Virulencia, respuesta inmune in vivo y transcriptómica de Mycobacterium tuberculosis genotipo Beijing circulante en Colombia

dc.contributor.advisorMurcia Aranguren, Martha Isabel
dc.contributor.advisorHernández Pando, Rogelio Enrique
dc.contributor.authorCerezo Cortés, María Irene
dc.contributor.researchgroupMICOBAC-UNspa
dc.contributor.subjectmatterexpertRodríguez Juan Germán
dc.coverage.countryColombia
dc.date.accessioned2021-07-29T22:41:59Z
dc.date.available2021-07-29T22:41:59Z
dc.date.issued2021-07-27
dc.descriptionilustraciones, tablasspa
dc.description.abstractLa tuberculosis (TB) continúa siendo un grave problema de salud pública mundial. En Colombia, el linaje mas prevalente es el Euroamericano. El aumento de la circulación del genotipo Beijing en el territorio nacional, el cual se asocia con resistencia a medicamentos e hipervirulencia causando la muerte de los pacientes, es motivo de investigación. La variante Beijing-Like SIT190 es la más prevalente en Colombia, seguido del Beijing-Clásico SIT1. Los mecanismos patogénicos y modulatorios son desconocidos. El presente trabajo comparó el comportamiento de las cepas 323 (Beijing-Like) y 391 (Beijing-Clásico), en un modelo de TB pulmonar en ratones Balb/c. El curso de la enfermedad fue diferente para cada grupo de animales, los infectados con Beijing-Like tuvieron una mortalidad del 100% al día 45 post-infección (PI), con altas cargas bacilares y neumonía masiva, mientras que el total de los infectados con Beijing-Clásico murieron hacia el día 60 PI por neumonía y necrosis. Se realizó RNA-seq dual para determinar el perfil de expresión génica a los días 3, 14, 28 y 60 PI. En los ratones infectados con Beijing-Clásico se sobreexpresaron genes asociados con respuesta proinflamatoria, comparado con los infectados con Beijing-Like que sobreexpresaron genes asociados con respuesta antiinflamatoria; siendo ambas cepas inductoras de respuesta inmune no protectora. El genotipo Beijing-Like causó enfermedad aguda y fulminante y, Beijing-Clásico causó TB crónica pero severa. A nivel bacteriano, con el RNA-seq de Mtb se logró ~33% del transcriptoma completo a los días 3, 14, 28 y 60 PI. El perfil de expresión fue diferente para 323 Beijing-Like y para 391 Beijing Clásico, evidenciando que las variaciones a nivel regulatorio desencadenan un fenotipo diferente en el hospedador. (Texto tomado de la fuente)spa
dc.description.abstractTuberculosis (TB) is a serious global public health problem. In Colombia, the most prevalent lineage is the Euroamerican. The increased circulation of the Beijing genotype which is associated with drug resistance and hypervirulence causing death in patients is intriguing. The Beijing-Like SIT190 variant is the most prevalent in Colombia, followed by the Classical-Beijing SIT1. The pathogenic and modulatory mechanisms triggered by these strains are unknown. In the present work, the course of pulmonary TB was compared in the Balb/c mouse model, in mice infected with Beijing-Like (strain 323) and Classical-Beijing (strain 391). The course of the disease was different for each group of animals, those infected with Beijing-Like had a mortality of 100% by day 45 post-infection (PI), with high bacillary loads and massive pneumonia, and those infected with Classical-Beijing 100% died by day 60 PI from pneumonia and necrosis. Dual RNA-seq was performed to determine the global gene expression profile at days 3, 14, 28 and 60 PI. In mice infected with Classical-Beijing, genes associated with a pro-inflammatory response were overexpressed and in those infected with Beijing-Like, genes associated with an anti-inflammatory response were overexpressed, both strains inducing non-protective immune responses. Beijing-Like caused acute and fulminant disease and Classical-Beijing caused chronic but severe TB. Modulation at the bacterial level was consistent with the type of disease caused in each group of animals, causing the premature death of the animals. At the bacterial level, the RNA-seq of Mtb achieved ~ 33% of the complete transcriptome at days 3, 14, 28 and 60 PI. The expression profile was different for 323 Beijing-Like and for 391 Classic Beijing, showing that variations at the regulatory level trigger a different phenotype in the host. (Text taken from source)eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctora en Ciencias Biomédicasspa
dc.description.researchareaVirulencia de Mycobacterium tuberculosisspa
dc.format.extent320 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79870
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisherInstituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán Ciudad de Méxicospa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Medicinaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Medicina - Doctorado en Ciencias Biomédicasspa
dc.relation.references1. Tiruviluamala P, Reichman LB. Tuberculosis. Annu Rev Public Health. 2002;23: 403–426. doi:10.1146/annurev.publhealth.23.100901.140519spa
dc.relation.references2. Lalkhen H, Mash R. Multimorbidity in non-communicable diseases in South African primary healthcare. South African Medical Journal. 2015;105: 134-138–138. doi:10.7196/SAMJ.8696spa
dc.relation.references3. Bates M, Marais BJ, Zumla A. Tuberculosis Comorbidity with Communicable and Noncommunicable Diseases. Cold Spring Harb Perspect Med. 2015;5. doi:10.1101/cshperspect.a017889spa
dc.relation.references4. Meeting report of the WHO expert consultation on the definition of extensively drug-resistant tuberculosis.spa
dc.relation.references5. Thomas TY, Rajagopalan S. Tuberculosis and Aging: A Global Health Problem. Clin Infect Dis. 2001;33: 1034–1039. doi:10.1086/322671spa
dc.relation.references6. Zaman K. Tuberculosis: A Global Health Problem. J Health Popul Nutr. 2010;28: 111–113.spa
dc.relation.references7. Ospina S. La tuberculosis, una perspectiva histórico-epidemiológica. Infectio. 2011;5. doi:10.22354/in.v5i4.371spa
dc.relation.references8. Fenner L, Egger M, Gagneux S. Annie Darwin’s death, the evolution of tuberculosis and the need for systems epidemiology. Int J Epidemiol. 2009;38: 1425–1428. doi:10.1093/ije/dyp367spa
dc.relation.references9. Zink AR, Sola C, Reischl U, Grabner W, Rastogi N, Wolf H, et al. Molecular identification and characterization of Mycobacterium tuberculosis complex in ancient Egyptian mummies. International Journal of Osteoarchaeology. 2004;14: 404–413. doi:10.1002/oa.724spa
dc.relation.references10. Sotomayor H, Burgos J, Arango M. Demostración de tuberculosis en una momia prehispánica colombiana por la ribotipificación del ADN de Mycobacterium tuberculosis. Biomédica. 24: 18.spa
dc.relation.references11. Gutierrez MC, Brisse S, Brosch R, Fabre M, Omaïs B, Marmiesse M, et al. Ancient Origin and Gene Mosaicism of the Progenitor of Mycobacterium tuberculosis. PLOS Pathogens. 2005;1: e5. doi:10.1371/journal.ppat.0010005spa
dc.relation.references12. Bates JH, Stead WW. The history of tuberculosis as a global epidemic. Med Clin North Am. 1993;77: 1205–1217. doi:10.1016/s0025-7125(16)30188-2spa
dc.relation.references13. Salo WL, Aufderheide AC, Buikstra J, Holcomb TA. Identification of Mycobacterium tuberculosis DNA in a pre-Columbian Peruvian mummy. Proc Natl Acad Sci U S A. 1994;91: 2091–2094. doi:10.1073/pnas.91.6.2091spa
dc.relation.references14. Bos KI, Harkins KM, Herbig A, Coscolla M, Weber N, Comas I, et al. Pre-Columbian mycobacterial genomes reveal seals as a source of New World human tuberculosis. Nature. 2014;514: 494–497. doi:10.1038/nature13591spa
dc.relation.references15. Herzog H. History of tuberculosis. Respiration:1998;65: 5–15. doi:10.1159/000029220spa
dc.relation.references16. Palomino JC, Leao SC, Ritacco V. Tuberculosis 2007; from basic science to patient care. 2007. http://www.tuberculosistextbook.comspa
dc.relation.references17. LeMO Bestand - Objekt - Robert Koch, Die Aetiologie der Tuberculose, 1882.spa
dc.relation.references18. Pospisil R. [150 years since the birth of R. Koch--his life and work]. Epidemiol Mikrobiol Imunol. 1994;43: 188–191.spa
dc.relation.references19. Kaufmann SHE, Schaible UE. 100th anniversary of Robert Koch’s Nobel Prize for the discovery of the tubercle bacillus. Trends Microbiol. 2005;13: 469–475. doi:10.1016/j.tim.2005.08.003spa
dc.relation.references20. Small PM. Tuberculosis in the 21st century: DOTS and SPOTS. Plenary lecture given at the 29th World Conference of the International Union Against Tuberculosis and Lung Disease, Bangkok, Thailand, 23-26 November 1998. Directly observed therapy. Int J Tuberc Lung Dis. 1999;3: 949–955.spa
dc.relation.references21. Barberis I, Bragazzi NL, Galluzzo L, Martini M. The history of tuberculosis: from the first historical records to the isolation of Koch’s bacillus. J Prev Med Hyg. 2017;58: E9–E12.spa
dc.relation.references22. World Health Organization, Falzon D. Guidelines for the programmatic management of drug-resistant tuberculosis. 2011. Available: https://www.ncbi.nlm.nih.gov/books/NBK148644/spa
dc.relation.references23. WHO | Global tuberculosis report 2020. In: WHO [Internet]. World Health Organization; [cited 19 Oct 2020]. Available: http://www.who.int/tb/publications/global_report/en/spa
dc.relation.references24. Pérez SF, Pinzon LAB, Polo CL. Informe de evento TUBERCULOSIS, Colombia 2019. 2020; 31.spa
dc.relation.references25. Inicia monitoreo a tuberculosis en Colombia. [cited 19 Oct 2020]. Available: https://www.minsalud.gov.co/Paginas/Inicia-monitoreo-a-tuberculosis-en-Colombia.aspxspa
dc.relation.references26. Boletín Epidemiológico. [cited 19 Oct 2020]. Available: https://www.ins.gov.co/buscador-eventos/Paginas/Vista-Boletin-Epidemilogico.aspxspa
dc.relation.references27. Control de la tuberculosis multirresistente a fármacos: un objetivo posible | Biomédica. Biomedica. 2019 Sep; 39(3): 431–433.spa
dc.relation.references28. Pérez MPL. INFORME DE EVENTO TUBERCULOSIS, COLOMBIA, 2018. 2019; 29.spa
dc.relation.references29. Gupta RS, Lo B, Son J. Phylogenomics and Comparative Genomic Studies Robustly Support Division of the Genus Mycobacterium into an Emended Genus Mycobacterium and Four Novel Genera. Front Microbiol. 2018;9: 67. doi:10.3389/fmicb.2018.00067spa
dc.relation.references30. Tsukamura M. Identification of mycobacteria. Tubercle. 1967;48: 311–338. doi:10.1016/s0041-3879(67)80040-0spa
dc.relation.references31. Stahl DA, Urbance JW. The division between fast- and slow-growing species corresponds to natural relationships among the mycobacteria. J Bacteriol. 1990;172: 116–124. doi:10.1128/jb.172.1.116-124.1990spa
dc.relation.references32. Impact of Genotypic Studies on Mycobacterial Taxonomy: the New Mycobacteria of the 1990s. [cited 19 Oct 2020]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC153139/spa
dc.relation.references33. Rogall T, Wolters J, Flohr T, Böttger EC. Towards a phylogeny and definition of species at the molecular level within the genus Mycobacterium. Int J Syst Bacteriol. 1990;40: 323–330. doi:10.1099/00207713-40-4-323spa
dc.relation.references34. Tortoli E, Fedrizzi T, Meehan CJ, Trovato A, Grottola A, Giacobazzi E, et al. The new phylogeny of the genus Mycobacterium: The old and the news. Infect Genet Evol. 2017;56: 19–25. doi:10.1016/j.meegid.2017.10.013spa
dc.relation.references35. Tortoli E. Chapter 1 - The Taxonomy of the Genus Mycobacterium. In: Velayati AA, Farnia P, editors. Nontuberculous Mycobacteria (NTM). Academic Press; 2019. pp. 1–10. doi:10.1016/B978-0-12-814692-7.00001-2spa
dc.relation.references36. gli_mycobacteriology_lab_manual_quadri.indd. : 154.spa
dc.relation.references37. Heifets L. MYCOBACTERIOLOGY LABORATORY. Clinics in Chest Medicine. 1997;18: 35–53. doi:10.1016/S0272-5231(05)70354-3spa
dc.relation.references38. Woods GL. The mycobacteriology laboratory and new diagnostic techniques. Infect Dis Clin North Am. 2002;16: 127–144. doi:10.1016/s0891-5520(03)00049-7spa
dc.relation.references39. Vincent AT, Nyongesa S, Morneau I, Reed MB, Tocheva EI, Veyrier FJ. The Mycobacterial Cell Envelope: A Relict From the Past or the Result of Recent Evolution? Front Microbiol. 2018;9. doi:10.3389/fmicb.2018.02341spa
dc.relation.references40. Cell wall peptidoglycan in Mycobacterium tuberculosis: An Achilles’ heel for the TB-causing pathogen | FEMS Microbiology Reviews | Oxford Academic. [cited 19 Oct 2020]. Available: https://academic.oup.com/femsre/article/43/5/548/5513445spa
dc.relation.references41. Jackson M. The Mycobacterial Cell Envelope—Lipids. Cold Spring Harb Perspect Med. 2014;4. doi:10.1101/cshperspect.a021105spa
dc.relation.references42. Brites D, Gagneux S. Co-evolution of Mycobacterium tuberculosis and Homo sapiens. Immunol Rev. 2015;264: 6–24. doi:10.1111/imr.12264spa
dc.relation.references43. Koeck J-L, Fabre M, Simon F, Daffé M, Garnotel E, Matan AB, et al. Clinical characteristics of the smooth tubercle bacilli “Mycobacterium canettii” infection suggest the existence of an environmental reservoir. Clin Microbiol Infect. 2011;17: 1013–1019. doi:10.1111/j.1469-0691.2010.03347.xspa
dc.relation.references44. Castets MN, Rist HB. La variété africaine du bacille tuberculeux humain. Med d’Afrique Noire. 1969;16: 321–2.spa
dc.relation.references45. Mostowy, S., Onipede, A., Gagneux, S., Niemann, S., Kremer, K., Desmond, E. P., Kato-Maeda, M., & Behr, M. (2004). Genomic analysis distinguishes Mycobacterium africanum. Journal of clinical microbiology, 42(8), 3594–3599. https://doi.org/10.1128/JCM.42.8.3594-3599.2004spa
dc.relation.references46. A.Q. Wells, D.M., Oxon. Tuberculosis in Wild Voles. Lancet. 1937 DOI: https://doi.org/10.1016/S0140-6736(00)83505-9spa
dc.relation.references47. KARLSON A, LESSEL E. Mycobacterium bovis nom. nov. Int J Syst Bacteriol. 1970;20: 273–82.spa
dc.relation.references48. Cousins DV, Bastida R, Cataldi A, Quse V, Redrobe S, Dow S, et al. Tuberculosis in seals caused by a novel member of the Mycobacterium tuberculosis complex: Mycobacterium pinnipedii sp. nov. Int J Syst Evol Microbiol. 2003;53: 1305–1314. doi:10.1099/ijs.0.02401-0spa
dc.relation.references49. Alexander KA, Laver PN, Michel AL, Williams M, van Helden PD, Warren RM, et al. Novel Mycobacterium tuberculosis Complex Pathogen, M. mungi. Emerg Infect Dis. 2010;16: 1296–1299. doi:10.3201/eid1608.100314spa
dc.relation.references50. van Ingen J, Rahim Z, Mulder A, Boeree MJ, Simeone R, Brosch R, et al. Characterization of Mycobacterium orygis as M. tuberculosis Complex Subspecies. Emerg Infect Dis. 2012;18: 653–655. doi:10.3201/eid1804.110888spa
dc.relation.references51. Parsons SDC, Drewe JA, Gey van Pittius NC, Warren RM, van Helden PD. Novel Cause of Tuberculosis in Meerkats, South Africa. Emerg Infect Dis. 2013;19: 2004–2007. doi:10.3201/eid1912.130268spa
dc.relation.references52. Coscolla M, Lewin A, Metzger S, Maetz-Rennsing K, Calvignac-Spencer S, Nitsche A, et al. Novel Mycobacterium tuberculosis Complex Isolate from a Wild Chimpanzee. Emerg Infect Dis. 2013;19: 969–976. doi:10.3201/eid1906.121012spa
dc.relation.references53. Aranaz A, Liébana E, Gómez-Mampaso E, Galán JC, Cousins D, Ortega A, et al. Mycobacterium tuberculosis subsp. caprae subsp. nov.: a taxonomic study of a new member of the Mycobacterium tuberculosis complex isolated from goats in Spain. Int J Syst Bacteriol. 1999;49 Pt 3: 1263–1273. doi:10.1099/00207713-49-3-1263spa
dc.relation.references54. van Soolingen D, Hoogenboezem T, de Haas PE, Hermans PW, Koedam MA, Teppema KS, et al. A novel pathogenic taxon of the Mycobacterium tuberculosis complex, Canetti: characterization of an exceptional isolate from Africa. Int J Syst Bacteriol. 1997;47: 1236–1245. doi:10.1099/00207713-47-4-1236spa
dc.relation.references55. Riojas MA, McGough KJ, Rider-Riojas CJ, Rastogi N, Hazbón MH. Phylogenomic analysis of the species of the Mycobacterium tuberculosis complex demonstrates that Mycobacterium africanum, Mycobacterium bovis, Mycobacterium caprae, Mycobacterium microti and Mycobacterium pinnipedii are later heterotypic synonyms of Mycobacterium tuberculosis. Int J Syst Evol Microbiol. 2018;68: 324–332. doi:10.1099/ijsem.0.002507spa
dc.relation.references56. Gagneux S. Host–pathogen coevolution in human tuberculosis. Philosophical Transactions of the Royal Society B: Biological Sciences. 2012;367: 850–859. doi:10.1098/rstb.2011.0316spa
dc.relation.references57. Comas I, Coscolla M, Luo T, Borrell S, Holt KE, Kato-Maeda M, et al. Out-of-Africa migration and Neolithic co-expansion of Mycobacterium tuberculosis with modern humans. Nat Genet. 2013;45: 1176–1182. doi:10.1038/ng.2744spa
dc.relation.references58. de Jong BC, Antonio M, Gagneux S. Mycobacterium africanum--review of an important cause of human tuberculosis in West Africa. PLoS Negl Trop Dis. 2010;4: e744. doi:10.1371/journal.pntd.0000744spa
dc.relation.references59. Galagan JE. Genomic insights into tuberculosis. Nat Rev Genet. 2014;15: 307–320. doi:10.1038/nrg3664spa
dc.relation.references60. Zink AR, Sola C, Reischl U, Grabner W, Rastogi N, Wolf H, et al. Characterization of Mycobacterium tuberculosis complex DNAs from Egyptian mummies by spoligotyping. J Clin Microbiol. 2003;41: 359–367. doi:10.1128/jcm.41.1.359-367.2003spa
dc.relation.references61. Baron H, Hummel S, Herrmann B. Mycobacterium tuberculosisComplex DNA in Ancient Human Bones. Journal of Archaeological Science. 1996;23: 667–671. doi:10.1006/jasc.1996.0063spa
dc.relation.references62. Donoghue HD, Spigelman M, Zias J, Gernaey‐Child AM, Minnikin DE. Mycobacterium tuberculosis complex DNA in calcified pleura from remains 1400 years old. Letters in Applied Microbiology. 1998;27: 265–269. doi:10.1046/j.1472-765X.1998.00436.xspa
dc.relation.references63. Rabello MC da S, Matsumoto CK, de Almeida LGP, Menendez MC, de Oliveira RS, Silva RM, et al. First Description of Natural and Experimental Conjugation between Mycobacteria Mediated by a Linear Plasmid. PLoS One. 2012;7. doi:10.1371/journal.pone.0029884spa
dc.relation.references64. Marraffini LA, Sontheimer EJ. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat Rev Genet. 2010;11: 181–190. doi:10.1038/nrg2749spa
dc.relation.references65. Aguilar D, Hanekom M, Mata D, Gey van Pittius NC, van Helden PD, Warren RM, et al. Mycobacterium tuberculosis strains with the Beijing genotype demonstrate variability in virulence associated with transmission. Tuberculosis (Edinb). 2010;90: 319–325. doi:10.1016/j.tube.2010.08.004spa
dc.relation.references66. Palanisamy GS, DuTeau N, Eisenach KD, Cave DM, Theus SA, Kreiswirth BN, et al. Clinical strains of Mycobacterium tuberculosis display a wide range of virulence in guinea pigs. Tuberculosis (Edinb). 2009;89: 203–209. doi:10.1016/j.tube.2009.01.005spa
dc.relation.references67. van Laarhoven A, Mandemakers JJ, Kleinnijenhuis J, Enaimi M, Lachmandas E, Joosten LAB, et al. Low Induction of Proinflammatory Cytokines Parallels Evolutionary Success of Modern Strains within the Mycobacterium tuberculosis Beijing Genotype. Infect Immun. 2013;81: 3750–3756. doi:10.1128/IAI.00282-13spa
dc.relation.references68. The Pattern of Cytokine Production In Vitro Induced by Ancient and Modern Beijing Mycobacterium tuberculosis Strains. PLoS One. 2014;9(4):e94296. doi: 10.1371/journal.pone.0094296. eCollection 2014.spa
dc.relation.references69. Rakotosamimanana N, Raharimanga V, Andriamandimby SF, Soares J-L, Doherty TM, Ratsitorahina M, et al. Variation in gamma interferon responses to different infecting strains of Mycobacterium tuberculosis in acid-fast bacillus smear-positive patients and household contacts in Antananarivo, Madagascar. Clin Vaccine Immunol. 2010;17: 1094–1103. doi:10.1128/CVI.00049-10spa
dc.relation.references70. Natural Variation in Immune Responses to Neonatal Mycobacterium bovis Bacillus Calmette-Guerin (BCG) Vaccination in a Cohort of Gambian Infants. PLoS One. 2008;3(10):e3485. doi: 10.1371/journal.pone.0003485.spa
dc.relation.references71. López B, Aguilar D, Orozco H, Burger M, Espitia C, Ritacco V, et al. A marked difference in pathogenesis and immune response induced by different Mycobacterium tuberculosis genotypes. Clin Exp Immunol. 2003;133: 30–37. doi:10.1046/j.1365-2249.2003.02171.xspa
dc.relation.references72. Zhang J, Mi L, Wang Y, Liu P, Liang H, Huang Y, et al. Genotypes and drug susceptibility of Mycobacterium tuberculosis Isolates in Shihezi, Xinjiang Province, China. BMC Res Notes. 2012;5: 309. doi:10.1186/1756-0500-5-309spa
dc.relation.references73. Casali N, Nikolayevskyy V, Balabanova Y, Ignatyeva O, Kontsevaya I, Harris SR, et al. Microevolution of extensively drug-resistant tuberculosis in Russia. Genome Res. 2012;22: 735–745. doi:10.1101/gr.128678.111spa
dc.relation.references74. Coscolla M, Gagneux S. Consequences of genomic diversity in Mycobacterium tuberculosis. Semin Immunol. 2014;26: 431–444. doi:10.1016/j.smim.2014.09.012spa
dc.relation.references75. van Embden JD, Cave MD, Crawford JT, Dale JW, Eisenach KD, Gicquel B, et al. Strain identification of Mycobacterium tuberculosis by DNA fingerprinting: recommendations for a standardized methodology. J Clin Microbiol. 1993;31: 406–409.spa
dc.relation.references76. Otal I, Martín C, Vincent-Lévy-Frebault V, Thierry D, Gicquel B. Restriction fragment length polymorphism analysis using IS6110 as an epidemiological marker in tuberculosis. J Clin Microbiol. 1991;29: 1252–1254.spa
dc.relation.references77. Yuen LK, Ross BC, Jackson KM, Dwyer B. Characterization of Mycobacterium tuberculosis strains from Vietnamese patients by Southern blot hybridization. J Clin Microbiol. 1993;31: 1615–1618.spa
dc.relation.references78. van Soolingen D, de Haas PE, Hermans PW, Groenen PM, van Embden JD. Comparison of various repetitive DNA elements as genetic markers for strain differentiation and epidemiology of Mycobacterium tuberculosis. J Clin Microbiol. 1993;31: 1987–1995.spa
dc.relation.references79. Kamerbeek J, Schouls L, Kolk A, van Agterveld M, van Soolingen D, Kuijper S, et al. Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol. 1997;35: 907–914.spa
dc.relation.references80. Warren RM, Streicher EM, Sampson SL, van der Spuy GD, Richardson M, Nguyen D, et al. Microevolution of the direct repeat region of Mycobacterium tuberculosis: implications for interpretation of spoligotyping data. J Clin Microbiol. 2002;40: 4457–4465. doi:10.1128/jcm.40.12.4457-4465.2002spa
dc.relation.references81. Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol. 1987;169: 5429–5433.spa
dc.relation.references82. Zhang J, Abadia E, Refregier G, Tafaj S, Boschiroli ML, Guillard B, et al. Mycobacterium tuberculosis complex CRISPR genotyping: improving efficiency, throughput and discriminative power of “spoligotyping” with new spacers and a microbead-based hybridization assay. J Med Microbiol. 2010;59: 285–294. doi:10.1099/jmm.0.016949-0spa
dc.relation.references83. Brudey K, Driscoll JR, Rigouts L, Prodinger WM, Gori A, Al-Hajoj SA, et al. Mycobacterium tuberculosis complex genetic diversity: mining the fourth international spoligotyping database (SpolDB4) for classification, population genetics and epidemiology. BMC Microbiol. 2006;6: 23. doi:10.1186/1471-2180-6-23spa
dc.relation.references84. Proposal for Standardization of Optimized Mycobacterial Interspersed Repetitive Unit-Variable-Number Tandem Repeat Typing of Mycobacterium tuberculosis | Journal of Clinical Microbiology. [cited 20 Oct 2020]. Available: https://jcm.asm.org/content/44/12/4498spa
dc.relation.references85. Bidovec-Stojkovic U, Zolnir-Dovc M, Supply P. One year nationwide evaluation of 24-locus MIRU-VNTR genotyping on Slovenian Mycobacterium tuberculosis isolates. Respiratory Medicine. 2011;105: S67–S73. doi:10.1016/S0954-6111(11)70014-2spa
dc.relation.references86. Comas I, Gagneux S. A role for systems epidemiology in tuberculosis research. Trends Microbiol. 2011;19: 492–500. doi:10.1016/j.tim.2011.07.002spa
dc.relation.references87. Kato-Maeda M, Metcalfe JZ, Flores L. Genotyping of Mycobacterium tuberculosis: application in epidemiologic studies. Future Microbiol. 2011;6: 203–216. doi:10.2217/fmb.10.165spa
dc.relation.references88. Bing Lu 1, Hai Yan Dong, Xiu Qin Zhao, Zhi Guang Liu, et al., A new Multilocus Sequence Analysis Scheme for Mycobacterium tuberculosis. Biomed Environ Sci . 2012 Dec;25(6):620-9. doi: 10.3967/0895-3988.2012.06.003.spa
dc.relation.references89. Brosch R, Gordon SV, Marmiesse M, Brodin P, Buchrieser C, Eiglmeier K, et al. A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc Natl Acad Sci U S A. 2002;99: 3684–3689. doi:10.1073/pnas.052548299spa
dc.relation.references90. Ngabonziza JCS, Loiseau C, Marceau M, Jouet A, Menardo F, Tzfadia O, et al. A sister lineage of the Mycobacterium tuberculosis complex discovered in the African Great Lakes region. Nature Communications. 2020;11: 2917. doi:10.1038/s41467-020-16626-6spa
dc.relation.references91. Coscolla M, Brites D, Menardo F, Loiseau C, Borrell S, Otchere ID, et al. Phylogenomics of Mycobacterium africanum reveals a new lineage and a complex evolutionary history. bioRxiv. 2020; 2020.06.10.141788. doi:10.1101/2020.06.10.141788spa
dc.relation.references92. Iñaki Comas 1, Susanne Homolka, Stefan Niemann, Sebastien Gagneux. Genotyping of Genetically Monomorphic Bacteria: DNA Sequencing in Mycobacterium tuberculosis Highlights the Limitations of Current Methodologies. PLoS One. 2009:12;4(11):e7815. doi: 10.1371/journal.pone.0007815.spa
dc.relation.references93. Allix-Béguec C, Harmsen D, Weniger T, Supply P, Niemann S. Evaluation and Strategy for Use of MIRU-VNTRplus, a Multifunctional Database for Online Analysis of Genotyping Data and Phylogenetic Identification of Mycobacterium tuberculosis Complex Isolates. J Clin Microbiol. 2008;46: 2692–2699. doi:10.1128/JCM.00540-08spa
dc.relation.references94. Caws M, Thwaites G, Dunstan S, Hawn TR, Thi Ngoc Lan N, Thuong NTT, et al. The Influence of Host and Bacterial Genotype on the Development of Disseminated Disease with Mycobacterium tuberculosis. PLoS Pathog. 2008;4. doi:10.1371/journal.ppat.1000034spa
dc.relation.references95. Pérez-Lago L, Comas I, Navarro Y, González-Candelas F, Herranz M, Bouza E, et al. Whole Genome Sequencing Analysis of Intrapatient Microevolution in Mycobacterium tuberculosis: Potential Impact on the Inference of Tuberculosis Transmission. J Infect Dis. 2014;209: 98–108. doi:10.1093/infdis/jit439spa
dc.relation.references96. Merker M, Kohl TA, Roetzer A, Truebe L, Richter E, Rüsch-Gerdes S, Fattorini L, Oggioni MR, Cox H, Varaine F, Niemann S. Whole genome sequencing reveals complex evolution patterns of multidrug-resistant Mycobacterium tuberculosis Beijing strains in patients. PLoS One. 2013 Dec 6;8(12):e82551. doi: 10.1371/journal.pone.0082551. PMID: 24324807; PMCID: PMC3855793.spa
dc.relation.references97. Gutacker MM, Mathema B, Soini H, Shashkina E, Kreiswirth BN, Graviss EA, et al. Single-nucleotide polymorphism-based population genetic analysis of Mycobacterium tuberculosis strains from 4 geographic sites. J Infect Dis. 2006;193: 121–128. doi:10.1086/498574spa
dc.relation.references98. Ruth Hershberg, Mikhail Lipatov, Peter M Small, Hadar Sheffer, Stefan Niemann, et al.,High Functional Diversity in Mycobacterium tuberculosis Driven by Genetic Drift and Human Demography. PLoS Biol . 2008 Dec 16;6(12):e311. doi: 10.1371/journal.pbio.0060311.spa
dc.relation.references99. Firdessa R, Berg S, Hailu E, Schelling E, Gumi B, Erenso G, et al. Mycobacterial Lineages Causing Pulmonary and Extrapulmonary Tuberculosis, Ethiopia. Emerg Infect Dis. 2013;19: 460–463. doi:10.3201/eid1903.120256spa
dc.relation.references100. Rose G, Cortes T, Comas I, Coscolla M, Gagneux S, Young DB. Mapping of Genotype–Phenotype Diversity among Clinical Isolates of Mycobacterium tuberculosis by Sequence-Based Transcriptional Profiling. Genome Biol Evol. 2013;5: 1849–1862. doi:10.1093/gbe/evt138spa
dc.relation.references101. Comas I, Borrell S, Roetzer A, Rose G, Malla B, Kato-Maeda M, et al. Whole-genome sequencing of rifampicin-resistant M. tuberculosis strains identifies compensatory mutations in RNA polymerase. Nat Genet. 2011;44: 106–110. doi:10.1038/ng.1038spa
dc.relation.references102. Trauner A, Borrell S, Reither K, Gagneux S. Evolution of Drug Resistance in Tuberculosis: Recent Progress and Implications for Diagnosis and Therapy. Drugs. 2014;74: 1063–1072. doi:10.1007/s40265-014-0248-yspa
dc.relation.references103. Rabahi MF, Conceição EC, de Paiva LO, Souto MVML, Sisco MC, de Waard J, et al. Characterization of Mycobacterium tuberculosis var. africanum isolated from a patient with pulmonary tuberculosis in Brazil. Infect Genet Evol. 2020;85: 104550. doi:10.1016/j.meegid.2020.104550spa
dc.relation.references104. Hurtado UA, Solano JS, Rodriguez A, Robledo J, Rouzaud F. Draft Genome Sequence of a Mycobacterium africanum Clinical Isolate from Antioquia, Colombia. Genome Announc. 2016;4. doi:10.1128/genomeA.00486-16spa
dc.relation.references105. van Soolingen D, Qian L, de Haas PE, Douglas JT, Traore H, Portaels F, et al. Predominance of a single genotype of Mycobacterium tuberculosis in countries of east Asia. J Clin Microbiol. 1995;33: 3234–3238. doi:10.1128/JCM.33.12.3234-3238.1995spa
dc.relation.references106. Dormans J, Burger M, Aguilar D, Hernandez-Pando R, Kremer K, Roholl P, et al. Correlation of virulence, lung pathology, bacterial load and delayed type hypersensitivity responses after infection with different Mycobacterium tuberculosis genotypes in a BALB/c mouse model. Clin Exp Immunol. 2004;137: 460–468. doi:10.1111/j.1365-2249.2004.02551.xspa
dc.relation.references107. Rindi L, Medici C, Bimbi N, Buzzigoli A, Lari N, Garzelli C. Genomic variability of Mycobacterium tuberculosis strains of the Euro-American lineage based on large sequence deletions and 15-locus MIRU-VNTR polymorphism. PLoS One. 2014 Sep 8;9(9):e107150. doi: 10.1371/journal.pone.0107150. Erratum in: PLoS One. 2014;9(11):e114676. PMID: 25197794; PMCID: PMC4157836.spa
dc.relation.references108. Hernandez Pando R, Aguilar D, Cohen I, Guerrero M, Ribon W, Acosta P, et al. Specific bacterial genotypes of Mycobacterium tuberculosis cause extensive dissemination and brain infection in an experimental model. Tuberculosis (Edinb). 2010;90: 268–277. doi:10.1016/j.tube.2010.05.002spa
dc.relation.references109. Luo T, Comas I, Luo D, Lu B, Wu J, Wei L, et al. Southern East Asian origin and coexpansion of Mycobacterium tuberculosis Beijing family with Han Chinese. PNAS. 2015;112: 8136–8141. doi:10.1073/pnas.1424063112spa
dc.relation.references110. Mokrousov I, Narvskaya O, Otten T, Vyazovaya A, Limeschenko E, Steklova L, et al. Phylogenetic reconstruction within Mycobacterium tuberculosis Beijing genotype in northwestern Russia. Res Microbiol. 2002;153: 629–637. doi:10.1016/s0923-2508(02)01374-8spa
dc.relation.references111. Fenner L, Malla B, Ninet B, Dubuis O, Stucki D, Borrell S, et al. “Pseudo-Beijing”: Evidence for Convergent Evolution in the Direct Repeat Region of Mycobacterium tuberculosis. PLOS ONE. 2011;6: e24737. doi:10.1371/journal.pone.0024737spa
dc.relation.references112. Parwati I, van Crevel R, van Soolingen D. Possible underlying mechanisms for successful emergence of the Mycobacterium tuberculosis Beijing genotype strains. Lancet Infect Dis. 2010;10: 103–111. doi:10.1016/S1473-3099(09)70330-5spa
dc.relation.references113. Glynn JR, Whiteley J, Bifani PJ, Kremer K, van Soolingen D. Worldwide Occurrence of Beijing/W Strains of Mycobacterium tuberculosis: A Systematic Review. Emerg Infect Dis. 2002;8: 843–849. doi:10.3201/eid0808.020002spa
dc.relation.references114. Kremer K, van der Werf MJ, Au BKY, Anh DD, Kam KM, Rogier van Doorn H, et al. Vaccine-induced Immunity Circumvented by Typical Mycobacterium tuberculosis Beijing Strains. Emerg Infect Dis. 2009;15: 335–339. doi:10.3201/eid1502.080795spa
dc.relation.references115. Jeon BY, Derrick SC, Lim J, Kolibab K, Dheenadhayalan V, Yang AL, et al. Mycobacterium bovis BCG immunization induces protective immunity against nine different Mycobacterium tuberculosis strains in mice. Infect Immun. 2008;76: 5173–5180. doi:10.1128/IAI.00019-08spa
dc.relation.references116. Merker M, Blin C, Mona S, Duforet-Frebourg N, Lecher S, Willery E, et al. Evolutionary history and global spread of the Mycobacterium tuberculosis Beijing lineage. Nat Genet. 2015;47: 242–249. doi:10.1038/ng.3195spa
dc.relation.references117. Comas I, Homolka S, Niemann S, Gagneux S. Genotyping of genetically monomorphic bacteria: DNA sequencing in Mycobacterium tuberculosis highlights the limitations of current methodologies. PLoS ONE. 2009;4. doi:10.1371/journal.pone.0007815spa
dc.relation.references118. Gagneux S, DeRiemer K, Van T, Kato-Maeda M, de Jong BC, Narayanan S, et al. Variable host-pathogen compatibility in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 2006;103: 2869–2873. doi:10.1073/pnas.0511240103spa
dc.relation.references119. Tsolaki AG, Gagneux S, Pym AS, Goguet de la Salmoniere Y-OL, Kreiswirth BN, Van Soolingen D, et al. Genomic Deletions Classify the Beijing/W Strains as a Distinct Genetic Lineage of Mycobacterium tuberculosis. J Clin Microbiol. 2005;43: 3185–3191. doi:10.1128/JCM.43.7.3185-3191.2005spa
dc.relation.references120. Bespyatykh J, Shitikov E, Butenko I, Altukhov I, Alexeev D, Mokrousov I, et al. Proteome analysis of the Mycobacterium tuberculosis Beijing B0/W148 cluster. Sci Rep. 2016;6: 28985. doi:10.1038/srep28985spa
dc.relation.references121. Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE 3rd, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, Quail MA, Rajandream MA, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston JE, Taylor K, Whitehead S, Barrell BG. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature. 1998 Jun 11;393(6685):537-44. doi: 10.1038/31159. Erratum in: Nature 1998 Nov 12;396(6707):190. PMID: 9634230.spa
dc.relation.references122. de Souza GA, Leversen NA, Målen H, Wiker HG. Bacterial proteins with cleaved or uncleaved signal peptides of the general secretory pathway. J Proteomics. 2011;75: 502–510. doi:10.1016/j.jprot.2011.08.016spa
dc.relation.references123. Tsolaki AG, Hirsh AE, DeRiemer K, Enciso JA, Wong MZ, Hannan M, Goguet de la Salmoniere YO, Aman K, Kato-Maeda M, Small PM. Functional and evolutionary genomics of Mycobacterium tuberculosis: insights from genomic deletions in 100 strains. Proc Natl Acad Sci U S A. 2004 Apr 6;101(14):4865-70. doi: 10.1073/pnas.0305634101. Epub 2004 Mar 15. PMID: 15024109; PMCID: PMC387340.spa
dc.relation.references124. Mazandu GK, Mulder NJ. Function prediction and analysis of mycobacterium tuberculosis hypothetical proteins. Int J Mol Sci. 2012;13(6):7283-302. doi: 10.3390/ijms13067283. Epub 2012 Jun 13. PMID: 22837694; PMCID: PMC3397526.spa
dc.relation.references125. DeJesus MA, Gerrick ER, Xu W, Park SW, Long JE, Boutte CC, Rubin EJ, Schnappinger D, Ehrt S, Fortune SM, Sassetti CM, Ioerger TR. Comprehensive Essentiality Analysis of the Mycobacterium tuberculosis Genome via Saturating Transposon Mutagenesis. mBio. 2017 Jan 17;8(1):e02133-16. doi: 10.1128/mBio.02133-16. PMID: 28096490; PMCID: PMC5241402.spa
dc.relation.references126. Sachdeva P, Misra R, Tyagi AK, Singh Y. The sigma factors of Mycobacterium tuberculosis: regulation of the regulators. FEBS J. 2010;277: 605–626. doi:10.1111/j.1742-4658.2009.07479.xspa
dc.relation.references127. Virulence factors of the Mycobacterium tuberculosis complex. [cited 20 Oct 2020]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3544749/spa
dc.relation.references128. Camacho LR, Ensergueix D, Perez E, Gicquel B, Guilhot C. Identification of a virulence gene cluster of Mycobacterium tuberculosis by signature-tagged transposon mutagenesis. Mol Microbiol. 1999;34: 257–267. doi:10.1046/j.1365-2958.1999.01593.xspa
dc.relation.references129. Astarie-Dequeker C, Le Guyader L, Malaga W, Seaphanh F-K, Chalut C, Lopez A, et al. Phthiocerol dimycocerosates of M. tuberculosis participate in macrophage invasion by inducing changes in the organization of plasma membrane lipids. PLoS Pathog. 2009;5: e1000289. doi:10.1371/journal.ppat.1000289spa
dc.relation.references130. Giovannini D, Cappelli G, Jiang L, Castilletti C, Colone A, Serafino A, et al. A new Mycobacterium tuberculosis smooth colony reduces growth inside human macrophages and represses PDIM Operon gene expression. Does an heterogeneous population exist in intracellular mycobacteria? Microb Pathog. 2012;53: 135–146. doi:10.1016/j.micpath.2012.06.002spa
dc.relation.references131. Velayati AA, Masjedi MR, Farnia P, Tabarsi P, Ghanavi J, ZiaZarifi AH, et al. Emergence of new forms of totally drug-resistant tuberculosis bacilli: super extensively drug-resistant tuberculosis or totally drug-resistant strains in iran. Chest. 2009;136: 420–425. doi:10.1378/chest.08-2427spa
dc.relation.references132. Reed MB, Domenech P, Manca C, Su H, Barczak AK, Kreiswirth BN, et al. A glycolipid of hypervirulent tuberculosis strains that inhibits the innate immune response. Nature. 2004;431: 84–87. doi:10.1038/nature02837spa
dc.relation.references133. de Keijzer J, de Haas PE, de Ru AH, van Veelen PA, van Soolingen D. Disclosure of selective advantages in the “modern” sublineage of the Mycobacterium tuberculosis Beijing genotype family by quantitative proteomics. Mol Cell Proteomics. 2014;13: 2632–2645. doi:10.1074/mcp.M114.038380spa
dc.relation.references134. Ebrahimi-Rad M, Bifani P, Martin C, Kremer K, Samper S, Rauzier J, et al. Mutations in putative mutator genes of Mycobacterium tuberculosis strains of the W-Beijing family. Emerg Infect Dis. 2003;9: 838–845. doi:10.3201/eid0907.020803spa
dc.relation.references135. Ribeiro SCM, Gomes LL, Amaral EP, Andrade MRM, Almeida FM, Rezende AL, et al. Mycobacterium tuberculosis strains of the modern sublineage of the Beijing family are more likely to display increased virulence than strains of the ancient sublineage. J Clin Microbiol. 2014;52: 2615–2624. doi:10.1128/JCM.00498-14spa
dc.relation.references136. Yin QQ, Liu HC, Jiao WW, Li QJ, Han R, Tian JL, Liu ZG, Zhao XQ, Li YJ, Wan KL, Shen AD, Mokrousov I. Evolutionary History and Ongoing Transmission of Phylogenetic Sublineages of Mycobacterium tuberculosis Beijing Genotype in China. Sci Rep. 2016 Sep 29;6:34353. doi: 10.1038/srep34353. PMID: 27681182; PMCID: PMC5041183.spa
dc.relation.references137. Hanekom M, van der Spuy GD, Streicher E, Ndabambi SL, McEvoy CRE, Kidd M, et al. A recently evolved sublineage of the Mycobacterium tuberculosis Beijing strain family is associated with an increased ability to spread and cause disease. J Clin Microbiol. 2007;45: 1483–1490. doi:10.1128/JCM.02191-06spa
dc.relation.references138. Shitikov E, Kolchenko S, Mokrousov I, Bespyatykh J, Ischenko D, Ilina E, Govorun V. Evolutionary pathway analysis and unified classification of East Asian lineage of Mycobacterium tuberculosis. Sci Rep. 2017 Aug 23;7(1):9227. doi: 10.1038/s41598-017-10018-5. PMID: 28835627; PMCID: PMC5569047.spa
dc.relation.references139. Hanekom M, Gey van Pittius NC, McEvoy C, Victor TC, Van Helden PD, Warren RM. Mycobacterium tuberculosis Beijing genotype: a template for success. Tuberculosis (Edinb). 2011;91: 510–523. doi:10.1016/j.tube.2011.07.005spa
dc.relation.references140. Murcia MI, Manotas M, Jiménez YJ, Hernández J, Cortès MIC, López LE, et al. First case of multidrug-resistant tuberculosis caused by a rare “Beijing-like” genotype of Mycobacterium tuberculosis in Bogotá, Colombia. Infect Genet Evol. 2010;10: 678–681. doi:10.1016/j.meegid.2010.03.010spa
dc.relation.references141. Beijing/W Genotype Mycobacterium tuberculosis and Drug Resistance. Emerg Infect Dis. 2006;12: 736–743. doi:10.3201/eid1205.050400spa
dc.relation.references142. Liu Y, Jiang X, Li W, Zhang X, Wang W, Li C. The study on the association between Beijing genotype family and drug susceptibility phenotypes of Mycobacterium tuberculosis in Beijing. Sci Rep. 2017 Nov 8;7(1):15076. doi: 10.1038/s41598-017-14119-z. PMID: 29118425; PMCID: PMC5678160.spa
dc.relation.references143. Werngren J, Hoffner SE. Drug-susceptible Mycobacterium tuberculosis Beijing genotype does not develop mutation-conferred resistance to rifampin at an elevated rate. J Clin Microbiol. 2003 Apr;41(4):1520-4. doi: 10.1128/JCM.41.4.1520-1524.2003. PMID: 12682139; PMCID: PMC153924.spa
dc.relation.references144. Luiz Rdos S, Suffys P, Barroso EC, Kerr LR, Duarte CR, Freitas MV, Mota RM, Frota CC. Genotyping and drug resistance patterns of Mycobacterium tuberculosis strains observed in a tuberculosis high-burden municipality in Northeast, Brazil. Braz J Infect Dis. 2013 May-Jun;17(3):338-45. doi: 10.1016/j.bjid.2012.10.019. Epub 2013 Apr 20. PMID: 23607922.spa
dc.relation.references145. Cáceres O, Rastogi N, Bartra C, Couvin D, Galarza M, Asencios L, et al. Characterization of the genetic diversity of extensively-drug resistant Mycobacterium tuberculosis clinical isolates from pulmonary tuberculosis patients in Peru. PLoS One. 2014;9: e112789. doi:10.1371/journal.pone.0112789spa
dc.relation.references146. Villegas SL, Ferro BE, Perez-Velez CM, Moreira CA, Forero L, Martínez E, Rastogi N, Caminero JA. High initial multidrug-resistant tuberculosis rate in Buenaventura, Colombia: a public-private initiative. Eur Respir J. 2012 Dec;40(6):1569-72. doi: 10.1183/09031936.00018212. PMID: 23204023.spa
dc.relation.references147. Pang Y, Zhou Y, Zhao B, Liu G, Jiang G, Xia H, Song Y, Shang Y, Wang S, Zhao YL. Spoligotyping and drug resistance analysis of Mycobacterium tuberculosis strains from national survey in China. PLoS One. 2012;7(3):e32976. doi: 10.1371/journal.pone.0032976. Epub 2012 Mar 7. PMID: 22412962; PMCID: PMC3296750.spa
dc.relation.references148. Genetic Diversity of Mycobacterium tuberculosis Isolates from Inner Mongolia, China. PLOS ONE. 2013;8: e57660. doi:10.1371/journal.pone.0057660spa
dc.relation.references149. San LL, Aye KS, Oo NAT, Shwe MM, Fukushima Y, Gordon SV, et al. Insight into multidrug-resistant Beijing genotype Mycobacterium tuberculosis isolates in Myanmar. Int J Infect Dis. 2018;76: 109–119. doi:10.1016/j.ijid.2018.06.009spa
dc.relation.references150. Anh DD, Borgdorff MW, Van LN, Lan NT, van Gorkom T, Kremer K, et al. Mycobacterium tuberculosis Beijing genotype emerging in Vietnam. Emerg Infect Dis. 2000;6: 302–305. doi:10.3201/eid0603.000312spa
dc.relation.references151. Nguyen VAT, Choisy M, Nguyen DH, Tran THT, Pham KLT, Thi Dinh PT, et al. High prevalence of Beijing and EAI4-VNM genotypes among M. tuberculosis isolates in northern Vietnam: sampling effect, rural and urban disparities. PLoS One. 2012;7: e45553. doi:10.1371/journal.pone.0045553spa
dc.relation.references152. Mathuria JP, Srivastava GN, Sharma P, Mathuria BL, Ojha S, Katoch VM, et al. Prevalence of Mycobacterium tuberculosis Beijing genotype and its association with drug resistance in North India. Journal of Infection and Public Health. 2017;10: 409–414. doi:10.1016/j.jiph.2016.06.007spa
dc.relation.references153. Viegas SO, Machado A, Groenheit R, Ghebremichael S, Pennhag A, Gudo PS, et al. Mycobacterium tuberculosis Beijing genotype is associated with HIV infection in Mozambique. PLoS One. 2013;8: e71999. doi:10.1371/journal.pone.0071999spa
dc.relation.references154. Sobre el origen y difusión del nombre “América Latina” (o una variación heterodoxa en torno al tema de la construcción social de la verdad) | Quijada | Revista de Indias. [cited 20 Oct 2020]. Available: http://revistadeindias.revistas.csic.es/index.php/revistadeindias/article/view/749spa
dc.relation.references155. Sánchez AM, Solache LC. DE LAS EPIDEMIAS EN EL MÉXICO ANTIGUO. : 13.spa
dc.relation.references156. Langlois-Klassen D, Senthilselvan A, Chui L, Kunimoto D, Saunders LD, Menzies D, et al. Transmission of Mycobacterium tuberculosis Beijing Strains, Alberta, Canada, 1991–2007. Emerg Infect Dis. 2013;19: 701–711. doi:10.3201/eid1905.121578spa
dc.relation.references157. Langlois-Klassen D, Senthilselvan A, Chui L, Kunimoto D, Saunders LD, Menzies D, et al. Transmission of Mycobacterium tuberculosis Beijing Strains, Alberta, Canada, 1991-2007. Emerging infectious diseases. 2013. doi:10.3201/eid1905.121578spa
dc.relation.references158. Langlois-Klassen D, Kunimoto D, Saunders LD, Chui L, Boffa J, Menzies D, Long R. A population-based cohort study of Mycobacterium tuberculosis Beijing strains: an emerging public health threat in an immigrant-receiving country? PLoS One. 2012;7(6):e38431. doi: 10.1371/journal.pone.0038431. Epub 2012 Jun 5. PMID: 22679504; PMCID: PMC3367965.spa
dc.relation.references159. Centers for Disease Control and Prevention (CDC). Outbreak of multidrug-resistant tuberculosis at a hospital--New York City, 1991. MMWR Morb Mortal Wkly Rep. 1993 Jun 11;42(22):427, 433-4. PMID: 8502215.spa
dc.relation.references160. Soini H, Pan X, Amin A, Graviss EA, Siddiqui A, Musser JM. Characterization of Mycobacterium tuberculosis Isolates from Patients in Houston, Texas, by Spoligotyping. J Clin Microbiol. 2000;38: 669–676.spa
dc.relation.references161. Agerton TB, Valway SE, Blinkhorn RJ, Shilkret KL, Reves R, Schluter WW, et al. Spread of strain W, a highly drug-resistant strain of Mycobacterium tuberculosis, across the United States. Clin Infect Dis. 1999;29: 85–92; discussion 93-95. doi:10.1086/520187spa
dc.relation.references162. Ritacco V, López B, Cafrune PI, Ferrazoli L, Suffys PN, Candia N, et al. Mycobacterium tuberculosis strains of the Beijing genotype are rarely observed in tuberculosis patients in South America. Mem Inst Oswaldo Cruz. 2008;103: 489–492. doi:10.1590/s0074-02762008000500014spa
dc.relation.references163. Cerezo-Cortés MI, Rodríguez-Castillo JG, Hernández-Pando R, Murcia MI. Circulation of M. tuberculosis Beijing genotype in Latin America and the Caribbean. Pathog Glob Health. 2019;113: 336–351. doi:10.1080/20477724.2019.1710066spa
dc.relation.references164. Diaz R, Kremer K, de Haas PE, Gomez RI, Marrero A, Valdivia JA, et al. Molecular epidemiology of tuberculosis in Cuba outside of Havana, July 1994-June 1995: utility of spoligotyping versus IS6110 restriction fragment length polymorphism. Int J Tuberc Lung Dis. 1998;2: 743–750.spa
dc.relation.references165. Avila YMH, Gómez CMF, Valdés RG, Rodríguez IMM, Molina DL, Cordero MJL, et al. Tipificación con oligonucleótidos espaciadores de Mycobacterium tuberculosis en Cuba. Rev Cubana Med Trop. 2015;67: 85–96.spa
dc.relation.references166. HERRERA AVILA, Yoslany M et al. Tipificación con oligonucleótidos espaciadores de Mycobacterium tuberculosis en Cuba. Rev Cubana Med Trop [online]. 2015;67:85-96. Dspa
dc.relation.references167. Grandjean L, Iwamoto T, Lithgow A, Gilman RH, Arikawa K, Nakanishi N, Martin L, Castillo E, Alarcon V, Coronel J, Solano W, Aminian M, Guezala C, Rastogi N, Couvin D, Sheen P, Zimic M, Moore DA. The Association between Mycobacterium Tuberculosis Genotype and Drug Resistance in Peru. PLoS One. 2015 May 18;10(5):e0126271. doi: 10.1371/journal.pone.0126271. PMID: 25984723; PMCID: PMC4435908.spa
dc.relation.references168. Laserson KF, Osorio L, Sheppard JD, Hernández H, Benitez AM, Brim S, et al. Clinical and programmatic mismanagement rather than community outbreak as the cause of chronic, drug-resistant tuberculosis in Buenaventura, Colombia, 1998. Int J Tuberc Lung Dis. 2000;4: 673–683.spa
dc.relation.references169. Zurita J, Espinel N, Barba P, Ortega-Paredes D, Zurita-Salinas C, Rojas Y, et al. Genetic diversity and drug resistance of Mycobacterium tuberculosis in Ecuador. Int J Tuberc Lung Dis. 2019;23: 166–173. doi:10.5588/ijtld.18.0095spa
dc.relation.references170. Sola C, Devallois A, Horgen L, Maïsetti J, Filliol I, Legrand E, et al. Tuberculosis in the Caribbean: Using Spacer Oligonucleotide Typing to Understand Strain Origin and Transmission. Emerg Infect Dis. 1999;5: 404–411. doi:10.3201/eid0503.990311spa
dc.relation.references171. Brudey K, Filliol I, Ferdinand S, Guernier V, Duval P, Maubert B, et al. Long-Term Population-Based Genotyping Study of Mycobacterium tuberculosis Complex Isolates in the French Departments of the Americas. J Clin Microbiol. 2006;44: 183–191. doi:10.1128/JCM.44.1.183-191.2006spa
dc.relation.references172. Baboolal S, Millet J, Akpaka PE, Ramoutar D, Rastogi N. First insight into Mycobacterium tuberculosis epidemiology and genetic diversity in Trinidad and Tobago. J Clin Microbiol. 2009;47: 1911–1914. doi:10.1128/JCM.00535-09spa
dc.relation.references173. Millet J, Baboolal S, Streit E, Akpaka PE, Rastogi N. A first assessment of Mycobacterium tuberculosis genetic diversity and drug-resistance patterns in twelve Caribbean territories. Biomed Res Int. 2014;2014: 718496. doi:10.1155/2014/718496spa
dc.relation.references174. Centers for Disease Control and Prevention (CDC). Acquired multidrug-resistant tuberculosis--Buenaventura, Colombia, 1998. MMWR Morb Mortal Wkly Rep. 1998 Sep 18;47(36):759-61. PMID: 9756459.spa
dc.relation.references175. Murcia MI, Manotas M, Jiménez YJ, Hernández J, Cortès MIC, López LE, et al. First case of multidrug-resistant tuberculosis caused by a rare “Beijing-like” genotype of Mycobacterium tuberculosis in Bogotá, Col1. Murcia MI, Manotas M, Jiménez YJ, Hernández J, Cortès MIC, López LE, et al. First case of multidrug-resistant tuberculos. Infection, Genetics and Evolution. 2010;10: 678–681. doi:10.1016/j.meegid.2010.03.010spa
dc.relation.references176. Nieto LM, Ferro BE, Villegas SL, Mehaffy C, Forero L, Moreira C, et al. Characterization of Extensively Drug-Resistant Tuberculosis Cases from Valle del Cauca, Colombia. J Clin Microbiol. 2012;50: 4185–4187. doi:10.1128/JCM.01946-12spa
dc.relation.references177. Population Structure among Mycobacterium tuberculosis Isolates from Pulmonary Tuberculosis Patients in Colombia. [cited 20 Oct 2020]. Available: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0093848spa
dc.relation.references178. Cerezo I, Jiménez Y, Hernandez J, Zozio T, Murcia MI, Rastogi N. A first insight on the population structure of Mycobacterium tuberculosis complex as studied by spoligotyping and MIRU-VNTRs in Bogotá, Colombia. Infect Genet Evol. 2012;12: 657–663. doi:10.1016/j.meegid.2011.07.006spa
dc.relation.references179. Puerto G, Erazo L, Wintaco M, Castro C, Ribón W, Guerrero MI. Mycobacterium tuberculosis Genotypes Determined by Spoligotyping to Be Circulating in Colombia between 1999 and 2012 and Their Possible Associations with Transmission and Susceptibility to First-Line Drugs. PLoS One. 2015;10. doi:10.1371/journal.pone.0124308spa
dc.relation.references180. Darío Puerto, Erazo Lina, Zabaleta Angie, Lina Erazo, Gloria Puerto, Claudia Llerena. Genotipos de Mycobacterium tuberculosis, circulantes en el puerto de Buenaventura, Colombia. Biomédica Inst Nac Salud. 2017;37: 149.spa
dc.relation.references181. Rodríguez-Castillo JG, Llerena C, Argoty-Chamorro L, Guerra J, Couvin D, Rastogi N, et al. Population structure of multidrug-resistant Mycobacterium tuberculosis clinical isolates in Colombia. Tuberculosis (Edinb). 2020;125: 102011. doi:10.1016/j.tube.2020.102011spa
dc.relation.references182. Puerto D, Erazo L, Zabaleta A, Murcia MI, Llerena C, Puerto G. Characterization of clinical isolates of Mycobacterium tuberculosis from indigenous peoples of Colombia. Biomedica. 2019;39: 78–92. doi:10.7705/biomedica.v39i3.4318spa
dc.relation.references183. Flores-Treviño S, Morfín-Otero R, Rodríguez-Noriega E, González-Díaz E, Pérez-Gómez HR, Bocanegra-García V, et al. Genetic Diversity of Mycobacterium tuberculosis from Guadalajara, Mexico and Identification of a Rare Multidrug Resistant Beijing Genotype. PLoS One. 2015;10. doi:10.1371/journal.pone.0118095spa
dc.relation.references184. Nieto Ramirez LM, Ferro BE, Diaz G, Anthony RM, de Beer J, van Soolingen D. Genetic profiling of Mycobacterium tuberculosis revealed “modern” Beijing strains linked to MDR-TB from Southwestern Colombia. PLoS One. 2020;15: e0224908. doi:10.1371/journal.pone.0224908spa
dc.relation.references185. Rodríguez JG, Pino C, Tauch A, Murcia MI. Complete Genome Sequence of the Clinical Beijing-Like Strain Mycobacterium tuberculosis 323 Using the PacBio Real-Time Sequencing Platform. Genome Announc. 2015;3. doi:10.1128/genomeA.00371-15spa
dc.relation.references186. Hernández-Pando R, Marquina-Castillo B, Barrios-Payán J, Mata-Espinosa D. Use of mouse models to study the variability in virulence associated with specific genotypic lineages of Mycobacterium tuberculosis. Infection, Genetics and Evolution. 2012;12: 725–731. doi:10.1016/j.meegid.2012.02.013spa
dc.relation.references187. Davies J. Origins and evolution of antibiotic resistance. Microbiologia. 1996;12: 9–16.spa
dc.relation.references188. Alanis AJ. Resistance to antibiotics: are we in the post-antibiotic era? Arch Med Res. 2005;36: 697–705. doi:10.1016/j.arcmed.2005.06.009spa
dc.relation.references189. Davies J. Origins and evolution of antibiotic resistance. Microbiologia. 1996 Mar;12(1):9-16. PMID: 9019139.spa
dc.relation.references190. Alanis AJ. Resistance to antibiotics: are we in the post-antibiotic era? Arch Med Res. 2005 Nov-Dec;36(6):697-705. doi: 10.1016/j.arcmed.2005.06.009. PMID: 16216651.spa
dc.relation.references191. WHO treatment guidelines for drug-resistant tuberculosis, 2016 update. [cited 20 Oct 2020]. Available: https://www.who.int/publications-detail-redirect/9789241549639spa
dc.relation.references192. Jayachandran R, BoseDasgupta S, Pieters J. Surviving the macrophage: tools and tricks employed by Mycobacterium tuberculosis. Curr Top Microbiol Immunol. 2013;374: 189–209. doi:10.1007/82_2012_273spa
dc.relation.references193. Ramos-Espinosa O, Islas-Weinstein L, Peralta-Álvarez MP, López-Torres MO, Hernández-Pando R. The use of immunotherapy for the treatment of tuberculosis. Expert Rev Respir Med. 2018 May;12(5):427-440. doi: 10.1080/17476348.2018.1457439. Epub 2018 Mar 27. PMID: 29575946.spa
dc.relation.references194. Manabe YC, Dannenberg AM, Tyagi SK, Hatem CL, Yoder M, Woolwine SC, et al. Different Strains of Mycobacterium tuberculosis Cause Various Spectrums of Disease in the Rabbit Model of Tuberculosis. Infect Immun. 2003;71: 6004–6011. doi:10.1128/IAI.71.10.6004-6011.2003spa
dc.relation.references195. Vervenne RAW, Jones SL, van Soolingen D, van der Laan T, Andersen P, Heidt PJ, et al. TB diagnosis in non-human primates: comparison of two interferon-gamma assays and the skin test for identification of Mycobacterium tuberculosis infection. Vet Immunol Immunopathol. 2004;100: 61–71. doi:10.1016/j.vetimm.2004.03.003spa
dc.relation.references196. Flynn JL. Lessons from experimental Mycobacterium tuberculosis infections. Microbes Infect. 2006;8: 1179–1188. doi:10.1016/j.micinf.2005.10.033spa
dc.relation.references197. Phuah JY, Mattila JT, Lin PL, Flynn JL. Activated B Cells in the Granulomas of Nonhuman Primates Infected with Mycobacterium tuberculosis. Am J Pathol. 2012;181: 508–514. doi:10.1016/j.ajpath.2012.05.009spa
dc.relation.references198. McMurray DN. Disease model: pulmonary tuberculosis. Trends Mol Med. 2001;7: 135–137. doi:10.1016/s1471-4914(00)01901-8spa
dc.relation.references199. Dey B, Bishai WR. Crosstalk between Mycobacterium tuberculosis and the host cell. Semin Immunol. 2014;26: 486–496. doi:10.1016/j.smim.2014.09.002spa
dc.relation.references200. Gupta A, Kaul A, Tsolaki AG, Kishore U, Bhakta S. Mycobacterium tuberculosis: immune evasion, latency and reactivation. Immunobiology. 2012;217: 363–374. doi:10.1016/j.imbio.2011.07.008spa
dc.relation.references201. Vance RE, Isberg RR, Portnoy DA. Patterns of pathogenesis: discrimination of pathogenic and non-pathogenic microbes by the innate immune system. Cell Host Microbe. 2009;6: 10–21. doi:10.1016/j.chom.2009.06.007spa
dc.relation.references202. North RJ, Jung Y-J. Immunity to tuberculosis. Annu Rev Immunol. 2004;22: 599–623. doi:10.1146/annurev.immunol.22.012703.104635spa
dc.relation.references203. Flynn JL, Chan J. Immunology of tuberculosis. Annu Rev Immunol. 2001;19: 93–129. doi:10.1146/annurev.immunol.19.1.93spa
dc.relation.references204. Differential Expression of Immunogenic Proteins on Virulent Mycobacterium tuberculosis Clinical Isolates. [cited 20 Oct 2020]. Available: https://www.hindawi.com/journals/bmri/2014/741309/spa
dc.relation.references205. Kang DD, Lin Y, Moreno J-R, Randall TD, Khader SA. Profiling early lung immune responses in the mouse model of tuberculosis. PLoS One. 2011;6: e16161. doi:10.1371/journal.pone.0016161spa
dc.relation.references206. IL-12 increases resistance of BALB/c mice to Mycobacterium tuberculosis infection - PubMed. [cited 20 Oct 2020]. Available: https://pubmed.ncbi.nlm.nih.gov/7650381/spa
dc.relation.references207. MacMicking JD, Taylor GA, McKinney JD. Immune control of tuberculosis by IFN-gamma-inducible LRG-47. Science. 2003;302: 654–659. doi:10.1126/science.1088063spa
dc.relation.references208. Cooper AM, Dalton DK, Stewart TA, Griffin JP, Russell DG, Orme IM. Disseminated tuberculosis in interferon gamma gene-disrupted mice. J Exp Med. 1993;178: 2243–2247. doi:10.1084/jem.178.6.2243spa
dc.relation.references209. Flynn JL, Chan J, Triebold KJ, Dalton DK, Stewart TA, Bloom BR. An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J Exp Med. 1993;178: 2249–2254. doi:10.1084/jem.178.6.2249spa
dc.relation.references210. Interferon-gamma-treated murine macrophages inhibit growth of tubercle bacilli via the generation of reactive nitrogen intermediates - ScienceDirect. [cited 20 Oct 2020]. Available: https://www.sciencedirect.com/science/article/abs/pii/0008874991900143spa
dc.relation.references211. Nathan C, Ding A. Nonresolving Inflammation. Cell. 2010;140: 871–882. doi:10.1016/j.cell.2010.02.029spa
dc.relation.references212. MacMicking JD, North RJ, LaCourse R, Mudgett JS, Shah SK, Nathan CF. Identification of nitric oxide synthase as a protective locus against tuberculosis. Proc Natl Acad Sci U S A. 1997;94: 5243–5248. doi:10.1073/pnas.94.10.5243spa
dc.relation.references213. Ma X, Chow JM, Gri G, Carra G, Gerosa F, Wolf SF, et al. The interleukin 12 p40 gene promoter is primed by interferon gamma in monocytic cells. J Exp Med. 1996;183: 147–157. doi:10.1084/jem.183.1.147spa
dc.relation.references214. Ma X, Chow JM, Gri G, Carra G, Gerosa F, Wolf SF, et al. The interleukin 12 p40 gene promoter is primed by interferon gamma in monocytic cells. The Journal of experimental medicine. 1996;183: 147–157. doi:10.1084/jem.183.1.147spa
dc.relation.references215. Mishra BB, Rathinam VAK, Martens GW, Martinot AJ, Kornfeld H, Fitzgerald KA, et al. Nitric oxide controls tuberculosis immunopathology by inhibiting NLRP3 inflammasome-dependent IL-1β processing. Nat Immunol. 2013;14: 52–60. doi:10.1038/ni.2474spa
dc.relation.references216. Stanley SA, Johndrow JE, Manzanillo P, Cox JS. The Type I IFN response to infection with Mycobacterium tuberculosis requires ESX-1-mediated secretion and contributes to pathogenesis. J Immunol. 2007;178: 3143–3152. doi:10.4049/jimmunol.178.5.3143spa
dc.relation.references217. McNab FW, Ewbank J, Howes A, Moreira-Teixeira L, Martirosyan A, Ghilardi N, et al. Type I IFN induces IL-10 production in an IL-27-independent manner and blocks responsiveness to IFN-γ for production of IL-12 and bacterial killing in Mycobacterium tuberculosis-infected macrophages. J Immunol. 2014;193: 3600–3612. doi:10.4049/jimmunol.1401088spa
dc.relation.references218. Manca C, Tsenova L, Freeman S, Barczak AK, Tovey M, Murray PJ, et al. Hypervirulent M. tuberculosis W/Beijing strains upregulate type I IFNs and increase expression of negative regulators of the Jak-Stat pathway. J Interferon Cytokine Res. 2005;25: 694–701. doi:10.1089/jir.2005.25.694spa
dc.relation.references219. Berry MPR, Graham CM, McNab FW, Xu Z, Bloch SAA, Oni T, et al. An Interferon-Inducible Neutrophil-Driven Blood Transcriptional Signature in Human Tuberculosis. Nature. 2010;466: 973–977. doi:10.1038/nature09247spa
dc.relation.references220. Guarda G, Braun M, Staehli F, Tardivel A, Mattmann C, Förster I, et al. Type I interferon inhibits interleukin-1 production and inflammasome activation. Immunity. 2011;34: 213–223. doi:10.1016/j.immuni.2011.02.006spa
dc.relation.references221. Mayer-Barber KD, Andrade BB, Barber DL, Hieny S, Feng CG, Caspar P, et al. Innate and adaptive interferons suppress IL-1α and IL-1β production by distinct pulmonary myeloid subsets during Mycobacterium tuberculosis infection. Immunity. 2011;35: 1023–1034. doi:10.1016/j.immuni.2011.12.002spa
dc.relation.references222. Flynn JL, Goldstein MM, Chan J, Triebold KJ, Pfeffer K, Lowenstein CJ, et al. Tumor necrosis factor-alpha is required in the protective immune response against Mycobacterium tuberculosis in mice. Immunity. 1995;2: 561–572. doi:10.1016/1074-7613(95)90001-2spa
dc.relation.references223. Demangel C, Bertolino P, Britton WJ. Autocrine IL-10 impairs dendritic cell (DC)-derived immune responses to mycobacterial infection by suppressing DC trafficking to draining lymph nodes and local IL-12 production. Eur J Immunol. 2002;32: 994–1002. doi:10.1002/1521-4141(200204)32:4<994::AID-IMMU994>3.0.CO;2-6spa
dc.relation.references224. Turner J, Gonzalez-Juarrero M, Ellis DL, Basaraba RJ, Kipnis A, Orme IM, et al. In vivo IL-10 production reactivates chronic pulmonary tuberculosis in C57BL/6 mice. J Immunol. 2002;169: 6343–6351. doi:10.4049/jimmunol.169.11.6343spa
dc.relation.references225. Rayamajhi M, Humann J, Penheiter K, Andreasen K, Lenz LL. Induction of IFN-alphabeta enables Listeria monocytogenes to suppress macrophage activation by IFN-gamma. J Exp Med. 2010;207: 327–337. doi:10.1084/jem.20091746spa
dc.relation.references226. Mayer-Barber KD, Andrade BB, Oland SD, Amaral EP, Barber DL, Gonzales J, et al. Host-directed therapy of tuberculosis based on interleukin-1 and type I interferon crosstalk. Nature. 2014;511: 99–103. doi:10.1038/nature13489spa
dc.relation.references227. Divangahi M, Chen M, Gan H, Desjardins D, Hickman TT, Lee DM, et al. Mycobacterium tuberculosis evades macrophage defenses by inhibiting plasma membrane repair. Nat Immunol. 2009;10: 899–906. doi:10.1038/ni.1758spa
dc.relation.references228. Tobin DM, Roca FJ, Oh SF, McFarland R, Vickery TW, Ray JP, et al. Host genotype-specific therapies can optimize the inflammatory response to mycobacterial infections. Cell. 2012;148: 434–446. doi:10.1016/j.cell.2011.12.023spa
dc.relation.references229. Wilkinson RJ, Patel P, Llewelyn M, Hirsch CS, Pasvol G, Snounou G, et al. Influence of Polymorphism in the Genes for the Interleukin (IL)-1 Receptor Antagonist and IL-1β on Tuberculosis. J Exp Med. 1999;189: 1863–1874.spa
dc.relation.references230. Teles RMB, Graeber TG, Krutzik SR, Montoya D, Schenk M, Lee DJ, et al. Type I Interferon Suppresses Type II Interferon–Triggered Human Anti-Mycobacterial Responses. Science. 2013;339: 1448–1453. doi:10.1126/science.1233665spa
dc.relation.references231. Srivastava S, Ernst JD. Cell-to-cell transfer of M. tuberculosis antigens optimizes CD4 T cell priming. Cell Host Microbe. 2014;15: 741–752. doi:10.1016/j.chom.2014.05.007spa
dc.relation.references232. Rocha-Ramírez LM, Estrada-García I, López-Marín LM, Segura-Salinas E, Méndez-Aragón P, Van Soolingen D, et al. Mycobacterium tuberculosis lipids regulate cytokines, TLR-2/4 and MHC class II expression in human macrophages. Tuberculosis (Edinb). 2008;88: 212–220. doi:10.1016/j.tube.2007.10.003spa
dc.relation.references233. Reyes-Martínez JE, Nieto-Patlán E, Nieto-Patlán A, Gonzaga-Bernachi J, Santos-Mendoza T, Serafín-López J, et al. Differential activation of dendritic cells by Mycobacterium tuberculosis Beijing genotype. Immunol Invest. 2014;43: 436–446. doi:10.3109/08820139.2014.880120spa
dc.relation.references234. Rivera-Ordaz A, Gonzaga-Bernachi J, Serafn-López J, Hernández-Pando R, Soolingen DV, Estrada-Parra S, et al. Mycobacterium tuberculosis beijing genotype induces differential cytokine production by peripheral blood mononuclear cells of healthy BCG vaccinated individuals. Immunological Investigations. 2012; 144–156. doi:10.3109/08820139.2011.596604spa
dc.relation.references235. Theus SA, Cave MD, Eisenach KD. Intracellular Macrophage Growth Rates and Cytokine Profiles of Mycobacterium tuberculosis Strains with Different Transmission Dynamics. J Infect Dis. 2005;191: 453–460. doi:10.1086/425936spa
dc.relation.references236. Shiloh MU, Champion PAD. To catch a killer. What can mycobacterial models teach us about Mycobacterium tuberculosis pathogenesis? Curr Opin Microbiol. 2010;13: 86–92. doi:10.1016/j.mib.2009.11.006spa
dc.relation.references237. Suter E. THE MULTIPLICATION OF TUBERCLE BACILLI WITHIN NORMAL PHAGOCYTES IN TISSUE CULTURE. J Exp Med. 1952;96: 137–150.spa
dc.relation.references238. Gupta UD, Katoch VM. Animal models of tuberculosis for vaccine development. Indian J Med Res. 2009;129: 11–18.spa
dc.relation.references239. Tsenova L, Ellison E, Harbacheuski R, Moreira AL, Kurepina N, Reed MB, et al. Virulence of selected Mycobacterium tuberculosis clinical isolates in the rabbit model of meningitis is dependent on phenolic glycolipid produced by the bacilli. J Infect Dis. 2005;192: 98–106. doi:10.1086/430614spa
dc.relation.references240. Casellas J. Inbred mouse strains and genetic stability: a review. Animal. 2011 Jan;5(1):1-7. doi: 10.1017/S1751731110001667. PMID: 22440695.spa
dc.relation.references241. Bailey DW. How pure are inbred strains of mice? Immunology Today. 1982;3: 210–214. doi:10.1016/0167-5699(82)90093-7spa
dc.relation.references242. Beck JA, Lloyd S, Hafezparast M, Lennon-Pierce M, Eppig JT, Festing MF, et al. Genealogies of mouse inbred strains. Nat Genet. 2000;24: 23–25. doi:10.1038/71641spa
dc.relation.references243. 000651 - BALB/cJ. [cited 20 Oct 2020]. Available: https://www.jax.org/strain/000651spa
dc.relation.references244. Dharmadhikari AS, Basaraba RJ, Van Der Walt ML, Weyer K, Mphahlele M, Venter K, et al. Natural infection of guinea pigs exposed to patients with highly drug-resistant tuberculosis. Tuberculosis (Edinb). 2011;91: 329–338. doi:10.1016/j.tube.2011.03.002spa
dc.relation.references245. McShane H, Williams A. A review of preclinical animal models utilised for TB vaccine evaluation in the context of recent human efficacy data. Tuberculosis (Edinb). 2014 Mar;94(2):105-10. doi: 10.1016/j.tube.2013.11.003. Epub 2013 Dec 1. PMID: 24369986; PMCID: PMC3969587.spa
dc.relation.references246. Gupta RS, Lo B, Son J. Phylogenomics and Comparative Genomic Studies Robustly Support Division of the Genus Mycobacterium into an Emended Genus Mycobacterium and Four Novel Genera. Front Microbiol. 2018 Feb 13;9:67. doi: 10.3389/fmicb.2018.00067. Erratum in: Front Microbiol. 2019 Apr 09;10:714. PMID: 29497402; PMCID: PMC5819568.spa
dc.relation.references247. Ernst JD. The immunological life cycle of tuberculosis. Nat Rev Immunol. 2012 Jul 13;12(8):581-91. doi: 10.1038/nri3259. PMID: 22790178.spa
dc.relation.references248. Hernandez-Pando R, Pavön L, Arriaga K, Orozco H, Madrid-Marina V, Rook G. Pathogenesis of tuberculosis in mice exposed to low and high doses of an environmental mycobacterial saprophyte before infection. Infect Immun. 1997 Aug;65(8):3317-27. doi: 10.1128/iai.65.8.3317-3327.1997. PMID: 9234793; PMCID: PMC175470.spa
dc.relation.references249. Hernández-Pando R, Orozcoe H, Sampieri A, Pavón L, Velasquillo C, Larriva-Sahd J, et al. Correlation between the kinetics of Th1, Th2 cells and pathology in a murine model of experimental pulmonary tuberculosis. Immunology. 1996;89: 26–33.spa
dc.relation.references250. Pando RH, Aguilar LD, Smith I, Manganelli R. Immunogenicity and Protection Induced by a Mycobacterium tuberculosis sigE Mutant in a BALB/c Mouse Model of Progressive Pulmonary Tuberculosis. Infect Immun. 2010;78: 3168–3176. doi:10.1128/IAI.00023-10spa
dc.relation.references251. Hernandez-Pando R, Orozco H, Arriaga K, Sampieri A, Larriva-Sahd J, Madrid-Marina V. Analysis of the local kinetics and localization of interleukin-1 alpha, tumour necrosis factor-alpha and transforming growth factor-beta, during the course of experimental pulmonary tuberculosis. Immunology. 1997;90: 607–617.spa
dc.relation.references252. Beltrán-León M, Rodríguez-Castillo JG, Zozio T, Rastogi N, I Murcia M. Genetic diversity of Mycobacterium tuberculosis clinical isolates from HIV-TB patients from two public hospitals at Bogotá, Colombia. Infect Genet Evol. 2020;77: 104059. doi:10.1016/j.meegid.2019.104059spa
dc.relation.references253. Supply P, Allix C, Lesjean S, Cardoso-Oelemann M, Rüsch-Gerdes S, Willery E, et al. Proposal for standardization of optimized mycobacterial interspersed repetitive unit-variable-number tandem repeat typing of Mycobacterium tuberculosis. Journal of Clinical Microbiology. 2006. doi:10.1128/JCM.01392-06spa
dc.relation.references254. Marquina-Castillo B, García-García L, Ponce-de-León A, Jimenez-Corona M-E, Bobadilla-Del Valle M, Cano-Arellano B, et al. Virulence, immunopathology and transmissibility of selected strains of Mycobacterium tuberculosis in a murine model. Immunology. 2009;128: 123–33. doi:10.1111/j.1365-2567.2008.03004.xspa
dc.relation.references255. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009 Jul 15;25(14):1754-60. doi: 10.1093/bioinformatics/btp324. Epub 2009 May 18. PMID: 19451168; PMCID: PMC2705234.spa
dc.relation.references256. Anders S, Pyl PT, Huber W. HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015 Jan 15;31(2):166-9. doi: 10.1093/bioinformatics/btu638. Epub 2014 Sep 25. PMID: 25260700; PMCID: PMC4287950.spa
dc.relation.references257. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. doi: 10.1186/s13059-014-0550-8. PMID: 25516281; PMCID: PMC4302049.spa
dc.relation.references258. Wang J, Vasaikar S, Shi Z, Greer M, Zhang B. WebGestalt 2017: a more comprehensive, powerful, flexible and interactive gene set enrichment analysis toolkit. Nucleic Acids Res. 2017;45: W130–W137. doi:10.1093/nar/gkx356spa
dc.relation.references259. Atlas of Mycobacterium Tuberculosis. Elsevier; 2017. doi:10.1016/C2015-0-00386-0spa
dc.relation.references260. Vijay S, Hai HT, Thu DDA, Johnson E, Pielach A, Phu NH, et al. Ultrastructural Analysis of Cell Envelope and Accumulation of Lipid Inclusions in Clinical Mycobacterium tuberculosis Isolates from Sputum, Oxidative Stress, and Iron Deficiency. Front Microbiol. 2018;8. doi:10.3389/fmicb.2017.02681spa
dc.relation.references261. Ferro BE, Nieto LM, Rozo JC, Forero L, van Soolingen D. Multidrug-resistant Mycobacterium tuberculosis, Southwestern Colombia. Emerg Infect Dis. 2011;17: 1259–1262. doi:10.3201/eid1707.101797spa
dc.relation.references262. Rodríguez-Castillo JG, Pino C, Niño LF, Rozo JC, Llerena-Polo C, Parra-López CA, Tauch A, Murcia-Aranguren MI. Comparative genomic analysis of Mycobacterium tuberculosis Beijing-like strains revealed specific genetic variations associated with virulence and drug resistance. Infect Genet Evol. 2017 Oct;54:314-323. doi: 10.1016/j.meegid.2017.07.022. Epub 2017 Jul 20. PMID: 28734764.spa
dc.relation.references263. Peyron P, Vaubourgeix J, Poquet Y, Levillain F, Botanch C, Bardou F, et al. Foamy Macrophages from Tuberculous Patients’ Granulomas Constitute a Nutrient-Rich Reservoir for M. tuberculosis Persistence. PLoS Pathog. 2008;4. doi:10.1371/journal.ppat.1000204spa
dc.relation.references264. Caire-Brändli I, Papadopoulos A, Malaga W, Marais D, Canaan S, Thilo L, et al. Reversible lipid accumulation and associated division arrest of Mycobacterium avium in lipoprotein-induced foamy macrophages may resemble key events during latency and reactivation of tuberculosis. Infect Immun. 2014;82: 476–490. doi:10.1128/IAI.01196-13spa
dc.relation.references265. Knight M, Braverman J, Asfaha K, Gronert K, Stanley S. Lipid droplet formation in Mycobacterium tuberculosis infected macrophages requires IFN-γ/HIF-1α signaling and supports host defense. PLoS Pathog. 2018;14: e1006874. doi:10.1371/journal.ppat.1006874spa
dc.relation.references266. Timmins GS, Deretic V. Mechanisms of action of isoniazid. Mol Microbiol. 2006;62: 1220–1227. doi:10.1111/j.1365-2958.2006.05467.xspa
dc.relation.references267. Reed MB, Gagneux S, Deriemer K, Small PM, Barry CE. The W-Beijing lineage of Mycobacterium tuberculosis overproduces triglycerides and has the DosR dormancy regulon constitutively upregulated. J Bacteriol. 2007;189: 2583–2589. doi:10.1128/JB.01670-06spa
dc.relation.references268. Drobniewski F, Balabanova Y, Nikolayevsky V, Ruddy M, Kuznetzov S, Zakharova S, et al. Drug-resistant tuberculosis, clinical virulence, and the dominance of the Beijing strain family in Russia. JAMA. 2005;293: 2726–2731. doi:10.1001/jama.293.22.2726spa
dc.relation.references269. Hirata T. Electron microscopic observations of intracytoplasmic membrane systems and cell division in Mycobacterium lepraemurium. Int J Lepr Other Mycobact Dis. 1979;47: 585–596.spa
dc.relation.references270. Santhana Raj L, Hing HL, Baharudin O, Teh Hamidah Z, Aida Suhana R, Nor Asiha CP, et al. Mesosomes are a definite event in antibiotic-treated Staphylococcus aureus ATCC 25923. Trop Biomed. 2007;24: 105–109.spa
dc.relation.references271. Cowley SC, Elkins KL. CD4+ T cells mediate IFN-gamma-independent control of Mycobacterium tuberculosis infection both in vitro and in vivo. J Immunol. 2003;171: 4689–4699. doi:10.4049/jimmunol.171.9.4689spa
dc.relation.references272. Chacón-Salinas R, Serafín-López J, Ramos-Payán R, Méndez-Aragón P, Hernández-Pando R, Van Soolingen D, et al. Differential pattern of cytokine expression by macrophages infected in vitro with different Mycobacterium tuberculosis genotypes. Clin Exp Immunol. 2005;140: 443–449. doi:10.1111/j.1365-2249.2005.02797.xspa
dc.relation.references273. Zak DE, Tam VC, Aderem A. Systems-level analysis of innate immunity. Annu Rev Immunol. 2014;32: 547–577. doi:10.1146/annurev-immunol-032713-120254spa
dc.relation.references274. Algood HMS, Chan J, Flynn JL. Chemokines and tuberculosis. Cytokine Growth Factor Rev. 2003;14: 467–477. doi:10.1016/s1359-6101(03)00054-6spa
dc.relation.references275. Liang J, Song W, Tromp G, Kolattukudy PE, Fu M. Genome-wide survey and expression profiling of CCCH-zinc finger family reveals a functional module in macrophage activation. PLoS One. 2008 Aug 6;3(8):e2880. doi: 10.1371/journal.pone.0002880. PMID: 18682727; PMCID: PMC2478707.spa
dc.relation.references276. Fenwick C, Na SY, Voll RE, Zhong H, Im SY, Lee JW, et al. A subclass of Ras proteins that regulate the degradation of IkappaB. Science. 2000;287: 869–873. doi:10.1126/science.287.5454.869spa
dc.relation.references277. Huxford T, Ghosh G. Inhibition of transcription factor NF-kappaB activation by kappaB-Ras. Methods Enzymol. 2006;407: 527–534. doi:10.1016/S0076-6879(05)07042-4spa
dc.relation.references278. Samy ET, Meyer CA, Caplazi P, Langrish CL, Lora JM, Bluethmann H, Peng SL. Cutting edge: Modulation of intestinal autoimmunity and IL-2 signaling by sphingosine kinase 2 independent of sphingosine 1-phosphate. J Immunol. 2007 Nov 1;179(9):5644-8. doi: 10.4049/jimmunol.179.9.5644. PMID: 17947634.spa
dc.relation.references279. Weigert A, von Knethen A, Thomas D, Faria I, Namgaladze D, Zezina E, et al. Sphingosine kinase 2 is a negative regulator of inflammatory macrophage activation. Biochim Biophys Acta Mol Cell Biol Lipids. 2019;1864: 1235–1246. doi:10.1016/j.bbalip.2019.05.008spa
dc.relation.references280. Maceyka M, Sankala H, Hait NC, Le Stunff H, Liu H, Toman R, et al. SphK1 and SphK2, sphingosine kinase isoenzymes with opposing functions in sphingolipid metabolism. J Biol Chem. 2005;280: 37118–37129. doi:10.1074/jbc.M502207200spa
dc.relation.references281. Rosebeck S, Leaman DW. Mitochondrial localization and pro-apoptotic effects of the interferon-inducible protein ISG12a. Apoptosis. 2008;13: 562–572. doi:10.1007/s10495-008-0190-0spa
dc.relation.references282. Gytz H, Hansen MF, Skovbjerg S, Kristensen ACM, Hørlyck S, Jensen MB, et al. Apoptotic properties of the type 1 interferon induced family of human mitochondrial membrane ISG12 proteins. Biol Cell. 2017;109: 94–112. doi:10.1111/boc.201600034spa
dc.relation.references283. Onate SA, Boonyaratanakornkit V, Spencer TE, Tsai SY, Tsai MJ, Edwards DP, et al. The steroid receptor coactivator-1 contains multiple receptor interacting and activation domains that cooperatively enhance the activation function 1 (AF1) and AF2 domains of steroid receptors. J Biol Chem. 1998;273: 12101–12108. doi:10.1074/jbc.273.20.12101spa
dc.relation.references284. Qin L, Gibson PG, Simpson JL, Baines KJ, McDonald VM, Wood LG, et al. Dysregulation of sputum columnar epithelial cells and products in distinct asthma phenotypes. Clin Exp Allergy. 2019;49: 1418–1428. doi:10.1111/cea.13452spa
dc.relation.references285. Alevy YG, Patel AC, Romero AG, Patel DA, Tucker J, Roswit WT, et al. IL-13–induced airway mucus production is attenuated by MAPK13 inhibition. J Clin Invest. 2012;122: 4555–4568. doi:10.1172/JCI64896spa
dc.relation.references286. Ordway D, Henao-Tamayo M, Harton M, Palanisamy G, Troudt J, Shanley C, et al. The hypervirulent Mycobacterium tuberculosis strain HN878 induces a potent TH1 response followed by rapid down-regulation. J Immunol. 2007;179: 522–531. doi:10.4049/jimmunol.179.1.522spa
dc.relation.references287. CLEC9A Is a Novel Activation C-type Lectin-like Receptor Expressed on BDCA3+ Dendritic Cells and a Subset of Monocytes. [cited 20 Oct 2020]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2562446/spa
dc.relation.references288. Okamoto S, Azhipa O, Yu Y, Russo E, Dennert G. Expression of ADP-ribosyltransferase on normal T lymphocytes and effects of nicotinamide adenine dinucleotide on their function. J Immunol. 1998;160: 4190–4198.spa
dc.relation.references289. Crosbie RH, Heighway J, Venzke DP, Lee JC, Campbell KP. Sarcospan, the 25-kDa transmembrane component of the dystrophin-glycoprotein complex. J Biol Chem. 1997;272: 31221–31224. doi:10.1074/jbc.272.50.31221spa
dc.relation.references290. Nagano T, Yoneda T, Hatanaka Y, Kubota C, Murakami F, Sato M. Filamin A-interacting protein (FILIP) regulates cortical cell migration out of the ventricular zone. Nat Cell Biol. 2002;4: 495–501. doi:10.1038/ncb808spa
dc.relation.references291. Yi Z, Gao K, Li R, Fu Y. Dysregulated circRNAs in plasma from active tuberculosis patients. J Cell Mol Med. 2018;22: 4076–4084. doi:10.1111/jcmm.13684spa
dc.relation.references292. Sunryd JC, Cheon B, Graham JB, Giorda KM, Fissore RA, Hebert DN. TMTC1 and TMTC2 Are Novel Endoplasmic Reticulum Tetratricopeptide Repeat-containing Adapter Proteins Involved in Calcium Homeostasis. J Biol Chem. 2014;289: 16085–16099. doi:10.1074/jbc.M114.554071spa
dc.relation.references293. Fensterl V, Sen GC. Interferon-Induced Ifit Proteins: Their Role in Viral Pathogenesis. J Virol. 2014;89: 2462–2468. doi:10.1128/JVI.02744-14spa
dc.relation.references294. Smith I. Mycobacterium tuberculosis Pathogenesis and Molecular Determinants of Virulence. Clinical Microbiology Reviews. 2003;16: 463–496. doi:10.1128/CMR.16.3.463-496.2003spa
dc.relation.references295. Vander Beken S, Al Dulayymi JR, Naessens T, Koza G, Maza-Iglesias M, Rowles R, et al. Molecular structure of the Mycobacterium tuberculosis virulence factor, mycolic acid, determines the elicited inflammatory pattern. Eur J Immunol. 2011;41: 450–460. doi:10.1002/eji.201040719spa
dc.relation.references296. Colakoğlu S. [Mycobacterium tuberculosis virulence factors and its immune evasion mechanisms]. Mikrobiyol Bul. 2004;38: 155–167.spa
dc.relation.references297. Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature. 1998;393: 537–544. doi:10.1038/31159spa
dc.relation.references298. Cole ST. Learning from the genome sequence of Mycobacterium tuberculosis H37Rv. FEBS Lett. 1999;452: 7–10. doi:10.1016/s0014-5793(99)00536-0spa
dc.relation.references299. Braunstein M, Espinosa BJ, Chan J, Belisle JT, Jacobs WR. SecA2 functions in the secretion of superoxide dismutase A and in the virulence of Mycobacterium tuberculosis. Molecular Microbiology. 2003;48: 453–464. doi:10.1046/j.1365-2958.2003.03438.xspa
dc.relation.references300. Simeone R, Bottai D, Frigui W, Majlessi L, Brosch R. ESX/type VII secretion systems of mycobacteria: Insights into evolution, pathogenicity and protection. Tuberculosis (Edinb). 2015;95 Suppl 1: S150-154. doi:10.1016/j.tube.2015.02.019spa
dc.relation.references301. Bosserman RE, Nicholson KR, Champion MM, Champion PA. A New ESX-1 Substrate in Mycobacterium marinum That Is Required for Hemolysis but Not Host Cell Lysis. Journal of Bacteriology. 2019;201. doi:10.1128/JB.00760-18spa
dc.relation.references302. Simeone R, Bobard A, Lippmann J, Bitter W, Majlessi L, Brosch R, et al. Phagosomal rupture by Mycobacterium tuberculosis results in toxicity and host cell death. PLoS Pathog. 2012;8: e1002507. doi:10.1371/journal.ppat.1002507spa
dc.relation.references303. Brodin P, Majlessi L, Marsollier L, de Jonge MI, Bottai D, Demangel C, et al. Dissection of ESAT-6 system 1 of Mycobacterium tuberculosis and impact on immunogenicity and virulence. Infect Immun. 2006;74: 88–98. doi:10.1128/IAI.74.1.88-98.2006spa
dc.relation.references304. Hu Y, Movahedzadeh F, Stoker NG, Coates ARM. Deletion of the Mycobacterium tuberculosis α-Crystallin-Like hspX Gene Causes Increased Bacterial Growth In Vivo. Infect Immun. 2006;74: 861–868. doi:10.1128/IAI.74.2.861-868.2006spa
dc.relation.references305. Yuan Y, Crane DD, Simpson RM, Zhu YQ, Hickey MJ, Sherman DR, et al. The 16-kDa alpha-crystallin (Acr) protein of Mycobacterium tuberculosis is required for growth in macrophages. Proc Natl Acad Sci U S A. 1998;95: 9578–9583. doi:10.1073/pnas.95.16.9578spa
dc.relation.references306. Barry CE. Interpreting cell wall “virulence factors” of Mycobacterium tuberculosis. Trends Microbiol. 2001;9: 237–241. doi:10.1016/s0966-842x(01)02018-2spa
dc.relation.references307. Rajni null, Rao N, Meena LS. Biosynthesis and Virulent Behavior of Lipids Produced by Mycobacterium tuberculosis: LAM and Cord Factor: An Overview. Biotechnol Res Int. 2011;2011: 274693. doi:10.4061/2011/274693spa
dc.relation.references308. Daffé M. The cell envelope of tubercle bacilli. Tuberculosis (Edinb). 2015;95 Suppl 1: S155-158. doi:10.1016/j.tube.2015.02.024spa
dc.relation.references309. Kocíncová D, Sondén B, de Mendonça-Lima L, Gicquel B, Reyrat J-M. The Erp protein is anchored at the surface by a carboxy-terminal hydrophobic domain and is important for cell-wall structure in Mycobacterium smegmatis. FEMS Microbiol Lett. 2004;231: 191–196. doi:10.1016/S0378-1097(03)00964-9spa
dc.relation.references310. Kuo C-J, Gao J, Huang J-W, Ko T-P, Zhai C, Ma L, et al. Functional and structural investigations of fibronectin-binding protein Apa from Mycobacterium tuberculosis. Biochim Biophys Acta Gen Subj. 2019;1863: 1351–1359. doi:10.1016/j.bbagen.2019.06.003spa
dc.relation.references311. Pasula R, Wisniowski P, Martin II WJ. Fibronectin Facilitates Mycobacterium tuberculosis Attachment to Murine Alveolar Macrophages. Infect Immun. 2002;70: 1287–1292. doi:10.1128/IAI.70.3.1287-1292.2002spa
dc.relation.references312. Dobos KM, Khoo KH, Swiderek KM, Brennan PJ, Belisle JT. Definition of the full extent of glycosylation of the 45-kilodalton glycoprotein of Mycobacterium tuberculosis. J Bacteriol. 1996;178: 2498–2506. doi:10.1128/jb.178.9.2498-2506.1996spa
dc.relation.references313. Rao V, Fujiwara N, Porcelli SA, Glickman MS. Mycobacterium tuberculosis controls host innate immune activation through cyclopropane modification of a glycolipid effector molecule. J Exp Med. 2005;201: 535–543. doi:10.1084/jem.20041668spa
dc.relation.references314. Quigley J, Hughitt VK, Velikovsky CA, Mariuzza RA, El-Sayed NM, Briken V. The Cell Wall Lipid PDIM Contributes to Phagosomal Escape and Host Cell Exit of Mycobacterium tuberculosis. mBio. 2017;8. doi:10.1128/mBio.00148-17spa
dc.relation.references315. Lerner TR, Queval CJ, Fearns A, Repnik U, Griffiths G, Gutierrez MG. Phthiocerol dimycocerosates promote access to the cytosol and intracellular burden of Mycobacterium tuberculosis in lymphatic endothelial cells. BMC Biol. 2018;16: 1. doi:10.1186/s12915-017-0471-6spa
dc.relation.references316. Domenech P, Reed MB, Barry CE. Contribution of the Mycobacterium tuberculosis MmpL Protein Family to Virulence and Drug Resistance. Infect Immun. 2005;73: 3492–3501. doi:10.1128/IAI.73.6.3492-3501.2005spa
dc.relation.references317. Lee Y-V, Wahab HA, Choong YS. Potential inhibitors for isocitrate lyase of Mycobacterium tuberculosis and non-M. tuberculosis: a summary. Biomed Res Int. 2015;2015: 895453. doi:10.1155/2015/895453spa
dc.relation.references318. Pérez E, Samper S, Bordas Y, Guilhot C, Gicquel B, Martín C. An essential role for phoP in Mycobacterium tuberculosis virulence. Mol Microbiol. 2001;41: 179–187. doi:10.1046/j.1365-2958.2001.02500.xspa
dc.relation.references319. Cimino M, Thomas C, Namouchi A, Dubrac S, Gicquel B, Gopaul DN. Identification of DNA Binding Motifs of the Mycobacterium tuberculosis PhoP/PhoR Two-Component Signal Transduction System. PLOS ONE. 2012;7: e42876. doi:10.1371/journal.pone.0042876spa
dc.relation.references320. Manganelli R, Proveddi R, Rodrigue S, Beaucher J, Gaudreau L, Smith I. σ Factors and Global Gene Regulation in Mycobacterium tuberculosis. Journal of Bacteriology. 2004;186: 895–902. doi:10.1128/JB.186.4.895-902.2004spa
dc.relation.references321. Gomez JE, Chen J-M, Bishai WR. Sigma factors of Mycobacterium tuberculosis. Tubercle and Lung Disease. 1997;78: 175–183. doi:10.1016/S0962-8479(97)90024-1spa
dc.relation.references322. Leistikow RL, Morton RA, Bartek IL, Frimpong I, Wagner K, Voskuil MI. The Mycobacterium tuberculosis DosR regulon assists in metabolic homeostasis and enables rapid recovery from nonrespiring dormancy. J Bacteriol. 2010;192: 1662–1670. doi:10.1128/JB.00926-09spa
dc.relation.references323. Bartek IL, Rutherford R, Gruppo V, Morton RA, Morris RP, Klein MR, et al. The DosR regulon of M. tuberculosis and antibacterial tolerance. Tuberculosis (Edinb). 2009;89: 310–316. doi:10.1016/j.tube.2009.06.001spa
dc.relation.references324. Roberts DM, Liao RP, Wisedchaisri G, Hol WGJ, Sherman DR. Two Sensor Kinases Contribute to the Hypoxic Response of Mycobacterium tuberculosis. J Biol Chem. 2004;279: 23082–23087. doi:10.1074/jbc.M401230200spa
dc.relation.references325. Casonato S, Cervantes Sánchez A, Haruki H, Rengifo González M, Provvedi R, Dainese E, et al. WhiB5, a Transcriptional Regulator That Contributes to Mycobacterium tuberculosis Virulence and Reactivation. Infect Immun. 2012;80: 3132–3144. doi:10.1128/IAI.06328-11spa
dc.relation.references326. Stapleton MR, Smith LJ, Hunt DM, Buxton RS, Green J. Mycobacterium tuberculosis WhiB1 represses transcription of the essential chaperonin GroEL2. Tuberculosis. 2012;92: 328–332. doi:10.1016/j.tube.2012.03.001spa
dc.relation.references327. Wiker HG, Harboe M. The antigen 85 complex: a major secretion product of Mycobacterium tuberculosis. Microbiol Rev. 1992;56: 648–661.spa
dc.relation.references328. Kremer L, Maughan WN, Wilson RA, Dover LG, Besra GS. The M. tuberculosis antigen 85 complex and mycolyltransferase activity. Lett Appl Microbiol. 2002;34: 233–237. doi:10.1046/j.1472-765x.2002.01091.xspa
dc.relation.references329. Sharkey FH, Banat IM, Marchant R. Detection and Quantification of Gene Expression in Environmental Bacteriology. Appl Environ Microbiol. 2004;70: 3795–3806. doi:10.1128/AEM.70.7.3795-3806.2004spa
dc.relation.references330. Kendall SL, Rison SCG, Movahedzadeh F, Frita R, Stoker NG. What do microarrays really tell us about M. tuberculosis? Trends Microbiol. 2004;12: 537–544. doi:10.1016/j.tim.2004.10.005spa
dc.relation.references331. Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10: 57–63. doi:10.1038/nrg2484spa
dc.relation.references332. Wang S, Dong X, Zhu Y, Wang C, Sun G, Luo T, et al. Revealing of Mycobacterium marinum Transcriptome by RNA-seq. PLoS One. 2013;8. doi:10.1371/journal.pone.0075828spa
dc.relation.references333. Soneson C, Delorenzi M. A comparison of methods for differential expression analysis of RNA-seq data. BMC Bioinformatics. 2013;14: 91. doi:10.1186/1471-2105-14-91spa
dc.relation.references334. Slatko BE, Gardner AF, Ausubel FM. Overview of Next Generation Sequencing Technologies. Curr Protoc Mol Biol. 2018;122: e59. doi:10.1002/cpmb.59spa
dc.relation.references335. Li P, Piao Y, Shon HS, Ryu KH. Comparing the normalization methods for the differential analysis of Illumina high-throughput RNA-Seq data. BMC Bioinformatics. 2015;16: 347. doi:10.1186/s12859-015-0778-7spa
dc.relation.references336. Srivastava A, Malik L, Sarkar H, Zakeri M, Almodaresi F, Soneson C, Love MI, Kingsford C, Patro R. Alignment and mapping methodology influence transcript abundance estimation. Genome Biol. 2020 Sep 7;21(1):239. doi: 10.1186/s13059-020-02151-8. PMID: 32894187; PMCID: PMC7487471.spa
dc.relation.references337. Abrams ZB, Johnson TS, Huang K, Payne PRO, Coombes K. A protocol to evaluate RNA sequencing normalization methods. BMC Bioinformatics. 2019;20: 679. doi:10.1186/s12859-019-3247-xspa
dc.relation.references338. Evans C, Hardin J, Stoebel DM. Selecting between-sample RNA-Seq normalization methods from the perspective of their assumptions. Brief Bioinform. 2017;19: 776–792. doi:10.1093/bib/bbx008spa
dc.relation.references339. Bushel PR, Ferguson SS, Ramaiahgari SC, Paules RS, Auerbach SS. Comparison of Normalization Methods for Analysis of TempO-Seq Targeted RNA Sequencing Data. Front Genet. 2020;11. doi:10.3389/fgene.2020.00594spa
dc.relation.references340. Rodríguez-Castillo JG, Pino C, Niño LF, Rozo JC, Llerena-Polo C, Parra-López CA, et al. Comparative genomic analysis of Mycobacterium tuberculosis Beijing-like strains revealed specific genetic variations associated with virulence and drug resistance. Infect Genet Evol. 2017;54: 314–323. doi:10.1016/j.meegid.2017.07.022spa
dc.relation.references341. Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics. 2016;32: 3047–3048. doi:10.1093/bioinformatics/btw354spa
dc.relation.references342. Castillo-Davis CI, Hartl DL. GeneMerge--post-genomic analysis, data mining, and hypothesis testing. Bioinformatics. 2003;19: 891–892. doi:10.1093/bioinformatics/btg114spa
dc.relation.references343. UniProt. [cited 1 Mar 2021]. Available: https://www.uniprot.org/spa
dc.relation.references344. Fontán PA, Voskuil MI, Gomez M, Tan D, Pardini M, Manganelli R, et al. The Mycobacterium tuberculosis sigma factor sigmaB is required for full response to cell envelope stress and hypoxia in vitro, but it is dispensable for in vivo growth. J Bacteriol. 2009;191: 5628–5633. doi:10.1128/JB.00510-09spa
dc.relation.references345. Hillas PJ, del Alba FS, Oyarzabal J, Wilks A, Ortiz De Montellano PR. The AhpC and AhpD antioxidant defense system of Mycobacterium tuberculosis. J Biol Chem. 2000;275: 18801–18809. doi:10.1074/jbc.M001001200spa
dc.relation.references346. Lee J, Lee S-G, Kim KK, Lim Y-J, Choi J-A, Cho S-N, et al. Characterisation of genes differentially expressed in macrophages by virulent and attenuated Mycobacterium tuberculosis through RNA-Seq analysis. Scientific Reports. 2019;9: 4027. doi:10.1038/s41598-019-40814-0spa
dc.relation.references347. Rienksma RA, Suarez-Diez M, Mollenkopf H-J, Dolganov GM, Dorhoi A, Schoolnik GK, et al. Comprehensive insights into transcriptional adaptation of intracellular mycobacteria by microbe-enriched dual RNA sequencing. BMC Genomics. 2015;16: 34. doi:10.1186/s12864-014-1197-2spa
dc.relation.references348. Choudhury S, Akhade AS, Subramanian N. Dual RNA-seq as an effective tool to simultaneously identify transcriptional changes in host macrophages and invading intracellular pathogens. The Journal of Immunology. 2020;204: 227.27-227.27.spa
dc.relation.references349. Pisu D, Huang L, Grenier JK, Russell DG. Dual RNA-Seq of Mtb-Infected Macrophages In Vivo Reveals Ontologically Distinct Host-Pathogen Interactions. Cell Rep. 2020;30: 335-350.e4. doi:10.1016/j.celrep.2019.12.033spa
dc.relation.references350. Skvortsov TA, Ignatov DV, Majorov KB, Apt AS, Azhikina TL. Mycobacterium tuberculosis Transcriptome Profiling in Mice with Genetically Different Susceptibility to Tuberculosis. Acta Naturae. 2013;5: 62–69.spa
dc.relation.references351. Rachman H, Strong M, Ulrichs T, Grode L, Schuchhardt J, Mollenkopf H, et al. Unique transcriptome signature of Mycobacterium tuberculosis in pulmonary tuberculosis. Infect Immun. 2006;74: 1233–1242. doi:10.1128/IAI.74.2.1233-1242.2006spa
dc.relation.references352. Liu K, Ba X, Yu J, Li J, Wei Q, Han G, et al. The phosphoenolpyruvate carboxykinase of Mycobacterium tuberculosis induces strong cell-mediated immune responses in mice. Mol Cell Biochem. 2006;288: 65–71. doi:10.1007/s11010-006-9119-5spa
dc.relation.references353. Yuan Y, Crane DD, Barry CE. Stationary phase-associated protein expression in Mycobacterium tuberculosis: function of the mycobacterial alpha-crystallin homolog. J Bacteriol. 1996;178: 4484–4492. doi:10.1128/jb.178.15.4484-4492.1996spa
dc.relation.references354. Sharrock A, Ruthe A, Andrews ESV, Arcus VA, Hicks JL. VapC proteins from Mycobacterium tuberculosis share ribonuclease sequence specificity but differ in regulation and toxicity. PLOS ONE. 2018;13: e0203412. doi:10.1371/journal.pone.0203412spa
dc.relation.references355. Kumar A, Toledo JC, Patel RP, Lancaster JR, Steyn AJC. Mycobacterium tuberculosis DosS is a redox sensor and DosT is a hypoxia sensor. Proc Natl Acad Sci U S A. 2007;104: 11568–11573. doi:10.1073/pnas.0705054104spa
dc.relation.references356. Sharpe ML, Gao C, Kendall SL, Baker EN, Lott JS. The structure and unusual protein chemistry of hypoxic response protein 1, a latency antigen and highly expressed member of the DosR regulon in Mycobacterium tuberculosis. J Mol Biol. 2008;383: 822–836. doi:10.1016/j.jmb.2008.07.001spa
dc.relation.references357. Fishbein S, Wyk N van, Warren RM, Sampson SL. Phylogeny to function: PE/PPE protein evolution and impact on Mycobacterium tuberculosis pathogenicity. Molecular Microbiology. 2015;96: 901–916. doi:https://doi.org/10.1111/mmi.12981spa
dc.relation.references358. Delogu G, Brennan MJ, Manganelli R. PE and PPE Genes: A Tale of Conservation and Diversity. Adv Exp Med Biol. 2017;1019: 191–207. doi:10.1007/978-3-319-64371-7_10spa
dc.relation.references359. Shrivastava P, Navratna V, Silla Y, Dewangan RP, Pramanik A, Chaudhary S, et al. Inhibition of Mycobacterium tuberculosis dihydrodipicolinate synthase by alpha-ketopimelic acid and its other structural analogues. Scientific Reports. 2016;6: 30827. doi:10.1038/srep30827spa
dc.relation.references360. Singh G, Singh G, Jadeja D, Kaur J. Lipid hydrolizing enzymes in virulence: Mycobacterium tuberculosis as a model system. Crit Rev Microbiol. 2010;36: 259–269. doi:10.3109/1040841X.2010.482923spa
dc.relation.references361. Shen G, Singh K, Chandra D, Serveau-Avesque C, Maurin D, Canaan S, et al. LipC (Rv0220) Is an Immunogenic Cell Surface Esterase of Mycobacterium tuberculosis. Infect Immun. 2012;80: 243–253. doi:10.1128/IAI.05541-11spa
dc.relation.references362. Kiran M, Chauhan A, Dziedzic R, Maloney E, Mukherji SK, Madiraju M, et al. Mycobacterium tuberculosis ftsH expression in response to stress and viability. Tuberculosis (Edinb). 2009;89: S70–S73. doi:10.1016/S1472-9792(09)70016-2spa
dc.relation.references363. Healy C, Golby P, MacHugh DE, Gordon SV. The MarR family transcription factor Rv1404 coordinates adaptation of Mycobacterium tuberculosis to acid stress via controlled expression of Rv1405c, a virulence-associated methyltransferase. Tuberculosis (Edinb). 2016;97: 154–162. doi:10.1016/j.tube.2015.10.003spa
dc.relation.references364. Goyal R, Das AK, Singh R, Singh PK, Korpole S, Sarkar D. Phosphorylation of PhoP Protein Plays Direct Regulatory Role in Lipid Biosynthesis of Mycobacterium tuberculosis. J Biol Chem. 2011;286: 45197–45208. doi:10.1074/jbc.M111.307447spa
dc.relation.references365. Ollinger J, O’Malley T, Kesicki EA, Odingo J, Parish T. Validation of the Essential ClpP Protease in Mycobacterium tuberculosis as a Novel Drug Target. J Bacteriol. 2012;194: 663–668. doi:10.1128/JB.06142-11spa
dc.relation.references366. Chauhan R, Mande SC. Site-directed mutagenesis reveals a novel catalytic mechanism of Mycobacterium tuberculosis alkylhydroperoxidase C. Biochem J. 2002;367: 255–261. doi:10.1042/BJ20020545spa
dc.relation.references367. Abdallah AM, Gey van Pittius NC, DiGiuseppe Champion PA, Cox J, Luirink J, Vandenbroucke-Grauls CMJE, et al. Type VII secretion — mycobacteria show the way. Nature Reviews Microbiology. 2007;5: 883–891. doi:10.1038/nrmicro1773spa
dc.relation.references368. The lpqS knockout mutant of Mycobacterium tuberculosis is attenuated in macrophages - PubMed. [cited 6 Dec 2020]. Available: https://pubmed.ncbi.nlm.nih.gov/23562345/spa
dc.relation.references369. Malm S, Walter K, Engel R, Maass S, Pfau S, Hübner G, et al. In vitro and in vivo characterization of a Mycobacterium tuberculosis mutant deficient in glycosyltransferase Rv1500. Int J Med Microbiol. 2008;298: 645–655. doi:10.1016/j.ijmm.2008.03.010spa
dc.relation.references370. Madigan CA, Martinot AJ, Wei J-R, Madduri A, Cheng T-Y, Young DC, et al. Lipidomic analysis links mycobactin synthase K to iron uptake and virulence in M. tuberculosis. PLoS Pathog. 2015;11: e1004792. doi:10.1371/journal.ppat.1004792spa
dc.relation.references371. Cappelli G, Volpe E, Grassi M, Liseo B, Colizzi V, Mariani F. Profiling of Mycobacterium tuberculosis gene expression during human macrophage infection: upregulation of the alternative sigma factor G, a group of transcriptional regulators, and proteins with unknown function. Res Microbiol. 2006;157: 445–455. doi:10.1016/j.resmic.2005.10.007spa
dc.rightsDerechos reservados al autor, 2021spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/spa
dc.subject.ddc610 - Medicina y salud::616 - Enfermedadesspa
dc.subject.decsMycobacterium tuberculosis
dc.subject.decsInmunidad
dc.subject.decsImmunity
dc.subject.proposalTuberculosisspa
dc.subject.proposalGenotipo Beijingspa
dc.subject.proposalBalb/cspa
dc.subject.proposalVirulenciaspa
dc.subject.proposalRespuesta Inmunespa
dc.subject.proposalTuberculosiseng
dc.subject.proposalBeijing-Genotypeeng
dc.subject.proposalBalb/ceng
dc.subject.proposalVirulenceeng
dc.subject.proposalImmune Responseeng
dc.titleVirulencia, respuesta inmune in vivo y transcriptómica de Mycobacterium tuberculosis genotipo Beijing circulante en Colombiaspa
dc.title.translatedVirulence, in vivo immune response and transcriptomics of Mycobacterium tuberculosis Beijing genotype circulating in Colombiaeng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audienceGeneralspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleVIRULENCIA, RESPUESTA INMUNE IN VIVO Y TRANSCRIPTÓMICA DE Mycobacterium tuberculosis GENOTIPO BEIJING CIRCULANTE EN COLOMBIAspa
oaire.awardtitleSistema de Información de la Investigación, Extensión y Laboratorios de la Universidad Nacional de Colombia (Hermes), Código del proyecto: 42665spa
oaire.fundernameConsejo Nacional de Ciencia y Tecnología (CONACyT) -México, Número de contrato: 223279spa
oaire.fundernameSistema de Información de la Investigación, Extensión y Laboratorios de la Universidad Nacional de Colombia (Hermes), Código del proyecto: 42665spa
oaire.fundernameDepartamento Administrativo de Ciencia, Tecnología e Innovación (Colciencias-Minciencias), Colombia, Número de contrato: CT-731-2018spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
MM_Tesis_MICC_01_10_2021 (1).pdf
Tamaño:
14.42 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias Biomédicas

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: