Implementación de una plataforma phage display para la producción de anticuerpos recombinantes anti-NAD+ quinasa de Plasmodium falciparum (PfNADK)

dc.contributor.advisorRamírez Hernández, María Helena
dc.contributor.authorMelo Chinchilla, Miguel Ángel
dc.contributor.researchgroupLibbiq Unspa
dc.date.accessioned2023-06-01T15:22:59Z
dc.date.available2023-06-01T15:22:59Z
dc.date.issued2023
dc.description.abstractLa tecnología phage display permite la generación de librerías de anticuerpos monoclonales para su uso en investigación, diagnóstico y terapia. En este estudio, se reporta la construcción de una librería inmune de anticuerpos presentados en bacteriófagos, contra la enzima NAD quinasa de Plasmodium falciparum. La proteína NAD quinasa recombinante fue expresada en E. coli de forma completa y truncada, y esta última se purificó desde la fracción insoluble para la construcción de la librería. Los fragmentos variables de las cadenas ligeras y pesadas de los anticuerpos, se amplificaron desde ADNc de ratón y se clonaron en el fásmido pSEX81. La presentación de la librería se realizó sobre el bacteriófago ayudador M13KO7ΔpIII, con posterior selección por afinidad. Para la identificación de los bacteriófagos, se validó un ensayo de ELISA indirecto utilizando anticuerpos IgY. Los análisis por PCR indicaron la correcta clonación de las cadenas ligeras y pesadas en el fásmido, con un tamaño de librería de 1x107 cfu. El ensayo de ELISA indirecto permitió la detección de 3.6x106 pfu/mL. Después de tres rondas sucesivas de biopanning, con un enriquecimiento de más de 50 mil veces, se lograron aislar 6 bacteriófagos-scFv monoclonales específicos contra la proteína PfNADK. La evaluación de uno de los fagos-scFv demostró alta especificidad, con capacidad para detectar desde 8.4 ng de PfNADK. Adicionalmente, cuatro fragmentos scFv se caracterización mediante secuenciación de ADN, modelado tridimensional y acoplamiento molecular, sugiriendo así la posible interacción con la PfNADK que permite su reconocimiento específico. Finalmente, el uso de esta metodología es un punto de partida importante para la producción de anticuerpos recombinantes a nivel local, lo cual reduciría los costos de estos biológicos en nuestro país. (Texto tomado de la fuente)spa
dc.description.abstractPhage display technology enables the generation of monoclonal antibody libraries for use in research, diagnosis, and therapy. In this study, construction of an immune library of antibodies presented on bacteriophages, against the enzyme NAD kinase from Plasmodium falciparum is reported. Recombinant NAD kinase protein was expressed in E. coli in full-length and truncated form, and the latter was purified from the insoluble fraction for library construction. The variable fragments of heavy and light chains of the antibodies were amplified from mouse cDNA and cloned into the phagemid pSEX81. Library presentation was performed on the helper bacteriophage M13KO7ΔpIII, with subsequent affinity selection. For identification of bacteriophages, an indirect ELISA assay using IgY antibodies was validated. PCR analysis indicated correct cloning of the heavy and light chains in the phagemid, with a library size of 1x107 cfu. The indirect ELISA assay allowed the detection of 3.6x106 pfu/mL. After three successive rounds of biopanning, with an enrichment of more than 50 thousand times, it was possible to isolate 6 specific monoclonal bacteriophage-scFv against the PfNADK protein. The evaluation of one of the phage-scFv demonstrated high specificity, with the capacity to detect 8.4 ng of PfNADK. Additionally, four scFv fragments were characterized by DNA sequencing, three-dimensional modeling, and molecular docking, thus suggesting the possible interaction with PfNADK that allows its specific recognition. Finally, the use of this methodology is an important starting point for the production of recombinant antibodies at the local level, which would reduce the costs of these biologics in our country.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Bioquímicaspa
dc.description.researchareaMetabolismo energético de parásitos protozoariosspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83944
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Bioquímicaspa
dc.relation.referencesA. Mullard, “FDA approves 100th monoclonal antibody product,” Nat. Rev. Drug Discov., vol. 20, no. 7, pp. 491–495, Jul. 2021, doi: 10.1038/D41573-021-00079-7.spa
dc.relation.referencesThe Antibody Society, “Therapeutic monoclonal antibodies approved or in regulatory review.” www.antibodysociety.org/antibody-therapeutics-prod (accessed Feb. 05, 2023).spa
dc.relation.referencesD. R. Goulet and W. M. Atkins, “Considerations for the Design of Antibody-Based Therapeutics,” J. Pharm. Sci., vol. 109, no. 1, pp. 74–103, 2020, doi: 10.1016/j.xphs.2019.05.031.spa
dc.relation.referencesA. Y. Kolosova, W. B. Shim, Z. Y. Yang, S. A. Eremin, and D. H. Chung, “Direct competitive ELISA based on a monoclonal antibody for detection of aflatoxin B1. Stabilization of ELISA kit components and application to grain samples,” Anal. Bioanal. Chem., vol. 384, no. 1, pp. 286–294, Jan. 2006, doi: 10.1007/s00216-005-0103-9.spa
dc.relation.referencesY. Gallo García, P. A. Gutiérrez Sánchez, and M. Marín Montoya, “Detection of PMTV Using Polyclonal Antibodies Raised Against a Capsid-Specific Peptide Antigen,” Rev. Fac. Nac. Agron. Medellín, pp. 6999–7008, 2013.spa
dc.relation.referencesN. Clementi, N. Mancini, L. Solforosi, M. Castelli, M. Clementi, and R. Burioni, “Phage Display-based Strategies for Cloning and Optimization of Monoclonal Antibodies Directed against Human Pathogens,” International Journal of Molecular Sciences, vol. 13, no. 7. 2012. doi: 10.3390/ijms13078273.spa
dc.relation.referencesH.-P. Meyer and D. R., “Microbial Expression Systems and Manufacturing from a Market and Economic Perspective,” in Innovations in Biotechnology, InTech, 2012. doi: 10.5772/29417.spa
dc.relation.referencesR. I. Castro and G. M. del C. Rodríguez, “Análisis proteómico de Plasmodium, el agente causal de la Malaria,” Salud Publica Mex., vol. 51, no. SUPPL.3, pp. s395–s402, 2009, doi: 10.1590/S0036-36342009000900005.spa
dc.relation.referencesD. Macià et al., “Strong off-target antibody reactivity to malarial antigens induced by RTS,S/AS01E vaccination is associated with protection,” JCI Insight, vol. 7, no. 10, May 2022, doi: 10.1172/JCI.INSIGHT.158030.spa
dc.relation.referencesWorld Health Organization, “World malaria report 2022,” Geneva, 2022. [Online]. Available: https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2022spa
dc.relation.referencesC. A. Nieto, L. M. Sánchez, D. M. Sánchez, G. J. Díaz, and M. H. Ramírez, “Localization and phosphorylation of Plasmodium falciparum nicotinamide/nicotinate mononucleotide adenylyltransferase (PfNMNAT) in intraerythrocytic stages,” Malar. J. 2018 171, vol. 17, no. 1, pp. 1–8, Apr. 2018, doi: 10.1186/S12936-018-2307-4.spa
dc.relation.referencesL. K. Guasca Pineda, “Construyendo el metabolismo del NAD(P)+ en Plasmodium falciparum: estudio de la NADK y la NMNAT,” Universidad Nacional de Colombia, 2018. [Online]. Available: https://repositorio.unal.edu.co/handle/unal/64052spa
dc.relation.referencesK. Murphy, P. Travers, and M. Walport, “Inmunología de Janeway. México: Ed.” McGraw Hill, 2009.spa
dc.relation.referencesG. M. Edelman, “The Structure and Function of Antibodies,” Sci. Am., vol. 223, no. 2, pp. 34–43, Apr. 1970, [Online]. Available: http://www.jstor.org/stable/24925871spa
dc.relation.referencesJ. A. Owen, J. Punt, and S. A. Stranford, Inmunología de Kuby. McGraw-Hill Interamericana, 2014.spa
dc.relation.referencesR. R. Porter, “Chemical structure of γ-globulin and antibodies,” Br. Med. Bull., vol. 19, no. 3, pp. 197–201, Sep. 1963, doi: 10.1093/oxfordjournals.bmb.a070056.spa
dc.relation.referencesA. Nisonoff, F. C. Wissler, L. N. Lipman, and D. L. Woernley, “Separation of univalent fragments from the bivalent rabbit antibody molecule by reduction of disulfide bonds,” Arch. Biochem. Biophys., vol. 89, no. 2, pp. 230–244, 1960, doi: https://doi.org/10.1016/0003-9861(60)90049-7.spa
dc.relation.referencesM. Chiu, D. Goulet, A. Teplyakov, and Gilliland, “Antibody Structure and Function: The Basis for Engineering Therapeutics,” Antibodies, vol. 8, p. 55, Dec. 2019, doi: 10.3390/antib8040055.spa
dc.relation.referencesM. Mutneja, C. Mohan, K. Long, C. Das, and R. Brockett, An introduction to Antibodies and their applications. 2014. [Online]. Available: https://www.researchgate.net/publication/280494428_An_introduction_to_Antibodies_and_their_applicationsspa
dc.relation.referencesN. P. Machado, G. A. Tellez, and J. C. Castaño, “Anticuerpos monoclonales: desarrollo físico y perspectivas terapéuticas,” Infectio, vol. 10, pp. 186–197, 2006, [Online]. Available: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0123-93922006000300006&nrm=isospa
dc.relation.referencesN. S. Lipman, L. R. Jackson, L. J. Trudel, and F. Weis-Garcia, “Monoclonal versus polyclonal antibodies: distinguishing characteristics, applications, and information resources.,” ILAR J., vol. 46, no. 3, pp. 258–268, 2005, doi: 10.1093/ilar.46.3.258.spa
dc.relation.referencesR. O’Kennedy, C. Murphy, and T. Devine, “Technology advancements in antibody purification,” Antib. Technol. J., vol. Volume 6, pp. 17–32, Aug. 2016, doi: 10.2147/ANTI.S64762.spa
dc.relation.referencesG. Köhler and C. Milstein, “Continuous cultures of fused cells secreting antibody of predefined specificity,” Nature, vol. 256, no. 5517, pp. 495–497, 1975, doi: 10.1038/256495a0.spa
dc.relation.referencesJ. K. H. Liu, “The history of monoclonal antibody development - Progress, remaining challenges and future innovations,” Annals of Medicine and Surgery. 2014. doi: 10.1016/j.amsu.2014.09.001.spa
dc.relation.referencesM. L. Dos Santos, W. Quintilio, T. M. Manieri, L. R. Tsuruta, and A. M. Moro, “Advances and challenges in therapeutic monoclonal antibodies drug development,” Brazilian Journal of Pharmaceutical Sciences, vol. 54, no. Special Issue. Faculdade de Ciencias Farmaceuticas (Biblioteca), 2018. doi: 10.1590/s2175-97902018000001007.spa
dc.relation.referencesK. R. Rodgers and R. C. Chou, “Therapeutic monoclonal antibodies and derivatives: Historical perspectives and future directions,” Biotechnol. Adv., vol. 34, no. 6, pp. 1149–1158, 2016, doi: https://doi.org/10.1016/j.biotechadv.2016.07.004.spa
dc.relation.referencesH. Ma and R. O’Kennedy, “Recombinant antibody fragment production,” Methods, vol. 116, pp. 23–33, 2017, doi: https://doi.org/10.1016/j.ymeth.2016.11.008.spa
dc.relation.referencesD. Oluwayelu and A. Adebiyi, “Plantibodies in human and animal health: A review,” Afr. Health Sci., vol. 16, Jul. 2016, doi: 10.4314/ahs.v16i2.35.spa
dc.relation.referencesR. Kunert and D. Reinhart, “Advances in recombinant antibody manufacturing,” Appl. Microbiol. Biotechnol., vol. 100, no. 8, pp. 3451–3461, 2016, doi: 10.1007/s00253-016-7388-9.spa
dc.relation.referencesS. P. Mayfield and S. E. Franklin, “Expression of human antibodies in eukaryotic micro-algae,” Vaccine, vol. 23, no. 15, pp. 1828–1832, 2005, doi: https://doi.org/10.1016/j.vaccine.2004.11.013.spa
dc.relation.referencesS. Kawai and K. Murata, “Structure and function of NAD kinase and NADP phosphatase: key enzymes that regulate the intracellular balance of NAD(H) and NADP(H),” Biosci. Biotechnol. Biochem., vol. 72, no. 4, pp. 919–930, 2008, doi: 10.1271/BBB.70738.spa
dc.relation.referencesM. Ziegler, “New functions of a long-known molecule. Emerging roles of NAD in cellular signaling,” Eur. J. Biochem., vol. 267, no. 6, pp. 1550–1564, 2000, doi: 10.1046/J.1432-1327.2000.01187.X.spa
dc.relation.referencesJ. O’Hara et al., “Targeting NAD+ metabolism in the human malaria parasite Plasmodium falciparum,” PLoS One, vol. 9, no. 4, Apr. 2014, doi: 10.1371/JOURNAL.PONE.0094061.spa
dc.relation.referencesI. Mesquita et al., “Exploring NAD+ metabolism in host-pathogen interactions,” Cell. Mol. Life Sci., vol. 73, no. 6, pp. 1225–1236, Mar. 2016, doi: 10.1007/S00018-015-2119-4.spa
dc.relation.referencesG. Magni, M. Di Stefano, G. Orsomando, N. Raffaelli, and S. Ruggieri, “NAD(P) Biosynthesis Enzymes as Potential Targets for Selective Drug Design,” Curr. Med. Chem., vol. 16, no. 11, pp. 1372–1390, Apr. 2009, doi: 10.2174/092986709787846505.spa
dc.relation.referencesJ. G, H. A, S. D, S. T, S. M, and N. T, “Biochemical and functional characterization of novel NADH kinase in the enteric protozoan parasite Entamoeba histolytica,” Biochimie, vol. 95, no. 2, pp. 309–319, Feb. 2013, doi: 10.1016/J.BIOCHI.2012.09.034.spa
dc.relation.referencesL. M. Spencer, A. Gómez, and E. Collovini, “Mechanisms of invasion from sporozoite and merozoíto of Plasmodium,” Revista Bionatura, vol. 1, no. 2. Centro de Biotecnologia y Biomedicina, Clinical Biotec. Universidad Católica del Oriente (UCO), Univesidad Yachay Tech, pp. 89–94, 2016. doi: 10.21931/RB/2016.01.02.9.spa
dc.relation.referencesInstituto Nacional de Salud, “Boletín Epidemiológico Semanal,” 2022. [Online]. Available: https://www.ins.gov.co/buscador-eventos/Paginas/Vista-Boletin-Epidemilogico.aspxspa
dc.relation.referencesA. Knudson-Ospina, R. Sánchez-Pedraza, M. A. Pérez-Mazorra, L. J. Cortés-Cortés, Á. P. Guerra-Vega, and R. S. Nicholls-Orejuela, “Clinical and parasitological profiles of patients with non-complicated Plasmodium falciparum and Plasmodium vivax malaria in northwestern Colombia,” Rev. Fac. Med., vol. 63, no. 4, pp. 595–607, 2015, doi: 10.15446/revfacmed.v63.n4.47953spa
dc.relation.referencesP. B. Vita R, Mahajan S, Overton JA, Dhanda SK, Martini S, Cantrell JR, Wheeler DK, Sette A, “IEDB.org: Free epitope database and prediction resource,” 2020. http://www.iedb.org (accessed Feb. 01, 2023).spa
dc.relation.referencesC. H. Lee and H. Koohy, “In silico identification of vaccine targets for 2019-nCoV,” F1000Research, vol. 9, pp. 1–10, 2020, doi: 10.12688/F1000RESEARCH.22507.2.spa
dc.relation.references“ChampionTM pET SUMO Expression System.” https://www.thermofisher.com/order/catalog/product/K30001 (accessed Oct. 24, 2022).spa
dc.relation.referencesS. J.F. and D. Russell, Molecular Cloning: A Laboratory Manual (3-Volume Set), vol. 1. 2001.spa
dc.relation.referencesI. Palmer and P. T. Wingfield, “Preparation and Extraction of Insoluble (Inclusion-Body) Proteins from Escherichia coli”, doi: 10.1002/0471140864.ps0603s38.spa
dc.relation.referencesThermo Fisher Scientific, “TRIzol Reagent User Guide.” Accessed: Feb. 12, 2023. [Online]. Available: https://www.thermofisher.com/order/catalog/product/15596026spa
dc.relation.referencesJ. Glanville et al., “Precise determination of the diversity of a combinatorial antibody library gives insight into the human immunoglobulin repertoire,” Proc. Natl. Acad. Sci. U. S. A., vol. 106, no. 48, pp. 20216–20221, Dec. 2009, doi: 10.1073/PNAS.0909775106.spa
dc.relation.referencesR. Rajput et al., “Diagnostic potential of recombinant scFv antibodies generated against hemagglutinin protein of influenza A virus,” Front. Immunol., vol. 6, no. SEP, p. 440, Sep. 2015, doi: 10.3389/FIMMU.2015.00440/BIBTEX.spa
dc.relation.referencesB. K. Kay, J. Winter, and J. McCafferty, “Phage display of peptides and proteins : a laboratory manual,” p. 344, 1996.spa
dc.relation.referencesPROGEN, “Phage Titration ELISA.” https://us.progen.com//Phage-Titration-ELISA/PRPHAGE (accessed Feb. 10, 2023).spa
dc.relation.referencesA. Twair, S. A.- Okla, H. Kawas, and A. Q. Abbady, “Production of polyclonal antibody against M13 phage for application in nanobody technology,” Adv. Environ. Biol., vol. 7, p. 3216+, 2013.spa
dc.relation.referencesC. Féraudet-Tarisse et al., “Highly sensitive sandwich immunoassay and immunochromatographic test for the detection of Clostridial epsilon toxin in complex matrices,” PLoS One, vol. 12, no. 7, Jul. 2017, doi: 10.1371/JOURNAL.PONE.0181013.spa
dc.relation.referencesY. Zhang et al., “Preparation of a Single-Chain Antibody against Nucleocapsid Protein of Porcine Deltacoronavirus by Phage Display Technology,” Viruses, vol. 14(4), 2022, doi: 10.3390/v14040772.spa
dc.relation.referencesE. T. Son et al., “The self-peptide repertoire plays a critical role in transplant tolerance induction,” J. Clin. Invest., vol. 131, no. 21, Nov. 2021, doi: 10.1172/JCI146771.spa
dc.relation.referencesJ. Ponomarenko et al., “ElliPro: a new structure-based tool for the prediction of antibody epitopes,” BMC Bioinformatics, vol. 9, Dec. 2008, doi: 10.1186/1471-2105-9-514.spa
dc.relation.referencesM. Hebditch, M. A. Carballo-Amador, S. Charonis, R. Curtis, and J. Warwicker, “Protein–Sol: a web tool for predicting protein solubility from sequence,” Bioinformatics, vol. 33, no. 19, pp. 3098–3100, Oct. 2017, doi: 10.1093/BIOINFORMATICS/BTX345.spa
dc.relation.referencesK. Flick, S. Ahuja, A. Chene, M. T. Bejarano, and Q. Chen, “Optimized expression of Plasmodium falciparum erythrocyte membrane protein 1 domains in Escherichia coli,” Malar. J., vol. 3, no. 1, pp. 1–8, Dec. 2004, doi: 10.1186/1475-2875-3-50/FIGURES/3.spa
dc.relation.referencesL. Buscajoni, M. C. Martinetz, M. Berkemeyer, and C. Brocard, “Refolding in the modern biopharmaceutical industry,” Biotechnol. Adv., vol. 61, p. 108050, Dec. 2022, doi: 10.1016/J.BIOTECHADV.2022.108050.spa
dc.relation.referencesM. Li, Z. G. Su, and J. C. Janson, “In vitro protein refolding by chromatographic procedures,” Protein Expr. Purif., vol. 33, no. 1, pp. 1–10, 2004, doi: 10.1016/j.pep.2003.08.023.spa
dc.relation.referencesH. Salgado-Lugo, A. Sánchez-Arreguín, and J. Ruiz-Herrera, “Heterologous expression of an active chitin synthase from Rhizopus oryzae,” Fungal Genet. Biol., vol. 97, pp. 10–17, Dec. 2016, doi: 10.1016/J.FGB.2016.10.005.spa
dc.relation.referencesS. Soltaninasab, M. Ahmadzadeh, S. Shahhosseini, and E. Mohit, “Evaluating the efficacy of immobilized metal affinity chromatography (IMAC) for host cell protein (HCP) removal from anti-HER2 scFv expressed in Escherichia coli,” Protein Expr. Purif., vol. 190, p. 106004, Feb. 2022, doi: 10.1016/J.PEP.2021.106004.spa
dc.relation.referencesM. Ayoub Meigouni, A. Abouie Mehrizi, A. Fazaeli, S. Zakeri, and N. D. Djadid, “Optimization of the heterologous expression and purification of Plasmodium falciparum generative cell specific 1 in Escherichia coli,” Protein Expr. Purif., vol. 198, p. 106126, Oct. 2022, doi: 10.1016/J.PEP.2022.106126.spa
dc.relation.referencesN. Punde, J. Kooken, D. Leary, P. M. Legler, and E. Angov, “Codon harmonization reduces amino acid misincorporation in bacterially expressed P. falciparum proteins and improves their immunogenicity,” AMB Express, vol. 9, no. 1, pp. 1–14, Dec. 2019, doi: 10.1186/S13568-019-0890-6/FIGURES/6.spa
dc.relation.referencesP. S. Chowdhury, J. L. Viner, R. Beers, and I. Pastan, “Isolation of a high-affinity stable single-chain Fv specific for mesothelin from DNA-immunized mice by phage display and construction of a recombinant immunotoxin with anti-tumor activity,” Proc. Natl. Acad. Sci. U. S. A., vol. 95, no. 2, p. 669, Jan. 1998, doi: 10.1073/PNAS.95.2.669.spa
dc.relation.referencesN. K. Lee, S. Bidlingmaier, Y. Su, and B. Liu, “Modular construction of large non-immune human antibody phage-display libraries from variable heavy and light chain gene cassettes,” Methods Mol. Biol., vol. 1701, pp. 61–82, 2018, doi: 10.1007/978-1-4939-7447-4_4/COVER.spa
dc.relation.referencesP. S. Aranda, D. M. Lajoie, and C. L. Jorcyk, “Bleach Gel: A Simple Agarose Gel for Analyzing RNA Quality,” Electrophoresis, vol. 33, no. 2, p. 366, Jan. 2012, doi: 10.1002/ELPS.201100335.spa
dc.relation.referencesH. Zhou, R. J. Fisher, and T. S. Papas, “Optimization of primer sequences for mouse scFv repertoire display library construction.,” Nucleic Acids Res., vol. 22, no. 5, p. 888, Mar. 1994, doi: 10.1093/NAR/22.5.888.spa
dc.relation.referencesT. S. L. Michael Hust, Ed., Phage Display: Methods and Protocols, 1st ed. Humana New York, NY, 2018. doi: https://doi.org/10.1007/978-1-4939-7447-4.spa
dc.relation.referencesG. Russo et al., “Parallelized antibody selection in microtiter plates,” Methods Mol. Biol., vol. 1701, pp. 273–284, 2018, doi: 10.1007/978-1-4939-7447-4_14/COVER.spa
dc.relation.referencesT. Yang, L. Yang, W. Chai, R. Li, J. Xie, and B. Niu, “A strategy for high-level expression of a single-chain variable fragment against TNFα by subcloning antibody variable regions from the phage display vector pCANTAB 5E into pBV220.,” Protein Expr. Purif., vol. 76, no. 1, pp. 109–114, Mar. 2011, doi: 10.1016/j.pep.2010.10.006.spa
dc.relation.referencesP. Sulong, N. Anudit, S. Nuanualsuwan, S. Mariela, and K. Khantasup, “Application of phage display technology for the production of antibodies against Streptococcus suis serotype 2,” PLoS One, vol. 16, no. 10, p. e0258931, Oct. 2021, doi: 10.1371/JOURNAL.PONE.0258931.spa
dc.relation.referencesS. Anandakumar, K. N. Boosi, H. Bugatha, B. Padmanabhan, and P. P. Sadhale, “Phage Displayed Short Peptides against Cells of Candida albicans Demonstrate Presence of Species, Morphology and Region Specific Carbohydrate Epitopes,” PLoS One, vol. 6, no. 2, p. e16868, 2011, doi: 10.1371/JOURNAL.PONE.0016868.spa
dc.relation.referencesE. M. Zygiel et al., “Various mutations compensate for a deleterious lacZα insert in the replication enhancer of M13 bacteriophage,” PLoS One, vol. 12, no. 4, p. e0176421, Apr. 2017, doi: 10.1371/JOURNAL.PONE.0176421.spa
dc.relation.referencesD. L. Siegel and L. E. Silberstein, “Expression and Characterization of Recombinant Anti-Rh(D) Antibodies on Filamentous Phage: A Model System for Isolating Human Red Blood Cell Antibodies by Repertoire Cloning,” Blood, vol. 83, no. 8, pp. 2334–2344, Apr. 1994, doi: 10.1182/BLOOD.V83.8.2334.2334.spa
dc.relation.referencesB. C. Courtney, K. C. Williams, and J. J. Schlager, “A phage display vector with improved stability, applicability and ease of manipulation,” Gene, vol. 165, no. 1, pp. 139–140, Jan. 1995, doi: 10.1016/0378-1119(95)00526-C.spa
dc.relation.referencesS. H. Kim, C. C. Titlow, and M. N. Margolies, “An approach for preventing recombination-deletion of the 40–50 anti-digoxin antibody VH gene from the phage display vector pComb3,” Gene, vol. 241, no. 1, pp. 19–25, Jan. 2000, doi: 10.1016/S0378-1119(99)00462-X.spa
dc.relation.referencesPROGEN, “Original papers on the succesful use of the hyperphage system,” 2023. https://us.progen.com/Antibodies/Related-Products/Phage-Display/Phage-Display-References/ (accessed Jan. 30, 2023).spa
dc.relation.referencesF. Wang et al., “Preparation and Directed Evolution of Anti-Ciprofloxacin ScFv for Immunoassay in Animal-Derived Food,” Foods 2021, Vol. 10, Page 1933, vol. 10, no. 8, p. 1933, Aug. 2021, doi: 10.3390/FOODS10081933.spa
dc.relation.referencesA. A. Faizo et al., “A Reliable Indirect ELISA Protocol for Detection of Human Antibodies Directed to SARS-CoV-2 NP Protein,” Diagnostics, vol. 11, no. 5, 2021, doi: 10.3390/DIAGNOSTICS11050825.spa
dc.relation.referencesE. J. Kim et al., “Generation of monoclonal antibodies for sensitive detection of pro-inflammatory protein s100a9,” Appl. Sci., vol. 11, no. 10, p. 4659, May 2021, doi: 10.3390/APP11104659/S1.spa
dc.relation.referencesY. Kaku et al., “Altered specificity of single-chain antibody fragments bound to pandemic H1N1-2009 influenza virus after conversion of the phage-bound to the soluble form,” BMC Res. Notes, vol. 5, 2012, doi: 10.1186/1756-0500-5-483.spa
dc.relation.referencesT. T. H. Nguyen, J. S. Lee, and H. Shim, “Construction of rabbit immune antibody libraries,” Methods Mol. Biol., vol. 1701, pp. 133–146, 2018, doi: 10.1007/978-1-4939-7447-4_7/COVER.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc570 - Biología::572 - Bioquímicaspa
dc.subject.proposalPhage displayeng
dc.subject.proposalNAD kinaseeng
dc.subject.proposalPlasmodium falciparumeng
dc.subject.proposalMonoclonal antibodyeng
dc.subject.proposalNAD quinasaspa
dc.subject.proposalPlasmodium falciparumspa
dc.subject.proposalAnticuerpo monoclonalspa
dc.titleImplementación de una plataforma phage display para la producción de anticuerpos recombinantes anti-NAD+ quinasa de Plasmodium falciparum (PfNADK)spa
dc.title.translatedImplementation of phage display platform for the production of recombinant antibodies against Plasmodium falciparum NAD+ kinase (PfNADK)eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032478976.2023.pdf
Tamaño:
3.79 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Bioquímica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: