Estudio de la Reactividad del Benzoilnitrometano frente Aldehídos α,β Insaturados Alquílicos por Adición de Michael

dc.contributor.advisorVillamil, Mauricio Maldonadospa
dc.contributor.advisorGuevara Pulido, James Oswaldospa
dc.contributor.authorDavid Rodriguez, Fredy Alexanderspa
dc.contributor.researchgroupAplicaciones Analíticas de Compuestos Orgánicos (AACO)spa
dc.date.accessioned2020-08-07T02:22:13Zspa
dc.date.available2020-08-07T02:22:13Zspa
dc.date.issued2020-05-18spa
dc.description.abstractThe organocatalytic version of Michael's addition continues to attract much interest, encompassing a wide range of synthetic applications from the formation of C-C and C-heteroatom bonds, in addition to its versatility in multicomponent reactions. Different activated methylenes have been used from the Michael additions for β functionalization of α, β unsaturated aldehydes, given the versatility offered by reaction products as precursors or "building blocks" in chemical synthesis for more complex structures. Activated methylenes require a pro-nucleophile that incorporates a fairly acidic C-H hydrogen, therefore, recent studies have indicated the existence of a pKa barrier for the activation of nucleophiles that proceed by iminium ion activation. The studies have allowed us to observe some characteristics in the process and the products obtained related to the type of nucleophile used and in particular with its pKa value in the α carbon hydrogens. Therefore, in this work we evaluated the reactivity of benzoylnitromethane against three alkyl enals that are crotonal, trans-2-pentenal and trans-2-hexenal, which allowed the characterization of compounds 3- (2-phenyl-) 1-nitro-2-oxoethyl) hexanal (1a), 2-ethoxy-6-phenyl-5-nitro-4-propyl-3,4-dihydro-2H-pyran (2a) and 5-benzoyl-4,6- dimethyl-5-nitrocyclohex-1-enecarbaldehyde (2b). In addition, it was possible to describe the different mechanisms by which the products were obtained, which involved domino reactions. Another important fact is the obtaining of good and excellent enantiomeric excesses for products 2a and 2b. It was observed that the reactivity depends on the substituent of the acceptor, and also the effectiveness in the use of ketone with pKa value outside the limits described is demonstrated.spa
dc.description.abstractLa versión organocatalítica de la adición de Michael sigue atrayendo mucho interés, abarcando una amplia gama de aplicaciones sintéticas desde la formación de enlaces C-C y C- heteroátomo, además por su versatilidad en reacciones multicomponentes. Se han empleado a partir de las adiciones de Michael diferentes metilenos activados para la funcionalización β de aldehídos α, β insaturados, dada la versatilidad que ofrecen los productos de reacción como precursores o “building block” en síntesis química para estructuras más complejas. Los metilenos activados requieren un pro-nucleófilo que incorpore un hidrógeno C-H bastante ácido, por lo tanto, estudios recientes han señalado la existencia de una barrera de pKa para la activación de los nucleófilos que proceden por activación ion iminio. Los estudios han permitido observar unas características en el proceso y los productos obtenidos relacionado con el tipo de nucleófilo empleado y en particular con su valor de pKa en los hidrógenos del carbono α. Por lo tanto, en el presente trabajo se evaluó la reactividad del benzoilnitrometano frente a tres enales alquílicos que son crotonal, trans-2-pentenal y trans-2-hexenal, lo que permitió la caracterización de los compuestos 3- (2-fenil-1-nitro-2-oxoetil) hexanal (1a), 2-etoxi-6-fenil-5-nitro-4-propil-3,4-dihidro-2H-pirano (2a) y 5-benzoil-4,6-dimetil-5-nitrociclohex-1-enecarbaldehído (2b). Además, se pudo describir los diferentes mecanismos por los cuales se obtuvieron los productos, que involucraron reacciones domino. Otro hecho importante es la obtención de bueno y excelente excesos enantioméricos para los productos 2a y 2b. Se observó que la reactividad depende del sustituyente del aceptor, y además se demuestra la efectividad en la utilización de cetona con valor de pKa fuera de los limites descritos.spa
dc.description.additionalLínea de Investigación: Síntesis Orgánicaspa
dc.description.degreelevelMaestríaspa
dc.format.extent109spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77976
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Químicaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Químicaspa
dc.relation.referencesM. Avalos, R. Babiano, P. Cintas, J. L. Jiménez and J. C. Palacios, Tetrahedron Asymmetry, 2000, 11, 2845–2874spa
dc.relation.referencesJ. Gal, in Differenation of Enantiomers I. Topics in Current Chemistry 340, ed. S. Volker, Springer, Cham, 2013, pp. 1–20spa
dc.relation.referencesE. Papaseit, O. García-Algar and M. Farré, An. Pediatría, 2013, 78, 283–287spa
dc.relation.referencesM. L. Martínez-Frías, Med. Clin. (Barc)., 2012, 139, 25–32spa
dc.relation.referencesT. Eriksson, S. Bjöurkman, B. Roth, Å. Fyge and P. Höuglund, Chirality, 1995, 7, 44–52spa
dc.relation.referencesH.-U. Blaser, Rend. Lincei, 2013, 24, 213–216spa
dc.relation.referencesL. A. Nguyen, H. He and C. Pham-Huy, Int. J. Biomed. Sci., 2006, 2, 85–100spa
dc.relation.referencesP. Jeschke, Pest Manag. Sci., 2018, 74, 2389–2404spa
dc.relation.referencesS. C. Pan and B. List, in Organocatalysis, eds. M. Reetz, B. List, S. Jaroch and H. Weinmann, Springer, Berlin, Heidelberg, Berlin, Heidelberg, 2008, pp. 259–300spa
dc.relation.referencesD. W. C. MacMillan, Nature, 2008, 455, 304–308spa
dc.relation.referencesM. J. Gaunt, C. C. C. Johansson, A. McNally and N. T. Vo, Drug Discov. Today, 2007, 12, 8–27spa
dc.relation.referencesY. R. Chi, Angew. Chemie Int. Ed., 2014, 53, 6858spa
dc.relation.referencesL. Dalko, P I; Moisan, Angew. Chem. Int., 2001, 40, 3726–3748spa
dc.relation.referencesP. I. Dalko and L. Moisan, Angew. Chemie Int. Ed., 2004, 43, 5138–5175spa
dc.relation.referencesJ. Seayad and B. List, Org. Biomol. Chem., 2005, 3, 719spa
dc.relation.referencesP. Melchiorre, M. Marigo, A. Carlone and G. Bartoli, Angew. Chemie - Int. Ed., 2008, 47, 6138–6171spa
dc.relation.referencesC. M. R. Volla, I. Atodiresei and M. Rueping, Chem. Rev., 2014, 114, 2390–2431spa
dc.relation.referencesC. S. Evans and L. O. Davis, Molecules, 2017, 23, 33spa
dc.relation.referencesG. J. Reyes-Rodríguez, N. M. Rezayee, A. Vidal-Albalat and K. A. Jørgensen, Chem. Rev., 2019, 119, 4221–4260spa
dc.relation.referencesB. List, Tetrahedron, 2002, 58, 5573–5590spa
dc.relation.referencesD. Almaşi, D. A. Alonso and C. Nájera, Tetrahedron: Asymmetry, 2007, 18, 299–365spa
dc.relation.referencesJ. L. Vicario, D. Badia, L. Carrillo and E. Reyes, Organocatalytic Enantioselective Conjugate Addition Reactions, Royal Society of Chemistry, Cambridge, 2010spa
dc.relation.referencesN. R. Bio, Synform, 2017, 142–144spa
dc.relation.referencesT. Poon, B. P. Mundy and T. W. Shattuck, J. Chem. Educ., 2002, 79, 264spa
dc.relation.referencesA. Michael, J. für Prakt. Chemie, 1887, 35, 349–356spa
dc.relation.referencesR. Rios and X. Companyó, in Comprehensive Enantioselective Organocatalysis, ed. P. I. Dalko, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2013, pp. 975–1012spa
dc.relation.referencesS. Duce, I. Alonso, A. M. Lamsabhi, E. Rodrigo, S. Morales, J. L. García Ruano, A. Poveda, P. Mauleón and M. B. Cid, ACS Catal., 2018, 8, 22–34spa
dc.relation.referencesA. Erkkilä, I. Majander and P. M. Pihko, Chem. Rev., 2007, 107, 5416–5470spa
dc.relation.referencesY. Hayashi and N. Umekubo, Angew. Chemie Int. Ed., 2018, 57, 1958–1962spa
dc.relation.referencesIn Organocatalytic Enantioselective Conjugate Addition Reactions, Royal Society of Chemistry, Cambridge, 2010, pp. 62–111spa
dc.relation.referencesD. A. Alonso, S. Kitagaki, N. Utsumi and C. F. Barbas, Angew. Chemie Int. Ed., 2008, 47, 4588–4591spa
dc.relation.referencesJ. O. Guevara-Pulido, J. M. Andrés and R. Pedrosa, European J. Org. Chem., 2014, 2014, 8072–8076spa
dc.relation.referencesJ. O. Guevara-Pulido, J. M. Andrés and R. Pedrosa, RSC Adv., 2015, 5, 65975–65981spa
dc.relation.referencesH. J. Reich, Bordwell pKa Table (Acidity in DMSO), https://www.chem.wisc.edu/areas/reich/pkatable/index.htmspa
dc.relation.referencesE. D. Bergmann, D. Ginsburg and R. Pappo, in Organic Reactions, John Wiley & Sons, Inc., Hoboken, NJ, USA, 2011, pp. 179–556spa
dc.relation.referencesM. Shibasaki, H. Sasai and T. Arai, Angew. Chemie Int. Ed. English, 1997, 36, 1236–1256spa
dc.relation.referencesH. Brunner and B. Hammer, Angew. Chemie Int. Ed. English, 1984, 23, 312–313spa
dc.relation.referencesM. Watanabe, A. Ikagawa, H. Wang, K. Murata and T. Ikariya, J. Am. Chem. Soc., 2004, 126, 11148–11149spa
dc.relation.referencesM. Yamaguchi, T. Shiraishi and M. Hirama, Angew. Chemie Int. Ed. English, 1993, 32, 1176–1178spa
dc.relation.referencesK. Sakthivel, W. Notz, T. Bui and C. F. Barbas, J. Am. Chem. Soc., 2001, 123, 5260–5267spa
dc.relation.referencesB. List, Synlett, 2001, 2001, 1675–1686.spa
dc.relation.referencesB. List, P. Pojarliev and H. J. Martin, Org. Lett., 2001, 3, 2423–2425spa
dc.relation.referencesD. Enders and A. Seki, Synlett, 2002, 2002, 0026–0028spa
dc.relation.referencesS. Brandau, A. Landa, J. Franzén, M. Marigo and K. A. Jørgensen, Angew. Chemie Int. Ed., 2006, 45, 4305–4309spa
dc.relation.referencesM. Nielsen, D. Worgull, T. Zweifel, B. Gschwend, S. Bertelsen and K. A. Jørgensen, Chem. Commun., 2011, 47, 632–649spa
dc.relation.referencesB. Schoenenberger, A. Wszolek, R. Meier, H. Brundiek, M. Obkircher and R. Wohlgemuth, RSC Adv., 2017, 7, 48952–48957spa
dc.relation.referencesC. Guo, M. Saifuddin, T. Saravanan, M. Sharifi and G. J. Poelarends, ACS Catal., 2019, 9, 4369–4373spa
dc.relation.referencesD. Enders, M. R. M. Hüttl, C. Grondal and G. Raabe, Nature, 2006, 441, 861–863spa
dc.relation.referencesA. Carlone, M. Marigo, C. North, A. Landa and K. A. Jørgensen, Chem. Commun., 2006, 4928–4930spa
dc.relation.referencesS. Duce, M. Jorge, I. Alonso, J. L. G. Ruano and M. B. Cid, Org. Biomol. Chem., 2011, 9, 8253spa
dc.relation.referencesM. B. Cid, S. Duce, S. Morales, E. Rodrigo and J. L. G. Ruano, Org. Lett., 2010, 12, 3586–3589spa
dc.relation.referencesJ. Alemán, V. Marcos, L. Marzo and J. L. García Ruano, European J. Org. Chem., 2010, 2010, 4482–4491spa
dc.relation.referencesY. Hayashi, M. Toyoshima, H. Gotoh and H. Ishikawa, Org. Lett., 2009, 11, 45–48spa
dc.relation.referencesE. Alza, S. Sayalero, X. Cambeiro, R. Martín-Rapún, P. Miranda and M. Pericàs, Synlett, 2011, 2011, 464–468spa
dc.relation.referencesM. Rueping, E. Sugiono and E. Merino, Chem. - A Eur. J., 2008, 14, 6329–6332spa
dc.relation.referencesP. T. Franke, B. Richter and K. A. Jørgensen, Chem. - A Eur. J., 2008, 14, 6317–6321.spa
dc.relation.referencesJ. O. Guevara-Pulido, J. M. Andrés and R. Pedrosa, J. Org. Chem., 2014, 79, 8638–8644spa
dc.relation.referencesJ. O. Guevara-Pulido, J. M. Andrés, D. P. Ávila and R. Pedrosa, RSC Adv., 2016, 6, 30166–30169spa
dc.relation.referencesJ. G. Hernández and E. Juaristi, Chem. Commun., 2012, 48, 5396spa
dc.relation.referencesY. Hayashi, T. Yamada, M. Sato, S. Watanabe, E. Kwon, K. Iwasaki and S. Umemiya, Org. Lett., 2019, 21, 5183–5186spa
dc.relation.referencesC. Gharui and S. chandra Pan, Org. Biomol. Chem., 2019, 17, 5190–5211spa
dc.relation.referencesY. Gao, Q. Ren, W.-Y. Siau and J. Wang, Chem. Commun., 2011, 47, 5819spa
dc.relation.referencesR. Maity, C. Gharui, A. K. Sil and S. C. Pan, Org. Lett., 2017, 19, 662–665spa
dc.relation.referencesR. Maity and S. C. Pan, Org. Biomol. Chem., 2018, 16, 1598–1608spa
dc.relation.referencesK. Mondal and S. C. Pan, J. Org. Chem., 2018, 83, 5301–5312spa
dc.relation.referencesC. Gharui, D. Behera and S. C. Pan, Adv. Synth. Catal., 2018, 360, 4502–4508spa
dc.relation.referencesR. Lu, Y. Yan, J. Wang, Q. Du, S. Nie and M. Yan, J. Org. Chem., 2011, 76, 6230–6239spa
dc.relation.referencesS. Mauskopf, in Chiral Analysis, eds. K. W. Busch and M. A. Busch, Elsevier, Amsterdam, 2006, pp. 3–24spa
dc.relation.referencesP. Cintas, Angew. Chemie Int. Ed., 2007, 46, 4016–4024spa
dc.relation.referencesW. Thomson and B. Kelvin, in Baltimore Lectures on Molecular Dynamics and the Wave Theory of Light, Cambridge University Press, Cambridge, 2010, pp. 602–642spa
dc.relation.referencesP. Le Guennec, J. Math. Chem., 1998, 23, 429–439spa
dc.relation.referencesK. C. Nicolaou and S. A. Snyder, Classics in Total Synthesis II: More Targets, Strat-egies, Methods, Wiley-VCH ; Wiley] [distributor], Weinheim; Chichester, 2003spa
dc.relation.referencesK. C. Nicolaou and E. J. Sorensen, Classics in Total Synthesis: Targets, Strategies, Methods, Wiley-VCH ; Wiley] [distributor], 1996spa
dc.relation.referencesS. Hanessian, Total Synthesis of Natural Products: ‘Chiron’ Approach, Pergamon Press, 1983spa
dc.relation.referencesS. Hanessian, J. Franco and B. Larouche, Pure Appl. Chem., 1990, 62, 1887–1910spa
dc.relation.referencesS. Hanessian, Pure Appl. Chem., 1993, 65, 1189–1204spa
dc.relation.referencesK. Faber, Chem. - A Eur. J., 2001, 7, 5004–5010spa
dc.relation.referencesN. G. Anderson, Org. Process Res. Dev., 2005, 9, 800–813spa
dc.relation.referencesW. Marckwald, Berichte der Dtsch. Chem. Gesellschaft, 1904, 37, 349–354spa
dc.relation.referencesE. G. H. and M. R. David A, Asymmetric Synth. Essentials, 2007, 3–9spa
dc.relation.referencesJ. O. Guevara-Pulido, J. Caicedo, F. David, M. Vela and J. González, Rev. Fac. Ciencias Básicas, 2017, 13, 105–116spa
dc.relation.referencesB. M. Trost, Proc. Natl. Acad. Sci., 2004, 101, 5348–5355spa
dc.relation.referencesJ. P. Perotti, Universidad Nacional de Litoral, 2012spa
dc.relation.referencesM. T. Reetz, J. Am. Chem. Soc., 2013, 135, 12480–12496spa
dc.relation.referencesR. N. Patel, Coord. Chem. Rev., 2008, 252, 659–701spa
dc.relation.referencesM. T. Reetz, J. Org. Chem., 2009, 74, 5767–5778spa
dc.relation.referencesM. T. Reetz, S. Wu, H. Zheng and S. Prasad, Pure Appl. Chem., 2010, 82, 1575–1584spa
dc.relation.referencesW. S. Knowles and M. J. Sabacky, Chem. Commun., 1968, 0, 1445spa
dc.relation.referencesW. S. Knowles, M. J. Sabacky and B. D. Vineyard, J. Chem. Soc. Chem. Commun., 1972, 10spa
dc.relation.referencesB. D. Vineyard, W. S. Knowles, M. J. Sabacky, G. L. Bachman and D. J. Weinkauff, J. Am. Chem. Soc., 1977, 99, 5946–5952spa
dc.relation.referencesA. Pizzano and E. Carmona, An. la Real Soc. Española Química, 2001, 50–55spa
dc.relation.referencesA. Miyashita, A. Yasuda, H. Takaya, K. Toriumi, T. Ito, T. Souchi and R. Noyori, J. Am. Chem. Soc., 1980, 102, 7932–7934spa
dc.relation.referencesS. Akutagawa, Appl. Catal. A Gen., 1995, 128, 171–207spa
dc.relation.referencesT. Ohta, H. Takaya, M. Kitamura, K. Nagai and R. Noyori, J. Org. Chem., 1987, 52, 3174–3176spa
dc.relation.referencesH. Takaya, T. Ohta, N. Sayo, H. Kumobayashi, S. Akutagawa, S. Inoue, I. Kasahara and R. Noyori, J. Am. Chem. Soc., 1987, 109, 1596–1597spa
dc.relation.referencesM. Kitamura, T. Ohkuma, S. Inoue, N. Sayo, H. Kumobayashi, S. Akutagawa, T. Ohta, H. Takaya and R. Noyori, J. Am. Chem. Soc., 1988, 110, 629–631spa
dc.relation.referencesT. Ohkuma, H. Ooka, T. Ikariya and R. Noyori, J. Am. Chem. Soc., 1995, 117, 10417–10418spa
dc.relation.referencesR. Noyori and S. Hashiguchi, Acc. Chem. Res., 1997, 30, 97–102spa
dc.relation.referencesR. Noyori and M. Kitamura, Angew. Chemie Int. Ed. English, 1991, 30, 49–69spa
dc.relation.referencesT. Katsuki and K. B. Sharpless, J. Am. Chem. Soc., 1980, 102, 5974–5976spa
dc.relation.referencesY. Gao, J. M. Klunder, R. M. Hanson, H. Masamune, S. Y. Ko and K. B. Sharpless, J. Am. Chem. Soc., 1987, 109, 5765–5780spa
dc.relation.referencesH. C. Kolb, M. S. VanNieuwenhze and K. B. Sharpless, Chem. Rev., 1994, 94, 2483–2547spa
dc.relation.referencesY. M. A. Yamada, N. Yoshikawa, H. Sasai and M. Shibasaki, Angew. Chemie Int. Ed. English, 1997, 36, 1871–1873spa
dc.relation.referencesS. Matsunaga and M. Shibasaki, Bull. Chem. Soc. Jpn., 2008, 81, 60–75spa
dc.relation.referencesM. Shibasaki, M. Kanai, S. Matsunaga and N. Kumagai, Acc. Chem. Res., 2009, 42, 1117–27spa
dc.relation.referencesG. Bredig and P. S. Fiske, Biochem Zeits, 1912, 7–23spa
dc.relation.referencesÁ. R. Puente García, Universidad del País Vasco, 2011spa
dc.relation.referencesH. Pracejus, Justus Liebigs Ann. Chem., 1960, 634, 9–22spa
dc.relation.referencesZ. G. Hajos and D. R. Parrish, J. Org. Chem., 1974, 39, 1615–1621spa
dc.relation.referencesU. Eder, G. Sauer and R. Wiechert, Angew. Chemie Int. Ed. English, 1971, 10, 496–497spa
dc.relation.referencesZ. Wang, in Comprehensive Organic Name Reactions and Reagents, John Wiley & Sons, Inc., Hoboken, NJ, USA, 2010, pp. 1305–1309spa
dc.relation.referencesD. Yang, Y.-C. Yip, M.-W. Tang, M.-K. Wong, J.-H. Zheng and K.-K. Cheung, J. Am. Chem. Soc., 1996, 118, 491–492spa
dc.relation.referencesS. E. Denmark, Z. Wu, C. M. Crudden and H. Matsuhashi, J. Org. Chem., 1997, 62, 8288–8289.spa
dc.relation.referencesY. Tu, Z.-X. Wang and Y. Shi, J. Am. Chem. Soc., 1996, 118, 9806–9807spa
dc.relation.referencesM. S. Sigman and E. N. Jacobsen, J. Am. Chem. Soc., 1998, 120, 4901–4902spa
dc.relation.referencesE. J. Corey and M. J. Grogan, Org. Lett., 1999, 1, 157–160spa
dc.relation.referencesS. J. Miller, G. T. Copeland, N. Papaioannou, T. E. Horstmann and E. M. Ruel, J. Am. Chem. Soc., 1998, 120, 1629–1630spa
dc.relation.referencesB. List, R. A. Lerner and C. F. Barbas, J. Am. Chem. Soc., 2000, 122, 2395–2396spa
dc.relation.referencesK. A. Ahrendt, C. J. Borths and D. W. C. MacMillan, J. Am. Chem. Soc., 2000, 122, 4243–4244spa
dc.relation.referencesD. Seebach, A. K. Beck, D. M. Badine, M. Limbach, A. Eschenmoser, A. M. Treasurywala, R. Hobi, W. Prikoszovich and B. Linder, Helv. Chim. Acta, 2007, 90, 425–471spa
dc.relation.referencesK. S. Halskov, B. S. Donslund, B. M. Paz and K. A. Jørgensen, Acc. Chem. Res., 2016, 49, 974–986spa
dc.relation.referencesS. Mukherjee, J. W. Yang, S. Hoffmann and B. List, Chem. Rev., 2007, 107, 5471–5569spa
dc.relation.referencesK. L. Jensen, G. Dickmeiss, H. Jiang, Ł. Albrecht and K. A. Jørgensen, Acc. Chem. Res., 2012, 45, 248–264spa
dc.relation.referencesB. S. Donslund, T. K. Johansen, P. H. Poulsen, K. S. Halskov and K. A. Jørgensen, Angew. Chemie Int. Ed., 2015, 54, 13860–13874spa
dc.relation.referencesA. Vega-Peñaloza, S. Paria, M. Bonchio, L. Dell’Amico and X. Companyó, ACS Catal., 2019, 9, 6058–6072spa
dc.relation.referencesT. Chanda and J. C.-G. Zhao, Adv. Synth. Catal., 2018, 360, 2–79spa
dc.relation.referencesF. A. David Rodriguez, Universidad Distrital Francisco Jose de Caldas, 2017spa
dc.relation.referencesM. H. Haindl, M. B. Schmid, K. Zeitler and R. M. Gschwind, RSC Adv., 2012, 2, 5941spa
dc.relation.referencesM. P. Patil and R. B. Sunoj, Chem. - An Asian J., 2009, 4, 714–724spa
dc.relation.referencesA. Quintard and A. Alexakis, Chem. Commun., 2011, 47, 7212spa
dc.relation.referencesP. Chauhan, S. Mahajan and D. Enders, Acc. Chem. Res., 2017, 50, 2809–2821spa
dc.relation.referencesM. Cheng, University of Saskatchewan, 2013spa
dc.relation.referencesG. Rulli, K. Fredriksen, N. Duangdee, T. Bonge-Hansen, A. Berkessel and H. Gröger, Synthesis (Stuttg)., 2013, 45, 2512–2519spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/spa
dc.subject.ddc547 - Química orgánicaspa
dc.subject.proposalacidezspa
dc.subject.proposalacidityeng
dc.subject.proposalasymmetric organocatalysiseng
dc.subject.proposalorganocatálisis asimétricaspa
dc.subject.proposalreacciones dominospa
dc.subject.proposaldomino reactionseng
dc.subject.proposaladición de michaelspa
dc.subject.proposaladdition michaeleng
dc.titleEstudio de la Reactividad del Benzoilnitrometano frente Aldehídos α,β Insaturados Alquílicos por Adición de Michaelspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1030635455.2020.pdf
Tamaño:
4.29 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: