Búsqueda de inhibidores del transportador de membrana CtpF de Mycobacterium tuberculosis mediante screening virtual basado en farmacóforo y determinación in vitro de la actividad

dc.contributor.advisorSoto Ospina, Carlos Yesid
dc.contributor.advisorLópez Vallejo, Fabián Harvey
dc.contributor.authorVarón Vega, Henry Andrés
dc.contributor.researchgroupBioquímica y Biología Molecular de las Micobacteriasspa
dc.date.accessioned2022-11-10T20:03:28Z
dc.date.available2022-11-10T20:03:28Z
dc.date.issued2022-09-13
dc.descriptionilustraciones, gráficasspa
dc.description.abstractLa aparición de cepas de Mycobacterium tuberculosis (Mtb), multirresistente y extremadamente resistente a los fármacos, y la coinfección con el virus de inmunodeficiencia humana (VIH), han aumentado dramáticamente la mortalidad por tuberculosis (TB) en el mundo. Esta situación obliga a la necesidad de encontrar dianas terapéuticas alternativas y la identificación de nuevos fármacos más efectivos contra la TB. En este sentido, las proteínas de membrana ATPasas tipo P, podrían ser blancos relevantes, toda vez que se conoce son relevantes en la homeostasis iónica y en la supervivencia de Mtb durante la infección. CtpF, una Ca2+-ATPasa de membrana plasmática, es una proteína que se activa en condiciones de hipoxia, estrés oxidativo e infección, sugiriendo qué este transportador hace parte de las estrategias usadas por el bacilo tuberculoso para evadir la respuesta inmune. Considerando la importancia de CtpF en la viabilidad del bacilo tuberculoso, en el presente trabajo se planteó la búsqueda de nuevos compuestos con potencial actividad inhibitoria del transporte de Ca2+ mediado por CtpF. En el presente trabajo se partió del análisis in silico de los modos de unión y las interacciones con los residuos funcionalmente activos entre CtpF y el ácido ciclopiazónico (CPA, un reconocido inhibidor de la actividad Ca2+ ATPasa en eucariotas) además de tres compuestos adicionales que en un estudio previo mostraron inhibición del crecimiento de Mtb y de la actividad ATPasa mediada por CtpF. Para la identificación de los nuevos inhibidores se llevó a cabo un cribado virtual basado en diferentes métodos quimioinformáticos que incluyeron: dinámica molecular, modelado del farmacóforo, huellas digitales moleculares, acoplamiento molecular automatizado y cálculos de energía de libre de unión. La estrategia propuesta en este trabajo permitió identificar once compuestos con potencial actividad inhibitoria de CtpF, los que se probaron in vitro. Ensayos de concentración mínima inhibitoria (CMI) permitieron seleccionar cuatro nuevos inhibidores del crecimiento de Mtb (ZINC57418826, ZINC12547355, ZINC09731847 y ZINC04030361). Experimentos para determinar el efecto de dos de estos compuestos sobre la actividad Ca2+-ATPasa de vesículas de membrana, mostraron que los ligandos ZINC09731847 (IC50 = 7,6 μM) y ZINC04030361 (IC50 = 3,3 μM) inhiben de manera efectiva la actividad de CtpF en membrana plasmática. Los resultados de CMI (25,0 μg/mL) actividad Ca2+-ATPasa, actividad citotóxica (27,2, %) sobre células vero y hemólisis sobre glóbulos rojos humanos (0,2 %), ayudaron a seleccionar el compuesto ZINC04030361 como el candidato más activo contra la ATPasa CtpF de membrana plasmática. Los resultados obtenidos en el presente trabajo representan un avance en la búsqueda y desarrollo de nuevos compuestos anti-TB dirigidos a dianas alternativas, como son las proteínas de membrana involucradas en la homeóstasis iónica de Mtb. (Texto tomado de la fuente)spa
dc.description.abstractThe appearance of multidrug-resistant and extremely drug-resistant Mycobacterium tuberculosis (Mtb) strains, and co-infection with the human immunodeficiency virus (HIV), have dramatically increased mortality from tuberculosis (TB) in the world. This situation forces the need to find alternative therapeutic targets and the identification of new and more effective drugs against TB. In this way, P-type ATPase membrane proteins are known to be relevant in ionic homeostasis and in the survival of Mtb during infection. CtpF, a Ca2+-ATPase, is a protein whose encoding gene is activated under conditions of hypoxia, oxidative stress, and infection, suggesting that this transporter is part of the strategies used by the tubercle bacillus to evade the immune response. Considering the importance of CtpF in the viability of the tubercle bacillus, was proposed in the present work the search for new compounds with potential inhibitory activity of Ca2+ transport mediated by CtpF. In the present work, we started from the in silico analysis of the binding modes and the interactions with the functionally active residues between CtpF and cyclopiazonic acid (CPA, a recognized inhibitor of Ca2+ ATPase activity in eukaryotes) and three additional compounds, which in a previous study showed inhibition of Mtb growth, as well as of CtpF mediated ATPase activity. For the identification of the new inhibitors, a virtual screening was carried out based on different chemoinformatic methods that included: molecular dynamics, pharmacophore modeling, molecular fingerprinting, automated molecular docking, and binding free energy calculations. The strategy proposed in this work allowed the identification of eleven compounds with potential CtpF inhibitory activity, these compounds were tested in vitro. Minimum inhibitory concentration (MIC) assays allowed the selection of four new Mtb growth inhibitors (ZINC57418826, ZINC12547355, ZINC09731847 and ZINC04030361). Experiments to determine the effect of two of these compounds on the Ca2+-ATPase activity of membrane vesicles, showed that the ligands ZINC09731847 (IC50 = 7,6 μM) and ZINC04030361 (IC50 = 3,3 μM) effectively inhibit CtpF activity. The results of MIC (25,0 μg/mL) Ca2+-ATPase activity, in addition to cytotoxic activity assays on Vero cells (27,2 %) and hemolysis on human red blood cells (0,2%), helped to select the compound ZINC04030361 as the most active candidate against the plasma membrane ATPase CtpF. Finally, the results obtained represent an advance in the search and development of new anti-TB compounds directed at alternative targets, such as the membrane proteins involved in the ionic homeostasis of Mtb.eng
dc.description.degreelevelMaestríaspa
dc.description.researchareaAnti-TBspa
dc.description.researchareaQuimioinformáticaspa
dc.format.extentxviii, 88 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82682
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Bioquímicaspa
dc.relation.indexedBiremespa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesWorld Health Organization. Global tuberculosis report 2021. https://apps.who.int/iris/bitstream/handle/10665/336069/9789240013131-eng.pdf (2021) doi:ISBN 978-92-4-003702-1.spa
dc.relation.referencesPai, M. et al. Tuberculosis. Nat. Rev. Dis. Prim. 2, (2016).spa
dc.relation.referencesDheda, K. et al. The epidemiology, pathogenesis, transmission, diagnosis, and management of multidrug-resistant, extensively drug-resistant, and incurable tuberculosis. Lancet Respir. Med. 5, 291–360 (2017).spa
dc.relation.referencesCassir, N., Rolain, J.-M. & Brouqui, P. A new strategy to fight antimicrobial resistance: the revival of old antibiotics. Frontiers in Microbiology 5, (2014).spa
dc.relation.referencesPadilla-Benavides, T., Long, J. E., Raimunda, D., Sassetti, C. M. & Argüello, J. M. A Novel P1B-type Mn2+-transporting ATPase Is Required for Secreted Protein Metallation in Mycobacteria *. J. Biol. Chem. 288, 11334–11347 (2013).spa
dc.relation.referencesGengenbacher, M. & Kaufmann, S. H. E. Mycobacterium tuberculosis: success through dormancy. FEMS Microbiol. Rev. 36, 514–532 (2012).spa
dc.relation.referencesProsser, G. et al. The bacillary and macrophage response to hypoxia in tuberculosis and the consequences for T cell antigen recognition. Microbes Infect. 19, 177–192 (2017).spa
dc.relation.referencesNovoa-Aponte, L. et al. In silico identification and characterization of the ion transport specificity for P-type ATPases in the Mycobacterium tuberculosis complex. BMC Struct. Biol. 12, 1–12 (2012).spa
dc.relation.referencesWard, S. K., Abomoelak, B., Hoye, E. A., Steinberg, H. & Talaat, A. M. CtpV: a putative copper exporter required for full virulence of Mycobacterium tuberculosis. Mol. Microbiol. 77, 1096–1110 (2010).spa
dc.relation.referencesRaimunda, D., Long, J. E., Padilla-Benavides, T., Sassetti, C. M. & Argüello, J. M. Differential roles for the Co2+/Ni2+ transporting ATPases , CtpD and CtpJ , in Mycobacterium tuberculosis virulence. Mol. Microbiol. 91, 185–197 (2014).spa
dc.relation.referencesMaya-Hoyos, M., Rosales, C., Novoa-Aponte, L., Castillo, E. & Soto, C. Y. The P-type ATPase CtpF is a plasma membrane transporter mediating calcium efflux in Mycobacterium tuberculosis cells. Heliyon 5, (2019).spa
dc.relation.referencesNovoa-Aponte, L. & Soto Ospina, C. Y. Mycobacterium tuberculosis P-Type ATPases: Possible Targets for Drug or Vaccine Development. Biomed Res. Int. (2014).spa
dc.relation.referencesPulido, P. A., Novoa-Aponte, L., Villamil, N. & Soto, C. Y. The DosR Dormancy Regulator of Mycobacterium tuberculosis Stimulates the Na+/K+ and Ca2+ ATPase Activities in Plasma Membrane Vesicles of Mycobacteria. Curr. Microbiol. 69, 604–610 (2014).spa
dc.relation.referencesKrishna, S., Pulcini, S., Fatih, F. & Staines, H. Artemisinins and the biological basis for the PfATP6/SERCA hypothesis. Trends Parasitol. 26, 517–523 (2010).spa
dc.relation.referencesSantos, P. et al. Identification of Mycobacterium tuberculosis CtpF as a target for designing new antituberculous compounds. Bioorg. Med. Chem. 28, (2020).spa
dc.relation.referencesLaursen, M. et al. Cyclopiazonic acid is complexed to a divalent metal ion when bound to the sarcoplasmic reticulum Ca2+-ATPase. J. Biol. Chem. 284, 13513–13518 (2009).spa
dc.relation.referencesBublitz, M., Morth, J. P. & Nissen, P. P-type ATPases at a glance. J. Cell Sci. 124, 2515–2519 (2011).spa
dc.relation.referencesO’Garra, A. et al. The Immune Response in Tuberculosis. Annu. Rev. Immunol. 31, 475–527 (2013).spa
dc.relation.referencesCook, G. M. et al. Physiology of Mycobacteria. Adv. Microb. Physiol. 55, 81–319 (2009).spa
dc.relation.referencesDulberger, C. L., Rubin, E. J. & Boutte, C. C. The mycobacterial cell envelope — a moving target. Nat. Rev. Microbiol. 18, 47–59 (2020).spa
dc.relation.referencesDaffé, M. The Global Architecture of the Mycobacterial Cell Envelope. The Mycobacterial Cell Envelope. 1–11 (2008)spa
dc.relation.referencesOrtalo-Magné, A. et al. Molecular composition of the outermost capsular material of the tubercle bacillus. Microbiology 141, 1609–1620 (1995).spa
dc.relation.referencesDaffé, M. & Draper, P. The Envelope Layers of Mycobacteria with Reference to their Pathogenicity. Adv. Microb. Physiol. 39, 131–203 (1997).spa
dc.relation.referencesKnechel, N. A. Tuberculosis: pathophysiology, clinical features, and diagnosis. Crit. Care Nurse 29, 34–43 (2009).spa
dc.relation.referencesJackson, M. The mycobacterial cell envelope-lipids. Cold Spring Harb. Perspect. Med. 4, (2014).spa
dc.relation.referencesRinder, H., Mieskes, K. T. & Löscher, T. Heteroresistance in Mycobacterium tuberculosis. Int. J. Tuberc. Lung Dis. 5, 339–345 (2001).spa
dc.relation.referencesErnst, J. D. The immunological life cycle of tuberculosis. Nat. Rev. Immunol. 12, 581–591 (2012).spa
dc.relation.referencesEhrt, S., Schnappinger, D. & Rhee, K. Y. Metabolic principles of persistence and pathogenicity in Mycobacterium tuberculosis. Nat. Rev. Microbiol. 16, 496–507 (2018).spa
dc.relation.referencesVia, L. E. et al. Tuberculous Granulomas Are Hypoxic in Guinea Pigs, Rabbits, and Nonhuman Primates. Infect. Immun. 76, 2333–2340 (2008).spa
dc.relation.referencesSingh, R. et al. Recent updates on drug resistance in Mycobacterium tuberculosis. J. Appl. Microbiol. 128, 1547–1567 (2020).spa
dc.relation.referencesKoul, A., Arnoult, E., Lounis, N., Guillemont, J. & Andries, K. The challenge of new drug discovery for tuberculosis. Nature 469, 483–490 (2011).spa
dc.relation.referencesHorsburgh, C. R., Barry, C. E. & Lange, C. Treatment of Tuberculosis. N. Engl. J. Med. 373, 2149–2160 (2015).spa
dc.relation.referencesPrestinaci, F., Pezzotti, P. & Pantosti, A. Antimicrobial resistance: a global multifaceted phenomenon. Pathog. Glob. Health 109, 309–318 (2015).spa
dc.relation.referencesZumla, A. I. et al. New antituberculosis drugs, regimens, and adjunct therapies: needs, advances, and future prospects. Lancet. Infect. Dis. 14, 327–340 (2014).spa
dc.relation.referencesGuo, H. et al. Structure of mycobacterial ATP synthase bound to the tuberculosis drug bedaquiline. Nature 589, 143–147 (2021).spa
dc.relation.referencesLodish, H. et al. Molecular Cell Biology. (2016).spa
dc.relation.referencesNelson, D. L. & Michael, C. Lehninger Principles of Biochemistry. (2017).spa
dc.relation.referencesAlberts, B. et al. Molecular Biology of the Cell. (2015).spa
dc.relation.referencesYatime, L. et al. P-type ATPases as drug targets: Tools for medicine and science. Biochim. Biophys. Acta - Bioenerg. 1787, 207–220 (2009).spa
dc.relation.referencesSaffioti, N. A. et al. E2P-like states of plasma membrane Ca2+‑ATPase characterization of vanadate and fluoride-stabilized phosphoenzyme analogues. Biochim. Biophys. Acta - Biomembr. 1861, 366–379 (2019).spa
dc.relation.referencesPalmgren, M. G. & Nissen, P. P-Type ATPases. Annu. Rev. Biophys. 40, 243–266 (2011).spa
dc.relation.referencesWang, K. et al. Structure and mechanism of Zn2+-transporting P-type ATPases. Nature 514, 518–522 (2014).spa
dc.relation.referencesHu, G.-B., Rice, W. J., Dröse, S., Altendorf, K. & Stokes, D. L. Three-dimensional structure of the KdpFABC complex of Escherichia coli by electron tomography of two-dimensional crystals. J. Struct. Biol. 161, 411–418 (2008).spa
dc.relation.referencesSkou, J. C. The Identification of the Sodium–Potassium Pump (Nobel Lecture). Angew. Chemie Int. Ed. 37, 2320–2328 (1998).spa
dc.relation.referencesKühlbrandt, W. Biology, structure and mechanism of P-type ATPases. Nat. Rev. Mol. Cell Biol. 5, 282–295 (2004).spa
dc.relation.referencesLopez-Marques, R. L., Theorin, L., Palmgren, M. G. & Pomorski, T. G. P4-ATPases: lipid flippases in cell membranes. Pflügers Arch. - Eur. J. Physiol. 466, 1227–1240 (2014).spa
dc.relation.referencesLeón-Torres, A., Novoa-Aponte, L. & Soto, C. CtpA, a putative Mycobacterium tuberculosis P-type ATPase, is stimulated by copper (I) in the mycobacterial plasma membrane. BioMetals 28, (2015).spa
dc.relation.referencesLópez, M., Quitian, L.-V., Calderón, M.-N. & Soto, C.-Y. The P-type ATPase CtpG preferentially transports Cd2+ across the Mycobacterium tuberculosis plasma membrane. Arch. Microbiol. 200, 483–492 (2018).spa
dc.relation.referencesBotella, H. et al. Mycobacterial P1-Type ATPases Mediate Resistance to Zinc Poisoning in Human Macrophages. Cell Host Microbe 10, 248–259 (2011).spa
dc.relation.referencesNovoa Aponte, L. Potencial de las ATPasas tipo P como dianas terapéuticas o en el diseño de mutantes atenuados de Mycobacterium tuberculosis. Universidad Nacional de Colombia (2017).spa
dc.relation.referencesPrimeau, J. O., Armanious, G. P., Fisher, M. E. & Young, H. S. The SarcoEndoplasmic Reticulum Calcium ATPase BT - Membrane Protein Complexes: Structure and Function. Harris, J. R. & Boekema, E. 229–258 (2018).spa
dc.relation.referencesMusgaard, M., Thøgersen, L., Schiøtt, B. & Tajkhorshid, E. Tracing Cytoplasmic Ca2+ Ion and Water Access Points in the Ca2+-ATPase. Biophys. J. 102, 268–277 (2012).spa
dc.relation.referencesChourasia, M. & Sastry, G. N. The nucleotide, inhibitor, and cation binding sites of P-type II ATPases. Chem. Biol. Drug Des. 79, 617–627 (2012).spa
dc.relation.referencesSeidler, N. W., Jona, I., Vegh, M. & Martonosi, A. Cyclopiazonic acid is a specific inhibitor of the Ca2+-ATPase of sarcoplasmic reticulum. J. Biol. Chem. 264, 17816–17823 (1989).spa
dc.relation.referencesMoncoq, K., Trieber, C. A. & Young, H. S. The Molecular Basis for Cyclopiazonic Acid Inhibition of the Sarcoplasmic Reticulum Calcium Pump. J. Biol. Chem. 282, 9748–9757 (2007).spa
dc.relation.referencesPark, H.-D. et al. Rv3133c/dosR is a transcription factor that mediates the hypoxic response of Mycobacterium tuberculosis. Mol. Microbiol. 48, 833–843 (2003).spa
dc.relation.referencesL., L. R. et al. The Mycobacterium tuberculosis DosR Regulon Assists in Metabolic Homeostasis and Enables Rapid Recovery from Nonrespiring Dormancy . J. Bacteriol. 192, 1662–1670 (2010).spa
dc.relation.referencesSantos, P., López-Vallejo, F. & Soto, C. Y. In silico approaches and chemical space of anti-P-type ATPase compounds for discovering new antituberculous drugs. Chem. Biol. Drug Des. 90, 175–187 (2017).spa
dc.relation.referencesKoseki, Y. & Shunsuke, A. Computational Medicinal Chemistry for Rational Drug Design: Identification of Novel Chemical Structures with Potential Anti-Tuberculosis Activity. Curr. Top. Med. Chem. 14, 176–188 (2014).spa
dc.relation.referencesThomas G. Fundamentals of Medicinal Chemistry. John Wiley Sons, West Sussex 79–80 (2003).spa
dc.relation.referencesLipinski, C. A., Lombardo, F., Dominy, B. W. & Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 23, 3–25 (1997).spa
dc.relation.referencesLipinski, C. A. Drug-like properties and the causes of poor solubility and poor permeability. J. Pharmacol. Toxicol. Methods 44, 235–249 (2000).spa
dc.relation.referencesBeutler, J. A. Natural Products as a Foundation for Drug Discovery. Curr. Protoc. Pharmacol. 46, (2009).spa
dc.relation.referencesGanesan, A. The impact of natural products upon modern drug discovery. Curr. Opin. Chem. Biol. 12, 306–317 (2008).spa
dc.relation.referencesSheridan, R. P. & Venkataraghavan, R. New methods in computer-aided drug design. Acc. Chem. Res. 20, 322–329 (1987).spa
dc.relation.referencesHertzberg, R. P. & Pope, A. J. High-throughput screening: new technology for the 21st century. Curr. Opin. Chem. Biol. 4, 445—451 (2000).spa
dc.relation.referencesKapetanovic, I. M. Computer-aided drug discovery and development (CADDD): In silico-chemico-biological approach. Chem. Biol. Interact. 171, 165–176 (2006).spa
dc.relation.referencesMacalino, S. J. Y., Gosu, V., Hong, S. & Choi, S. Role of computer-aided drug design in modern drug discovery. Arch. Pharm. Res. 38, 1686–1701 (2015).spa
dc.relation.referencesJorgensen, W. L. The many roles of computation in drug discovery. Science 303, 1813–1818 (2004).spa
dc.relation.referencesKier, L. B. & Hall, L. H. The Generation of Molecular Structures from a Graph-Based QSAR Equation. Quant. Struct. Relationships 12, 383–388 (1993).spa
dc.relation.referencesPandit, D., So, S.-S. & Sun, H. Enhancing Specificity and Sensitivity of Pharmacophore-Based Virtual Screening by Incorporating Chemical and Shape Features−A Case Study of HIV Protease Inhibitors. J. Chem. Inf. Model. 46, 1236–1244 (2006).spa
dc.relation.referencesLópez-Vallejo, F., Medina Franco, J. L. & Castillo, R. Diseño de fármacos asistido por computadora. Educ. Química 17, (2006).spa
dc.relation.referencesRamírez, D. Computational Methods Applied to Rational Drug Design. Open Med. Chem. J. 10, 7–20 (2016).spa
dc.relation.referencesMenchaca, T. M. Past, Present, and Future of Molecular Docking. IntechOpen 2, (2020).spa
dc.relation.referencesBowers, K. J. et al. Scalable Algorithms for Molecular Dynamics Simulations on Commodity Clusters. Proceedings of the 2006 ACM/IEEE Conference on Supercomputing 84 (2006).spa
dc.relation.referencesKoes, D. R. & Camacho, C. J. ZINCPharmer: pharmacophore search of the ZINC database. Nucleic Acids Res. 40, 409–414 (2012).spa
dc.relation.referencesWolber, G. & Langer, T. LigandScout:  3-D Pharmacophores Derived from Protein-Bound Ligands and Their Use as Virtual Screening Filters. J. Chem. Inf. Model. 45, 160–169 (2005).spa
dc.relation.referencesVeber, D. F. et al. Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. J. Med. Chem. 45, 2615–2623 (2002).spa
dc.relation.referencesSchrödinger LLC. LigPrep. (2021).spa
dc.relation.referencesFriesner, R. A. et al. Extra Precision Glide:  Docking and Scoring Incorporating a Model of Hydrophobic Enclosure for Protein−Ligand Complexes. J. Med. Chem. 49, 6177–6196 (2006).spa
dc.relation.referencesFriesner, R. A. et al. Glide:  A New Approach for Rapid, Accurate Docking and Scoring. 1. Method and Assessment of Docking Accuracy. J. Med. Chem. 47, 1739–1749 (2004).spa
dc.relation.referencesJacobson, M. P. et al. A hierarchical approach to all-atom protein loop prediction. Proteins 55, 351–367 (2004).spa
dc.relation.referencesPalomino, J.-C. et al. Resazurin microtiter assay plate: simple and inexpensive method for detection of drug resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 46, 2720–2722 (2002).spa
dc.relation.referencesKhalifa, R. A., Nasser, M. S., Gomaa, A. A., Osman, N. M. & Salem, H. M. Resazurin Microtiter Assay Plate method for detection of susceptibility of multidrug resistant Mycobacterium tuberculosis to second-line anti-tuberculous drugs. Egypt. J. Chest Dis. Tuberc. 62, 241–247 (2013).spa
dc.relation.referencesAnandi, M., Mirtha, C., Françoise, P. & Carlos, P. J. Resazurin Microtiter Assay Plate Testing of Mycobacterium tuberculosis Susceptibilities to Second-Line Drugs: Rapid, Simple, and Inexpensive Method. Antimicrob. Agents Chemother. 47, 3616–3619 (2003).spa
dc.relation.referencesBasu, J., Chattopadhyay, R., Kundu, M. & Chakrabarti, P. Purification and partial characterization of a penicillin-binding protein from Mycobacterium smegmatis. J. Bacteriol. 174, 4829 - 4832 (1992).spa
dc.relation.referencesSantos, P., Gordillo, A., Osses, L., Salazar, L.-M. & Soto, C.-Y. Effect of antimicrobial peptides on ATPase activity and proton pumping in plasma membrane vesicles obtained from mycobacteria. Peptides 36, 121–128 (2012).spa
dc.relation.referencesJohansson, F., Olbe, M., Sommarin, M. & Larsson, C. Brij 58, a polyoxyethylene acyl ether, creates membrane vesicles of uniform sidedness. A new tool to obtain inside-out (cytoplasmic side-out) plasma membrane vesicles. Plant J. 7, 165–173 (1995).spa
dc.relation.referencesZor, T. & Selinger, Z. Linearization of the Bradford Protein Assay Increases Its Sensitivity: Theoretical and Experimental Studies. Anal. Biochem. 236, 302–308 (1996).spa
dc.relation.referencesCariani, L., Thomas, L., Brito, J. & del Castillo, J. . Bismuth citrate in the quantification of inorganic phosphate and its utility in the determination of membrane-bound phosphatases. Anal. Biochem. 324, 79–83 (2004).spa
dc.relation.referencesLeón-Torres, A., Novoa-Aponte, L. & Soto, C. Y. CtpA, a putative Mycobacterium tuberculosis P-type ATPase, is stimulated by copper (I) in the mycobacterial plasma membrane. BioMetals 28, 713–724 (2015).spa
dc.relation.referencesKyaw, A., Maung-U, K. & Toe, T. Determination of inorganic phosphate with molybdate and Triton X-100 without reduction. Anal. Biochem. 145, 230–234 (1985).spa
dc.relation.referencesBers, D. M., Patton, C. W. & Nuccitelli, R. Chapter 1 - A Practical Guide to the Preparation of Ca2+ Buffers. in Calcium in Living Cells 99 1–26 (2010).spa
dc.relation.referencesFabiato, A. B. T.-M. in E. Computer programs for calculating total from specified free or free from specified total ionic concentrations in aqueous solutions containing multiple metals and ligands. Methods in Enzymology 157, 378–417 (1988).spa
dc.relation.referencesAyala-Torres, C., Novoa-Aponte, L. & Soto, C. Y. Pma1 is an alkali/alkaline earth metal cation ATPase that preferentially transports Na+ and K+ across the Mycobacterium smegmatis plasma membrane. Microbiol. Res. 176, 1–6 (2015).spa
dc.relation.referencesSikdar, R., Ganguly, U., Pal, P., Mazumder, B. & Sen, P. C. Biochemical characterization of a calcium ion stimulated-ATPase from goat spermatozoa. Mol. Cell. Biochem. 103, 121–130 (1991).spa
dc.relation.referencesNugraha, A. T. et al. Cytotoxic activity of flavonoid from local plant Eriocaulon cinereum R.B against MCF-7 breast cancer cells. J. Adv. Pharm. Technol. Res. 12, 425–429 (2021).spa
dc.relation.referencesMuñoz, M. et al. Comparative genomics identifies potential virulence factors in Clostridium tertium and C. paraputrificum. Virulence 10, 657–676 (2019).spa
dc.relation.referencesBraga, A. A. et al. Antibacterial and Hemolytic Activity of a new Lectin Purified from the Seeds of Sterculia Foetida L. Appl. Biochem. Biotechnol. 175, 1689–1699 (2015).spa
dc.relation.referencesDi Marino, D., D’Annessa, I., Coletta, A., Via, A. & Tramontano, A. Characterization of the differences in the cyclopiazonic acid binding mode to mammalian and P. Falciparum Ca2+ pumps: A computational study. Proteins Struct. Funct. Bioinforma. 83, 564–574 (2015).spa
dc.relation.referencesRodríguez, Y. & Májeková, M. Structural Changes of Sarco/Endoplasmic Reticulum Ca2+-ATPase Induced by Rutin Arachidonate: A Molecular Dynamics Study. Biomolecules 10, (2020).spa
dc.relation.referencesSahakyan, H. Improving virtual screening results with MM/GBSA and MM/PBSA rescoring. J. Comput. Aided. Mol. Des. 35, 731–736 (2021).spa
dc.relation.referencesGilson, M. K. & Zhou, H.-X. Calculation of protein-ligand binding affinities. Annu. Rev. Biophys. Biomol. Struct. 36, 21–42 (2007).spa
dc.relation.referencesAparna, V., Dineshkumar, K., Mohanalakshmi, N., Velmurugan, D. & Hopper, W. Identification of Natural Compound Inhibitors for Multidrug Efflux Pumps of Escherichia coli and Pseudomonas aeruginosa Using In Silico High-Throughput Virtual Screening and In Vitro Validation. PLoS One 9, (2014).spa
dc.relation.referencesDeng, Z., Chuaqui, C. & Singh, J. Structural Interaction Fingerprint (SIFt):  A Novel Method for Analyzing Three-Dimensional Protein−Ligand Binding Interactions. J. Med. Chem. 47, 337–344 (2004).spa
dc.relation.referencesAbdelshaheed, M. M., Fawzy, I. M., El-Subbagh, H. I. & Youssef, K. M. Piperidine nucleus in the field of drug discovery. Futur. J. Pharm. Sci. 7, 188 (2021).spa
dc.relation.referencesKourounakis, A. P., Xanthopoulos, D. & Tzara, A. Morpholine as a privileged structure: A review on the medicinal chemistry and pharmacological activity of morpholine containing bioactive molecules. Med. Res. Rev. 40, 709–752 (2020).spa
dc.relation.referencesGramec, D., Peterlin Mašič, L. & Sollner Dolenc, M. Bioactivation potential of thiophene-containing drugs. Chem. Res. Toxicol. 27, 1344–1358 (2014).spa
dc.relation.referencesHeinrichs, M. T. et al. Mycobacterium tuberculosis Strains H37ra and H37rv have equivalent minimum inhibitory concentrations to most antituberculosis drugs. Int. J. mycobacteriology 7, 156–161 (2018).spa
dc.relation.referencesBemer-Melchior, P., Bryskier, A. & Drugeon, H. B. Comparison of the in vitro activities of rifapentine and rifampicin against Mycobacterium tuberculosis complex. J. Antimicrob. Chemother. 46, 571–576 (2000).spa
dc.relation.referencesSuo, J., Chang, C. E., Lin, T. P. & Heifets, L. B. Minimal inhibitory concentrations of isoniazid, rifampin, ethambutol, and streptomycin against Mycobacterium tuberculosis strains isolated before treatment of patients in Taiwan. Am. Rev. Respir. Dis. 138, 999–1001 (1988).spa
dc.relation.referencesVilchèze, C. Mycobacterial Cell Wall: A Source of Successful Targets for Old and New Drugs. Applied Sciences 10, (2020).spa
dc.relation.referencesChen, P., Gearhart, J., Protopopova, M., Einck, L. & Nacy, C. A. Synergistic interactions of SQ109, a new ethylene diamine, with front-line antitubercular drugs in vitro. J. Antimicrob. Chemother. 58, 332–337 (2006).spa
dc.relation.referencesSalomon, J. J. et al. Biopharmaceutical in vitro characterization of CPZEN-45, a drug candidate for inhalation therapy of tuberculosis. Ther. Deliv. 4, 915–923 (2013).spa
dc.relation.referencesMonalisa, C. et al. 1,4-Azaindole, a Potential Drug Candidate for Treatment of Tuberculosis. Antimicrob. Agents Chemother. 58, 5325–5331 (2014).spa
dc.relation.referencesWatkins, W. M. et al. Effectiveness of amodiaquine as treatment for chloroquine-resistant plasmodium falciparum infections in kenya. Lancet 323, 357–359 (1984).spa
dc.relation.referencesWongsrichanalai, C. et al. In vitro susceptibility of Plasmodium falciparum isolates in Vietnam to artemisinin derivatives and other antimalarials. Acta Trop. 63, 151–158 (1997).spa
dc.relation.referencesLabrador, V., Fernández Freire, P., Pérez Martín, J. M. & Hazen, M. J. Cytotoxicity of butylated hydroxyanisole in Vero cells. Cell Biol. Toxicol. 23, 189–199 (2007).spa
dc.relation.referencesOthmen, Z. O.-B., Golli, E. El, Abid-Essefi, S. & Bacha, H. Cytotoxicity effects induced by Zearalenone metabolites, α Zearalenol and β Zearalenol, on cultured Vero cells. Toxicology 252, 72–77 (2008).spa
dc.relation.referencesGe, F. et al. In vitro synergistic interactions of oleanolic acid in combination with isoniazid, rifampicin or ethambutol against Mycobacterium tuberculosis. J. Med. Microbiol. 59, 567–572 (2010).spa
dc.relation.referencesMohyeldin, S. M., Mehanna, M. M. & Elgindy, N. A. The relevancy of controlled nanocrystallization on rifampicin characteristics and cytotoxicity. Int. J. Nanomedicine 11, 2209–2222 (2016).spa
dc.relation.referencesSmitha, K. T., Nisha, N., Maya, S., Biswas, R. & Jayakumar, R. Delivery of rifampicin-chitin nanoparticles into the intracellular compartment of polymorphonuclear leukocytes. Int. J. Biol. Macromol. 74, 36–43 (2015).spa
dc.relation.referencesInternational Standard Organization. ISO 10993-5:2009 Biological evaluation of medical devices — Part 5: Tests for in vitro cytotoxicity. 34 (2009).spa
dc.relation.referencesClara, A.-P. et al. Synergy between Circular Bacteriocin AS-48 and Ethambutol against Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 62, (2022).spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc540 - Química y ciencias afinesspa
dc.subject.decsMycobacteriumspa
dc.subject.decsEfecto de los fármacosspa
dc.subject.decsDrug effectseng
dc.subject.decsInmunologíaspa
dc.subject.lembImmunologyeng
dc.subject.proposalTuberculosisspa
dc.subject.proposalFármaco-resistenciaspa
dc.subject.proposalATPasas tipo Pspa
dc.subject.proposalacoplamiento molecularspa
dc.subject.proposalCribado virtualspa
dc.subject.proposalCtpFspa
dc.titleBúsqueda de inhibidores del transportador de membrana CtpF de Mycobacterium tuberculosis mediante screening virtual basado en farmacóforo y determinación in vitro de la actividadspa
dc.title.translatedSearch for Mycobacterium tuberculosis membrane transporter CtpF inhibitors by pharmacophore-based virtual screening and in vitro activity determinationeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameBioquímica y Biología Molecular de las Micobacteriasspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1118558029.2022.pdf
Tamaño:
1.91 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Bioquímica

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: