Sistema de trading algorítmico utilizando un modelo de machine learning generado por auto machine learning como regla de filtro

dc.contributor.advisorHernandez Perez, German Jairo
dc.contributor.authorLópez Benítez, Edwin José
dc.contributor.researchgroupAlgoritmos y Combinatoria (Algos-Un)spa
dc.date.accessioned2023-07-18T15:27:04Z
dc.date.available2023-07-18T15:27:04Z
dc.date.issued2023
dc.descriptionilustraciones, diagramasspa
dc.description.abstractEn el presente trabajo se mejora el rendimiento de un sistema o estrategia de trading algorítmico, basado en indicadores técnicos, mediante la incorporación de un modelo de clasificación que permite discriminar operaciones potenciales de la estrategia entre ganadoras y perdedoras. Las características utilizadas como entrada del modelo de machine learning son generadas a partir de indicadores técnicos en el instante que se abre una operación, obtenidas mediante una simulación de mercado con datos de en formato Open, High, Low, Close en la divisa del eurodólar. Para el proceso de búsqueda del modelo clasificación adecuado, se plantean dos mecanismos basados en automachine learning y algoritmos evolutivos, utilizando la librería Evaluation of a Tree-Based Pipeline Optimization Tool for Automating Data Science (TPOT) y una propuesta basada en el Elitist Non-dominated Sorting Genetic Algorithm (NSGA-II) y TPOT, donde se orienta la búsqueda multiobjetivo con la métrica del accuracy y el System Quality Number (SQN) una métrica para evaluar sistemas de trading. En los experimentos realizados, los modelos de clasificación elegidos por NSGA-II mejoraron significativamente el rendimiento de la estrategia de trading, con un 32.5% de los modelos fuera de muestra que mostraron rendimientos positivos y un comportamiento similar dentro y fuera de muestra. Mientras que con TPOT, los clasificadores encontrados tendieron a tener buen rendimiento dentro de muestra, pero no consistente fuera de muestra. La estrategia final elegida por NSGA-II tuvo un 60-61% de operaciones rentables tanto dentro como fuera de muestra, mientras TPOT tuvo un 98% y un 62% respectivamente. (Texto tomado de la fuente)spa
dc.description.abstractThis paper improves the performance of an algorithmic trading system or strategy, based on technical indicators, by incorporating a classification model that allows discriminating potential trades of the strategy between winners and losers. The characteristics used as input of the machine learning model are generated from technical indicators at the moment a trade is opened, obtained through a market simulation with data in Open, High, Low, Close format in the Eurodollar currency. For the search process of the appropriate classification model, two mechanisms based on automachine learning and evolutionary algorithms are proposed, using the Evaluation of a Tree-Based Pipeline Optimization Tool for Automating Data Science (TPOT) library and a proposal based on the Elitist Non-dominated Sorting Genetic Algorithm (NSGA-II) and TPOT, where the multi-objective search is oriented with the accuracy metric and the System Quality Number (SQN), a metric to evaluate trading systems. In the experiments conducted, the classification models chosen by NSGA-II significantly improved the performance of the trading strategy, with 32.5% of the out-of-sample models showing positive returns and similar in-sample and out-of-sample behavior. Whereas with TPOT, the classifiers found tended to perform well in-sample, but not consistently out-of-sample. The final strategy chosen by NSGA-II had 60-61% profitable trades both in-sample and out-of-sample, while TPOT had 98% and 62% respectively.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Industrialspa
dc.description.researchareaIngeniería Económicaspa
dc.format.extent94 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84201
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá,Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Industrialspa
dc.relation.referencesAdebiyi, Ayodele A., Aderemi O. Adewumi, and Charles K. Ayo. 2014a. “Stock Price Prediction Using the ARIMA Model.” Pp. 106–12 in Proceedings - UKSim-AMSS 16th International Conference on Computer Modelling and Simulation, UKSim 2014. Institute of Electrical and Electronics Engineers Inc.spa
dc.relation.referencesAdebiyi, Ayodele A., Aderemi O. Adewumi, and Charles K. Ayo. 2014b. “Stock Price Prediction Using the ARIMA Model.” Proceedings - UKSim-AMSS 16th International Conference on Computer Modelling and Simulation, UKSim 2014 106–12. doi: 10.1109/UKSIM.2014.67.spa
dc.relation.referencesAmin Naseri, Mohamad Reza, Farimah Mokhatab Rafiee, and Shadi Khalil Moghadam. 2020. “Modeling Portfolio Optimization Based on Fundamental Analysis Using an Expert System in the Real Estate Industry.” International Journal of Supply and Operations Management 7(1):39–50. doi: 10.22034/IJSOM.2020.1.3.spa
dc.relation.referencesAndrés Arévalo, Jaime Niño, German Hernández, and Javier Sandoval. 2016. “High-Frequency Trading Strategy Based on Deep Neural Networks.” Lecture Notes in Computer Science.spa
dc.relation.referencesAngarita-Zapata, Juan S., Antonio D. Masegosa, and Isaac Triguero. 2020. “General-Purpose Automated Machine Learning for Transportation: A Case Study of Auto-Sklearn for Traffic Forecasting.” Pp. 728–44 in Communications in Computer and Information Science. Vol. 1238 CCIS. Springer.spa
dc.relation.referencesAnon. n.d. “Sklearn.Preprocessing.MinMaxScaler — Scikit-Learn 1.2.0 Documentation.” Retrieved December 22, 2022 (https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html).spa
dc.relation.referencesArce, Paola, Jonathan Antognini, Werner Kristjanpoller, and Luis Salinas. 2017. “Fast and Adaptive Cointegration Based Model for Forecasting High Frequency Financial Time Series.” Computational Economics 2017 54:1 54(1):99–112. doi: 10.1007/S10614-017-9691-7.spa
dc.relation.referencesArlt, Josef, and Markéta Arltová. 2001. “Financial Time Series and Their Features.” Acta Oeconomica Pragensia 9(4).spa
dc.relation.referencesAtehortúa Granados, Johm Alexánder. 2012. Mercado de Capitales y Portafolios de Inversión. Vol. 1. Ediciones de la U. edited by L. D. López Escobar. Medellín.spa
dc.relation.referencesBansal, Alok, Yogeshwari Phatak, and Raj Kishore Sharma. 2015. Quality Management Practices for Global Excellence. Vol. 1. 1st ed. New Delhi: Prestige Institute of Management and Research, Indore.spa
dc.relation.referencesBendraou, Youssef, Nathan Ramoly, and Baba Seydou Bamba. 2020. “Toward a Generic Automl-Based Assistant for Contracts Negotiation.” Pp. 2877–78 in Frontiers in Artificial Intelligence and Applications. Vol. 325. IOS Press BV.spa
dc.relation.referencesBis. 2022a. Triennial Central Bank Survey OTC Foreign Exchange Turnover in April 2022.spa
dc.relation.referencesBis. 2022b. Triennial Central Bank Survey OTC Foreign Exchange Turnover in April 2022.spa
dc.relation.referencesCFI Team. 2022. “Momentum - Overview, How to Calculate, Absolute vs. Relative.” Retrieved January 21, 2023 (https://corporatefinanceinstitute.com/resources/wealth-management/momentum/).spa
dc.relation.referencesChakraborty, Uday Kumar. 1995. “A Branching Process Model for Genetic Algorithms.” Information Processing Letters 56:281–92.spa
dc.relation.referencesChande, Tushar S. 1997. Beyond Technical Analysis : How to Develop and Implement a Winning Trading System. Wiley.spa
dc.relation.referencesCoggins, R., B. Flower, D. Dersch, M. A. Jabri, and Bai-Ling Zhang. 2002. “Multiresolution Forecasting for Futures Trading Using Wavelet Decompositions.” IEEE Transactions on Neural Networks 12(4):765–75. doi: 10.1109/72.935090.spa
dc.relation.referencesConway, Mark R., and Aaron N. Behle. 2002. Professional Stock Trading System Design and Automation. San Diego.spa
dc.relation.referencesDeb, Kalyanmoy, Amrit Pratap, Sameer Agarwal, and T. Meyarivan. 2002a. “A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II.” IEEE Transactions on Evolutionary Computation 6(2):182–97. doi: 10.1109/4235.996017.spa
dc.relation.referencesDeb, Kalyanmoy, Amrit Pratap, Sameer Agarwal, and T. Meyarivan. 2002b. “A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II.” IEEE Transactions on Evolutionary Computation 6(2):182–97. doi: 10.1109/4235.996017.spa
dc.relation.referencesDurán Herrera, Juan José. 2011. Diccionario de Finanzas. edited by L. Perdices de Blas. Madrid: Ecobook - Editorial del Economista.spa
dc.relation.referencesEdwards, Robert D., John Magee, and W. H. C. Bassetti. 2021. Análisis Técnico de Las Tendencias de Los Valores . Vol. 1. 10th ed. Profit Editorial I.spa
dc.relation.referencesElearnmarkets by StockEdge. 2022. “Best 25 Technical Indicators Every Trader Should Know.” Elearnmarkets . Retrieved December 16, 2022 (https://www.elearnmarkets.com/blog/best-25-technical-indicators/).spa
dc.relation.referencesEvans, Benjamin Patrick. 2019. Population-Based Ensemble Learning with Tree Structures for Classification.spa
dc.relation.referencesFama, Eugene F. 1970. “Efficient Capital Markets: A Rewiew of Theory and Empirical Work.” The Journal of Finance 25(2):383–417.spa
dc.relation.referencesFama, Eugene F. 1970. “Session Topic: Stock Market Price Behavior Session Chairman: Burton G. Malkiel Efficient Capital Markets: A Review Of Theory And Empirical Work.” The Journal of Finance 25(2):383–417. doi: 10.1684/bdc.2014.1986.spa
dc.relation.referencesFeurer, Matthias, Aaron Klein, Katharina Eggensperger Jost, Tobias Springenberg, Manuel Blum, and Frank Hutter. 2015. Efficient and Robust Automated Machine Learning.spa
dc.relation.referencesFikri, Noussair, Khalid Moussaid, Mohamed Rida, Amina el Omri, and Noureddine Abghour. 2022. A Channeled Multilayer Perceptron as Multi-Modal Approach for Two Time-Frames Algo-Trading Strategy. Vol. 13.spa
dc.relation.referencesFitschen, Keith. 2013. Building Reliable Trading Systems. Wiley. New Jersey: John Wiley & Sons, Inc.spa
dc.relation.referencesFortin, Félix-Antoine, Ulavalca Marc-André Gardner, Marc Parizeau, and Christian Gagné. 2012. DEAP: Evolutionary Algorithms Made Easy François-Michel De Rainville. Vol. 13.spa
dc.relation.referencesFriedhoff, Jerry M., and Mo Mansouri. 2017. “A Framework for Assessing Technology Risks in Transaction-Based Extended Enterprises: U.S. Capital Market Case.” IEEE Systems Journal 11(3):1505–15. doi: 10.1109/JSYST.2015.2495282.spa
dc.relation.referencesGerlein, Eduardo A., Martin McGinnity, Ammar Belatreche, and Sonya Coleman. 2016. “Evaluating Machine Learning Classification for Financial Trading: An Empirical Approach.” Expert Systems with Applications 54:193–207. doi: 10.1016/j.eswa.2016.01.018.spa
dc.relation.referencesGijsbers, Pieter, Erin LeDell, Janek Thomas, Sébastien Poirier, Bernd Bischl, and Joaquin Vanschoren. 2019. “An Open Source AutoML Benchmark.”spa
dc.relation.referencesH20.ia. 2023. “H2O AutoML.” Retrieved January 8, 2023 (https://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html).spa
dc.relation.referencesHalls-Moore, Michael L. 2016. Advanced Algorithmic Trading. Vol. 1. QuantStar.spa
dc.relation.referencesHan, Xiao, Alexander Belyakov, Ben Sila, Tao Shu, Yu Wang, and Wei Xiong. 2020. Risks versus Mispricing: Decomposing Asset Pricing Anomalies via Classification *.spa
dc.relation.referencesHeffetz, Yuval, Roman Vainshtein, Gilad Katz, and Lior Rokach. 2020. “DeepLine: AutoML Tool for Pipelines Generation Using Deep Reinforcement Learning and Hierarchical Actions Filtering.” Pp. 2103–13 in Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Association for Computing Machinery.spa
dc.relation.referencesHenrique, Bruno Miranda, Vinicius Amorim Sobreiro, and Herbert Kimura. 2019. “Literature Review: Machine Learning Techniques Applied to Financial Market Prediction.” Expert Systems with Applications 124:226–51. doi: 10.1016/j.eswa.2019.01.012.spa
dc.relation.referencesHolland, John. 1975. “Adaptation in Natural And Artificial Systems.” MIT Press.spa
dc.relation.referencesHsu, Chih-Wei, Chih-Chung Chang, and Chih-Jen Lin. 2003. “A Practical Guide to Support Vector Classification.”spa
dc.relation.referencesHsu, Yushan, Ming Fu Hsu, and Sin Jin Lin. 2016. “Corporate Risk Estimation by Combining Machine Learning Technique and Risk Measure.” in 2016 IEEE/ACIS 15th International Conference on Computer and Information Science, ICIS 2016 - Proceedings. Institute of Electrical and Electronics Engineers Inc.spa
dc.relation.referencesHuang, Haiying, Wuyi Zhang, Gaochao Deng, and James Chen. 2015. “Predicting Stock Trend Using Fourier Transform and Support Vector Regression.” Proceedings - 17th IEEE International Conference on Computational Science and Engineering, CSE 2014, Jointly with 13th IEEE International Conference on Ubiquitous Computing and Communications, IUCC 2014, 13th International Symposium on Pervasive Systems, 213–16. doi: 10.1109/CSE.2014.70.spa
dc.relation.referencesJ. Welles Wilder Jr. 1978a. NEW CONCEPTS IN TECHNICAL TRADING SYSTEMS.spa
dc.relation.referencesJ. Welles Wilder Jr. 1978b. New Concepts in Technical Trading Systems.spa
dc.relation.referencesJin, Haifeng, Qingquan Song, and Xia Hu. 2019. “Auto-Keras: An Efficient Neural Architecture Search System.” doi: 10.1145/3292500.spa
dc.relation.referencesJohnson, Barry. 2010. Algorithmic Trading and DMA. 4Myeloma Press. Londres.spa
dc.relation.referencesKaufman, Perry J. 1995. Smarter Trading Improving Performance in Changing Markets. edited by McGraw-Hill.spa
dc.relation.referencesLaadan, Doron, Roman Vainshtein, Yarden Curiel, Gilad Katz, and Lior Rokach. 2019. “RankML: A Meta Learning-Based Approach for Pre-Ranking Machine Learning Pipelines.”spa
dc.relation.referencesLarraga, Pablo. 2008. Mercado Monetario y Mercado de Renta Fija Conocimiento de Los Dos Grandes Mercados Para Entender Las Valoraciones Del Resto de Mercados Financieros. PROFIT.spa
dc.relation.referencesLeles, Michel Carlo Rodrigues, Leonardo Amaral Mozelli, Elton Felipe Sbruzzi, Cairo Lucio Nascimento Junior, and Homero Nogueira Guimaraes. 2020. “A Multicriteria Trading System Based on Singular Spectrum Analysis Trading Rules.” IEEE Systems Journal 14(1):1468–78. doi: 10.1109/JSYST.2019.2924390.spa
dc.relation.referencesLópez, José Francisco. 2018. “Sistema de Trading - Qué Es, Definición y Concepto.” Economipedia.Com. Retrieved January 21, 2023 (https://economipedia.com/definiciones/sistema-de-trading.html).spa
dc.relation.referencesMaini, Sahaj Singh, and K. Govinda. 2017. “Stock Market Prediction Using Data Mining Techniques.”spa
dc.relation.referencesMauricio, José Alberto. 2007. “Series Temporales.” Pp. 1–1 in Introducción al Análisis de Series Temporales . Vol. 1. Madrid : Universidad Complutense de Madrid.spa
dc.relation.referencesMetaQuotes. n.d. “MetaTrader5.” Retrieved January 30, 2023 (https://www.metatrader5.com/es).spa
dc.relation.referencesMicrosoft. n.d. “¿Qué Es El Aprendizaje Automático Automatizado (AutoML).” Retrieved January 7, 2023 (https://learn.microsoft.com/es-es/azure/machine-learning/concept-automated-ml#how-does-automl-work).spa
dc.relation.referencesMohr, Felix, Marcel Wever, and Eyke Hüllermeier. 2018. “ML-Plan: Automated Machine Learning via Hierarchical Planning.” Machine Learning 107(8–10):1495–1515. doi: 10.1007/s10994-018-5735-z.spa
dc.relation.referencesMolina Valdivieso, Ignacio. 2015. “Mercado de Derivados Financieros: Futuros y Opciones.” Universidad Miguel Hernández, España.spa
dc.relation.referencesMorin, Michael, Frederik Paradis, Amelie Rolland, Jean Wery, Jonathan Gaudreault, and Francois Laviolette. 2016. “Machine Learning-Based Metamodels for Sawing Simulation.” Pp. 2160–71 in Proceedings - Winter Simulation Conference. Vols. 2016-February. Institute of Electrical and Electronics Engineers Inc.spa
dc.relation.referencesMs Management Solutions. 2020. Auto Machine Learning, Hacia La Automatización de Los Modelos.spa
dc.relation.referencesMustapa, Farah Hayati, and Mohd Tahir Ismail. 2019. “Modelling and Forecasting S&P 500 Stock Prices Using Hybrid Arima-Garch Model.” in Journal of Physics: Conference Series. Vol. 1366. Institute of Physics Publishing.spa
dc.relation.referencesNuti, Giuseppe, Mahnoosh Mirghaemi, Philip Treleaven, and Chaiyakorn Yingsaeree. 2011. Algorithmic Trading RE SE A RCH FE ATURE.spa
dc.relation.referencesOlson, Randal S., Nathan Bartley, Ryan J. Urbanowicz, and Jason H. Moore. 2016a. “Evaluation of a Tree-Based Pipeline Optimization Tool for Automating Data Science.”spa
dc.relation.referencesOlson, Randal S., Nathan Bartley, Ryan J. Urbanowicz, and Jason H. Moore. 2016b. “Evaluation of a Tree-Based Pipeline Optimization Tool for Automating Data Science.”spa
dc.relation.referencesPark, Cheol-Ho, and Scott H. Irwin. 2004. “The Profitability of Technical Analysis: A Review.” SSRN Electronic Journal. doi: 10.2139/SSRN.603481.spa
dc.relation.referencesPatel, Jigar, Sahil Shah, Priyank Thakkar, and K. Kotecha. 2015. “Predicting Stock and Stock Price Index Movement Using Trend Deterministic Data Preparation and Machine Learning Techniques.” Expert Systems with Applications 42(1):259–68. doi: 10.1016/j.eswa.2014.07.040.spa
dc.relation.referencesPedregosa, Fabian, Vincent Michel, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Jake Vanderplas, David Cournapeau, Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Bertrand Thirion, Olivier Grisel, Vincent Dubourg, Alexandre Passos, Matthieu Brucher, Matthieu Perrot andÉdouardand, andÉdouard Duchesnay, and Frédouard Duchesnay. 2011. Scikit-Learn: Machine Learning in Python. Vol. 12.spa
dc.relation.referencesPicek, Stjepan, Annelie Heuser, Alan Jovic, Shivam Bhasin, and Francesco Regazzoni. 2019. “The Curse of Class Imbalance and Conflicting Metrics with Machine Learning for Side-Channel Evaluations.” IACR Transactions on Cryptographic Hardware and Embedded Systems 2019(1):209–37. doi: 10.13154/tches.v2019.i1.209-237.spa
dc.relation.referencesPring, Martin J. 2002. “Technical Analysis Explained : The Successful Investor’s Guide to Spotting Investment Trends and Turning Points.” 641.spa
dc.relation.referencesSandoval Archila, Javier H. 2016. High Frequency Exchange Rate Prediction Using Dynamic Bayesian Networks Over The Limit Order Book Information.spa
dc.relation.referencesSharma, Ashish, Dinesh Bhuriya, and Upendra Singh. 2017. “Survey of Stock Market Prediction Using Machine Learning Approach.” Proceedings of the International Conference on Electronics, Communication and Aerospace Technology, ICECA 2017 2017-Janua:506–9. doi: 10.1109/ICECA.2017.8212715.spa
dc.relation.referencesSlapák, Martin, and Roman Neruda. 2017. Matching Subtrees in Genetic ProgrammingCrossover Operator.spa
dc.relation.referencesTellechea, Manuel, and Alexander Ramírez M. 2017. “Retorno de Un Activo Financiero.” Synergy Vision. Retrieved January 21, 2023 (https://synergy.vision/corpus/inversion/2017-08-06-retornos.html).spa
dc.relation.referencesTharp, Van K. 2006. Tener Éxito En Trading. Vol. 1.spa
dc.relation.referencesTharp, Van K. 2013. Van Tharp on Systems & Trading Fundamentals.spa
dc.relation.referencesThornto, Chris, Frank Hutte, Hoos Holger H., and Kevin Leyton-Brown. 2013. Auto-WEKA: Combined Selection and HyperparameterOptimization of Classification Algorithms.spa
dc.relation.referencesTomasini, Emilio., and Urban. Jaekle. 2009. Trading Systems : A New Approach to System Development and Portfolio Optimisation. Harriman House.spa
dc.relation.referencesWang, John, and Grace Wang. 2010. AbleTrend. Identifying and Analyzing Market Trends for Trading Success. Canada: John Wiley & Sons, Inc.spa
dc.relation.referencesWang, Zhaoxia, Seng Beng Ho, and Zhiping Lin. 2019. “Stock Market Prediction Analysis by Incorporating Social and News Opinion and Sentiment.” IEEE International Conference on Data Mining Workshops, ICDMW 2018-Novem:1375–80. doi: 10.1109/ICDMW.2018.00195.spa
dc.relation.referencesWilliams, Bill M. 1998. New Trading Dimensions: How to Profit from Chaos in Stocks, Bonds, and Commodities. John Wiley & Sons.spa
dc.relation.referencesWilliams, Larry. 1985. “The Ultimate Oscillator.” Stocks & Commodities 3(4):140–41.spa
dc.relation.referencesWilliams, Larry R. 1973. Larry R. Williams - How I Made One Million Dollars ... Last Year ... Trading Commodities.spa
dc.relation.referencesXiong, Li, and Yue Lu. 2017. “Hybrid ARIMA-BPNN Model for Time Series Prediction of the Chinese Stock Market.” 2017 3rd International Conference on Information Management, ICIM 2017 93–97. doi: 10.1109/INFOMAN.2017.7950353.spa
dc.relation.referencesZöller, Marc-André, and Marco F. Huber. 2019. “Benchmark and Survey of Automated Machine Learning Frameworks.”spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadoresspa
dc.subject.ddc330 - Economía::332 - Economía financieraspa
dc.subject.lembEconomía industrialspa
dc.subject.lembEngineering economyeng
dc.subject.lembInteligencia artificialspa
dc.subject.lembArtificial intelligenceeng
dc.subject.proposalTrading algorítmicospa
dc.subject.proposalAprendizaje Automáticosspa
dc.subject.proposalMercados financierosspa
dc.subject.proposalAuto machine learningeng
dc.subject.proposalAlgorithmic tradingeng
dc.subject.proposalMachine learningeng
dc.subject.proposalFinancial marketseng
dc.titleSistema de trading algorítmico utilizando un modelo de machine learning generado por auto machine learning como regla de filtrospa
dc.title.translatedAlgorithmic trading system using a machine learning model generated by auto machine learning machine learning as a filter ruleeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032417503.2023.pdf
Tamaño:
2.54 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Industrial

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: