Expresión de Hand2 y Nphs2 en la morfogénesis renal del embrión de pollo

dc.contributor.advisorAcosta Virgüez, Edwinspa
dc.contributor.advisorGaravito Aguilar, Zayra Vivianaspa
dc.contributor.authorTéllez Beltrán, Ana Isabelspa
dc.date.accessioned2025-04-01T19:53:30Z
dc.date.available2025-04-01T19:53:30Z
dc.date.issued2024
dc.descriptionilustraciones a color, fotografíasspa
dc.description.abstractEl riñón desarrolla un papel esencial en el mantenimiento de la homeostasis del individuo gracias a sus múltiples funciones reguladoras y excretoras. Las diversas patologías congénitas que lo afectan representan una causa importante de la enfermedad renal crónica en niños y adultos jóvenes; y en animales una causa común de glomerulopatías principalmente en perros y gatos jóvenes; por lo cual es esencial expandir los conocimientos a cerca de los genes que puedan desencadenar estas afecciones, tal como es el caso Hand2 y Nphs2 en un contexto regulador y funcional, respectivamente. Aunque se ha demostrado previamente la importancia que presenta el gen Nphs2 para el adecuado funcionamiento de los podocitos en la barrera de filtración renal y el papel esencial de Hand2 en términos de regulación morfológica del riñón, hasta el momento no se conoce su expresión en un contexto espacio temporal durante diferentes estadios del desarrollo embrionario del pollo. Por esto, el objetivo del presente estudio fue evaluar la expresión de ambos genes en un contexto espacio temporal de este modelo de investigación. Para cumplir con dicho objetivo se realizó evaluación de la expresión de ambos genes a través de RT-PCR, la cual se confirmó posteriormente con Hibridación in situ y además, en el caso de Nphs2 con inmunohistoquímica. Los resultados obtenidos fueron: La expresión de Nphs2 no es específica de los podocitos en el riñón, debido a que se detectó expresión en cabeza, corazón y extremidades, lo cual posiblemente signifique que su rol no es exclusivamente funcional de la barrera de filtración renal en el embrión de pollo. En el caso de Hand2 su expresión se detectó antes que Nphs2, lo cual refuerza su rol regulador y de diferenciación durante el desarrollo embrionario. Además, se expresó directamente en el metanefros, lo cual genera incógnitas acerca de su papel en el mesodermo intermedio y en el riñón del embrión de pollo (Texto tomado de la fuente).spa
dc.description.abstractThe kidney plays a crucial role in maintaining an individual's homeostasis through its multiple regulatory and excretory functions. Various congenital pathologies affecting it are a significant cause of chronic kidney disease in children and young adults and a common cause of glomerulopathies in young dogs and cats. Therefore, expanding knowledge about the genes that may trigger these conditions is essential, as is the case with Hand2 and Nphs2 in a regulatory and functional context, respectively. Although the Nphs2 gene has been previously shown to be essential for the proper functioning of podocytes in the renal filtration barrier and Hand2 plays a key role in the morphological regulation of the kidney, their spatial-temporal expression during different stages of chicken embryonic development remains unknown. Thus, the aim of this study was to evaluate the expression of both genes in a spatialtemporal context within this research model. To achieve this, gene expression was assessed through RT-PCR, later confirmed via in situ hybridization, and in the case of Nphs2, also through immunohistochemistry. The results showed that Nphs2 expression is not exclusive to podocytes in the kidney, as it was also detected in the head, heart, and limbs, suggesting that its role is not limited to renal filtration barrier function in the chicken embryo. Regarding Hand2, its expression was detected earlier than Nphs2, reinforcing its regulatory and differentiation role during embryonic development. Additionally, Hand2 was directly expressed in the metanephros, raising questions about its role in the intermediate mesoderm and the kidney of the chicken embryo.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Fisiologíaspa
dc.description.researchareaAnatomía y biología del desarrollospa
dc.format.extent84 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87806
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Medicinaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Medicina - Maestría en Fisiologíaspa
dc.relation.referencesAguirre Sánchez, Y., Fernando, D., & Galeano, L. (2019). Síndrome nefrótico un gran desafío en pacientes caninosspa
dc.relation.referencesAnderson, M., Kim, E. Y., Hagmann, H., Benzing, T., & Dryer, S. E. (2013). Opposing effects of podocin on the gating of podocyte TRPC6 channels evoked by membrane stretch or diacylglycerol. Am J Physiol Cell Physiol, 305, 276–289. https://doi.org/10.1152/ajpcell.00095.2013.-Gain-of-functionspa
dc.relation.referencesAngelo, S., Lohr, J., Lee, K. H., Ticho, B. S., Breitbart, R. E., Hill, S., Yost, H. J., & Srivastava, D. (2000). Conservation of sequence and expression of Xenopus and zebra®sh dHAND during cardiac, branchial arch and lateral mesoderm development. www.elsevier.com/locate/modospa
dc.relation.referencesArendt, D., & Nübler-Jung, K. (1999). Rearranging gastrulation in the name of yolk: evolution of gastrulation in yolk-rich amniote eggsspa
dc.relation.referencesArias, L., Vieco, E., & Arteta, A. (2009). Expresión de nefrina, podocina y α-actinina-4 en tejido renal de pacientes con proteinuria. SociedadEspañolaDeNefrología, 569–575.spa
dc.relation.referencesAryani, D., Masyitha, D., Akmal, M., Zahrial Helmi, T., Fahrimal, Y., & Herrialfian, H. (2021). Histology and Histomorphometry of Kidney on Domestic Chicken (Gallus gallus domesticus) During Pre and Post Hatchspa
dc.relation.referencesAttia, L., Yelin, R., & Schultheiss, T. M. (2012). Analysis of nephric duct specification in the avian embryo. Development (Cambridge), 139(22), 4143–4151. https://doi.org/10.1242/dev.085258spa
dc.relation.referencesBancroft, M., & Bellairs, R. (1974). The Onset of Differentiation in the Epiblast of the Chick Blastoderm (SEM and TEM). In Cell Tiss. Res (Vol. 9). Springer-Verlag.spa
dc.relation.referencesBarak, H., Rosenfelder, L., Schultheiss, T. M., & Reshef, R. (2005a). Cell fate specification along the anterior-posterior axis of the intermediate mesoderm. Developmental Dynamics, 232(4), 901–914. https://doi.org/10.1002/dvdy.20263spa
dc.relation.referencesBellairs, 1~, Breathnach, A. S., & Gross, M. (1975). Freeze-Fracture Replication of Junctional Complexes in Unincubated and Incubated Chick Embryos. In Cell Tiss. Res (Vol. 162). Springer-Verlag.spa
dc.relation.referencesBolin, G., & Burggren, W. W. (2013). Metanephric kidney development in the chicken embryo: Glomerular numbers, characteristics and perfusion. Comparative Biochemistry and Physiology- A Molecular and Integrative Physiology, 166(2), 343–350. 61 https://doi.org/10.1016/j.cbpa.2013.07.011spa
dc.relation.referencesBouchard, M., Souabni, A., Mandler, M., Neubüser, A., & Busslinger, M. (2002). Nephric lineage specification by Pax2 and Pax8. Genes and Development, 16(22), 2958–2970. https://doi.org/10.1101/gad.240102spa
dc.relation.referencesBoute, N., Gribouval, O., Roselli, S., Benessy, F., Lee, H., Fuchshuber, A., Dahan, K., Gubler, M.-C., Niaudet, P., & Antignac, C. (2000). NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome (Vol. 24). http://genetics.nature.com/supplemetary_info/spa
dc.relation.referencesCabrera, C. V, Alonso, M. C., & Travers, A. A. (1991). Transcriptional activation by heterodimers of the achaete-scute and daughterless gene products of Drosophila. In The EMBOJournal (Vol. 10, Issue 10).spa
dc.relation.referencesCheng, H. T., Kim, M., Valerius, M. T., Surendran, K., Schuster-Gossler, K., Gossler, A., McMahon, A. P., & Kopan, R. (2007). Notch2, but not Notch1, is required for proximal fate acquisition in the mammalian nephron. Development, 134(4), 801–811. https://doi.org/10.1242/dev.02773spa
dc.relation.referencesChoi, J. H., Jeong, S. Y., Oh, M. R., Allen, P. D., & Lee, E. H. (2020). TRPCs: Influential mediators in skeletal muscle. In Cells (Vol. 9, Issue 4). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/cells9040850spa
dc.relation.referencesChuai, M., & Weijer, C. J. (2008). The Mechanisms Underlying Primitive Streak Formation in the Chick Embryo. In Current Topics in Developmental Biology (Vol. 81, pp. 135–156). https://doi.org/10.1016/S0070-2153(07)81004-0spa
dc.relation.referencesChuai, M., Zeng, W., Yang, X., Boychenko, V., Glazier, J. A., & Weijer, C. J. (2006). Cell movement during chick primitive streak formation. Developmental Biology, 296(1), 137–149. https://doi.org/10.1016/j.ydbio.2006.04.451spa
dc.relation.referencesCirio, M. C., Hui, Z., Haldin, C. E., Cosentino, C. C., Stuckenholz, C., Chen, X., Hong, S. K., Dawid, I. B., & Hukriede, N. A. (2011). Lhx1 is required for specification of the renal progenitor cell field. PLoS ONE, 6(4). https://doi.org/10.1371/journal.pone.0018858spa
dc.relation.referencesCorkins, M. E., Achieng, M. A., DeLay, B. D., Krneta-Stankic, V., Cain, M. P., Walker, B. L., Chen, J., Lindström, N. O., & Miller, R. K. (2023). A comparative study of cellular diversity between the Xenopus pronephric and mouse metanephric nephron. Kidney International, 103(1), 77–86. https://doi.org/10.1016/j.kint.2022.07.027spa
dc.relation.referencesCostantini, F., & Kopan, R. (2010). Patterning a complex organ: Branching morphogenesis and nephron segmentation in kidney development. In Developmental Cell (Vol. 18, Issue 5, pp. 698–712). https://doi.org/10.1016/j.devcel.2010.04.008spa
dc.relation.referencesCui, C., Yang, X., Chuai, M., Glazier, J. A., & Weijer, C. J. (2005). Analysis of tissue flow patterns during primitive streak formation in the chick embryo. Developmental Biology, 284(1), 37–47. https://doi.org/10.1016/j.ydbio.2005.04.021spa
dc.relation.referencesDai, Y. S., & Cserjesi, P. (2002). The basic helix-loop-helix factor, HAND2, functions as a transcriptional activator by binding to E-boxes as a heterodimer. Journal of Biological Chemistry, 277(15), 12604–12612. https://doi.org/10.1074/jbc.M200283200spa
dc.relation.referencesDeschamps, J., & van Nes, J. (2005). Developmental regulation of the Hox genes during axial morphogenesis in the mouse. In Development (Vol. 132, Issue 13, pp. 2931–2942). https://doi.org/10.1242/dev.01897spa
dc.relation.referencesDesgrange, A., & Cereghini, S. (2015). Nephron patterning: Lessons from xenopus, zebrafish, and mouse studies. Cells, 4(3), 483–499. https://doi.org/10.3390/cells4030483spa
dc.relation.referencesDressler, G. R. (2006a). The cellular basis of kidney development. In Annual Review of Cell and Developmental Biology (Vol. 22, pp. 509–529). https://doi.org/10.1146/annurev.cellbio.22.010305.104340spa
dc.relation.referencesDressler, G. R. (2009). Cell Lineages and Stem Cells in the Embryonic Kidney. In Essentials of Stem Cell Biology, Second Edition (pp. 273–283). Elsevier. https://doi.org/10.1016/B978 0-12-374729-7.00033-0spa
dc.relation.referencesDressler, G. R., Deutsch, U., Chowdhury, K., Nornest, H. O., & Grusst, P. (1990). Pax2, a new murine paired-box-containing gene and its expression in the developing excretory system. In Development (Vol. 109).spa
dc.relation.referencesDrummond, L., Hertsment, H., Majumdar, A., Solnica, L., Shiel, A., Fishman, M., & Neuhauss, S. (1998). Early development of the zebrafish pronephros and analysis of mutations affecting pronephric function. The Company of Biologists Limited.spa
dc.relation.referencesEyal-Giladi, H. (1997). Establishment of the axis in chordates facts and speculations (T. H. U. of J. Development 124, Trans.). Jerusalem91904, 2886–2295.spa
dc.relation.referencesFernandez-Teran, M., Piedra, M., Kathiriya, I., Srivastava, D., Rodríguez-Rey, J., & Ros, M. (2000). Role of dHAND in the anterior-posterior polarization of the limb bud: Implications for the Sonic hedgehog pathway. Development (Cambridge, England), 127, 2133–2142. https://doi.org/10.1242/dev.127.10.2133spa
dc.relation.referencesFerrara, N. (1999). Role of vascular endothelial growth factor in the regulation of angiogenesis. Kidney International, 56(3), 794–814. https://doi.org/10.1046/j.1523-1755.1999.00610.xspa
dc.relation.referencesFirulli, B. A., Krawchuk, D., Centonze, V. E., Vargesson, N., Virshup, D. M., Conway, S. J., Cserjesi, P., Laufer, E., & Firulli, A. B. (2005). Altered Twist1 and Hand2 dimerization is associated with Saethre-Chotzen syndrome and limb abnormalities. Nature Genetics, 63 37(4), 373–381. https://doi.org/10.1038/ng1525spa
dc.relation.referencesFranco, H. L., Casasnovas, J., Rodríguez-Medina, J. R., & Cadilla, C. L. (2011). Redundant or separate entities?- Roles of Twist1 and Twist2 as molecular switches during gene transcription. Nucleic Acids Research, 39(4), 1177–1186. https://doi.org/10.1093/nar/gkq890spa
dc.relation.referencesFukuyo, Y., Nakamura, T., Bubenshchikova, E., Powell, R., Tsuji, T., Janknecht, R., & Obara, T. (2014). Nephrin and Podocin functions are highly conserved between the zebrafish pronephros and mammalian metanephros. Molecular Medicine Reports, 9(2), 457–465. https://doi.org/10.3892/mmr.2013.1844spa
dc.relation.referencesFunato, N., Kokubo, H., Nakamura, M., Yanagisawa, H., & Saga, Y. (2016). Specification of jaw identity by the Hand2 transcription factor. Scientific Reports, 6. https://doi.org/10.1038/srep28405spa
dc.relation.referencesGalli, A., Robay, D., Osterwalder, M., Bao, X., Bénazet, J. D., Tariq, M., Paro, R., Mackem, S., & Zeller, R. (2010). Distinct roles of Hand2 in initiating polarity and posterior Shh expression during the onset of mouse limb bud development. PLoS Genetics, 6(4). https://doi.org/10.1371/journal.pgen.1000901spa
dc.relation.referencesGangadharan, S., Silvius, D., & Xu, P. X. (2005). Eya1 acts as a critical regulator for specifying the metanephric mesenchyme. Developmental Biology, 284(2), 323–336. https://doi.org/10.1016/j.ydbio.2005.05.029spa
dc.relation.referencesGhafoory, S., Breitkopf-Heinlein, K., Li, Q., Dzieran, J., Scholl, C., Dooley, S., & Wölfl, S. (2012). A fast and efficient polymerase chain reaction-based method for the preparation of in situ hybridization probes. Histopathology, 61(2), 306–313. https://doi.org/10.1111/j.1365-2559.2012.04237.spa
dc.relation.referencesGilbert, S. (2000). PART 1. Principles of development in biologyspa
dc.relation.referencesGrinstein, M., Yelin, R., Herzlinger, D., & Schultheiss, T. M. (2013). Generation of the podocyte and tubular components of an amniote kidney: Timing of specification and a role for wnt signaling. Development (Cambridge), 140(22), 4565–4573. https://doi.org/10.1242/dev.097063spa
dc.relation.referencesHamano, Y., Grunkemeyer, J. A., Sudhakar, A., Zeisberg, M., Cosgrove, D., Morello, R., Lee, B., Sugimoto, H., & Kalluri, R. (2002). Determinants of vascular permeability in the kidney glomerulus. Journal of Biological Chemistry, 277(34), 31154–31162. https://doi.org/10.1074/jbc.M204806200spa
dc.relation.referencesHamburger, V., & Hamilton, H. L. (1992a). A SERIES O F NORMAL STAGES I N THE DEVELOPMENT OFTHECHICKEMBRYO. In DEVELOPMENTALDYNAMICS (Vol. 88, Issue 1). Hamburger, V., & Hamilton, H. L. (1992b). A series of normal stages in the development of the chick embryo. Developmental Dynamics, 195(4), 231–272. https://doi.org/10.1002/aja.1001950404spa
dc.relation.referencesHiruma, T., & Nakamura, H. (2003a). Origin and development of the pronephros in the chick embryo. In J. Anat (Vol. 203).spa
dc.relation.referencesHua, R., Yu, S., Liu, M., & Li, H. (2018). A PCR-based method for RNA probes and applications in neuroscience. Frontiers in Neuroscience, 12(MAY). https://doi.org/10.3389/fnins.2018.00266spa
dc.relation.referencesHuber, T., Schermer, B., Ulrich, R., Bartram, M., Calixto, A., Koos, F., Benzing, T., Thiele, C., Simons, M., & Haagman, H. (2006). Podocin and MEC-2 bind cholesterol to regulate. Proc Natl Acad Sci U S Aspa
dc.relation.referencesJames, R. G., & Schultheiss, T. M. (2003). Patterning of the avian intermediate mesoderm by lateral plate and axial tissues. Developmental Biology, 253(1), 109–124. https://doi.org/10.1006/dbio.2002.0863spa
dc.relation.referencesKanda, S., Tanigawa, S., Ohmori, T., Taguchi, A., Kudo, K., Suzuki, Y., Sato, Y., Hino, S., Sander, M., Perantoni, A. O., Sugano, S., Nakao, M., & Nishinakamura, R. (2014). Sall1 maintains nephron progenitors and nascent nephrons by acting as both an activator and a repressor. Journal of the American Society of Nephrology, 25(11), 2584–2595. https://doi.org/10.1681/ASN.2013080896spa
dc.relation.referencesKaragenc,’, L., Cinnamonf, Y., Ginsburg, M., & Petittei, J. N. (1996). Origin of Primordial Germ Cells in the Prestreak Chick Embryo. In DEVELOPMENTAL GENETICS (Vol. 19). Wilev liss, Inc.spa
dc.relation.referencesKocylowski, M. K., Aypek, H., Bildl, W., Helmstädter, M., Trachte, P., Dumoulin, B., Wittösch, S., Kühne, L., Aukschun, U., Teetzen, C., Kretz, O., Gaal, B., Kulik, A., Antignac, C., Mollet, G., Köttgen, A., Göcmen, B., Schwenk, J., Schulte, U., … Grahammer, F. (2022). A slit-diaphragm-associated protein network for dynamic control of renal filtration. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-33748-1spa
dc.relation.referencesKohli, V., Schumacher, J. A., Desai, S. P., Rehn, K., & Sumanas, S. (2013). Arterial and Venous Progenitors of the Major Axial Vessels Originate at Distinct Locations. Developmental Cell, 25(2), 196–206. https://doi.org/10.1016/j.devcel.2013.03.017spa
dc.relation.referencesKramer-Zucker, A. G., Olale, F., Haycraft, C. J., Yoder, B. K., Schier, A. F., & Drummond, I. A. (2005). Cilia-driven fluid flow in the zebrafish pronephros, brain and Kupffer’s vesicle is required for normal organogenesis. Development, 132(8), 1907–1921. https://doi.org/10.1242/dev.01772spa
dc.relation.referencesKuzmuk, V., Pranke, I., Rollason, R., Butler, M., Ding, W. Y., Beesley, M., Waters, A. M., Coward, R. J., Sessions, R., Tuffin, J., Foster, R. R., Mollet, G., Antignac, C., Edelman, A., Welsh, G. I., & Saleem, M. A. (2024). A small molecule chaperone rescues keratin-8 mediated trafficking of misfolded podocin to correct genetic Nephrotic Syndrome. Kidney International, 105(4), 744–758. https://doi.org/10.1016/j.kint.2023.11.006spa
dc.relation.referencesLawson, A., & Schoenwolf, G. C. (2003). Epiblast and primitive-streak origins of the endoderm in the gastrulating chick embryo. Development, 130(15), 3491–3501. https://doi.org/10.1242/dev.00579spa
dc.relation.referencesLee, M. S., Devi, S., He, J. C., & Zhou, W. (2022). A zebrafish model of congenital nephrotic syndrome of the Finnish type. Frontiers in Cell and Developmental Biology, 10. https://doi.org/10.3389/fcell.2022.976043spa
dc.relation.referencesLemaire, L., & Kesser, M. (1997). Gastrulation and homeobox genes in chick embryos. ElSevier.spa
dc.relation.referencesLittle, M. H., Brennan, J., Georgas, K., Davies, J. A., Davidson, D. R., Baldock, R. A., Beverdam, A., Bertram, J. F., Capel, B., Sheng Chiu, H., Clements, D., Cullen-McEwen, L., Fleming, J., Gilbert, T., Houghton, D., Kaufman, M. H., Kleymenova, E., Koopman, P. A., Lewis, A. G., … Yu, J. (2007). A high-resolution anatomical ontology of the developing murine genitourinary tract. http://info.cancerresearchuk.org/cancerstats/incidence/prevalence/spa
dc.relation.referencesLoipa, D., Martínez, G., Damián, M. R., & Cárdenas, S. (2015). Canales iónicos Receptores de Potencial Transitorio y su papel protagónico en la terapia analgésica Transient receptor potential ion channels and their leading role in analgesic therapy. In Revista Cubana de Investigaciones Biomédicas (Vol. 34, Issue 3). http://scielo.sld.cuspa
dc.relation.referencesMartin, C. E., & Jones, N. (2018). Nephrin signaling in the podocyte: An updated view of signal regulation at the slit diaphragm and beyond. In Frontiers in Endocrinology (Vol. 9, Issue JUN). Frontiers Media S.A. https://doi.org/10.3389/fendo.2018.00302spa
dc.relation.referencesMassari, M., & Murre, C. (2000). Helix-Loop-Helix Proteins: Regulators of Transcription in Eucaryotic Organisms. In MOLECULAR AND CELLULAR BIOLOGY (Vol. 20, Issue 2).spa
dc.relation.referencesMcCormick, M., Tamimi, R., Snider, L., Asakura, A., Bergstrom, D., & Tapscott, J. (1996). Neuro D2 and Neuro D3 Distict expression patterns and transcriptional. AmericanSocietyforMicrobiology, 16(MolecularAndCelularBiology), 5792–5800spa
dc.relation.referencesMiner, J. H. (2012). Life without nephrin: It’s for the birds. In Journal of the American Society of Nephrology (Vol. 23, Issue 3, pp. 369–371). American Society of Nephrology. https://doi.org/10.1681/ASN.2012010016spa
dc.relation.referencesMulukala Narasimha, S. K., Kar, P. P., Vadrevu, R., & Pasupulati, A. K. (2019). Intrinsically disordered regions mediate macromolecular assembly of the Slit diaphragm proteins associated with Nephrotic syndrome. Molecular Simulation, 45(8), 603–613. https://doi.org/10.1080/08927022.2019.1570508spa
dc.relation.referencesNagata, M. (2018). Glomerulogenesis and the role of endothelium. In Current Opinion in Nephrology and Hypertension (Vol. 27, Issue 3, pp. 159–164). Lippincott Williams and Wilkins. https://doi.org/10.1097/MNH.0000000000000402spa
dc.relation.referencesObara-Ishihara, T., Kuhlman, J., Niswander, L., & Herzlinger, D. (1999). The surface ectoderm is essential for nephric duct formation in intermediate. MolecularBiology, 1103–1115.spa
dc.relation.referencesOkamura, F., & Nishiyama, H. (1978). Cell and Tissue Research The Passage of Spermatozoa through the Vitelline Membrane in the Domestic Fowl, Gallus gallus. In Cell Tiss. Res (Vol. 188)spa
dc.relation.referencesPatten, B. (1971). The early embryology of the chick (P. Blakistons Son and CO & M. S. University of California, Eds.; First, Vol. 1).spa
dc.relation.referencesPatterson, L., Pembaur, M., & Potter, S. (2001). Hoxa11 and Hoxd11 regulate branching morphogenesis of the ureteric bud in the developing kidney. TheCompanyOfBiologist, 2153–2175.spa
dc.relation.referencesPerens, E. A., Garavito-Aguilar, Z. V, Guio-Vega, G. P., Peñ, K. T., Schindler, Y. L., & Yelon, D. (2016a). Hand2 inhibits kidney specification while promoting vein formation within the posterior mesoderm. https://doi.org/10.7554/eLife.19941.001spa
dc.relation.referencesPollak, M. R., & Friedman, D. J. (2020). The genetic architecture of kidney disease. Clinical Journal of the American Society of Nephrology, 15(2), 268–275. https://doi.org/10.2215/CJN.09340819spa
dc.relation.referencesPrummel, K. D., Hess, C., Nieuwenhuize, S., Parker, H. J., Rogers, K. W., Kozmikova, I., Racioppi, C., Brombacher, E. C., Czarkwiani, A., Knapp, D., Burger, S., Chiavacci, E., Shah, G., Burger, A., Huisken, J., Yun, M. H., Christiaen, L., Kozmik, Z., Müller, P., … Mosimann, C. (2019). A conserved regulatory program initiates lateral plate mesoderm emergence across chordates. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-11561-7spa
dc.relation.referencesPrummel, K. D., Nieuwenhuize, S., & Mosimann, C. (2020). The lateral plate mesoderm. Development (Cambridge), 147(12). https://doi.org/10.1242/dev.175059spa
dc.relation.referencesPsychoyos, D., & Stern, C. (1996). Fates and migratory routes of primitive streak cells in the chick embryo (College of Physicians and Surgeons of Columbia University, Trans.). TheCompanyOfBiologist, 1(1523–1534), 1523–1555.spa
dc.relation.referencesRodenbach, K. E., Schneider, M. F., Furth, S. L., Moxey-Mims, M. M., Mitsnefes, M. M., Weaver, D. J., Warady, B. A., & Schwartz, G. J. (2015). Hyperuricemia and progression of CKDin children and adolescents: The Chronic Kidney Disease in Children (CKiD) cohort study. American Journal of Kidney Diseases, 66(6), 984–992. https://doi.org/10.1053/j.ajkd.2015.06.015spa
dc.relation.referencesRodewald, R., & Karnovsky, M. J. (1974). POROUS SUBSTRUCTURE OF THE GLOMERULARSLIT DIAPHRAGM IN THE RAT ANDMOUSEspa
dc.relation.referencesRodríguez, C., Waxman, S., & Burneo, J. (2017). Particularidades anatómicas, fisiológicas y etológicas con repercusión terapéutica en medicina aviar: aparato digestivo, sistema músculo-esquelético, tegumento y otras características.spa
dc.relation.referencesRotgers, E., Jørgensen, A., & Yao, H. H. C. (2018). At the crossroads of fate-Somatic cell lineage specification in the fetal gonad. In Endocrine Reviews (Vol. 39, Issue 5, pp. 739–759). Oxford University Press. https://doi.org/10.1210/er.2018-00010spa
dc.relation.referencesSalzer, U., Mairhofer, M., & Prohaska, R. (2007). Dynamic Cell Biology Stomatin: A New Paradigm of Membrane Organization Emerges (Global Science Books, Trans.). http://symatlas.spa
dc.relation.referencesSaxon, L., & Sariola, H. (1987). Pediatric Nephrology Early organogenesis of the kidney. In Pediatr Nephrol (Vol. 1).spa
dc.relation.referencesSchoenwolf, G. C., & Dias, M. S. (1992). Mesoderm Movement and Fate During Avian Gastrulation and Neurulation. In DEVELOPMENTAL DYNAMICS (Vol. 193).spa
dc.relation.referencesSchumacher, A., Rookmaaker, M. B., Joles, J. A., Kramann, R., Nguyen, T. Q., van Griensven, M., & LaPointe, V. L. S. (2021). Defining the variety of cell types in developing and adult human kidneys by single-cell RNA sequencing. In npj Regenerative Medicine (Vol. 6, Issue 1). Nature Research. https://doi.org/10.1038/s41536-021-00156-wspa
dc.relation.referencesSchurek, E. M., Völker, L. A., Tax, J., Lamkemeyer, T., Rinschen, M. M., Ungrue, D., Kratz, J. E., Sirianant, L., Kunzelmann, K., Chalfie, M., Schermer, B., Benzing, T., & Höhne, M. (2014). A disease-causing mutation illuminates the protein membrane topology of the kidney-expressed prohibitin homology (PHB) domain protein podocin. Journal of Biological Chemistry, 289(16), 11262–11271. https://doi.org/10.1074/jbc.M113.521773spa
dc.relation.referencesSelleck, M. A. J., & Stern, C. D. (1991). Fate mapping and cell lineage analysis of Hensen’s node in the chick embryo. In Development (Vol. 112)spa
dc.relation.referencesSimons, M., Schwarz, K., Kriz, W., Miettinen, A., Reiser, J., Mundel, P., & Holthö, H. (2001). Involvement of Lipid Rafts in Nephrin Phosphorylation and Organization of the Glomerular Slit Diaphragm. In Am J Pathol (Vol. 159).spa
dc.relation.referencesSoueid-Baumgarten, S., Yelin, R., Davila, E. K., & Schultheiss, T. M. (2014). Parallel waves of inductive signaling and mesenchyme maturation regulate differentiation of the chick mesonephros. Developmental Biology, 385(1), 122–135. https://doi.org/10.1016/j.ydbio.2013.09.026spa
dc.relation.referencesSrivastava, D., Cserjesi, P., & Olson,-F-Eric N. (1995). A Subclass of bHLH Proteins Required for Cardiac Morphogenesis.spa
dc.relation.referencesSrivastava, D., & Olson, E. (1997). Knowing in your heart whats right. ElsevierScience, 7, 449–453.spa
dc.relation.referencesStark, K., Vainio, S., Vassileva. Galya, & McMahon, A. (1994). Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt4. LettersOfNaturespa
dc.relation.referencesStern, C. D., Ireland, G. W., Herrick, S. E., Gherardi, E., Gray, J., Perryman, M., & Stoker, M. (1990). Epithelial scatter factor and development of the chick embryonic axis. In Development (Vol. 110).spa
dc.relation.referencesStewart, G. W. (2004). Hemolytic disease due to membrane ion channel disorders. In Curr Opin Hematol (Vol. 11)spa
dc.relation.referencesStewart, P. (2013). PHYSIOLOGY OF THE KIDNEY (University of Sidney, Trans.).spa
dc.relation.referencesStockdale, F. E., Nikovits, W., & Christ, B. (2000). REVIEWS A PEER REVIEWED FORUM Molecular and Cellular Biology of Avian Somite Development. https://doi.org/10.1002/1097-0177(2000)9999:9999spa
dc.relation.referencesTabatabaeifar, M., Wlodkowski, T., Simic, I., Denc, H., Mollet, G., Weber, S., Moyers, J. J., Brühl, B., Randles, M. J., Lennon, R., Antignac, C., & Schaefer, F. (2017). An inducible mouse model of podocin-mutation-related nephrotic syndrome. PLoS ONE, 12(10). https://doi.org/10.1371/journal.pone.0186574spa
dc.relation.referencesTryggvason, K., Patrakka, J., & Wartiovaara, J. (2006). Hereditary Proteinuria Syndromes and Mechanisms of Proteinuria. In N Engl J Med (Vol. 354). www.nejm.orgspa
dc.relation.referencesTsang, M., Kim, R., De Caestecker, M. P., Kudoh, T., Roberts, A. B., & Dawid, I. B. (2000). Zebrafish nma Is Involved in TGF Family Signaling.spa
dc.relation.referencesUpadhyay, K., & Silverstein, D. (2014). Renal development: a complex process dependent on inductive interaction. Curr Pediatr Rev, 45(1), 19–41. https://doi.org/10.1111/j.1728 4465.2014.00374spa
dc.relation.referencesVanDusen, N. J., Casanovas, J., Vincentz, J. W., Firulli, B. A., Osterwalder, M., Lopez-Rios, J., Zeller, R., Zhou, B., Grego-Bessa, J., DeLaPompa, J., Shou, W., & Firulli, A. B. (2014). Hand2 Is an Essential Regulator for Two Notch-Dependent Functions within the Embryonic Endocardium. Cell Reports, 9(6), 2071–2083. https://doi.org/10.1016/j.celrep.2014.11.021spa
dc.relation.referencesVergara, N., & Canto-Soler, V. (2012). Rediscovering the chick embryo as a model to study retinal development. http://www.neuraldevelopment.com/content/7/1/22spa
dc.relation.referencesVize, P. D., Seufert, D. W., Carroll, T. J., & Wallingford, J. B. (1997). REVIEW Model Systems for the Study of Kidney Development: Use of the Pronephros in the Analysis of Organ Induction and Patterning. In DEVELOPMENTAL BIOLOGY (Vol. 188).spa
dc.relation.referencesVize, P., Woolf, A., & Bard, J. (2003). The Kidney: From Normal Development to Congenital Disease.spa
dc.relation.referencesVölker, L. A., Petry, M., Abdelsabour-Khalaf, M., Schweizer, H., Yusuf, F., Busch, T., Schermer, B., Benzing, T., Brand-Saberi, B., Kretz, O., Höhne, M., & Kispert, A. (2012). Comparative analysis of Neph gene expression in mouse and chicken development. Histochemistry and Cell Biology, 137(3), 355–366. https://doi.org/10.1007/s00418-011 0903-2spa
dc.relation.referencesWagner, P. (2001). La podocina y los síndromes nefróticos corticorresistentes, parte 2. ColegioMedicoPerú, 3(ActaMédicaPeruana), 130–135.spa
dc.relation.referencesWinklbauer, R., Nagel, M., Selchow, A., & Wacker, S. (1996). Mesoderm migration in the Xenopus gastrulaspa
dc.relation.referencesWu, X., & Howard, M. J. (2002). Transcripts Encoding HAND Genes Are Differentially Expressed and Regulated by BMP4 and GDNF in Developing Avian Gut. In Gene Expression (Vol. 10). www.cognizantcommunication.comspa
dc.relation.referencesYang, X., & Dormann, D. (2002). Cell Movement Patterns during Gastrulation in the Chick Are Controlled by Positive and Negative Chemotaxis Mediated by FGF4 and FGF8 (United Kingdom, Trans.). http://www.developmentalcell.spa
dc.relation.referencesZheng, Y., Wu, S., Liu, L., Guan, Y., Sun, W., & Miao C, L. (2023). Activation of HAND2-FGFR signaling pathway by lncRNA HAND2-AS1 in adenomyosis. Biol Reprod. 2024 Mar 13;110(3):490-500. Doi: 10.1093/Biolre/Ioad171. Erratum in: Biol Reprod. 2024 May 9;110(5):1040. Doi: 10.1093/Biolre/Ioae037. Erratum in: Biol Reprod. 2024 Sep 14;111(3):740. Doi: 10.1093/Biolre/Ioae091. PMID: 38084072spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/spa
dc.subject.ddc610 - Medicina y salud::612 - Fisiología humanaspa
dc.subject.ddc610 - Medicina y salud::616 - Enfermedadesspa
dc.subject.decsMorfogénesisspa
dc.subject.decsMorphogenesiseng
dc.subject.decsFenómenos Fisiológicosspa
dc.subject.decsPhysiological Phenomenaeng
dc.subject.decsHomeostasisspa
dc.subject.decsHomeostasiseng
dc.subject.decsAnomalías Congénitasspa
dc.subject.decsCongenital Abnormalitieseng
dc.subject.decsInsuficiencia Renal Crónicaspa
dc.subject.decsRenal Insufficiency, Chroniceng
dc.subject.decsGlomerulonefritis Membranoproliferativaspa
dc.subject.decsGlomerulonephritis, Membranoproliferativeeng
dc.subject.decsDesarrollo Embrionariospa
dc.subject.decsEmbryonic Developmenteng
dc.subject.proposalMorfogénesis renalspa
dc.subject.proposalPatrón de expresiónspa
dc.subject.proposalPodocitosspa
dc.subject.proposalNphs2spa
dc.subject.proposalHand2spa
dc.subject.proposalRenal morphogenesiseng
dc.subject.proposalExpression patterneng
dc.subject.proposalPodocyteseng
dc.titleExpresión de Hand2 y Nphs2 en la morfogénesis renal del embrión de pollospa
dc.title.translatedExpression of Hand2 and Nphs2 in Renal Morphogenesis of the Chicken Embryoeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Expresión de Hand2 y Nphs2 en la morfogénesis renal del embrión de pollo. Ana Isabel Téllez, 2025.pdf
Tamaño:
1.07 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Fisiología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: