On the noncommutative geometry of semi-graded rings

dc.contributor.advisorReyes Villamil, Milton Armando
dc.contributor.authorChacón Capera, Andrés
dc.contributor.researchgroupSac2spa
dc.date.accessioned2023-11-02T19:38:40Z
dc.date.available2023-11-02T19:38:40Z
dc.date.issued2022
dc.description.abstractEn esta tesis, establecemos diversas caracterizaciones topológicas del espectro no conmutativo de anillos semi-graduados al considerar la noción de topología débil de Zariski. Con este propósito, formulamos condiciones necesarias o suficientes para garantizar que familias de estos anillos definidos por endomorfismos y derivaciones sean anillos NI o anillos NJ. Presentamos resultados sobre la caracterización de diferentes tipos de elementos de anillos no conmmutativos tales como idempotentes, unidades, von Neumann regulares, π-regulares, y elementos limpios. También investigamos las nociones de anillo fuertemente armónico y de Gelfand sobre dichas familias de anillos semi-graduados. Nuestros resultados generalizan tratamientos desarrollados para anillos conmutativos, anillos de polinomios torcidos, y variadas familias de anillos N-graduados, y contribuyen a la investigación sobre estos temas que ha sido llevada a cabo parcialmente en la literatura. Por otra parte, investigamos la esquematicidad y el teorema de Serre-Artin-Zhang-Verevkin para anillos semi-graduados. Más exactamente, para los polinomios de Ore de orden superior generados por relaciones homogéneas y las extensiones torcidas de Poincaré-Birkhoff-Witt, formulamos condiciones necesarias o suficientes para garantizar la esquematicidad de estas familias de anillos. Desarrollamos una teoría de esquemas no conmutativa para anillos semi-graduados que no son necesariamente conexos y N-graduados. Con esta teoría, demostramos el teorema de Serre-Artin-Zhang-Verevkin para diversas familias de álgebras no N-graduadas que incluyen diferentes clases de anillos no conmutativos que surgen en la teoría de anillos y la geometría algebraica no conmutativa. Nuestro tratamiento contribuye a la investigación sobre este teorema desarrollada en la literatura. (Texto tomado de la fuente)spa
dc.description.abstractIn this thesis, we establish several topological characterizations of the noncommutative spectrum of semi-graded rings by considering the notion of weak Zariski topology. With this aim, necessary or sufficient conditions to guarantee that families of these rings defined by endomorphisms and derivations are NI or NJ rings are formulated. We present results about the characterization of different types of elements of noncommutative rings such as idempotents, units, von Neumann regular, π-regular, and clean elements. We also investigate the notions of strongly harmonic and Gelfand rings over such families of semi-graded rings. Our results generalize treatments developed for commutative rings, skew polynomial rings, and several families of N-graded rings, and contribute to the research on these topics that has been partially carried out in the literature. On the other hand, we investigate the schematicness and the Serre-Artin-Zhang-Verevkin theorem for semi-graded rings. More exactly, for the Ore polynomials of higher order generated by homogeneous relations and skew Poincaré-Birkhoff-Witt extensions, we formulate necessary or sufficient conditions to guarantee the schematicness of these families of rings. We develop a noncommutative scheme theory for semi-graded rings that are not necessarily connected and N-graded. With this theory, we prove the Serre-Artin-ZhangVerevkin theorem for several families of non-N-graded algebras that include different kinds of noncommutative rings appearing in ring theory and noncommutative algebraic geometry. Our treatment contributes to the research on this theorem developed in the literature.eng
dc.description.abstractilustraciones, diagramasspa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias - Matemáticasspa
dc.format.extentvii, 113 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84866
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Matemáticasspa
dc.relation.referencesM. Abdi and Y. Talebi. On the diameter of the zero-divisor graph over skew PBW extensions. J. Algebra Appl., https://doi.org/10.1142/S0219498824500890, 2023spa
dc.relation.referencesM. Aghajani and A. Tarizadeh. Characterizations of Gelfand rings, specially clean rings and their dual rings. Results Math., 75(3):1–24, 2020spa
dc.relation.referencesJ. Alev and F. Dumas. Sur le corps des fractions de certaines algèbres quantiques. J. Algebra, 170(1):229–265, 1994spa
dc.relation.referencesA. Alhevaz and A. Moussavi. On skew Armendariz and skew quasi-Armendariz modules. Bull. Iranian Math. Soc., 38(1):55–84, 2012spa
dc.relation.referencesD. D. Anderson and V. Camillo. Armendariz rings and Gaussian rings. Comm. Algebra, 26(7):2265–2275, 1998spa
dc.relation.referencesS. Annin. Associated and Attached Primes Over Noncommutative Rings. PhD thesis, University of California, Berkeley, 2002spa
dc.relation.referencesS. Annin. Associated primes over skew polynomial rings. Comm. Algebra, 30(5):2511–2528, 2002spa
dc.relation.referencesS. Annin. Associated primes over Ore extension rings. J. Algebra Appl., 3(2):193–205, 2004spa
dc.relation.referencesJ. Apel. Gröbnerbasen in nichtkommutativen Algebren und ihre Anwendung. PhD thesis, University of Leipzig, 1998spa
dc.relation.referencesE. P. Armendariz. A note on extensions of Baer and p.p.-rings. J. Austral. Math. Soc., 18(4):470–473, 1974spa
dc.relation.referencesV. A. Artamonov. Derivations of Skew PBW-extensions. Commun. Math. Stat, 3(4):449–457, 2015spa
dc.relation.referencesM. Artin, J. Tate, and M. Van den Bergh. Some algebras associated to automorphisms of elliptic curves. In: The Grothendieck Festschrift, Vol. I, Progr. Math., Birkhäuser Boston, Boston, MA, 86, pp. 33–85, 1990spa
dc.relation.referencesA. Badawi. On Abelian π-regular rings. Comm. Algebra, 25(4):1009–1021, 1997spa
dc.relation.referencesV. V. Bavula. Generalized Weyl algebras and their representations. St. Petersburg Math. J., 4(1):75–97, 1992spa
dc.relation.referencesV. V. Bavula. Global dimension of generalized weyl algebras. Canad. Math. Soc. Confe. Proce., 18:81–107, 1996spa
dc.relation.referencesV. V. Bavula. Description of bi-quadratic algebras on 3 generators with PBW basis. J. Algebra, 631:695–730, 2023spa
dc.relation.referencesA. Bell and K. Goodearl. Uniform rank over differential operator rings and Poincaré-Birkhoff-Witt extensions. Pacific J. Math., 131(1):13–37, 1988spa
dc.relation.referencesA. D. Bell and S. P. Smith. Some 3-dimensional skew polynomial rings. University of Wisconsin, Milwaukee, preprint, 1990spa
dc.relation.referencesP. Belmans. Connections Between Commutative and Noncommutative Algebraic Geometry. PhD thesis, University of Antwerp, 2007spa
dc.relation.referencesH. B. Benaoum. (q, h)-analogue of Newton’s binomial formula. J. Phys. A: Math. Gen., 32(10):2037–2040, 1999spa
dc.relation.referencesG. Benkart. Down-up algebras and Witten’s deformation of the universal enveloping algebra of sl2. In: S. Geun Hahn, H. Chul Myung and E. Zelmanov (eds). Recent Progress in Algebra, Contemporary Mathematics, Vol. 224, Amer. Math. Soc., Providence, pp. 29–45, 1999spa
dc.relation.referencesG. Benkart and T. Roby. Down-Up Algebras. J. Algebra, 209(1):305–344, 1998spa
dc.relation.referencesJ. Bergen and P. Grzeszczuk. Jacobson radicals of ring extensions. J. Pure Appl. Algebra, 216(12):2601–2607, 2012spa
dc.relation.referencesR. Berger. The Quantum Poincaré-Birkhoff-Witt Theorem. Comm. Math. Phys., 143(2):215–234, 1992spa
dc.relation.referencesF. Borceux and G. Van den Bossche. Algebra in a Localic Topos with Applications to Ring Theory. Lecture Notes in Mathematics 1038, Springer-Verlag, 1983spa
dc.relation.referencesF. Borceux, H. Simmons, and G. Van den Bossche. A Sheaf Representation for Modules with Applications to Gelfand Rings. Proc. London Math. Soc., s3–48(2):230–246, 1984spa
dc.relation.referencesK. Brown and K. R. Goodearl. Lectures on Algebraic Quantum Groups. BirkäuserVerlag, 2002spa
dc.relation.referencesJ. Bueso, J. Gómez-Torrecillas, and A. Verschoren. Algorithmic Methods in noncommutative Algebra: Applications to Quantum Groups. Dordrecht, Kluwer, 2003spa
dc.relation.referencesF. Calderón and A. Reyes. Some interactions between Hopf Galois extensions and noncommutative rings. Univ. Sci., 27(2):58–161, 2022spa
dc.relation.referencesM. Carral. K-theory of Gelfand rings. J. Pure Appl. Algebra, 17(3):249–265, 1980spa
dc.relation.referencesT. Cassidy and M. Vancliff. Generalizations of graded Clifford algebras and of complete intersections. J. Lond. Math. Soc., 81(1):91–112, 2010spa
dc.relation.referencesW. X. Chen and S. Y. Cui. On weakly semicommutative rings. Commun. Math. Res., 27(2):179–192, 2011spa
dc.relation.referencesP. M. Cohn. Quadratic extensions of skew fields. Proc. London Math. Soc., 11(3):531–556, 1961spa
dc.relation.referencesP. M. Cohn. Free Rings and Their Relations. Second Edition. Academic Press, London, 1985spa
dc.relation.referencesA. Connes. Noncommutative Geometry. Academic Press, 1994spa
dc.relation.referencesM. Contessa. On certain classes of PM rings. Comm. Algebra, 12(12):1447–1469, 1984spa
dc.relation.referencesS. C. Coutinho. A Primer of Algebraic D-modules. Cambridge University Press. London Mathematical Society, Student Texts 33, 1995spa
dc.relation.referencesG. Demarco and A. Orsatti. Commutative rings in which every prime ideal is contained in a unique maximal ideal. Proc. Amer. Math. Soc., 30(3):459–466, 1971spa
dc.relation.referencesV. G. Drinfeld. Quantum groups. J. Math. Sci., 41(2):898–915, 1988spa
dc.relation.referencesF. Dumas. Sous-corps de fractions rationnelles des corps gauches de series de Laurent. Topics in Invariant Theory, Lecture Notes in Math. Vol. 1478, 1991spa
dc.relation.referencesW. Fajardo, C. Gallego, O. Lezama, A. Reyes, H. Suárez, and H. Venegas. Skew PBW Extensions. Ring and Module-theoretic Properties, Matrix and Gröbner Methods, and Applications. Algebra and Applications. Springer, Cham, 2020spa
dc.relation.referencesC. Gallego and O. Lezama. Gröbner bases for ideals of σ-PBW extensions. Comm. Algebra, 39(1):50–75, 2011spa
dc.relation.referencesA. Giaquinto and J. J. Zhang. Quantum Weyl Algebras. J. Algebra, 176(3):861–881, 1995spa
dc.relation.referencesV. Ginzburg. Lectures on Noncommutative Geometry. arXiv:math/0506603v1. 2005spa
dc.relation.referencesJ. Goldman. Rings and Modules of Quotients. J. Algebra, 13(1):10–47, 1969spa
dc.relation.referencesA. V. Golovashkin and V. M. Maksimov. Skew Ore polynomials of higher orders generated by homogeneous quadratic relations. Russian Math. Surveys, 53(2):384–386, 1998spa
dc.relation.referencesA. V. Golovashkin and V. M. Maksimov. On algebras of skew polynomials generated by quadratic homogeneous relations. J. Math. Sci., 129(2):3757–3771, 2005spa
dc.relation.referencesK. R. Goodearl. Von Neumann regular rings, volume 4 of Monographs and Studies in Mathematics. Pitman, 1979spa
dc.relation.referencesK. R. Goodearl and R. B. Warfield. An Introduction to Noncommutative Noetherian Rings. Cambridge University Press. London, 2004spa
dc.relation.referencesH. S. Green. A generalized method of field quantization. Phys. Rev., 90(2):270, 1953spa
dc.relation.referencesO. W. Greenberg and A. M. L. Messiah. Selection Rules for Parafields and the Absence of Para Particles in Nature. Phys. Rev., 138(5B):B1155–B1167, 1965spa
dc.relation.referencesM. Hamidizadeh, E. Hashemi, and A. Reyes. A classification of ring elements in skew PBW extensions over compatible rings. Int. Electron. J. Algebra, 28(1):75–97, 2020spa
dc.relation.referencesJ. Han, Y. Lee, and S. Park. Structure of NI rings related to centers. Comm. Algebra, 49(2):621–630, 2021spa
dc.relation.referencesR. Hartshorne. Algebraic Geometry. Graduate Texts in Mathematics 52, SpringerVerlag, New York, Heidelberg, Berlin, 1977spa
dc.relation.referencesE. Hashemi, M. Hamidizadeh, and A. Alhevaz. Some types of ring elements in Ore extensions over noncommutative rings. J. Algebra Appl., 16(11):1750201–1–1750201–17, 2017spa
dc.relation.referencesE. Hashemi, Kh. Khalilnezhad, and A. Alhevaz. (Σ, ∆)-compatible skew PBW extension ring. Kyungpook Math. J., 57(3):401–417, 2017spa
dc.relation.referencesE. Hashemi, Kh. Khalilnezhad, and A. Alhevaz. Extensions of rings over 2-primal rings. Matematiche, 74(I):141–162, 2019spa
dc.relation.referencesE. Hashemi and A. Moussavi. Polinomial extensions of quasi-Baer rings. Acta Math. Hungar., 107(3):207–224, 2005spa
dc.relation.referencesT. Hayashi. q-analogues of Clifford and Weyl algebras-Spinor and oscillator representations of quantum enveloping algebras. Comm. Math. Phys., 127(1):129–144, 1990spa
dc.relation.referencesJ. Hernández and A. Reyes. A Survey on Some Algebraic Characterizations of Hilbert’s Nullstellensatz for Non-commutative Rings of Polynomial Type. Ingeniería y Ciencia, 16(31):27–52, 2020spa
dc.relation.referencesS. Higuera and A. Reyes. A survey on the fusible property for skew PBW extensions. J. Algebr. Syst., 10(1):1–29, 2022spa
dc.relation.referencesO. Hinchcliffe. Diffusion algebras. PhD thesis, University of Sheffield, 2005spa
dc.relation.referencesC. Y. Hong, N. K. Kim, and T. K. Kwak. Ore extensions of Baer and p.p.-rings. J. Pure Appl. Algebra, 151(3):215–226, 2000spa
dc.relation.referencesC. Y. Hong, N. K. Kim, and T. K. Kwak. On skew Armendariz rings. Comm. Algebra, 31(1):103–122, 2003spa
dc.relation.referencesC. Y. Hong, T. K. Kwak, and S. T. Rizvi. Extensions of generalized Armendariz rings. Algebra Colloq., 13(2):253–266, 2006spa
dc.relation.referencesC. Huh, N. K. Kim, and Y. Lee. Examples of strongly π-regular rings. J. Pure Appl. Algebra, 189(1-3):195–210, 2004spa
dc.relation.referencesC. Huh, Y. Lee, and A. Smoktunowicz. Armendariz rings and semicommutative rings. Comm. Algebra, 30(2):751–761, 2002spa
dc.relation.referencesS. U. Hwang, Y. C. Jeon, and Y. Lee. Structure and topological conditions of NI rings. J. Algebra, 302(1):186–199, 2006spa
dc.relation.referencesA. P. Isaev, P. N. Pyatov, and V. Rittenberg. Diffusion algebras. J. Phys. A, 34(29):5815–5834, 2001spa
dc.relation.referencesA. Jannussis, A. Leodaris, and R. Mignani. Non-Hermitian Realization of a Lie-deformed Heisenberg algebra. Phys. Lett. A, 197(3):187–191, 1995spa
dc.relation.referencesJ. C. Jantzen. Lectures on Quantum Groups. Amer. Math. Soc. Vol. 6, 1996spa
dc.relation.referencesJ. Jaramillo and A. Reyes. Symmetry and Reversibility Properties for Quantum Algebras and Skew Poincaré-Birkhoff-Witt Extensions. Ingeniería y Ciencia, 14(27):29–52, 2018spa
dc.relation.referencesM. Jiang, Y. Wang, and Y. Ren. Extensions and topological conditions of NJ rings. Turkish J. Math., 43(1):44–62, 2019spa
dc.relation.referencesM. Jimbo. A q-Difference analogue of U(g) and the Yang-Baxter Equation. Lett. Math. Phys., 10(1):63–69, 1985spa
dc.relation.referencesD. Jordan. The Graded Algebra Generated by Two Eulerian Derivatives. Algebr. Represent. Theory, 4(3):249–275, 2001spa
dc.relation.referencesD. A. Jordan. Finite-dimensional simple modules over certain iterated skew polynomial rings. J. Pure Appl. Algebra, 98(1):45–55, 1995spa
dc.relation.referencesD. A. Jordan. Down-Up Algebras and Ambiskew Polynomial Rings. J. Algebra, 228(1):311–346, 2000spa
dc.relation.referencesD. A. Jordan and I. E. Wells. Invariants for automorphisms of certain iterated skew polynomial rings. Proc. Edinb. Math. Soc., 39(3):461–472, 1996spa
dc.relation.referencesK. Kanakoglou and C. Daskaloyannis. Bosonisation and Parastatistics. In: S. Silvestrov and E. Paal and V. Abramov and A. Stolin (eds). Generalized Lie Theory in Mathematics, Physics and Beyond. Springer, Berlin, Heidelberg, pp. 207–218, 2009spa
dc.relation.referencesP. Kanwar, A. Leroy, and J. Matczuk. Clean elements in polynomial rings. In: S. Dougherty, A. Facchini, A. Leroy, E. Puczylowski and P. Solé (eds). Noncommutative Rings and their Applications, Contemp. Math., AMS, Vol. 634, pp. 197–204, 2015spa
dc.relation.referencesI. Kaplansky. A quasi-commutative ring that is not neo-commutative. Proc. Amer. Math. Soc., 122(1):321, 1994spa
dc.relation.referencesO. A. Karamzadeh. On constant products of polynomials. Int. J. Math. Edu. Technol., 18:627–629, 1987spa
dc.relation.referencesN. K. Kim and Y. Lee. Armendariz rings and reduced rings. J. Algebra, 223(2):477–488, 2000spa
dc.relation.referencesE. Kirkman, I. M. Musson, and D. Passman. Noetherian Down-Up Algebras. Proc. Amer. Math. Soc., 127(11):3161–3167, 1999spa
dc.relation.referencesK. Krebs and S. Sandow. Matrix product eigenstates for one-dimensional stochastic models and quantum spin chains. J. Phys. A: Math. Gen., 30(9):3165–3173, 1997spa
dc.relation.referencesJ. Krempa. Some examples of reduced rings. Algebra Colloq., 3(4):289–300, 1996spa
dc.relation.referencesT. Y. Lam. A First Course in Noncommutative Rings. New York, USA. SpringerVerlag, 1991spa
dc.relation.referencesL. le Bruyn. Two remarks on Witten’s quantum enveloping algebra. Comm. Algebra, 22(3):865–876, 1994spa
dc.relation.referencesL. le Bruyn. Central singularities of quantum spaces. J. Algebra, 177(1):142–153, 1995spa
dc.relation.referencesT. K. Lee and T. L. Wong. On Armendariz rings. Houston J. Math., 29(3):583–593, 2003spa
dc.relation.referencesV. Levandovskyy. Non-commutative Computer Algebra for polynomial algebras: Gröbner bases, applications and implementation. PhD thesis, University of Kaiserslautern, 2005, Kaiserslauternspa
dc.relation.referencesO. Lezama. Computation of point modules of finitely semi-graded rings. Comm. Algebra, 48(2):866–878, 2020spa
dc.relation.referencesO. Lezama. Algebraic sets, ideals of points and the Hilbert’s Nullstellensatz theorem for skew PBW extensions. https://arxiv.org/abs/2106.12088, 2021spa
dc.relation.referencesO. Lezama. Some Open Problems in the Context of Skew PBW Extensions and Semi-graded Rings. Commun. Math. Stat., 9(3):347–378, 2021spa
dc.relation.referencesO. Lezama, J. P. Acosta, and A. Reyes. Prime ideals of skew PBW extensions. Rev. Un. Mat. Argentina, 56(2):39–55, 2015spa
dc.relation.referencesO. Lezama and J. Gómez. Koszulity and Point Modules of Finitely Semi-graded Rings and Algebras. Symmetry, 11(7):1–22, 2019spa
dc.relation.referencesO. Lezama and E. Latorre. Non-commutative algebraic geometry of semi-graded rings. Internat. J. Algebra Comput., 27(4):361–389, 2017spa
dc.relation.referencesO. Lezama and A. Reyes. Some Homological Properties of Skew PBW Extensions. Comm. Algebra, 42(3):1200–1230, 2014spa
dc.relation.referencesO. Lezama and H. Venegas. Some homological properties of skew PBW extensions arising in non-commutative algebraic geometry. Discuss. Math. Gen. Algebra Appl., 37(1):45–57, 2017spa
dc.relation.referencesH. Li and F. van Oystaeyen. Zariskian filtrations. K-Monographs in Mathematics, Vol. 2, Springer Science, 1996spa
dc.relation.referencesM. Louzari and A. Reyes. Generalized Rigid Modules and Their Polynomial Extensions. In: M. Siles Molina, L. El Kaoutit, M. Louzari, L. Ben Yakoub and M. Benslimane (eds). Associative and Non-Associative Algebras and Applications. MAMAA 2018. Springer Proceedings in Mathematics and Statistics, Vol 311. Springer, Cham., 2020spa
dc.relation.referencesM. Louzari and A. Reyes. Minimal prime ideals of skew PBW extensions over 2-primal compatible rings. Rev. Colombiana Mat., 54(1):39–63, 2020spa
dc.relation.referencesV. M. Maksimov. On a generalization of the ring of skew Ore polynomials. Russian Math. Surveys, 55:817–818, 2000spa
dc.relation.referencesV. M. Maksimov. Canonical forms of skew polynomial rings. J. Math. Sci. (N.Y.), 126(2):1064–1076, 2005spa
dc.relation.referencesG. Marks. On 2-primal Ore extensions. Comm. Algebra, 29(5):2113–2123, 2001spa
dc.relation.referencesG. Marks. A taxonomy of 2-primal rings. J. Algebra, 266(2):494–520, 2003spa
dc.relation.referencesJ. Matczuk. A characterization of σ-rigid rings. Comm. Algebra, 32(11):4333–4336, 2004spa
dc.relation.referencesJ. McConnell and J. Robson. Noncommutative Noetherian Rings, volume 30 of Graduate Studies in Mathematics. American Mathematical Society, Second edition, 2001spa
dc.relation.referencesB. R. McDonald. Linear Algebra Over Commutative Rings. New York. Basel, Marcel Dekker, Inc., 1984spa
dc.relation.referencesM. Medina-Bárcenas, L. Morales-Callejas, M. L. S. Sandoval-Miranda, and A. Zaldívar-Corichi. On strongly harmonic and Gelfand modules. Comm. Algebra, 48(5):1985–2013, 2020spa
dc.relation.referencesA. Moussavi and E. Hashemi. On (α, δ)-skew Armendariz rings. J. Korean Math. Soc., 42(2):353–363, 2005spa
dc.relation.referencesC. J. Mulvey. A generalisation of Swan’s theorem. Math. Z., 151(1):57–70, 1976spa
dc.relation.referencesC. J. Mulvey. A generalisation of Gelfand duality. J. Algebra, 56(2):494–505, 1979spa
dc.relation.referencesC. J. Mulvey. Representations of Rings and Modules. In: M. Fourman, C. Mulvey and D. Scott (eds). Applications of Sheaves, Lecture Notes in Mathematics, Vol. 753, Springer, Berlin, Heidelberg, pp. 542–585, 1979spa
dc.relation.referencesA. Nasr-Isfahani. Jacobson Radicals of Skew Polynomial Rings of Derivation Type. Canad. Math. Bull., 57(3):609–613, 2014spa
dc.relation.referencesA. Nasr-Isfahani. On NI Skew Polynomial Rings. Comm. Algebra, 43(12):5113–5120, 2015spa
dc.relation.referencesA. R. Nasr-Isfahani and A. Moussavi. On Classical Quotient Rings of Skew Armendariz Rings. Int. J. Math. Math. Sci., 2007:1–7, 2007spa
dc.relation.referencesW. K. Nicholson. Lifting idempotents and exchange rings. Trans. Amer. Math. Soc., 229:269–278, 1977spa
dc.relation.referencesW. K. Nicholson and Y. Zhou. Clean rings: A survey. In: J. L. Chen, N. Q. Ding and H. Marubayashi (eds). Advances in Ring Theory, Proceedings of the 4th China - Japon - Korea International Conference China 24–28, June 2004, World Scientific, pp. 181–198, 2005spa
dc.relation.referencesA. Niño, M. C. Ramírez, and A. Reyes. Associated prime ideals over skew PBW extensions. Comm. Algebra, 48(12):5038–5055, 2020spa
dc.relation.referencesA. Niño and A. Reyes. Some ring theoretical properties of skew Poincaré-Birkhoff-Witt extensions. Bol. Mat., 24(2):131–148, 2017spa
dc.relation.referencesA. Niño and A. Reyes. Some remarks about minimal prime ideals of skew Poincaré-Birkhoff-Witt extensions. Algebra Discrete Math., 30(2):207–229, 2020spa
dc.relation.referencesE. Noether and W. Schmeidler. Moduln in nichtkommutativen bereichen, insbesondere aus differential - und differenzenausdrücken. Math. Zeitschrift, 8:1–35, 1920spa
dc.relation.referencesO. Ore. Linear Equations in Non-commutative Fields. Ann. of Math. Second Series, 32(3):463–477, 1931spa
dc.relation.referencesO. Ore. Theory of Non-Commutative Polynomials. Ann. of Math. Second Series, 34(3):480–508, 1933spa
dc.relation.referencesV. L. Ostrovskii and Yu. S. Samoilenko. Representation of ∗-algebras with two generators and polynomial relations. J. Math. Sci., 59(5):1107–1113, 1992spa
dc.relation.referencesL. Ouyang and J. Liu. On weak (α, δ)-compatible rings. Int. J. Algebra, 5(26):1283–1296, 2011spa
dc.relation.referencesL. Ouyang, J. Liu, and Y. Xiang. Ore extensions of skew π-Armendariz rings. Bull. Iranian Math. Soc., 39(2):355–368, 2013spa
dc.relation.referencesP. N. Pyatov and R. Twarock. Construction of diffusion algebras. J. Math. Phys., 43(6):3268–3279, 2002spa
dc.relation.referencesI. T. Redman. The Non-Commutative Algebraic Geometry of some Skew Polynomial Algebras. PhD thesis, University of Wisconsin - Milwaukee, 1996spa
dc.relation.referencesI. T. Redman. The homogenization of the three dimensional skew polynomial algebras of type I. Comm. Algebra, 27(11):5587–5602, 1999spa
dc.relation.referencesM. B. Rege and S. Chhawchharia. Armendariz Rings. Proc. Japan Acad. Ser. A Math. Sci., 73(1):14–17, 1997spa
dc.relation.referencesA. Reyes. Skew PBW extensions of Baer, quasi-Baer, p.p. and p.q.-rings. Rev. Integr. Temas Mat., 33(2):173–189, 2015spa
dc.relation.referencesA. Reyes. σ-PBW Extensions of Skew Π-Armendariz Rings. Far East J. Math. Sci. (FJMS), 103(2):401–428, 2018spa
dc.relation.referencesA. Reyes. Armendariz modules over skew PBW extensions. Comm. Algebra, 47(3):1248–1270, 2019spa
dc.relation.referencesA. Reyes and C. Rodríguez. The McCoy Condition on Skew Poincaré-Birkhoff-Witt extensions. Commun. Math. Stat., 9(1):1–21, 2021spa
dc.relation.referencesA. Reyes and C. Sarmiento. On the differential smoothness of 3-dimensional skew polynomial algebras and diffusion algebras. Internat. J. Algebra Comput., 32(03):529–559, 2022spa
dc.relation.referencesA. Reyes and H. Suárez. Armendariz property for skew PBW extensions and their classical ring of quotients. Rev. Integr. Temas Mat., 34(2):147–168, 2016spa
dc.relation.referencesA. Reyes and H. Suárez. PBW Bases for Some 3-Dimensional Skew Polynomial Algebras. Far East J. Math. Sci., 101(6):1207–1228, 2017spa
dc.relation.referencesA. Reyes and H. Suárez. σ-PBW extensions of Skew Armendariz Rings. Adv. Appl. Clifford Algebr., 27(4):3197–3224, 2017spa
dc.relation.referencesA. Reyes and H. Suárez. A notion of compatibility for Armendariz and Baer properties over skew PBW extensions. Rev. Un. Mat. Argentina, 59(1):157–178, 2018spa
dc.relation.referencesA. Reyes and H. Suárez. Skew Poincaré-Birkhoff-Witt extensions over weak zip rings. Beitr Algebra Geom., 60(2):197–216, 2019spa
dc.relation.referencesA. Reyes and H. Suárez. Skew Poincaré-Birkhoff-Witt extensions over weak compatible rings. J. Algebra Appl., 19(12):2050225(1)–2050225(21), 2020spa
dc.relation.referencesA. Reyes and H. Suárez. Radicals and Köthe’s conjecture for skew PBW extensions. Commun. Math. Stat., 9(2):119–138, 2021spa
dc.relation.referencesA. Reyes and H. Suárez. Skew PBW extensions over symmetric rings. Algebra Discrete Math., 32(1):76–102, 2021spa
dc.relation.referencesV. Rittenberg and D. Wyler. Generalized superalgebras. Nucl. Phys. B, 139(3):189–202, 1978spa
dc.relation.referencesA. Rosenberg. Non-commutative Algebraic Geometry and Representations of Quantized Algebras. Math. Appl. Soviet Ser., 330 Kluwer Academic Publishers, 1995spa
dc.relation.referencesI. Rubio and L. Acosta. On Spectral Compactness of von Neumann Regular Rings. Rev. Colombiana Mat., 46(1):81–95, 2012spa
dc.relation.referencesW. Rump. The Weighted Spectrum of a Regular Ring. Forum Math., 22(4):683–697, 2010spa
dc.relation.referencesG. Shin. Prime ideals and sheaf representation of a pseudosymmetric rings. Trans. Amer. Math. Soc., 184:43–60, 1973spa
dc.relation.referencesH. Simmons. Reticulated rings. J. Algebra, 66(1):169–192, 1980spa
dc.relation.referencesH. Simmons. Erratum. Reticulated rings: Volume 66 number 1, September 1980: H. Simmons pp. 169–192. J. Algebra, 74(1):292, 1982spa
dc.relation.referencesS. P. Smith. A Class of Algebras Similar to the Enveloping of sl(2). Comm. Algebra, 322(1):285–314, 1991spa
dc.relation.referencesS. P. Smith. Non-commutative algebraic geometry. Department of Mathematics. University of Washington, 2000spa
dc.relation.referencesT. H. M. Smits. Skew polynomial rings. Indag. Math., 71(1):209–224, 1968spa
dc.relation.referencesB. Stenström. Rings of Quotients. An Introduction to Methods of Ring Theory. Springer-Verlag, 1975spa
dc.relation.referencesH. Suárez. Koszulity for graded skew PBW extensions. Comm. Algebra, 45(10):4569–4580, 2017spa
dc.relation.referencesH. Suárez, F. Anaya, and A. Reyes. Propiedad χ en extensiones PBW torcidas graduadas. Ciencia en Desarrollo, 12(1):33–41, 2021spa
dc.relation.referencesH. Suárez, D. Cáceres, and A. Reyes. Some special types of determinants in graded skew PBW extensions. Rev. Integr. Temas Mat., 391(1):91–107, 2021spa
dc.relation.referencesH. Suárez, A. Chacón, and A. Reyes. On NI and NJ skew PBW extensions. Comm. Algebra, 50(8):3261–3275, 2022spa
dc.relation.referencesH. Suárez, S. Higuera, and A. Reyes. On Σ-skew reflexive-nilpotents-property for rings. https://arxiv.org/abs/2110.14061. 2021spa
dc.relation.referencesH. Suárez, A. Reyes, and Y. Suárez. Homogenized skew PBW extensions. Arab. J. Math. (Springer)., 12(1):247–263, 2023spa
dc.relation.referencesS. H. Sun. Noncommutative rings in which every prime ideal is contained in a unique maximal right ideal. J. Pure Appl. Algebra, 76(2):179–192, 1991spa
dc.relation.referencesS. H. Sun. On separation lemmas. J. Pure Appl. Algebra, 78(3):301–310, 1992spa
dc.relation.referencesS. H. Sun. Rings in which every prime ideal is contained in a unique maximal right ideal. J. Pure Appl. Algebra, 78(2):183–194, 1992spa
dc.relation.referencesH. Suárez, O. Lezama, and A. Reyes. Calabi-Yau property for graded skew PBW extensions. Rev. Colombiana Mat., 51(2):221–238, 2017spa
dc.relation.referencesA. B. Tumwesigye, J. Richter, and S. Silvestrov. Centralizers in PBW extensions. In: S. Silvestrov, A. Malyarenko and M. Rancic (eds). Algebraic Structures and Applications. SPAS 2017. Springer Proc. Math. Stat. Vol. 317, Springer, pp. 469–490, 2020spa
dc.relation.referencesR. Twarok. Representations for Selected Types of Diffusion Systems. In: E. Kapuscik and A. Horzela (eds). Quantum Theory and Symmetries. Proceedings of the Second International Symposium, Held 18–21, July 2001 in Kraków, Poland, World Scientific Publishing Co. Pte. Ltd., pp. 615–620, 2002spa
dc.relation.referencesV. A. Ufnarovskii. Combinatorial and asymptotic methods in algebra. Algebra – 6, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr, 57:5–177, 1990spa
dc.relation.referencesF. van Oystaeyen. On graded rings and modules of quotients. Comm. Algebra, 6(18):1923–1959, 1978spa
dc.relation.referencesF. van Oystaeyen. Algebraic Geometry for Associative Algebras. Pure and Applied Mathematics, CRC Press Taylor & Francis Group, 2000spa
dc.relation.referencesF. van Oystaeyen and L. A. Willaert. Grothendieck topology, coherent sheaves and Serre’s theorem for schematic algebras. J. Pure Appl. Algebra, 104(1):109–122, 1995spa
dc.relation.referencesF. van Oystaeyen and L. A. Willaert. Cohomology of Schematic Algebras. J. Algebra, 185(1):74–84, 1996spa
dc.relation.referencesF. van Oystaeyen and L. A. Willaert. The Quantum Site of a Schematic Algebra. Comm. Algebra, 24(1):209–122, 1996spa
dc.relation.referencesF. van Oystaeyen and L. A. Willaert. Examples and quantum sections of schematic algebras. J. Pure Appl. Algebra, 120(2):195–211, 1997spa
dc.relation.referencesN. Ja. Vilenkin and A. U. Klimyk. Representation of Lie Groups and Special Functions. Kluwer Academic Publishers, 1995spa
dc.relation.referencesJ. von Neumann. On Regular Rings. Proc. Natl. Acad. Sci. USA, 22(12):707–713, 1936spa
dc.relation.referencesL. A. Willaert. A new dimension for schematic algebras. In: S. Caenepeel and A. Verschoren (eds). Rings, Hopf algebras, and Brauer Groups, Lecture Notes in Pure and Applied Mathematics, pp. 325–332, 1998spa
dc.relation.referencesE. Witten. Gauge theories, vertex models, and quantum groups. Nuclear Phys. B, 330(2-3):285–346, 1990spa
dc.relation.referencesE. Witten. Quantization of Chern-Simons Gauge Theory with Complex Gauge Group. Comm. Math. Phys., 137(1):29–66, 1991spa
dc.relation.referencesS. L. Woronowicz. Twisted SU(2)-Group. An Example of a Non-commutative Differential Calculus. Publ. Res. Inst. Math. Sci., 23:117–181, 1987spa
dc.relation.referencesH. Yamane. A Poincaré-Birkhoff-Witt Theorem for Quantized Universal Enveloping Algebras of Type AN . Publ. RIMS Kyoto Univ., 25(3):503–520, 1989spa
dc.relation.referencesG. Yunus, Z. Gao, and A. Obul. Gröbner-Shirshov Basis of Quantum Groups. Algebra Colloq., 22(3):495–516, 2015spa
dc.relation.referencesG. Zhang, W. Tong, and F. Wang. Spectra of Maximal 1-Sided Ideals and Primitive Ideals. Comm. Algebra, 34(8):2879–2896, 2006spa
dc.relation.referencesG. Zhang, W. Tong, and F. Wang. Spectrum of a Noncommutative Ring. Comm. Algebra, 34(8):2795–2810, 2006spa
dc.relation.referencesG. Zhang, F. Wang, and W. Xu. Gelfand Factor Rings and Weak Zariski Topologies. Comm. Algebra, 35(8):2628–2645, 2007spa
dc.relation.referencesJ. J. Zhang and J. Zhang. Double Ore extensions. J. Pure Appl. Algebra, 212(12):2668–2690, 2008spa
dc.relation.referencesA. S. Zhedanov. “Hidden symmetry” of Askey–Wilson polynomials. Theoret. and Math. Phys., 89(2):1146–1157, 1991spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc510 - Matemáticas::512 - Álgebraspa
dc.subject.lembGeometría algebraícaspa
dc.subject.lembGeometry, algebraiceng
dc.subject.lembTopologíaspa
dc.subject.lembTopologyeng
dc.subject.lembPolinomiosspa
dc.subject.lembPolynomialseng
dc.subject.proposalAnillo semi-graduadospa
dc.subject.proposalAnillo de polinomios torcidosspa
dc.subject.proposalExtensión PBW torcidaspa
dc.subject.proposalÁlgebra esquemáticaspa
dc.subject.proposalGeometría algebraica no conmutativaspa
dc.subject.proposalEsquema no conmutativospa
dc.subject.proposalSemi-graded ringeng
dc.subject.proposalSkew polynomial ringeng
dc.subject.proposalSkew PBW extensioneng
dc.subject.proposalSchematic algebraeng
dc.subject.proposalNoncommutative algebraic geometryeng
dc.subject.proposalNoncommutative schemeeng
dc.titleOn the noncommutative geometry of semi-graded ringseng
dc.title.translatedSobre la geometría no conmutativa de anillos semi graduadosspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032455420.2022.pdf
Tamaño:
1.31 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis deDoctorado en Ciencias - Matemáticas

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: