.relation.referencesGuo, X. xia, Liu, H. tao, Zhang, J., 2020. The role of biochar in organic waste composting and soil improvement: A review. Waste Manag. 102, 884–899. https://doi.org/10.1016/j.wasman.2019.12.003spa
dc.relation.referencesHale, S.E., Nurida, N.L., Jubaedah, Mulder, J., Sørmo, E., Silvani, L., Abiven, S., Joseph, S., Taherymoosavi, S., Cornelissen, G., 2020. The effect of biochar, lime and ash on maize yield in a long-term field trial in a Ultisol in the humid tropics. Sci. Total Environ. 719. https://doi.org/10.1016/j.scitotenv.2020.137455spa
dc.relation.referencesHan, G., Meng, J., Zhang, W., Chen, W., 2013. Effect of biochar on microorganisms quantity and soil physicochemical property in rhizosphere of spinach (Spinacia oleracea L.). Appl. Mech. Mater. 295–298, 210–219. https://doi.org/10.4028/www.scientific.net/AMM.295-298.210spa
dc.relation.referencesHarvey, O.R., Kuo, L.J., Zimmerman, A.R., Louchouarn, P., Amonette, J.E., Herbert, B.E., 2012. An index-based approach to assessing recalcitrance and soil carbon sequestration potential of engineered black carbons (biochars). Environ. Sci. Technol. 46, 1415–1421. https://doi.org/10.1021/es2040398spa
dc.relation.referencesHe, P., Liu, Y., Shao, L., Zhang, H., Lü, F., 2018. Particle size dependence of the physicochemical properties of biochar. Chemosphere 212, 385–392. https://doi.org/10.1016/j.chemosphere.2018.08.106spa
dc.relation.referencesHuong, P.T., Lee, B.K., Kim, J., Lee, C.H., Chong, M.N., 2016. Acid activation pine cone waste at differences temperature and selective removal of Pb2+ ions in water. Process Saf. Environ. Prot. 100, 80–90. https://doi.org/10.1016/j.psep.2015.12.002spa
dc.relation.referencesKeiluweit, M., Nico, P.S., Johnson, M.G., KLEBER, M., 2010. Dynamic Molecular Structure of Plant Biomass-derived Black Carbon(Biochar)- Supporting Information -. Environ. Sci. Technol. 44, 1247–1253.spa
dc.relation.referencesKlasson, K.T., 2017. Biochar characterization and a method for estimating biochar quality from proximate analysis results. Biomass and Bioenergy 96, 50–58. https://doi.org/10.1016/j.biombioe.2016.10.011spa
dc.relation.referencesKung, C.C., Kong, F., Choi, Y., 2015. Pyrolysis and biochar potential using crop residues and agricultural wastes in China. Ecol. Indic. 51, 139–145. https://doi.org/10.1016/j.ecolind.2014.06.043spa
dc.relation.referencesKung, C.C., Zhang, N., 2015. Renewable energy from pyrolysis using crops and agricultural residuals: An economic and environmental evaluation. Energy 90, 1532–1544. https://doi.org/10.1016/j.energy.2015.06.114spa
dc.relation.referencesLEHMANN, J. 2009 Biochar for Environmental Management: Science and Technology. Ed Earthscan, London, UK, 404spa
dc.relation.referencesLeng, L., Huang, H., 2018. An overview of the effect of pyrolysis process parameters on biochar stability. Bioresour. Technol. 270, 627–642. https://doi.org/10.1016/j.biortech.2018.09.030spa
dc.relation.referencesLi, H., Li, Y., Xu, Y., Lu, X., 2020. Biochar phosphorus fertilizer effects on soil phosphorus availability. Chemosphere 244, 125471. https://doi.org/10.1016/j.chemosphere.2019.125471spa
dc.relation.referencesLi, S., Harris, S., Anandhi, A., Chen, G., 2019. Predicting biochar properties and functions based on feedstock and pyrolysis temperature: A review and data syntheses. J. Clean. Prod. 215, 890–902. https://doi.org/10.1016/j.jclepro.2019.01.106spa
dc.relation.referencesLin, Y., Munroe, P., Joseph, S., Kimber, S., Van Zwieten, L., 2012. Nanoscale organo-mineral reactions of biochars in ferrosol: An investigation using microscopy. Plant Soil 357, 369–380. https://doi.org/10.1007/s11104-012-1169-8spa
dc.relation.referencesLuo, L., Xu, C., Chen, Z., Zhang, S., 2015. Properties of biomass-derived biochars: Combined effects of operating conditions and biomass types. Bioresour. Technol. 192, 83–89. https://doi.org/10.1016/j.biortech.2015.05.054spa
dc.relation.referencesMa, Z., Yang, Y., Ma, Q., Zhou, H., Luo, X., Liu, X., Wang, S., 2017. Evolution of the chemical composition, functional group, pore structure and crystallographic structure of bio-char from palm kernel shell pyrolysis under different temperatures. J. Anal. Appl. Pyrolysis. https://doi.org/10.1016/j.jaap.2017.07.015spa
dc.relation.referencesMa, Q., Song, W., Wang, R., Zou, J., Yang, R., Zhang, S., 2018. Physicochemical properties of biochar derived from anaerobically digested dairy manure. Waste Manag. 79, 729–734. https://doi.org/10.1016/j.wasman.2018.08.023spa
dc.relation.referencesManjarrés, J.K., 2019. PRODUCCIÓN BIOTECNOLÓGICA DE XILITOL A PARTIR DE HIDROLIZADOS DE RAQUIS DE PALMA CON LEVADURAS DEL GÉNERO Candida sp. Univ. Nac. Colomb.spa
dc.relation.referencesMarrugo, G., Valdés, C.F., Chejne, F., 2016. Characterization of Colombian Agroindustrial Biomass Residues as Energy Resources. Energy and Fuels 30, 8386–8398. https://doi.org/10.1021/acs.energyfuels.6b01596spa
dc.relation.referencesMartínez C., M.J., España A., J.C., Díaz V., J. de J., 2017. Efecto de la adición de biocarbonizados de Eucalyptus globullus en la disponibilidad de fósforo en suelos ácidos. Agron. Colomb. 35, 75–81. https://doi.org/10.15446/agron.colomb.v35n1.58671spa
dc.relation.referencesMohanty, P., Nanda, S., Pant, K.K., Naik, S., Kozinski, J.A., Dalai, A.K., 2013. Evaluation of the physiochemical development of biochars obtained from pyrolysis of wheat straw, timothy grass and pinewood: Effects of heating rate. J. Anal. Appl. Pyrolysis 104, 485–493. https://doi.org/10.1016/j.jaap.2013.05.022spa
dc.relation.referencesMunera, J.L., Martinsen, V., Strand, L.T., Zivanovic, V., Cornelissen, G., Mulder, J., 2018. Science of the Total Environment Cation exchange capacity of biochar : An urgent method modification 642, 190–197.spa
dc.relation.referencesParedes, M., Silva-Agredo, J., Torres-Palma, R.A., 2018. Removal of norfloxacin in deionized, municipal water and urine using rice (Oryza sativa) and coffee (Coffea arabica) husk wastes as natural adsorbents. J. Environ. Manage. 213, 98–108. https://doi.org/10.1016/j.jenvman.2018.02.047spa
dc.relation.referencesPark, Y.K., Yoo, M.L., Lee, H.W., Park, S.H., Jung, S.C., Park, S.S., Kim, S.C., 2012. Effects of operation conditions on pyrolysis characteristics of agricultural residues. Renew. Energy 42, 125–130. https://doi.org/10.1016/j.renene.2011.08.050spa
dc.relation.referencesQin, C., Wang, H., Yuan, X., Xiong, T., Zhang, Jingjing, Zhang, Jin, 2020. Understanding structure-performance correlation of biochar materials in environmental remediation and electrochemical devices. Chem. Eng. J. 382, 122977. https://doi.org/10.1016/j.cej.2019.122977spa
dc.relation.referencesQuevedo, B., Narváez-Rincón, P.C., Pedroza-Rodríguez, A.M., Velásquez-Lozano, M.E., 2015. Production of lignocellulolytic enzymes from floriculture residues using Pleurotus ostreatus. Univ. Sci. 20, 117–127. https://doi.org/10.11144/Javeriana.SC20-1.eplespa
dc.relation.referencesQuosai, B.P., 2017. Characterization of biocarbon generated by high and low temperature pyrolysis of soy hulls and coffee chaff Check.spa
dc.relation.referencesRajkovich, S., Enders, A., Hanley, K., Hyland, C., Zimmerman, A.R., Lehmann, J., 2012. Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biol. Fertil. Soils 48, 271–284. https://doi.org/10.1007/s00374-011-0624-7.spa
dc.relation.referencesRehrah, D., Reddy, M.R., Novak, J.M., Bansode, R.R., Schimmel, K.A., Yu, J., Watts, D.W., Ahmedna, M., 2014. Production and characterization of biochars from agricultural by-products for use in soil quality enhancement. J. Anal. Appl. Pyrolysis 108, 301–309. https://doi.org/10.1016/j.jaap.2014.03.008spa
dc.relation.referencesSchimmelpfennig, S., Glaser, B., 2012. One Step Forward toward Characterization: Some Important Material Properties to Distinguish Biochars. J. Environ. Qual. 41, 1001–1013. https://doi.org/10.2134/jeq2011.0146spa
dc.relation.referencesSchmidt, P., Agroscope, T., Kamman, C., 2015. European Biochar Certificate - Guidelines for a Sustainable Production of Biochar’. Eur. Biochar Found. (EBC), Arbaz, Switzerland. Version 6.1 19th June, 1–22. https://doi.org/10.13140/RG.2.1.4658.7043spa
dc.relation.referencesSeo, D.K., Park, S.S., Kim, Y.T., Hwang, J., Yu, T.U., 2011. Study of coal pyrolysis by thermo-gravimetric analysis (TGA) and concentration measurements of the evolved species. J. Anal. Appl. Pyrolysis 92, 209–216. https://doi.org/10.1016/j.jaap.2011.05.012spa
dc.relation.referencesSetter, C., Silva, F.T.M., Assis, M.R., Ataíde, C.H., Trugilho, P.F., Oliveira, T.J.P., 2020. Slow pyrolysis of coffee husk briquettes: Characterization of the solid and liquid fractions. Fuel 261. https://doi.org/10.1016/j.fuel.2019.116420spa
dc.relation.referencesSun, X., Shan, R., Li, X., Pan, J., Liu, X., Deng, R., Song, J., 2017. Characterization of 60 types of Chinese biomass waste and resultant biochars in terms of their candidacy for soil application. GCB Bioenergy 9, 1423–1435. https://doi.org/10.1111/gcbb.12435spa
dc.relation.referencesTripathi, M., Sahu, J.N., Ganesan, P., 2016. Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renew. Sustain. Energy Rev. 55, 467–481. https://doi.org/10.1016/j.rser.2015.10.122spa
dc.relation.referencesVeiga, P.A. da S., Schultz, J., Matos, T.T. da S., Fornari, M.R., Costa, T.G., Meurer, L., Mangrich, A.S., 2020. Production of high-performance biochar using a simple and low-cost method: Optimization of pyrolysis parameters and evaluation for water treatment. J. Anal. Appl. Pyrolysis 148. https://doi.org/10.1016/j.jaap.2020.104823spa
dc.relation.referencesWang, J., Wang, S., 2019. Preparation, modification and environmental application of biochar: A review. J. Clean. Prod. 227, 1002–1022. https://doi.org/10.1016/j.jclepro.2019.04.282spa
dc.relation.referencesWindeatt, J.H., Ross, A.B., Williams, P.T., Forster, P.M., Nahil, M.A., Singh, S., 2014. Characteristics of biochars from crop residues: Potential for carbon sequestration and soil amendment. J. Environ. Manage. 146, 189–197. https://doi.org/10.1016/j.jenvman.2014.08.003spa
dc.relation.referencesXiang, A., Qi, R., Wang, M., Zhang, K., Jiang, E., Ren, Y., Hu, Z., 2020. Study on the infiltration mechanism of molten urea and biochar for a novel fertilizer preparation. Ind. Crops Prod. 153. https://doi.org/10.1016/j.indcrop.2020.112558spa
dc.relation.referencesXu, J., Liu, J., Ling, P., Zhang, X., Xu, K., He, L., Wang, Y., Su, S., Hu, S., Xiang, J., 2020. Raman spectroscopy of biochar from the pyrolysis of three typical Chinese biomasses: A novel method for rapidly evaluating the biochar property. Energy 202, 1–10. https://doi.org/10.1016/j.energy.2020.117644spa
dc.relation.referencesYargicoglu, E.N., Sadasivam, B.Y., Reddy, K.R., Spokas, K., 2015. Physical and chemical characterization of waste wood derived biochars. Waste Manag. 36, 256–268. https://doi.org/10.1016/j.wasman.2014.10.029spa
dc.relation.referencesYi, S., Chang, N.Y., Imhoff, P.T., 2020. Predicting water retention of biochar-amended soil from independent measurements of biochar and soil properties. Adv. Water Resour. 142. https://doi.org/10.1016/j.advwatres.2020.103638spa
dc.relation.referencesYu, K.L., Lau, B.F., Show, P.L., Ong, H.C., Ling, T.C., Chen, W.H., Ng, E.P., Chang, J.S., 2017. Recent developments on algal biochar production and characterization. Bioresour. Technol. 246, 2–11. https://doi.org/10.1016/j.biortech.2017.08.009spa
dc.relation.referencesZhang, C., Lin, Y., Tian, X., Xu, Q., Chen, Z., Lin, W., 2017. Tobacco bacterial wilt suppression with biochar soil addition associates to improved soil physiochemical properties and increased rhizosphere bacteria abundance. Appl. Soil Ecol. 112, 90–96. https://doi.org/10.1016/j.apsoil.2016.12.005spa
dc.relation.referencesZhang, K., Mao, J., Chen, B., 2019. Reconsideration of heterostructures of biochars: Morphology, particle size, elemental composition, reactivity and toxicity. Environ. Pollut. 254, 113017. https://doi.org/10.1016/j.envpol.2019.113017spa
dc.relation.referencesZhao, L., Cao, X., Wang, Q., Yang, F., Xu, S., 2013. Mineral Constituents Profile of Biochar Derived from Diversified Waste Biomasses: Implications for Agricultural Applications. J. Environ. Qual. 42, 545–552. https://doi.org/10.2134/jeq2012.0232spa
dc.relation.referencesZhu, X., Li, Y., Wang, X., 2019. Machine learning prediction of biochar yield and carbon contents in biochar based on biomass characteristics and pyrolysis conditions. Bioresour. Technol. 288, 121527. https://doi.org/10.1016/j.biortech.2019.121527spa
dc.relation.referencesAbideen, Z., Koiro, H., Huchzermeyer, B., Bilquees, G., Ajmal, K., 2020. Impact of a Biochar or a Compost-Biochar Mixture on Water relation, Nutrient uptake & PHotosynthesis of PHragmites karka. PedospHere, 30(4). 466 - 477 Pp.spa
dc.relation.referencesAdeyemi, O., Grove, I., Peets, S., Domun, Y., Norton, T., 2018. Dynamic modelling of the baseline temperatures for computation of the crop water stress index (CWSI) of a greenhouse cultivated lettuce crop. Comput. Electron. Agric. 153, 102–114. https://doi.org/10.1016/j.compag.2018.08.009.spa
dc.relation.referencesAdnan, P., Shan, L., Anjum, S., Din Khan, W., Ronggui, H., Iqbal, M., Abbas, Z., Kausar, S., 2017. Improved quinoa growth, pHysiological response, & seed nutritional quality in three soils having different stresses by the application of acidified biochar & compost. Plant PHysiology & Biochemistry, 116. 127 - 138 Pp.spa
dc.relation.referencesAhmed, A., Kurian, J., Raghavan, V., 2016. Biochar influences on agricultural soils, crop production, & the environment: A review. Environmental Reviews, 24(4). 495 - 502 Pp.spa
dc.relation.referencesAmjad, M., Khan, S., Khan, A., Alam, M., 2017. Soil contamination with cadmium, consequences & remediation using organic amendments. Science of the Total Environment, 601 - 602. 1591 - 1606 Pp.spa
dc.relation.referencesAgegnehu, G.,Bass, A., Nelson, P., Bird, M., 2016. Benefits of biochar, compost & biochar–compost for soil quality, maize yield & greenhouse gas emissions in a tropical agricultural soil. Science of the Total Environment, 543. 295 - 306 Pp.spa
dc.relation.referencesAgegnehu, G., Srivastav, A., Bird, M., 2017. The role of biochar & biochar-compost in improving soil quality & crop performance: A review. Applied Soil Ecology, 119. 156 - 170 Pp.spa
dc.relation.referencesAlbuquerque, J., Salazar, P., Barrón, V., Torrent, J., Campillo, M., Gallardo, A., Villar, R., 2013. Enhanced wheat yield by biochar addition under different mineral fertilization levels. Agronomy for Sustainable Development, 33. 475 - 484 Pp.spa
dc.relation.referencesAlloway, B.J., Steinnes, E., 1999. Anthropogenic Additions of Cadmium to Soils. Cadmium in Soils & Plants 97–123. https://doi.org/10.1007/978-94-011-4473-5_5spa
dc.relation.referencesAlloway, B.J., Steinnes, E., 1999. Anthropogenic Additions of Cadmium to Soils. Cadmium in Soils & Plants 97–123. https://doi.org/10.1007/978-94-011-4473-5_5spa
dc.relation.referencesAlves, R., Fernandez, M., Cocco, S., Ruello, M., Fornasier, F., Corti, G., 2019. Benefits of Biochars & NPK Fertilizers for Soil Quality & Growth of Cowpea (Vigna unguiculata L. Walp.) in an Acid Arenosol. PedospHere, 29(1). 82 - 94 Pp.spa
dc.relation.referencesAzzi, V., Kanso, A., Kazpard, V., Kobeissi, A., Lartiges, B., El Samrani, A., 2017. Lactuca sativa growth in compacted & non-compacted semi-arid alkaline soil under pHospHate fertilizer treatment & cadmium contamination. Soil & tillage, 165. 1 - 10 Pp.spa
dc.relation.referencesBeesley, L., Moreno, E., Gomez, J., Harris, E., Robinson, B., Sizmur, T., 2011. A review of biochars’ potential role in the remediation, revegetation & restoration of contaminated soils. Environmental Pollution, 159(12). 3269 - 3282 Pp.spa
dc.relation.referencesBeluri, K., Pullagurala, L., Bojeong, K., Sang, L., Sudhir, P., Ki-Hyun, K., 2018. Benefits & limitations of biochar amendment in agricultural soils: A review. Journal of Environmental Management. 227. 146 - 154 Pp.spa
dc.relation.referencesBi, Y., Cai, S., Wang, Y., Xia, Y., Zhao, X., Wang, S., Xing, G., 2019. Assessing the viability of soil successive straw biochar amendment based on a five-year column trial with six different soils: Views from crop production, carbon sequestration & net ecosystem economic benefits. Journal of Environmental Management, 245,173-186 Pp.spa
dc.relation.referencesBindraban, P., Van der Velde, M., Ye, L., Van der Berg, M., Materechera, S., Innocent, D., Tamene, L., Vala, K., Jongschaap, R., Hoogmoed, M., Hoogmoed, W., Van Beek., Van Lynden, G., 2012. Assessing the impact of soil degradation on food production. Current opinion in environmental sustainability, 4(5), 478-488.spa
dc.relation.referencesBorchard, N., Siemens, J., Ladd, B., Molller, A., Amelung, W., 2014. Application of biochars to sandy & silty soil failed to increase maize yield under common agricultural practice. Soil & Tillage Research, 144. 184 - 194spa
dc.relation.referencesCampos, P., Miller, A., Knicker, H., Costa, M., Merino, A., De la Rosa, J., 2020. Chemical, pHysical & morpHological properties of biochars produced from agricultural residues: Implications for their use as soil amendment. Waste Management, 105. 256 - 267 Pp.spa
dc.relation.referencesCaporale, A., Pigna, M., Sommella, A., Conte, P., 2014. Effect of pruning-derived biochar on heavy metals removal & water dynamics. Biology & Fertility of the Soils, 50. 1211 - 1222 Pp.spa
dc.relation.referencesCervera, A., Navarro, M., Delgado, G., Pastoriza, S., Montilla, J., Llopis, J., Sanchez, C., Rufian, J., 2019. Spent coffee grounds improve the nutritional value in elements of lettuce (Lactuca sativa L.) & are an ecological alternative to inorganic fertilizers. Food Chemistry, 282(1). 1 - 8 Pp.spa
dc.relation.referencesCooper, J., Greenberg, I., Ludwig, B., Hippich, L., Fischer, D., Glaser, B., Kaiser, M., 2020. Effect of biochar & compost on soil properties & organic matter in aggregate size fractions under field conditions. Agriculture, Ecosystems & Environment, 295. 9 Pp.spa
dc.relation.referencesDahnke, W.C., & D.A. Whitney. 1988. Measurement of soil salinity. p. 32-34. In Recommended chemical soil test procedures for the North Central Region. North Central Reg. Publ. 221. Revised. North Dakota Agric. Exp. Stn. Bull. 499. Fargo, ND.spa
dc.relation.referencesDaza, M. (2014). Aplicación de compost de residuos de flores en suelos ácidos cultivados con maíz. Revista Ciencias Técnicas Agropecuarias, ISSN -1010-2760, RNPS-0111, Vol. 23, No. 3 pp. 22-30.spa
dc.relation.referencesDe Sousa., J, de Moraes, W., de Medeiros, E., Pereira, G., Metri, M., Martins, A., Clermont, C., Dantas, A., Hammecker, D, 2018. Effect of biochar on pHysicochemical properties of a sandy soil & maize growth in a greenhouse experiment. Agricultural Water Management. 217. 168 - 178 Pp.spa
dc.relation.referencesDeenik, J., McClellan, T., Uehara, G., Antal, M., S. Campbell, S., 2010. Charcoal volatile matter content influences plant growth & soil nitrogen transformations. Soil Science Society of America Journal, 74. 1259 - 1270 Pp.spa
dc.relation.referencesDi, Wu., Yanfang, F., Lihong, X., Manqiang, L., Bei, Y., Feng, H., Linzhang Y., 2019. Biochar Combined with Vermicompost Increases Crop Production While Reducing Ammonia & Nitrous Oxide Emissions from a Paddy Soil. PedospHere, 29. 82 - 94 Pp.spa
dc.relation.referencesDominguez, E., Uttran, A., Loh S., Manero, M., Upperton, R., Tanimu, M., Bachmann, T., 2020. Characterisation of industrially produced oil palm kernel shell biochar & its potential as slow release nitrogen-pHospHate fertilizer & carbon sink. Materials Today, 31. 221 - 227 Pp.spa
dc.relation.referencesFaloye, O., Alatise, M., Ajayi, A., Ewulo, B., 2019. Effects of biochar & inorganic fertilizer applications on growth, yield & water use efficiency of maize under deficit irrigation. Agricultural Water Management, 217. 165 - 178 Pp.spa
dc.relation.referencesFang, H., Shuang, W., Tu, S., Ding, Y., Gang, R., Rensing, C., Li, Y., Fneg, R., 2019. Differences in cadmium absorption by 71 leaf vegetable varieties from different families & genera & their health risk assessment. Ecotoxicology & Environmental Safety, 184.spa
dc.relation.referencesFarhangi., S., Torabian, S., 2017. Antioxidant enzyme & osmotic adjustment changes in bean seedlings as affected by biochar under salt stress. Ecotoxicology & Environmental Safety, 137. 64 - 70 Pp.spa
dc.relation.referencesFischer, D., Glaser, B., 2012. Synergisms between compost & biochar for sustainable soil amelioration. En: Kumar, S., Bharti, A. Management of Organic Waste. Intech. Rijeka, Croacia. 167 - 198 Pp.spa
dc.relation.referencesFranco, O., Sánchez, r., Gómez, C., Otero, J., Salamanca, J., 2015. Estudio nacional de la degradación de suelos por erosión en Colombia. IDEAM. Bogotá, 62 Pp.spa
dc.relation.referencesFrench, E., Lyer, A., 2018. A role for the gibberellin pathway in biochar mediated growth promotion. Scientific Report, 8. 10 Pp.spa
dc.relation.referencesGale, N., Thomas, S., 2019. Dose-dependence of growth & ecopHysiological responses of plants to biochar. Science of the Total Environment, 658. 1344 - 1354 Pp.spa
dc.relation.referencesGalieni, A., Di Mattia, C., De Gregorio, M., Speca, S., Mastrocola, D., Pisante, M., Stagnari, F., 2015. Effects of nutrient deficiency & abiotic environmental stresses on yield, pHenolic compounds & antiradical activity in lettuce (Lactuca sativa L.). Scientia Horticulturae, 187. 93 - 101 Pp.spa
dc.relation.referencesGao, Y., Shao, G., Lu, J., Zhang, K., Wu, S., Wang, Z., 2020. Effects of biochar application on crop water use efficiency depend on experimental conditions: A meta-analysis. Field Crops Research, 249, 16 Pp.spa
dc.relation.referencesGheshm, R., Brown, R.N., 2018. Organic mulch effects on high tunnel lettuce in Southern New England. Horttechnology 28, 485–491. https://doi.org/10.21273/HORTTECH04056-18spa
dc.relation.referencesGlaser, B., Birk, J., 2012. State of the scientific knowledge on properties & genesis of Anthropogenic Dark Earths in Central Amazonia (terra preta de Indio). Geochimica et Cosmochimica Acta, 82. 39 - 51 Pp.spa
dc.relation.referencesGünal, E., Erdem, H., Çelik, I., 2018. Effects of three different biochars amendment on water retention of silty loam & loamy soils. Agricultural Water Management, 208. 232 - 244 Pp.spa
dc.relation.referencesHamid, Y., Tang, L., Irfan, M., Cao, X., Hussain, B., Zahir, M., Usman, M., He, Z., Yang, X., 2019. An explanation of soil amendments to reduce cadmium phytoavailability & transfer to the food chain. Science of The Total Environment, 660. 80 - 96 Pp.spa
dc.relation.referencesHamid, Y., Tang, L., Hussain, B., Usman, M., Lin, Q., Saqib, M., He, Z., Yang, X , 2020. Organic soil additives for the remediation of cadmium contaminated soils & their impact on the soil-plant system: A review. Science of The Total Environment, 707.spa
dc.relation.referencesHagemann, N., JosepH, S., Schmidt, H., Kammann, C., Harter, J., Borch, T., Young, R., Varga, K., Taherymoosavi, S., Wade, K., Mckenna, A., Albu, M., Mayrhofer, C., Obst, M., Conte, P., Dieguez, A., Orsetti, S., Subdiaga, E., Behrens, S., Kappler, S., 2017. Organic coating on biochar explains its nutrient retention & stimulation of soil fertility. Nature Communications, 8.spa
dc.relation.referencesHuang, L., Wang, Q., Zhou, Q., Ma, L., Wu, Y., Liu, Q., Wang, S., Feng, Y., 2020. Cadmium uptake from soil & transport by leafy vegetables: A meta-analysis. Environmental Pollution, 264.spa
dc.relation.referencesIbañez, P., Sanchez, M., Sanchez, M., Cayuela, M., Moreno, D., 2020. Olive tree pruning derived biochar increases glucosinolate concentrations in broccoli. Scientia Horticulturae, 267. 6 Pp.spa
dc.relation.referencesIbrahim, M., Li, G., Shun, L., Kay, P., Liu, X., Firbank, L., Xu, Y., 2019. Biochars effects potentially toxic elements & antioxidant enzymes in Lactuca sativa L. grown in multi-metals contaminated soil. Environmental Technology & Innovation, 15.spa
dc.relation.referencesIdrovo, J., Gavilanes, I., Angeles, M., Paredes, C., 2018. Composting as a method to recycle renewable plant resources back to the ornamental plant industry: Agronomic & economic assessment of composts. Process Safety & Environmental Protection, 116. 388 – 395 Pp.spa
dc.relation.referencesIdrovo, J., Gavilanes, I., Veloz, N., Erazo, R., Paredes, C., 2019. Closing the cycle for the cut rose industry by the reuse of its organic wastes: A case study in Ecuador. Journal of Cleaner Production, 2020. 910 – 918 Pp.spa
dc.relation.referencesIGAC, 2016. Política para la gestión sostenible del suelo. Ministerio de Ambiente y Desarrollo Sostenible de Colombia. Primera edición. 27 Pp.spa
dc.relation.referencesIBI, 2014. Standardized Product Definition and Product Testing Guidelines for BiocharThat Is Used in Soi. Int. BIOCHAR Initiat. 1–60.spa
dc.relation.referencesIrfan, M., Hayata, S., Ahmada, A., Nasser, M., 2013. Soil cadmium enrichment: Allocation & plant pHysiological manifestations. Saudi Journal of Biological Sciences, 20(1). 1 - 10 Pp.spa
dc.relation.referencesJing, Y., Zhang, Y., Han, I., Wang, P., Mei, Q., Huang, Y., 2020. Effects of different straw biochars on soil organic carbon, nitrogen, available pHospHorus, & enzyme activity in paddy soil. Scientific Reports, 10.spa
dc.relation.referencesJung, S., Park, Y., Kwon, E., 2019. Benefits & limitations of biochar amendment in agricultural soils: A review. Journal of Environmental Management, 227. 146 - 154 Pp.spa
dc.relation.referencesKolahi, M., Kazemib, M., Yazdic, M., Goldson, A., 2020. Oxidative stress induced by cadmium in lettuce (Lactuca sativa Linn.): Oxidative stress indicators & prediction of their genes. Plant PHysiology & Biochemistry, 146.spa
dc.relation.referencesKopéc, M., Baran, A., Mierzwa, M., Gondek, K., Chemiel, M., 2018. Effect of the Addition of Biochar & Coffee Grounds on the Biological Properties & Ecotoxicity of Composts. Waste Biomass Valor, 9. 1389 - 1398 Pp.spa
dc.relation.referencesKubier, A., Wilkin, R.T., Pichler, T., 2019. Cadmium in soils & groundwater: A review. Appl. Geochemistry 108. https://doi.org/10.1016/j.apgeochem.2019.104388spa
dc.relation.referencesLi, J., Heb, F., Shen, X., Hu, D., Huang, Q., 2020a. Pyrolyzed fabrication of N/P co-doped biochars from (NH4)3 PO4 pretreated coffee shells & appraisement for remedying aqueous Cr (VI) contaminants. Bioresource Technology, 315. 8 Pp.spa
dc.relation.referencesLi, Y., Dong, S., Qiao, J., Liang, S., Wu, X., Wang, M., Zhao, H., Liu, W., 2020b. Impact of nanominerals on the migration & distribution of cadmium on soil aggregates. Journal of Cleaner Production, 262.spa
dc.relation.referencesLiu, X., Zhong, L., Meng, J., Wang, F., Zhang, J., Zhi, Y., Zeng, Z., Tang, X., Xu, J., 2018. A multi-medium chain modeling approach to estimate the cumulative effects of cadmium pollution on human health. Environmental Pollution, 239. 302 - 317 Pp.spa
dc.relation.referencesLoi, N., Sanzharova, N., Ssxhagina, N., Mironova, M., 2018. The Effect of Cadmium Toxicity on the Development of Lettuce Plants on Contaminated Sod-Podzolic Soil. Russian Agricultural Sciences, 44(1). 49 - 52 Pp.spa
dc.relation.referencesLora, R., Bonilla, H., 2010. Remediación de un suelo de la cuenca alta del río Bogotá contaminado con los metales pesados cadmio y cloro. Actualidad y divergencia científica, 13(2). 61 - 70 Pp.spa
dc.relation.referencesLynch, J, 2016. Preface. En: Sik, Y., Tsang, D., Bolan, M., Novak, J., Biochar from Biomass & Waste, primera edición, Elsevier, Países bajos.spa
dc.relation.referencesMacKenna, I., Chaney, R., Williams, F., 2017. The effects of cadmium & zinc interactions on the accumulation & tissue distribution of zinc & cadmium in lettuce & spinach. Environmental Pollution, 79(2). 113 - 120 Pp.spa
dc.relation.referencesMahecha, J., Trujillo, J., Torres, M., 2015. Contenido de metales pesados en suelos agrícolas de la región del Ariari, Departamento del Meta. Revista Orinoquía, 19(1). 6 Pp.spa
dc.relation.referencesManeechakr , P., Mongkollertlop, S., 2020. Investigation on adsorption behaviors of heavy metal ions (Cd2+, Cr3+, Hg2+ & Pb2+) through low-cost/active manganese dioxide-modified magnetic biochar derived from palm kernel cake residue. Journal of Environmental Chemical Engineering, 9 Pp.spa
dc.relation.referencesMajid, M., Khan, J., Ahmad, Q., Masoodi, K., Afroza, B., Parvaze, S., 2021. Evaluation of hydroponic systems for the cultivation of Lettuce (Lactuca sativa L., var. Longifolia) & comparison with protected soil-based cultivation. Agricultural Water Management, 245.spa
dc.relation.referencesMajor, J., Rondón, M., Molina, D., Riha, S., Lehmann, J., 2010. Maize yield & nutrition during 4 years after biochar application to a Colombian savanna Ferralsol. Plant Soil, 333. 117 - 128 Pp.spa
dc.relation.referencesMatraszek, R., Hawrylak, B., Chwil, S., Chwil, M., 2016. Macroelemental composition of cadmium stressed lettuce plants grown under conditions of intensive sulpHur nutrition, Journal of Environmental Management. 180. 24 - 34 Pp.spa
dc.relation.referencesMiranda, D., Carranza, C., Rojas, C., Jerez, C., Fischer, G., Zurita, J., 2008. Acumulación de metales pesados en suelo y plantas de cuatro cultivos hortícolas regados con aguas del río Bogotá. Revista Colombiana de Ciencias Hortícolas, 2(2). 180 - 191 Pp.spa
dc.relation.referencesNieto, A., Gascó, G., Paz, J., Fernandez, J., Plaza, C., Mendez, A., 2016. The effect of pruning waste & biochar addition on brown peat based growing media properties. Scientia Horticulturae, 199. 142 - 148 Pp.spa
dc.relation.referencesNieto, J., 2017. Uso inadecuado del suelo en Colombia: un generador de Gases Efecto Invernadero. En: Instituto Geológico Agustín Codazzi.spa
dc.relation.referencesPaneque, M., De la Rosa, J., Franco, J., Colmenero, J., Knicker, H., 2016. Effect of biochar amendment on morpHology, productivity & water relations of sunflower plants under non-irrigation conditions. Catena, 147. 280 - 287.spa
dc.relation.referencesPelaez, M., Busamante, J., Gomez, E., 2016. Presencia de cadmio y plomo en suelos y su bioacumulación en tejidos vegetales en especies de Brachiaria en el Magdalena medio Colombiano. Luna Azul, 43. 82 - 101 Pp.spa
dc.relation.referencesPinto, E., Almeida, A., Aguiar, A., Ferreira, I., 2014. Changes in macrominerals, trace elements & pigments content during lettuce (Lactuca sativa L.) growth: Influence of soil composition. Food Chemistry, 152. 603 - 611 Pp.spa
dc.relation.referencesQuezada-Hinojosa, R.P., Föllmi, K.B., Verrecchia, E., Adatte, T., Matera, V., 2015. Speciation & multivariable analyses of geogenic cadmium in soils at Le Gurnigel, Swiss Jura Mountains. Catena 125, 10–32. https://doi.org/10.1016/j.catena.2014.10.003spa
dc.relation.referencesRadin, R., Bakar, R., Ishak, C., Ahmad, S., Tsong, L., 2017. Biochar-compost mixture as amendment for improvement of polybag-growing media & oil palm seedlings at main nursery stage. International Journal of Recycling of Organic Waste in Agriculture, 7. 11 - 23 Pp.spa
dc.relation.referencesRodriguez, H., 2017. Dinámica del cadmio en suelos con niveles altos de elementos, en zonas productoras de cacao en Nilo y Yacopí, Cundinamarca.spa
dc.relation.referencesRuíz, J., 2011. Evaluación de tratamientos para disminuir cadmio en lechuga (Lactuca sativa L.) regada con agua del río Bogotá. Agronomía Colombiana, 5(2). 233 – 244 Pp.spa
dc.relation.referencesSafahani, A., Campiglia, E., Mancinelli, R., Radicetti, E., 2019. Can biochar improve pumpkin productivity & its pHysiological characteristics under reduced irrigation regimes?. Scientia Horticulturae, 247. 195 - 204 Pp.spa
dc.relation.referencesSajjadi, B., Chen, W.Y., Mattern, D.L., Hammer, N., Dorris, A., 2020. Low-temperature acoustic-based activation of biochar for enhanced removal of heavy metals. J. Water Process Eng. 34. https://doi.org/10.1016/j.jwpe.2020.101166spa
dc.relation.referencesSalinas, 2013. Introducción de cinco variedades de lechuga (Lactuca sativa L.) en el barrio Santa Fe de la Parroquia Atahualpa en el Cantón Ambato. Tesis Universidad Técnica de Ambato. 25 Pp.spa
dc.relation.referencesSaxena, J., Rana, G., Pandey, M., 2013. Impact of addition of biochar along with Bacillus sp. on growth & yield of French beans. Scientia Horticulturae. 162. 351 - 356 Pp.spa
dc.relation.referencesSchmidt, H., Kammannb, C., Nigglia, C., Evangelou, M., Mackie, K., Abivenealthak, s., 2014. Biochar & biochar-compost as soil amendments to a vineyard soil: Influences on plant growth, nutrient uptake, plant health & grape quality. Agriculture, Ecosystems & Environment, 191. 117 - 123 Pp.spa
dc.relation.referencesSehar, A., Aziz, R., Rafiq, M.T., Hussain, M.M., Rizwan, M., Sehrish, A.K., Rafiq, M.K., Din, J. ud, Hussain, Q., Al-Wabel, M.I., Ali, S., 2018. Synthesis of biochar from sugarcane filter-cake and its impacts on physiological performance of lettuce (Lettuce sativa) grown on cadmium contaminated soil. Arab. J. Geosci. 11. https://doi.org/10.1007/s12517-018-4006-4spa
dc.relation.referencesShin, H., Tiwarib, d., Kimad., 2020. PHospHate adsorption/desorption kinetics & P bioavailability of Mg-biochar from ground coffee waste. Journal of Water Process Engineering, 37. 7 Pp.spa
dc.relation.referencesSilva, M., Oliveira, P., de Jesus, J., Ganassali, L., 2019. Biochar increases plant water use efficiency & biomass production while reducing Cu concentration in Brassica juncea L. in a Cu-contaminated soil. Ecotoxicology & Environmental Safety, 183. 6 Pp.spa
dc.relation.referencesSimón, M., García, I., Diez, M., Gonzalez, V., 2018. Biochar from Different Carbonaceous Waste Materials: Ecotoxicity & Effectiveness in the Sorption of Metal(loid)s. Water Air Soil Pollut, 224. 223- 229 Pp.spa
dc.relation.referencesSomerville, P., Farrel, C., May, P., Livesley, S., 2019. Tree water use strategies & soil type determine growth responses to biochar & compost organic amendments. Soil & Tillage Research, 192. 12 - 21 Pp.spa
dc.relation.referencesTang, X., Yan, P.. Ji, P., Gao, P., Hung, T., Tong, Y., 2016. Cadmium uptake in above-ground parts of lettuce (Lactuca sativa L.). Ecotoxicology & Environmental Safety, 125. 102 – 106 Pp.spa
dc.relation.referencesTang, Y., Xie, Y., Sun, G., Tan, H., Lin, L., Li, H., Liao, M., Wang, Z., Lv, D., Liang, D., Xia, H., Wang, X., Wang, J., Xiong, B., Zheng, Y., He, Z., Tu, L., 2018. Cadmium-accumulator straw application alleviates cadmium stress of lettuce (Lactuca sativa) by promoting pHotosynthetic activity & antioxidative enzyme activities, Environmental Sciences & Pollution Research, 25.spa
dc.relation.referencesTangmankongworakoon, N., 2019. An approach to produce biochar from coffee residue for fuel & soil amendment purposes. International Journal of Recycling of Organic Waste in Agriculture, 8. 37 - 44 Pp.spa
dc.relation.referencesTrupiano, D., Cocozza, C., Baronti, S., Amendola, C., Vaccari, F., Lustrato, G., Di Lonardo, S., Fantasma, F., Tognetti, R., Scippa, S., 2017. The effects of biochar & its combination with compost on lettuce (Lactuca sativa L.) growth, soil properties,and soil microbial activity & abundance. International Journal of Agronomy, 2017. 12 Pp.spa
dc.relation.referencesUNEP, 2010. Final review of scientific information on cadmium. En: United Nations of Environmental Programme, http://wedocs.unep.org/bitstream/handle/20.500.11822/27636/Cadmium_Review.pdf; consulta: Abril de 2020spa
dc.relation.referencesUsman, A., Sallam, A., Zhang, M., Vithanage, M., Ahmad, M., Al Farraj, A., Sik, Y., Abduljabbar, A., Al Wabel, M., 2016. Sorption Process of Date Palm Biochar for Aqueous Cd (II) Removal: Efficiency & Mechanisms. Water, Air, & Soil Pollution, 22. 16 Pp.spa
dc.relation.referencesVargas, O., Prieto, G., Gonzalez, L., Matamoros, A., 2004. Geoquímica de metales pesados de la cuenca del río Bogotá. IGAC, primera edición. Bogotá D.C. 136 Pp.spa
dc.relation.referencesVan Zwieten, L., Kimber, S., Morris, S., Chan, K., Downie, A., Rust, J., 2010. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance & soil fertility. Plant & Soil, 327. 235 - 246 Pp.spa
dc.relation.referencesWahid, F., Baig, S., Faraz, M., Manzoor, M., Ahmed, I., Arshad, M., 2021. Growth responses & rubisco activity influenced by antibiotics & organic amendments used for stress alleviation in Lactuca sativa. ChemospHere, 263.spa
dc.relation.referencesWoldetsadik, D., Drechsel, P., Keraita, B., Marschner, B., Itanna, F., Gebrekidan, H., 2016. Effects of biochar & alkaline amendments on cadmium immobilization, selected nutrient & cadmium concentrations of lettuce (Lactuca sativa) in two contrasting soils. Springer Plus, 397(5).spa
dc.relation.referencesXiao, Q., Zhua, L., Shena, Y., Lia, S., 2016. Sensitivity of soil water retention & availability to biochar addition in rainfed semi-arid farmland during a three-year field experiment. Field Crops Research, 196. 284 - 293 Pp.spa
dc.relation.referencesYazdi, M., Kolahi, M., Mohajel, E., Goldson, A., 2019. Study of the contamination rate & change in growth features of lettuce (Lactuca sativa Linn.) in response to cadmium & a survey of its pHytochelatin synthase gene. Ecotoxicology & Environmental Safety, 180. 295 - 308 Pp.spa
dc.relation.referencesZheng, R., Sun, G., Li, C., Reid, B., Xie, Z., Zhang, B., Wang, Q., 2017. Mitigating cadmium accumulation in greenhouse lettuce production using biochar. Environmental Science & Pollution Research, 24spa
dc.relation.referencesZolezzi, M., Abarca, P., Saavedra, G., Corradini. F., Felmer, Sofia., 2017., Manual de producción de L echuga. Instituto de Investigaciones Agropecuarias (INIA). Boletín INIA Nº 3spa
dc.relation.referencesAbu Zied Amin, A.E.E., 2016. Impact of Corn Cob Biochar on Potassium Status and Wheat Growth in a Calcareous Sandy Soil. Commun. Soil Sci. Plant Anal. 47, 2026–2033. https://doi.org/10.1080/00103624.2016.1225081spa
dc.relation.referencesAgegnehu, G., Jemal, K., Abebe, A., Lulie, B., 2019. Plant Growth and Oil Yield Response of Lemon Grass (Cymbopogon citratuc L.) to Biochar Application. Ethiop. J. Agric. Sci. 29, 1–12.spa
dc.relation.referencesAkhtar, S.S., Andersen, M.N., Liu, F., 2015. Biochar Mitigates Salinity Stress in Potato. J. Agron. Crop Sci. 201, 368–378. https://doi.org/10.1111/jac.12132spa
dc.relation.referencesAlburquerque, J.A., Calero, J.M., Barrón, V., Torrent, J., del Campillo, M.C., Gallardo, A., Villar, R., 2014. Effects of biochars produced from different feedstocks on soil properties and sunflower growth. J. Plant Nutr. Soil Sci. 177, 16–25. https://doi.org/10.1002/jpln.201200652spa
dc.relation.referencesAltaf, K., Younis, A., Ramzan, Y., Ramzan, F., 2020. Effect of composition of agricultural wastes and biochar as a growing media on the growth of potted Stock (Matthiola incana) and Geranium (Pelargonium spp). J. Plant Nutr. https://doi.org/10.1080/01904167.2020.1862205spa
dc.relation.referencesAlvarez, J.M., Pasian, C., Lal, R., López, R., Fernández, M., 2016. Physiological Plant Answer When Biochar and Vermicompost Are Used As Peat Replacement for Ornamental-Plant Production 16–18.spa
dc.relation.referencesAngin, D., 2013. Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake. Bioresour. Technol. 128, 593–597. https://doi.org/10.1016/j.biortech.2012.10.150spa
dc.relation.referencesAnyaoha, K.E., Sakrabani, R., Patchigolla, K., Mouazen, A.M., 2018. Critical evaluation of oil palm fresh fruit bunch solid wastes as soil amendments: Prospects and challenges. Resour. Conserv. Recycl. 136, 399–409. https://doi.org/10.1016/j.resconrec.2018.04.022spa
dc.relation.referencesBaiamonte, G., Crescimanno, G., Parrino, F., De Pasquale, C., 2019. Effect of biochar on the physical and structural properties of a desert sandy soil. Catena 175, 294–303. https://doi.org/10.1016/j.catena.2018.12.019spa
dc.relation.referencesBaronti, S., Alberti, G., Vedove, G.D., di Gennaro, F., Fellet, G., Genesio, L., Miglietta, F., Peressotti, A., Vaccari, F.P., 2010. The biochar option to improve plant yields: First results from some field and pot experiments in Italy. Ital. J. Agron. 5, 3–11. https://doi.org/10.4081/ija.2010.3spa
dc.relation.referencesBeck, M.A., Robarge, W.P., Buol, S.W., 1999. Phosphorus retention and release of anions and organic carbon by two Andisols. Eur. J. Soil Sci. 50, 157–164. https://doi.org/10.1046/j.1365-2389.1999.00213.xspa
dc.relation.referencesBennardi, D., Gorostegui, A., Millan, G., Pellegrini, A., Vázquez, M., 2018. EVALUACIÓN DE LA CAPACIDAD BUFFER DE SUELOS ÁCIDOS DE LA REGIÓN PAMPEANA. Asoc. argentina Cienc. del suelo 36, 124–137.spa
dc.relation.referencesBilgili, A.V., Aydemir, S., Altun, O., Sayğan, E.P., Yalçın, H., Schindelbeck, R., 2019. The effects of biochars produced from the residues of locally grown crops on soil quality variables and indexes. Geoderma 345, 123–133. https://doi.org/10.1016/j.geoderma.2019.03.010spa
dc.relation.referencesBonilla, G., Sarmiento Pérez, G., Gaviria Melo, S., 2011. Proveniencia y transformacion diagenética de minerales arcillosos Del Maastrichtiano - Paleoceno al norte de Bogotá, Cordillera Oriental de Colombia. Geol. Colomb. - An Int. J. Geosci. 36, 179–196.spa
dc.relation.referencesBray RH, Kurtz LT. 1945. Determination of total, organic, and available forms of phosphorus in soils. Soil Sci. 59:39–46.spa
dc.relation.referencesBrockamp, R., Sharon, W., 2021. Biochar amendments show potential for restoration of degraded, contaminated, and infertile soils in agricultural and forested landscapes, Soils and Landscape Restoration.spa
dc.relation.referencesBudianta, D., Wiralaga, A.Y.A., Lestari, W., 2010. Changes in Some Soil Chemical Properties of Ultisol Applied by Mulch from Empty Fruit Bunches in an Oil Palm Plantation. J. TANAH Trop. (Journal Trop. Soils) 15, 111–118. https://doi.org/10.5400/jts.2010.15.2.111spa
dc.relation.referencesCaicedo, B., Mendoza, C., López, F., Lizcano, A., 2018. Behavior of diatomaceous soil in lacustrine deposits of Bogotá, Colombia. J. Rock Mech. Geotech. Eng. 10, 367–379. https://doi.org/10.1016/j.jrmge.2017.10.005spa
dc.relation.referencesCampos, P., Miller, A.Z., Knicker, H., Costa-Pereira, M.F., Merino, A., De la Rosa, J.M., 2020. Chemical, physical and morphological properties of biochars produced from agricultural residues: Implications for their use as soil amendment. Waste Manag. 105, 256–267. https://doi.org/10.1016/j.wasman.2020.02.013spa
dc.relation.referencesCervera, A., Navarro-Alarcón, M., Rufián-Henares, J.Á., Pastoriza, S., Montilla-Gómez, J., Delgado, G., 2020. Phytotoxicity and chelating capacity of spent coffee grounds: Two contrasting faces in its use as soil organic amendment. Sci. Total Environ. 717. https://doi.org/10.1016/j.scitotenv.2020.137247spa
dc.relation.referencesChen, C.Y., Hu, B.L., Liu, L., 2008. Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass. ASTM D2216 Am. Soc. Test. Mater. 1–5. https://doi.org/10.1109/WiCom.2008.1574spa
dc.relation.referencesChen, X., Lewis, S., Heal, K. V., Lin, Q., Sohi, S.P., 2021. Biochar engineering and ageing influence the spatiotemporal dynamics of soil pH in the charosphere. Geoderma 386. https://doi.org/10.1016/j.geoderma.2020.114919spa
dc.relation.referencesChintala, R., Mollinedo, J., Schumacher, T.E., Malo, D.D., Julson, J.L., 2014. Effect of biochar on chemical properties of acidic soil. Arch. Agron. Soil Sci. 60, 393–404. https://doi.org/10.1080/03650340.2013.789870spa
dc.relation.referencesCuervo, G., Gomeéz, C., 2003. Vista de La desertificación en Colombia y el cambio global.pdf.spa
dc.relation.referencesDahal, N., Bajracharya, R.M., Wagle, L.M., 2018. Biochar Effects on Carbon Stocks in the Coffee Agroforestry Systems of the Himalayas. Sustain. Agric. Res. 7, 103. https://doi.org/10.5539/sar.v7n4p103spa
dc.relation.referencesDai, Y., Zheng, H., Jiang, Z., Xing, B., 2020. Combined effects of biochar properties and soil conditions on plant growth: A meta-analysis. Sci. Total Environ. 713. https://doi.org/10.1016/j.scitotenv.2020.136635spa
dc.relation.referencesDari, B., Nair, V.D., Harris, W.G., Nair, P.K.R., Sollenberger, L., Mylavarapu, R., 2016. Relative influence of soil- vs. biochar properties on soil phosphorus retention. Geoderma 280, 82–87. https://doi.org/10.1016/j.geoderma.2016.06.018spa
dc.relation.referencesDe la Rosa, J.M., Rosado, M., Paneque, M., Miller, A.Z., Knicker, H., 2018. Effects of aging under field conditions on biochar structure and composition: Implications for biochar stability in soils. Sci. Total Environ. 613–614, 969–976. https://doi.org/10.1016/j.scitotenv.2017.09.124spa
dc.relation.referencesDemisie, W., Liu, Z., Zhang, M., 2014. Effect of biochar on carbon fractions and enzyme activity of red soil. Catena 121, 214–221. https://doi.org/10.1016/j.catena.2014.05.020spa
dc.relation.referencesEmbrandiri, A., Singh, R.P., Ibrahim, H.M., Ramli, A.A., 2012. Land application of biomass residue generated from palm oil processing: Its potential benefits and threats. Environmentalist 32, 111–117. https://doi.org/10.1007/s10669-011-9367-0spa
dc.relation.referencesEscalante, A., Pérez, G. Hidalgo, C., López J., Campo J., Valtierra, E., Etchevers, J., 2016. Biocarbón (Biochar) I: Naturaleza, fabricación y uso en el suelo. Red de Revistas Científicas de América Latina, Volumen 34, numero3, 367– 382.spa
dc.relation.referencesFAO, 2010. Soil erosion, Geomorphological Hazards and Disaster Prevention. Food and Agriculture Organization of the United Nations (FAO). https://doi.org/10.1017/CBO9780511807527.014spa
dc.relation.referencesFAO. 2014. Actualización 2015 Base Referencial Mundial Del Recurso Suelo 2014: Sistema Internacional de Clasificación de Suelos. https://www.iec.cat/mapasols/DocuInteres/PDF/Llibre59.pdf.spa
dc.relation.referencesFAO, 2015. World’ s Soil Resources. Food and Agriculture Organization of the United Nations (FAO).spa
dc.relation.referencesFernández Linares, L.C., Rojas Avelizapa, N.G., Roldán Carrillo, T.G., Ramírez Islas, M.E., Zegarra Martínez, H.G., Uribe Hernández, R., Reyes Ávila, R.J., Flores Hernández, D., Arce Ortega, J.M. (2006): Manual de técnicas de análisis de suelos aplicadas a la remediación de sitios contaminados. https://biblioteca.semarnat.gob.mx/janium/Documentos/Ciga/Libros2011/CG008215.pdfspa
dc.relation.referencesFinetti, P., Bekhouche, I., Rousselet, E., 2011. Phosphorus Sorption and Availability from Biochars and Soil/Biochar Mixtures Accept e d Preprint Accept e d Preprint 33, 1–47.spa
dc.relation.referencesFonseca, A.A., Santos, D.A., Passos, R.R., Andrade, F.V., Rangel, O.J.P., 2020. Phosphorus availability and grass growth in biochar-modified acid soil: A study excluding the effects of soil pH. Soil Use Manag. https://doi.org/10.1111/sum.12609spa
dc.relation.referencesGabhi, R.S., Kirk, D.W., Jia, C.Q., 2017. Preliminary investigation of electrical conductivity of monolithic biochar. Carbon N. Y. 116, 435–442. https://doi.org/10.1016/j.carbon.2017.01.069spa
dc.relation.referencesGao, S., DeLuca, T.H., 2018. Wood biochar impacts soil phosphorus dynamics and microbial communities in organically-managed croplands. Soil Biol. Biochem. 126, 144–150. https://doi.org/10.1016/j.soilbio.2018.09.002spa
dc.relation.referencesGarbuz, S., Camps-Arbestain, M., Mackay, A., DeVantier, B., Minor, M., 2020. The interactions between biochar and earthworms, and their influence on soil properties and clover growth: A 6-month mesocosm experiment. Appl. Soil Ecol. 147. https://doi.org/10.1016/j.apsoil.2019.103402spa
dc.relation.referencesGaskin, J.W., Speir, R.A., Harris, K., Das, K.C., Lee, R.D., Morris, L.A., Fisher, D.S., 2010. Effect of peanut hull and pine chip biochar on soil nutrients, corn nutrient status, and yield. Agron. J. 102, 623–633. https://doi.org/10.2134/agronj2009.0083spa
dc.relation.referencesGuo, Y., Niu, G., Starman, T., Volder, A., Gu, M., 2018. Poinsettia growth and development response to container root substrate with biochar. Horticulturae 4, 1–14. https://doi.org/10.3390/horticulturae4010001spa
dc.relation.referencesHailegnaw, N.S., Mercl, F., Pračke, K., Száková, J., Tlustoš, P., 2019. Mutual relationships of biochar and soil pH, CEC, and exchangeable base cations in a model laboratory experiment. J. Soils Sediments 19, 2405–2416. https://doi.org/10.1007/s11368-019-02264-zspa
dc.relation.referencesHe, P., Liu, Y., Shao, L., Zhang, H., Lü, F., 2018. Particle size dependence of the physicochemical properties of biochar. Chemosphere 212, 385–392. https://doi.org/10.1016/j.chemosphere.2018.08.106spa
dc.relation.referencesHerath, H.M.S.K., Camps-Arbestain, M., Hedley, M., 2013. Effect of biochar on soil physical properties in two contrasting soils: An Alfisol and an Andisol. Geoderma 209–210, 188–197. https://doi.org/10.1016/j.geoderma.2013.06.016spa
dc.relation.referencesHussain, R., Kumar Ghosh, K., Ravi, K., 2021. Impact of biochar produced from hardwood of mesquite on the hydraulic and physical properties of compacted soils for potential application in engineered structures. Geoderma 385. https://doi.org/10.1016/j.geoderma.2020.114836spa
dc.relation.referencesIbrahim, M., Cao, CG., Zhan, M. et al. Changes of CO2 emission and labile organic carbon as influenced by rice straw and different water regimes. Int. J. Environ. Sci. Technol. 12, 263–274 (2015). https://doi.org/10.1007/s13762-013-0429-3spa
dc.relation.referencesIbrahim, M., Cao, CG., Zhan, M. et al. Changes of CO2 emission and labile organic carbon as influenced by rice straw and different water regimes. Int. J. Environ. Sci. Technol. 12, 263–274 (2015). https://doi.org/10.1007/s13762-013-0429-3spa
dc.relation.referencesIGAC. 2006. Métodos analíticos del laboratorio de suelos. Instituto Geográfico Agustín Codazzi. 2006. 6ª Ed. Bogotá. Colombia.spa
dc.relation.referencesIslam, A.K.M.S., Edwards, D.G., Asher, C.J., 1980. pH optima for crop growth. Plant Soil 54, 339–357. https://doi.org/10.1007/bf02181830spa
dc.relation.referencesJeffery, S., Abalos, D., Prodana, M., Bastos, A.C., Van Groenigen, J.W., Hungate, B.A., Verheijen, F., 2017. Biochar boosts tropical but not temperate crop yields. Environ. Res. Lett. 12. https://doi.org/10.1088/1748-9326/aa67bdspa
dc.relation.referencesJien, S.H., 2018. Physical characteristics of biochars and their effects on soil physical properties. Biochar from Biomass Waste Fundam. Appl. 21–35. https://doi.org/10.1016/B978-0-12-811729-3.00002-9spa
dc.relation.referencesJoseph, S., Pow, D., Dawson, K., Rust, J., Munroe, P., Taherymoosavi, S., Mitchell, D.R.G., Robb, S., Solaiman, Z.M., 2020. Biochar increases soil organic carbon, avocado yields and economic return over 4 years of cultivation. Sci. Total Environ. 724. https://doi.org/10.1016/j.scitotenv.2020.138153spa
dc.relation.referencesKarabay, U., Toptas, A., Yanik, J., Aktas, L., 2021. Does Biochar Alleviate Salt Stress Impact on Growth of Salt-Sensitive Crop Common Bean. Commun. Soil Sci. Plant Anal. https://doi.org/10.1080/00103624.2020.1862146spa
dc.relation.referencesKarhu, K., Mattila, T., Bergström, I., Regina, K., 2011. Biochar addition to agricultural soil increased CH4 uptake and water holding capacity - Results from a short-term pilot field study. Agric. Ecosyst. Environ. 140, 309–313. https://doi.org/10.1016/j.agee.2010.12.005spa
dc.relation.referencesKim, H.S., Kim, K.R., Kim, H.J., Yoon, J.H., Yang, J.E., Ok, Y.S., Owens, G., Kim, K.H., 2015. Effect of biochar on heavy metal immobilization and uptake by lettuce (Lactuca sativa L.) in agricultural soil. Environ. Earth Sci. 74, 1249–1259. https://doi.org/10.1007/s12665-015-4116-1spa
dc.relation.referencesKloss, S., Zehetner, F., Dellantonio, A., Hamid, R., Ottner, F., Liedtke, V., Schwanninger, M., Gerzabek, M.H., Soja, G., 2012. Characterization of Slow Pyrolysis Biochars: Effects of Feedstocks and Pyrolysis Temperature on Biochar Properties. J. Environ. Qual. 41, 990–1000. https://doi.org/10.2134/jeq2011.0070spa
dc.relation.referencesLee, C.H., Wang, C.C., Lin, H.H., Lee, S.S., Tsang, D.C., Jien, S.H., et al., 2018. In-situ biochar application conserves nutrients while simultaneously mitigating runoff and erosion of an Fe-oxide-enriched tropical soil. Sci. Total Environ 619620, 665671.spa
dc.relation.referencesLi, X., Shen, Q., Zhang, D., Mei, X., Ran, W., Xu, Y., Yu, G., 2013. Functional Groups Determine Biochar Properties (pH and EC) as Studied by Two-Dimensional 13C NMR Correlation Spectroscopy. PLoS One 8. https://doi.org/10.1371/journal.pone.0065949spa
dc.relation.referencesLi, S., Harris, S., Anandhi, A., Chen, G., 2019. Predicting biochar properties and functions based on feedstock and pyrolysis temperature: A review and data syntheses. J. Clean. Prod. 215, 890–902. https://doi.org/10.1016/j.jclepro.2019.01.106spa
dc.relation.referencesLi, H., Li, Y., Xu, Y., Lu, X., 2020. Biochar phosphorus fertilizer effects on soil phosphorus availability. Chemosphere 244, 125471. https://doi.org/10.1016/j.chemosphere.2019.125471spa
dc.relation.referencesLiang, B., Lehmann, J., Solomon, D., Kinyangi, J., Grossman, J., O’Neill, B., Skjemstad, J.O., Thies, J., Luizão, F.J., Petersen, J., Neves, E.G., 2006. Black Carbon Increases Cation Exchange Capacity in Soils. Soil Sci. Soc. Am. J. 70, 1719–1730. https://doi.org/10.2136/sssaj2005.0383spa
dc.relation.referencesLimwikran, T., Kheoruenromne, I., Suddhiprakarn, A., Prakongkep, N., Gilkes, R.J., 2018. Dissolution of K, Ca, and P from biochar grains in tropical soils. Geoderma 312, 139–150. https://doi.org/10.1016/j.geoderma.2017.10.022spa
dc.relation.referencesLiu, J., Schulz, H., Brandl, S., Miehtke, H., Huwe, B., Glaser, B., 2012. Short-term effect of biochar and compost on soil fertility and water status of a Dystric Cambisol in NE Germany under field conditions. J. Plant Nutr. Soil Sci. 175, 698–707. https://doi.org/10.1002/jpln.201100172spa
dc.relation.referencesLiu, X., Zhang, A., Ji, C., Joseph, S., Bian, R., Li, L., Pan, G., Paz-Ferreiro, J., 2013. Biochar’s effect on crop productivity and the dependence on experimental conditions-a meta-analysis of literature data. Plant Soil 373, 583–594. https://doi.org/10.1007/s11104-013-1806-xspa
dc.relation.referencesLusiba, S., Odhiambo, J., Ogola, J., 2017. Effect of biochar and phosphorus fertilizer application on soil fertility: soil physical and chemical properties. Arch. Agron. Soil Sci. 63, 477–490. https://doi.org/10.1080/03650340.2016.1218477spa
dc.relation.referencesMartínez C., M.J., España A., J.C., Díaz V., J. de J., 2017. Efecto de la adición de biocarbonizados de Eucalyptus globullus en la disponibilidad de fósforo en suelos ácidos. Agron. Colomb. 35, 75–81. https://doi.org/10.15446/agron.colomb.v35n1.58671spa
dc.relation.referencesMulvaney RL (1996) Nitrogen-inorganic forms. In: Soil Science society of America and America Society of Agronomy (ed) Methods of soils analysis, part 3, chemical methods. SSSA Booksspa
dc.relation.referencesMurrell, T.S., Mikkelsen, R.L., Sulewski, G., Norton, R., 2021. Improving Potassium Recommendations for Agricultural Crops, Improving Potassium Recommendations for Agricultural Crops. https://doi.org/10.1007/978-3-030-59197-7spa
dc.relation.referencesNigussie, A., Kissi, E., Misganaw, M., Ambaw, G., 2012. Effect of Biochar Application on Soil Properties and Nutrient Uptake of Lettuces (Lactuca sativa) Grown in Chromium Polluted Soils. Environ. Sci 12, 369376.spa
dc.relation.referencesPandian, K., Subramaniayan, P., Gnasekaran, P., Chitraputhirapillai, S., 2016. Effect of biochar amendment on soil physical, chemical and biological properties and groundnut yield in rainfed Alfisol of semi-arid tropics. Arch. Agron. Soil Sci. 62, 1293–1310. https://doi.org/10.1080/03650340.2016.1139086spa
dc.relation.referencesPeake, L.R., Reid, B.J., Tang, X., 2014. Quantifying the influence of biochar on the physical and hydrological properties of dissimilar soils. Geoderma 235–236, 182–190. https://doi.org/10.1016/j.geoderma.2014.07.002spa
dc.relation.referencesPenn, C.J., Camberato, J.J., 2019. A critical review on soil chemical processes that control how soil ph affects phosphorus availability to plants. Agric. 9, 1–18. https://doi.org/10.3390/agriculture9060120spa
dc.relation.referencesPrakongkep, N., Gilkes, R.J., Wisawapipat, W., Leksungnoen, P., Kerdchana, C., Inboonchuay, T., Delbos, E., Strachan, L.-J., Ariyasakul, P., Ketdan, C., Hammecker, C., 2020. Effects of Biochar on Properties of Tropical Sandy Soils Under Organic Agriculture. J. Agric. Sci. 13, 1. https://doi.org/10.5539/jas.v13n1p1spa
dc.relation.referencesRajkovich, S., Enders, A., Hanley, K., Hyland, C., Zimmerman, A.R., Lehmann, J., 2012. Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biol. Fertil. Soils 48, 271–284. https://doi.org/10.1007/s00374-011-0624-7spa
dc.relation.referencesRehrah, D., Reddy, M.R., Novak, J.M., Bansode, R.R., Schimmel, K.A., Yu, J., Watts, D.W., Ahmedna, M., 2014. Production and characterization of biochars from agricultural by-products for use in soil quality enhancement. J. Anal. Appl. Pyrolysis 108, 301–309. https://doi.org/10.1016/j.jaap.2014.03.008spa
dc.relation.referencesRens, H., Bera, T., Alva, A.K., 2018. Effects of Biochar and Biosolid on Adsorption of Nitrogen, Phosphorus, and Potassium in Two Soils. Water. Air. Soil Pollut. 229. https://doi.org/10.1007/s11270-018-3925-8spa
dc.relation.referencesRochette, P., Angers, D.A., Chantigny, M.H., Gasser, M.-O., MacDonald, J.D., Pelster, D.E., Bertrand, N., 2013. Ammonia Volatilization and Nitrogen Retention: How Deep to Incorporate Urea? J. Environ. Qual. 42, 1635–1642. https://doi.org/10.2134/jeq2013.05.0192spa
dc.relation.referencesSadasivam, B.Y., Reddy, K.R., 2015. Engineering properties of waste wood-derived biochars and biochar-amended soils. Int. J. Geotech. Eng. 9, 521–535. https://doi.org/10.1179/1939787915Y.0000000004spa
dc.relation.referencesSänger, A., Reibe, K., Mumme, J., Kaupenjohann, M., Ellmer, F., Roß, C.L., Meyer-Aurich, A., 2017. Biochar application to sandy soil: effects of different biochars and N fertilization on crop yields in a 3-year field experiment. Arch. Agron. Soil Sci. 63, 213–229. https://doi.org/10.1080/03650340.2016.1223289spa
dc.relation.referencesSchomberg, H.H., Gaskin, J.W., Harris, K., Das, K.C., Novak, J.M., Busscher, W.J., Watts, D.W., Woodroof, R.H., Lima, I.M., Ahmedna, M., Rehrah, D., Xing, B., 2012. Influence of Biochar on Nitrogen Fractions in a Coastal Plain Soil. J. Environ. Qual. 41, 1087–1095. https://doi.org/10.2134/jeq2011.0133spa
dc.relation.referencesSg, L., Jjo, O., R, A., St, M., 2021. The potential of biochar to enhance concentration and utilization of selected macro and micro nutrients for chickpea (Cicer arietinum) grown in three contrasting soils. Rhizosphere. https://doi.org/10.1016/j.rhisph.2020.100289spa
dc.relation.referencesSomerville, P.D., Farrell, C., May, P.B., Livesley, S.J., 2020. Biochar and compost equally improve urban soil physical and biological properties and tree growth, with no added benefit in combination. Sci. Total Environ. 706. https://doi.org/10.1016/j.scitotenv.2019.135736spa
dc.relation.referencesSteinbeiss, S., Gleixner, G., Antonietti, M., 2009. Effect of biochar amendment on soil carbon balance and soil microbial activity. Soil Biol. Biochem. 41, 1301–1310. https://doi.org/10.1016/j.soilbio.2009.03.016spa
dc.relation.referencesTahir, A.H.F., Al-Obaidy, A.H.M.J., Mohammed, F.H., 2020. Biochar from date palm waste, production, characteristics and use in the treatment of pollutants: A Review. IOP Conf. Ser. Mater. Sci. Eng. 737. https://doi.org/10.1088/1757-899X/737/1/012171spa
dc.relation.referencesWallace, J (2000): Increasing agricultural water use efficiency to meet future food production. Agr Ecosyst Environ 82(1–3), 105–119.spa
dc.relation.referencesWang, L., Xue, C., Nie, X., Liu, Y., Chen, F., 2018. Effects of biochar application on soil potassium dynamics and crop uptake. J. Plant Nutr. Soil Sci. 181, 635–643. https://doi.org/10.1002/jpln.201700528spa
dc.relation.referencesWidowati, W., Asnah, a, Utomo, W.H., 2014. The use of biochar to reduce nitrogen and potassium leaching from soil cultivated with maize. J. Degrad. Min. Lands Manag. 2, 211–218. https://doi.org/10.15243/jdmlm.2014.021.211spa
dc.relation.referencesXu, C.Y., Bai, S.H., Hao, Y., Rachaputi, R.C.N., Xu, Z., Wallace, H.M., 2015. Peanut shell biochar improves soil properties and peanut kernel quality on a red Ferrosol. J. Soils Sediments 15, 2220–2231. https://doi.org/10.1007/s11368-015-1242-zspa
dc.relation.referencesXu, W., Whitman, W.B., Gundale, M.J., Chien, C.C., Chiu, C.Y., 2021. Functional response of the soil microbial community to biochar applications. GCB Bioenergy 13, 269–281. https://doi.org/10.1111/gcbb.12773spa
dc.relation.referencesYang, C.D., Lu, S.G., 2021. Effects of five different biochars on aggregation, water retention and mechanical properties of paddy soil: A field experiment of three-season crops. Soil Tillage Res. https://doi.org/10.1016/j.still.2020.104798spa
dc.relation.referencesYao, Y., Gao, B., Zhang, M., Inyang, M., Zimmerman, A.R., 2012. Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere 89, 1467–1471. https://doi.org/10.1016/j.chemosphere.2012.06.002spa
dc.relation.referencesYu, O.Y., Raichle, B., Sink, S., 2013. Impact of biochar on the water holding capacity of loamy sand soil. Int. J. Energy Environ. Eng. 4, 1–9. https://doi.org/10.1186/2251-6832-4-44spa
dc.relation.referencesZemanová, V., Břendová, K., Pavlíková, D., Kubátová, P., Tlustoš, P., 2017. Effect of biochar application on the content of nutrients(Ca, Fe, K, Mg, Na, P) and amino acids in subsequently growing spinach and mustard. Plant, Soil Environ. 63, 322–327. https://doi.org/10.17221/318/2017-PSEspa
dc.relation.referencesZhang, A., Liu, Y., Pan, G., Hussain, Q., Li, L., Zheng, J., Zhang, X., 2012. Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain. Plant Soil 351, 263–275. https://doi.org/10.1007/s11104-011-0957-xspa
dc.relation.referencesZhang, C., Li, X., Yan, H., Ullah, I., Zuo, Z., Li, L., Yu, J., 2020. Effects of irrigation quantity and biochar on soil physical properties, growth characteristics, yield and quality of greenhouse tomato. Agric. Water Manag. 241. https://doi.org/10.1016/j.agwat.2020.106263spa
dc.relation.referencesZhao, B., Connor, D.O., Zhang, J., Peng, T., Shen, Z., Daniel, C.W., 2017. Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar. Clean. Prod. https://doi.org/10.1016/j.jclepro.2017.11.013.Thisspa
dc.relation.referencesZulfiqar, F., Younis, A., Chen, J., 2019. Biochar or biochar-compost amendment to a peat-based substrate improves growth of syngonium podophyllum. Agronomy 9, 1–12. https://doi.org/10.3390/agronomy9080460spa
dc.rightsDerechos reservados al autor, 2021spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.agrovocBiomasa sobre el suelospa
dc.subject.agrovocabove ground biomasseng
dc.subject.agrovocPropiedades del suelospa
dc.subject.agrovocsoil propertieseng
dc.subject.ddc630 - Agricultura y tecnologías relacionadasspa
dc.subject.proposalBicarbónspa
dc.subject.proposalCadmiospa
dc.subject.proposalEnmienda agrícolaspa
dc.subject.proposalPropiedades del suelospa
dc.subject.proposalPirólisis lentaspa
dc.subject.proposalLactuca sativaother
dc.subject.proposalBiochareng
dc.subject.proposalCadmiumeng
dc.subject.proposalagricultural amendmenteng
dc.subject.proposalSoil propertieseng
dc.subject.proposalSlow pyrolysiseng
dc.titleEfecto de enmiendas con biocarbones sobre propiedades físicas, químicas y Fitoabsorción de Cadmio en suelos disímiles sembrados con lechugaspa
dc.title.translatedEffect of biochar amendments on physical-chemical properties and Cadmium Phytoabsorption on dissimilar soils planted with lettuceeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleProyecto código 44365spa
oaire.fundernameConvocatoria No.44365 de Centro de Investigación y Extensión Rural (CIER)spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1022338457.2021.pdf
Tamaño:
4.23 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Agrarias

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: