Expresión de Hand2 y Nphs2 en la morfogénesis renal del embrión de pollo
dc.contributor.advisor | Acosta Virgüez, Edwin | spa |
dc.contributor.advisor | Garavito Aguilar, Zayra Viviana | spa |
dc.contributor.author | Téllez Beltrán, Ana Isabel | spa |
dc.date.accessioned | 2025-04-01T19:53:30Z | |
dc.date.available | 2025-04-01T19:53:30Z | |
dc.date.issued | 2024 | |
dc.description | ilustraciones a color, fotografías | spa |
dc.description.abstract | El riñón desarrolla un papel esencial en el mantenimiento de la homeostasis del individuo gracias a sus múltiples funciones reguladoras y excretoras. Las diversas patologías congénitas que lo afectan representan una causa importante de la enfermedad renal crónica en niños y adultos jóvenes; y en animales una causa común de glomerulopatías principalmente en perros y gatos jóvenes; por lo cual es esencial expandir los conocimientos a cerca de los genes que puedan desencadenar estas afecciones, tal como es el caso Hand2 y Nphs2 en un contexto regulador y funcional, respectivamente. Aunque se ha demostrado previamente la importancia que presenta el gen Nphs2 para el adecuado funcionamiento de los podocitos en la barrera de filtración renal y el papel esencial de Hand2 en términos de regulación morfológica del riñón, hasta el momento no se conoce su expresión en un contexto espacio temporal durante diferentes estadios del desarrollo embrionario del pollo. Por esto, el objetivo del presente estudio fue evaluar la expresión de ambos genes en un contexto espacio temporal de este modelo de investigación. Para cumplir con dicho objetivo se realizó evaluación de la expresión de ambos genes a través de RT-PCR, la cual se confirmó posteriormente con Hibridación in situ y además, en el caso de Nphs2 con inmunohistoquímica. Los resultados obtenidos fueron: La expresión de Nphs2 no es específica de los podocitos en el riñón, debido a que se detectó expresión en cabeza, corazón y extremidades, lo cual posiblemente signifique que su rol no es exclusivamente funcional de la barrera de filtración renal en el embrión de pollo. En el caso de Hand2 su expresión se detectó antes que Nphs2, lo cual refuerza su rol regulador y de diferenciación durante el desarrollo embrionario. Además, se expresó directamente en el metanefros, lo cual genera incógnitas acerca de su papel en el mesodermo intermedio y en el riñón del embrión de pollo (Texto tomado de la fuente). | spa |
dc.description.abstract | The kidney plays a crucial role in maintaining an individual's homeostasis through its multiple regulatory and excretory functions. Various congenital pathologies affecting it are a significant cause of chronic kidney disease in children and young adults and a common cause of glomerulopathies in young dogs and cats. Therefore, expanding knowledge about the genes that may trigger these conditions is essential, as is the case with Hand2 and Nphs2 in a regulatory and functional context, respectively. Although the Nphs2 gene has been previously shown to be essential for the proper functioning of podocytes in the renal filtration barrier and Hand2 plays a key role in the morphological regulation of the kidney, their spatial-temporal expression during different stages of chicken embryonic development remains unknown. Thus, the aim of this study was to evaluate the expression of both genes in a spatialtemporal context within this research model. To achieve this, gene expression was assessed through RT-PCR, later confirmed via in situ hybridization, and in the case of Nphs2, also through immunohistochemistry. The results showed that Nphs2 expression is not exclusive to podocytes in the kidney, as it was also detected in the head, heart, and limbs, suggesting that its role is not limited to renal filtration barrier function in the chicken embryo. Regarding Hand2, its expression was detected earlier than Nphs2, reinforcing its regulatory and differentiation role during embryonic development. Additionally, Hand2 was directly expressed in the metanephros, raising questions about its role in the intermediate mesoderm and the kidney of the chicken embryo. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Fisiología | spa |
dc.description.researcharea | Anatomía y biología del desarrollo | spa |
dc.format.extent | 84 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87806 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Medicina | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Medicina - Maestría en Fisiología | spa |
dc.relation.references | Aguirre Sánchez, Y., Fernando, D., & Galeano, L. (2019). Síndrome nefrótico un gran desafío en pacientes caninos | spa |
dc.relation.references | Anderson, M., Kim, E. Y., Hagmann, H., Benzing, T., & Dryer, S. E. (2013). Opposing effects of podocin on the gating of podocyte TRPC6 channels evoked by membrane stretch or diacylglycerol. Am J Physiol Cell Physiol, 305, 276–289. https://doi.org/10.1152/ajpcell.00095.2013.-Gain-of-function | spa |
dc.relation.references | Angelo, S., Lohr, J., Lee, K. H., Ticho, B. S., Breitbart, R. E., Hill, S., Yost, H. J., & Srivastava, D. (2000). Conservation of sequence and expression of Xenopus and zebra®sh dHAND during cardiac, branchial arch and lateral mesoderm development. www.elsevier.com/locate/modo | spa |
dc.relation.references | Arendt, D., & Nübler-Jung, K. (1999). Rearranging gastrulation in the name of yolk: evolution of gastrulation in yolk-rich amniote eggs | spa |
dc.relation.references | Arias, L., Vieco, E., & Arteta, A. (2009). Expresión de nefrina, podocina y α-actinina-4 en tejido renal de pacientes con proteinuria. SociedadEspañolaDeNefrología, 569–575. | spa |
dc.relation.references | Aryani, D., Masyitha, D., Akmal, M., Zahrial Helmi, T., Fahrimal, Y., & Herrialfian, H. (2021). Histology and Histomorphometry of Kidney on Domestic Chicken (Gallus gallus domesticus) During Pre and Post Hatch | spa |
dc.relation.references | Attia, L., Yelin, R., & Schultheiss, T. M. (2012). Analysis of nephric duct specification in the avian embryo. Development (Cambridge), 139(22), 4143–4151. https://doi.org/10.1242/dev.085258 | spa |
dc.relation.references | Bancroft, M., & Bellairs, R. (1974). The Onset of Differentiation in the Epiblast of the Chick Blastoderm (SEM and TEM). In Cell Tiss. Res (Vol. 9). Springer-Verlag. | spa |
dc.relation.references | Barak, H., Rosenfelder, L., Schultheiss, T. M., & Reshef, R. (2005a). Cell fate specification along the anterior-posterior axis of the intermediate mesoderm. Developmental Dynamics, 232(4), 901–914. https://doi.org/10.1002/dvdy.20263 | spa |
dc.relation.references | Bellairs, 1~, Breathnach, A. S., & Gross, M. (1975). Freeze-Fracture Replication of Junctional Complexes in Unincubated and Incubated Chick Embryos. In Cell Tiss. Res (Vol. 162). Springer-Verlag. | spa |
dc.relation.references | Bolin, G., & Burggren, W. W. (2013). Metanephric kidney development in the chicken embryo: Glomerular numbers, characteristics and perfusion. Comparative Biochemistry and Physiology- A Molecular and Integrative Physiology, 166(2), 343–350. 61 https://doi.org/10.1016/j.cbpa.2013.07.011 | spa |
dc.relation.references | Bouchard, M., Souabni, A., Mandler, M., Neubüser, A., & Busslinger, M. (2002). Nephric lineage specification by Pax2 and Pax8. Genes and Development, 16(22), 2958–2970. https://doi.org/10.1101/gad.240102 | spa |
dc.relation.references | Boute, N., Gribouval, O., Roselli, S., Benessy, F., Lee, H., Fuchshuber, A., Dahan, K., Gubler, M.-C., Niaudet, P., & Antignac, C. (2000). NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome (Vol. 24). http://genetics.nature.com/supplemetary_info/ | spa |
dc.relation.references | Cabrera, C. V, Alonso, M. C., & Travers, A. A. (1991). Transcriptional activation by heterodimers of the achaete-scute and daughterless gene products of Drosophila. In The EMBOJournal (Vol. 10, Issue 10). | spa |
dc.relation.references | Cheng, H. T., Kim, M., Valerius, M. T., Surendran, K., Schuster-Gossler, K., Gossler, A., McMahon, A. P., & Kopan, R. (2007). Notch2, but not Notch1, is required for proximal fate acquisition in the mammalian nephron. Development, 134(4), 801–811. https://doi.org/10.1242/dev.02773 | spa |
dc.relation.references | Choi, J. H., Jeong, S. Y., Oh, M. R., Allen, P. D., & Lee, E. H. (2020). TRPCs: Influential mediators in skeletal muscle. In Cells (Vol. 9, Issue 4). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/cells9040850 | spa |
dc.relation.references | Chuai, M., & Weijer, C. J. (2008). The Mechanisms Underlying Primitive Streak Formation in the Chick Embryo. In Current Topics in Developmental Biology (Vol. 81, pp. 135–156). https://doi.org/10.1016/S0070-2153(07)81004-0 | spa |
dc.relation.references | Chuai, M., Zeng, W., Yang, X., Boychenko, V., Glazier, J. A., & Weijer, C. J. (2006). Cell movement during chick primitive streak formation. Developmental Biology, 296(1), 137–149. https://doi.org/10.1016/j.ydbio.2006.04.451 | spa |
dc.relation.references | Cirio, M. C., Hui, Z., Haldin, C. E., Cosentino, C. C., Stuckenholz, C., Chen, X., Hong, S. K., Dawid, I. B., & Hukriede, N. A. (2011). Lhx1 is required for specification of the renal progenitor cell field. PLoS ONE, 6(4). https://doi.org/10.1371/journal.pone.0018858 | spa |
dc.relation.references | Corkins, M. E., Achieng, M. A., DeLay, B. D., Krneta-Stankic, V., Cain, M. P., Walker, B. L., Chen, J., Lindström, N. O., & Miller, R. K. (2023). A comparative study of cellular diversity between the Xenopus pronephric and mouse metanephric nephron. Kidney International, 103(1), 77–86. https://doi.org/10.1016/j.kint.2022.07.027 | spa |
dc.relation.references | Costantini, F., & Kopan, R. (2010). Patterning a complex organ: Branching morphogenesis and nephron segmentation in kidney development. In Developmental Cell (Vol. 18, Issue 5, pp. 698–712). https://doi.org/10.1016/j.devcel.2010.04.008 | spa |
dc.relation.references | Cui, C., Yang, X., Chuai, M., Glazier, J. A., & Weijer, C. J. (2005). Analysis of tissue flow patterns during primitive streak formation in the chick embryo. Developmental Biology, 284(1), 37–47. https://doi.org/10.1016/j.ydbio.2005.04.021 | spa |
dc.relation.references | Dai, Y. S., & Cserjesi, P. (2002). The basic helix-loop-helix factor, HAND2, functions as a transcriptional activator by binding to E-boxes as a heterodimer. Journal of Biological Chemistry, 277(15), 12604–12612. https://doi.org/10.1074/jbc.M200283200 | spa |
dc.relation.references | Deschamps, J., & van Nes, J. (2005). Developmental regulation of the Hox genes during axial morphogenesis in the mouse. In Development (Vol. 132, Issue 13, pp. 2931–2942). https://doi.org/10.1242/dev.01897 | spa |
dc.relation.references | Desgrange, A., & Cereghini, S. (2015). Nephron patterning: Lessons from xenopus, zebrafish, and mouse studies. Cells, 4(3), 483–499. https://doi.org/10.3390/cells4030483 | spa |
dc.relation.references | Dressler, G. R. (2006a). The cellular basis of kidney development. In Annual Review of Cell and Developmental Biology (Vol. 22, pp. 509–529). https://doi.org/10.1146/annurev.cellbio.22.010305.104340 | spa |
dc.relation.references | Dressler, G. R. (2009). Cell Lineages and Stem Cells in the Embryonic Kidney. In Essentials of Stem Cell Biology, Second Edition (pp. 273–283). Elsevier. https://doi.org/10.1016/B978 0-12-374729-7.00033-0 | spa |
dc.relation.references | Dressler, G. R., Deutsch, U., Chowdhury, K., Nornest, H. O., & Grusst, P. (1990). Pax2, a new murine paired-box-containing gene and its expression in the developing excretory system. In Development (Vol. 109). | spa |
dc.relation.references | Drummond, L., Hertsment, H., Majumdar, A., Solnica, L., Shiel, A., Fishman, M., & Neuhauss, S. (1998). Early development of the zebrafish pronephros and analysis of mutations affecting pronephric function. The Company of Biologists Limited. | spa |
dc.relation.references | Eyal-Giladi, H. (1997). Establishment of the axis in chordates facts and speculations (T. H. U. of J. Development 124, Trans.). Jerusalem91904, 2886–2295. | spa |
dc.relation.references | Fernandez-Teran, M., Piedra, M., Kathiriya, I., Srivastava, D., Rodríguez-Rey, J., & Ros, M. (2000). Role of dHAND in the anterior-posterior polarization of the limb bud: Implications for the Sonic hedgehog pathway. Development (Cambridge, England), 127, 2133–2142. https://doi.org/10.1242/dev.127.10.2133 | spa |
dc.relation.references | Ferrara, N. (1999). Role of vascular endothelial growth factor in the regulation of angiogenesis. Kidney International, 56(3), 794–814. https://doi.org/10.1046/j.1523-1755.1999.00610.x | spa |
dc.relation.references | Firulli, B. A., Krawchuk, D., Centonze, V. E., Vargesson, N., Virshup, D. M., Conway, S. J., Cserjesi, P., Laufer, E., & Firulli, A. B. (2005). Altered Twist1 and Hand2 dimerization is associated with Saethre-Chotzen syndrome and limb abnormalities. Nature Genetics, 63 37(4), 373–381. https://doi.org/10.1038/ng1525 | spa |
dc.relation.references | Franco, H. L., Casasnovas, J., Rodríguez-Medina, J. R., & Cadilla, C. L. (2011). Redundant or separate entities?- Roles of Twist1 and Twist2 as molecular switches during gene transcription. Nucleic Acids Research, 39(4), 1177–1186. https://doi.org/10.1093/nar/gkq890 | spa |
dc.relation.references | Fukuyo, Y., Nakamura, T., Bubenshchikova, E., Powell, R., Tsuji, T., Janknecht, R., & Obara, T. (2014). Nephrin and Podocin functions are highly conserved between the zebrafish pronephros and mammalian metanephros. Molecular Medicine Reports, 9(2), 457–465. https://doi.org/10.3892/mmr.2013.1844 | spa |
dc.relation.references | Funato, N., Kokubo, H., Nakamura, M., Yanagisawa, H., & Saga, Y. (2016). Specification of jaw identity by the Hand2 transcription factor. Scientific Reports, 6. https://doi.org/10.1038/srep28405 | spa |
dc.relation.references | Galli, A., Robay, D., Osterwalder, M., Bao, X., Bénazet, J. D., Tariq, M., Paro, R., Mackem, S., & Zeller, R. (2010). Distinct roles of Hand2 in initiating polarity and posterior Shh expression during the onset of mouse limb bud development. PLoS Genetics, 6(4). https://doi.org/10.1371/journal.pgen.1000901 | spa |
dc.relation.references | Gangadharan, S., Silvius, D., & Xu, P. X. (2005). Eya1 acts as a critical regulator for specifying the metanephric mesenchyme. Developmental Biology, 284(2), 323–336. https://doi.org/10.1016/j.ydbio.2005.05.029 | spa |
dc.relation.references | Ghafoory, S., Breitkopf-Heinlein, K., Li, Q., Dzieran, J., Scholl, C., Dooley, S., & Wölfl, S. (2012). A fast and efficient polymerase chain reaction-based method for the preparation of in situ hybridization probes. Histopathology, 61(2), 306–313. https://doi.org/10.1111/j.1365-2559.2012.04237. | spa |
dc.relation.references | Gilbert, S. (2000). PART 1. Principles of development in biology | spa |
dc.relation.references | Grinstein, M., Yelin, R., Herzlinger, D., & Schultheiss, T. M. (2013). Generation of the podocyte and tubular components of an amniote kidney: Timing of specification and a role for wnt signaling. Development (Cambridge), 140(22), 4565–4573. https://doi.org/10.1242/dev.097063 | spa |
dc.relation.references | Hamano, Y., Grunkemeyer, J. A., Sudhakar, A., Zeisberg, M., Cosgrove, D., Morello, R., Lee, B., Sugimoto, H., & Kalluri, R. (2002). Determinants of vascular permeability in the kidney glomerulus. Journal of Biological Chemistry, 277(34), 31154–31162. https://doi.org/10.1074/jbc.M204806200 | spa |
dc.relation.references | Hamburger, V., & Hamilton, H. L. (1992a). A SERIES O F NORMAL STAGES I N THE DEVELOPMENT OFTHECHICKEMBRYO. In DEVELOPMENTALDYNAMICS (Vol. 88, Issue 1). Hamburger, V., & Hamilton, H. L. (1992b). A series of normal stages in the development of the chick embryo. Developmental Dynamics, 195(4), 231–272. https://doi.org/10.1002/aja.1001950404 | spa |
dc.relation.references | Hiruma, T., & Nakamura, H. (2003a). Origin and development of the pronephros in the chick embryo. In J. Anat (Vol. 203). | spa |
dc.relation.references | Hua, R., Yu, S., Liu, M., & Li, H. (2018). A PCR-based method for RNA probes and applications in neuroscience. Frontiers in Neuroscience, 12(MAY). https://doi.org/10.3389/fnins.2018.00266 | spa |
dc.relation.references | Huber, T., Schermer, B., Ulrich, R., Bartram, M., Calixto, A., Koos, F., Benzing, T., Thiele, C., Simons, M., & Haagman, H. (2006). Podocin and MEC-2 bind cholesterol to regulate. Proc Natl Acad Sci U S A | spa |
dc.relation.references | James, R. G., & Schultheiss, T. M. (2003). Patterning of the avian intermediate mesoderm by lateral plate and axial tissues. Developmental Biology, 253(1), 109–124. https://doi.org/10.1006/dbio.2002.0863 | spa |
dc.relation.references | Kanda, S., Tanigawa, S., Ohmori, T., Taguchi, A., Kudo, K., Suzuki, Y., Sato, Y., Hino, S., Sander, M., Perantoni, A. O., Sugano, S., Nakao, M., & Nishinakamura, R. (2014). Sall1 maintains nephron progenitors and nascent nephrons by acting as both an activator and a repressor. Journal of the American Society of Nephrology, 25(11), 2584–2595. https://doi.org/10.1681/ASN.2013080896 | spa |
dc.relation.references | Karagenc,’, L., Cinnamonf, Y., Ginsburg, M., & Petittei, J. N. (1996). Origin of Primordial Germ Cells in the Prestreak Chick Embryo. In DEVELOPMENTAL GENETICS (Vol. 19). Wilev liss, Inc. | spa |
dc.relation.references | Kocylowski, M. K., Aypek, H., Bildl, W., Helmstädter, M., Trachte, P., Dumoulin, B., Wittösch, S., Kühne, L., Aukschun, U., Teetzen, C., Kretz, O., Gaal, B., Kulik, A., Antignac, C., Mollet, G., Köttgen, A., Göcmen, B., Schwenk, J., Schulte, U., … Grahammer, F. (2022). A slit-diaphragm-associated protein network for dynamic control of renal filtration. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-33748-1 | spa |
dc.relation.references | Kohli, V., Schumacher, J. A., Desai, S. P., Rehn, K., & Sumanas, S. (2013). Arterial and Venous Progenitors of the Major Axial Vessels Originate at Distinct Locations. Developmental Cell, 25(2), 196–206. https://doi.org/10.1016/j.devcel.2013.03.017 | spa |
dc.relation.references | Kramer-Zucker, A. G., Olale, F., Haycraft, C. J., Yoder, B. K., Schier, A. F., & Drummond, I. A. (2005). Cilia-driven fluid flow in the zebrafish pronephros, brain and Kupffer’s vesicle is required for normal organogenesis. Development, 132(8), 1907–1921. https://doi.org/10.1242/dev.01772 | spa |
dc.relation.references | Kuzmuk, V., Pranke, I., Rollason, R., Butler, M., Ding, W. Y., Beesley, M., Waters, A. M., Coward, R. J., Sessions, R., Tuffin, J., Foster, R. R., Mollet, G., Antignac, C., Edelman, A., Welsh, G. I., & Saleem, M. A. (2024). A small molecule chaperone rescues keratin-8 mediated trafficking of misfolded podocin to correct genetic Nephrotic Syndrome. Kidney International, 105(4), 744–758. https://doi.org/10.1016/j.kint.2023.11.006 | spa |
dc.relation.references | Lawson, A., & Schoenwolf, G. C. (2003). Epiblast and primitive-streak origins of the endoderm in the gastrulating chick embryo. Development, 130(15), 3491–3501. https://doi.org/10.1242/dev.00579 | spa |
dc.relation.references | Lee, M. S., Devi, S., He, J. C., & Zhou, W. (2022). A zebrafish model of congenital nephrotic syndrome of the Finnish type. Frontiers in Cell and Developmental Biology, 10. https://doi.org/10.3389/fcell.2022.976043 | spa |
dc.relation.references | Lemaire, L., & Kesser, M. (1997). Gastrulation and homeobox genes in chick embryos. ElSevier. | spa |
dc.relation.references | Little, M. H., Brennan, J., Georgas, K., Davies, J. A., Davidson, D. R., Baldock, R. A., Beverdam, A., Bertram, J. F., Capel, B., Sheng Chiu, H., Clements, D., Cullen-McEwen, L., Fleming, J., Gilbert, T., Houghton, D., Kaufman, M. H., Kleymenova, E., Koopman, P. A., Lewis, A. G., … Yu, J. (2007). A high-resolution anatomical ontology of the developing murine genitourinary tract. http://info.cancerresearchuk.org/cancerstats/incidence/prevalence/ | spa |
dc.relation.references | Loipa, D., Martínez, G., Damián, M. R., & Cárdenas, S. (2015). Canales iónicos Receptores de Potencial Transitorio y su papel protagónico en la terapia analgésica Transient receptor potential ion channels and their leading role in analgesic therapy. In Revista Cubana de Investigaciones Biomédicas (Vol. 34, Issue 3). http://scielo.sld.cu | spa |
dc.relation.references | Martin, C. E., & Jones, N. (2018). Nephrin signaling in the podocyte: An updated view of signal regulation at the slit diaphragm and beyond. In Frontiers in Endocrinology (Vol. 9, Issue JUN). Frontiers Media S.A. https://doi.org/10.3389/fendo.2018.00302 | spa |
dc.relation.references | Massari, M., & Murre, C. (2000). Helix-Loop-Helix Proteins: Regulators of Transcription in Eucaryotic Organisms. In MOLECULAR AND CELLULAR BIOLOGY (Vol. 20, Issue 2). | spa |
dc.relation.references | McCormick, M., Tamimi, R., Snider, L., Asakura, A., Bergstrom, D., & Tapscott, J. (1996). Neuro D2 and Neuro D3 Distict expression patterns and transcriptional. AmericanSocietyforMicrobiology, 16(MolecularAndCelularBiology), 5792–5800 | spa |
dc.relation.references | Miner, J. H. (2012). Life without nephrin: It’s for the birds. In Journal of the American Society of Nephrology (Vol. 23, Issue 3, pp. 369–371). American Society of Nephrology. https://doi.org/10.1681/ASN.2012010016 | spa |
dc.relation.references | Mulukala Narasimha, S. K., Kar, P. P., Vadrevu, R., & Pasupulati, A. K. (2019). Intrinsically disordered regions mediate macromolecular assembly of the Slit diaphragm proteins associated with Nephrotic syndrome. Molecular Simulation, 45(8), 603–613. https://doi.org/10.1080/08927022.2019.1570508 | spa |
dc.relation.references | Nagata, M. (2018). Glomerulogenesis and the role of endothelium. In Current Opinion in Nephrology and Hypertension (Vol. 27, Issue 3, pp. 159–164). Lippincott Williams and Wilkins. https://doi.org/10.1097/MNH.0000000000000402 | spa |
dc.relation.references | Obara-Ishihara, T., Kuhlman, J., Niswander, L., & Herzlinger, D. (1999). The surface ectoderm is essential for nephric duct formation in intermediate. MolecularBiology, 1103–1115. | spa |
dc.relation.references | Okamura, F., & Nishiyama, H. (1978). Cell and Tissue Research The Passage of Spermatozoa through the Vitelline Membrane in the Domestic Fowl, Gallus gallus. In Cell Tiss. Res (Vol. 188) | spa |
dc.relation.references | Patten, B. (1971). The early embryology of the chick (P. Blakistons Son and CO & M. S. University of California, Eds.; First, Vol. 1). | spa |
dc.relation.references | Patterson, L., Pembaur, M., & Potter, S. (2001). Hoxa11 and Hoxd11 regulate branching morphogenesis of the ureteric bud in the developing kidney. TheCompanyOfBiologist, 2153–2175. | spa |
dc.relation.references | Perens, E. A., Garavito-Aguilar, Z. V, Guio-Vega, G. P., Peñ, K. T., Schindler, Y. L., & Yelon, D. (2016a). Hand2 inhibits kidney specification while promoting vein formation within the posterior mesoderm. https://doi.org/10.7554/eLife.19941.001 | spa |
dc.relation.references | Pollak, M. R., & Friedman, D. J. (2020). The genetic architecture of kidney disease. Clinical Journal of the American Society of Nephrology, 15(2), 268–275. https://doi.org/10.2215/CJN.09340819 | spa |
dc.relation.references | Prummel, K. D., Hess, C., Nieuwenhuize, S., Parker, H. J., Rogers, K. W., Kozmikova, I., Racioppi, C., Brombacher, E. C., Czarkwiani, A., Knapp, D., Burger, S., Chiavacci, E., Shah, G., Burger, A., Huisken, J., Yun, M. H., Christiaen, L., Kozmik, Z., Müller, P., … Mosimann, C. (2019). A conserved regulatory program initiates lateral plate mesoderm emergence across chordates. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-11561-7 | spa |
dc.relation.references | Prummel, K. D., Nieuwenhuize, S., & Mosimann, C. (2020). The lateral plate mesoderm. Development (Cambridge), 147(12). https://doi.org/10.1242/dev.175059 | spa |
dc.relation.references | Psychoyos, D., & Stern, C. (1996). Fates and migratory routes of primitive streak cells in the chick embryo (College of Physicians and Surgeons of Columbia University, Trans.). TheCompanyOfBiologist, 1(1523–1534), 1523–1555. | spa |
dc.relation.references | Rodenbach, K. E., Schneider, M. F., Furth, S. L., Moxey-Mims, M. M., Mitsnefes, M. M., Weaver, D. J., Warady, B. A., & Schwartz, G. J. (2015). Hyperuricemia and progression of CKDin children and adolescents: The Chronic Kidney Disease in Children (CKiD) cohort study. American Journal of Kidney Diseases, 66(6), 984–992. https://doi.org/10.1053/j.ajkd.2015.06.015 | spa |
dc.relation.references | Rodewald, R., & Karnovsky, M. J. (1974). POROUS SUBSTRUCTURE OF THE GLOMERULARSLIT DIAPHRAGM IN THE RAT ANDMOUSE | spa |
dc.relation.references | Rodríguez, C., Waxman, S., & Burneo, J. (2017). Particularidades anatómicas, fisiológicas y etológicas con repercusión terapéutica en medicina aviar: aparato digestivo, sistema músculo-esquelético, tegumento y otras características. | spa |
dc.relation.references | Rotgers, E., Jørgensen, A., & Yao, H. H. C. (2018). At the crossroads of fate-Somatic cell lineage specification in the fetal gonad. In Endocrine Reviews (Vol. 39, Issue 5, pp. 739–759). Oxford University Press. https://doi.org/10.1210/er.2018-00010 | spa |
dc.relation.references | Salzer, U., Mairhofer, M., & Prohaska, R. (2007). Dynamic Cell Biology Stomatin: A New Paradigm of Membrane Organization Emerges (Global Science Books, Trans.). http://symatlas. | spa |
dc.relation.references | Saxon, L., & Sariola, H. (1987). Pediatric Nephrology Early organogenesis of the kidney. In Pediatr Nephrol (Vol. 1). | spa |
dc.relation.references | Schoenwolf, G. C., & Dias, M. S. (1992). Mesoderm Movement and Fate During Avian Gastrulation and Neurulation. In DEVELOPMENTAL DYNAMICS (Vol. 193). | spa |
dc.relation.references | Schumacher, A., Rookmaaker, M. B., Joles, J. A., Kramann, R., Nguyen, T. Q., van Griensven, M., & LaPointe, V. L. S. (2021). Defining the variety of cell types in developing and adult human kidneys by single-cell RNA sequencing. In npj Regenerative Medicine (Vol. 6, Issue 1). Nature Research. https://doi.org/10.1038/s41536-021-00156-w | spa |
dc.relation.references | Schurek, E. M., Völker, L. A., Tax, J., Lamkemeyer, T., Rinschen, M. M., Ungrue, D., Kratz, J. E., Sirianant, L., Kunzelmann, K., Chalfie, M., Schermer, B., Benzing, T., & Höhne, M. (2014). A disease-causing mutation illuminates the protein membrane topology of the kidney-expressed prohibitin homology (PHB) domain protein podocin. Journal of Biological Chemistry, 289(16), 11262–11271. https://doi.org/10.1074/jbc.M113.521773 | spa |
dc.relation.references | Selleck, M. A. J., & Stern, C. D. (1991). Fate mapping and cell lineage analysis of Hensen’s node in the chick embryo. In Development (Vol. 112) | spa |
dc.relation.references | Simons, M., Schwarz, K., Kriz, W., Miettinen, A., Reiser, J., Mundel, P., & Holthö, H. (2001). Involvement of Lipid Rafts in Nephrin Phosphorylation and Organization of the Glomerular Slit Diaphragm. In Am J Pathol (Vol. 159). | spa |
dc.relation.references | Soueid-Baumgarten, S., Yelin, R., Davila, E. K., & Schultheiss, T. M. (2014). Parallel waves of inductive signaling and mesenchyme maturation regulate differentiation of the chick mesonephros. Developmental Biology, 385(1), 122–135. https://doi.org/10.1016/j.ydbio.2013.09.026 | spa |
dc.relation.references | Srivastava, D., Cserjesi, P., & Olson,-F-Eric N. (1995). A Subclass of bHLH Proteins Required for Cardiac Morphogenesis. | spa |
dc.relation.references | Srivastava, D., & Olson, E. (1997). Knowing in your heart whats right. ElsevierScience, 7, 449–453. | spa |
dc.relation.references | Stark, K., Vainio, S., Vassileva. Galya, & McMahon, A. (1994). Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt4. LettersOfNature | spa |
dc.relation.references | Stern, C. D., Ireland, G. W., Herrick, S. E., Gherardi, E., Gray, J., Perryman, M., & Stoker, M. (1990). Epithelial scatter factor and development of the chick embryonic axis. In Development (Vol. 110). | spa |
dc.relation.references | Stewart, G. W. (2004). Hemolytic disease due to membrane ion channel disorders. In Curr Opin Hematol (Vol. 11) | spa |
dc.relation.references | Stewart, P. (2013). PHYSIOLOGY OF THE KIDNEY (University of Sidney, Trans.). | spa |
dc.relation.references | Stockdale, F. E., Nikovits, W., & Christ, B. (2000). REVIEWS A PEER REVIEWED FORUM Molecular and Cellular Biology of Avian Somite Development. https://doi.org/10.1002/1097-0177(2000)9999:9999 | spa |
dc.relation.references | Tabatabaeifar, M., Wlodkowski, T., Simic, I., Denc, H., Mollet, G., Weber, S., Moyers, J. J., Brühl, B., Randles, M. J., Lennon, R., Antignac, C., & Schaefer, F. (2017). An inducible mouse model of podocin-mutation-related nephrotic syndrome. PLoS ONE, 12(10). https://doi.org/10.1371/journal.pone.0186574 | spa |
dc.relation.references | Tryggvason, K., Patrakka, J., & Wartiovaara, J. (2006). Hereditary Proteinuria Syndromes and Mechanisms of Proteinuria. In N Engl J Med (Vol. 354). www.nejm.org | spa |
dc.relation.references | Tsang, M., Kim, R., De Caestecker, M. P., Kudoh, T., Roberts, A. B., & Dawid, I. B. (2000). Zebrafish nma Is Involved in TGF Family Signaling. | spa |
dc.relation.references | Upadhyay, K., & Silverstein, D. (2014). Renal development: a complex process dependent on inductive interaction. Curr Pediatr Rev, 45(1), 19–41. https://doi.org/10.1111/j.1728 4465.2014.00374 | spa |
dc.relation.references | VanDusen, N. J., Casanovas, J., Vincentz, J. W., Firulli, B. A., Osterwalder, M., Lopez-Rios, J., Zeller, R., Zhou, B., Grego-Bessa, J., DeLaPompa, J., Shou, W., & Firulli, A. B. (2014). Hand2 Is an Essential Regulator for Two Notch-Dependent Functions within the Embryonic Endocardium. Cell Reports, 9(6), 2071–2083. https://doi.org/10.1016/j.celrep.2014.11.021 | spa |
dc.relation.references | Vergara, N., & Canto-Soler, V. (2012). Rediscovering the chick embryo as a model to study retinal development. http://www.neuraldevelopment.com/content/7/1/22 | spa |
dc.relation.references | Vize, P. D., Seufert, D. W., Carroll, T. J., & Wallingford, J. B. (1997). REVIEW Model Systems for the Study of Kidney Development: Use of the Pronephros in the Analysis of Organ Induction and Patterning. In DEVELOPMENTAL BIOLOGY (Vol. 188). | spa |
dc.relation.references | Vize, P., Woolf, A., & Bard, J. (2003). The Kidney: From Normal Development to Congenital Disease. | spa |
dc.relation.references | Völker, L. A., Petry, M., Abdelsabour-Khalaf, M., Schweizer, H., Yusuf, F., Busch, T., Schermer, B., Benzing, T., Brand-Saberi, B., Kretz, O., Höhne, M., & Kispert, A. (2012). Comparative analysis of Neph gene expression in mouse and chicken development. Histochemistry and Cell Biology, 137(3), 355–366. https://doi.org/10.1007/s00418-011 0903-2 | spa |
dc.relation.references | Wagner, P. (2001). La podocina y los síndromes nefróticos corticorresistentes, parte 2. ColegioMedicoPerú, 3(ActaMédicaPeruana), 130–135. | spa |
dc.relation.references | Winklbauer, R., Nagel, M., Selchow, A., & Wacker, S. (1996). Mesoderm migration in the Xenopus gastrula | spa |
dc.relation.references | Wu, X., & Howard, M. J. (2002). Transcripts Encoding HAND Genes Are Differentially Expressed and Regulated by BMP4 and GDNF in Developing Avian Gut. In Gene Expression (Vol. 10). www.cognizantcommunication.com | spa |
dc.relation.references | Yang, X., & Dormann, D. (2002). Cell Movement Patterns during Gastrulation in the Chick Are Controlled by Positive and Negative Chemotaxis Mediated by FGF4 and FGF8 (United Kingdom, Trans.). http://www.developmentalcell. | spa |
dc.relation.references | Zheng, Y., Wu, S., Liu, L., Guan, Y., Sun, W., & Miao C, L. (2023). Activation of HAND2-FGFR signaling pathway by lncRNA HAND2-AS1 in adenomyosis. Biol Reprod. 2024 Mar 13;110(3):490-500. Doi: 10.1093/Biolre/Ioad171. Erratum in: Biol Reprod. 2024 May 9;110(5):1040. Doi: 10.1093/Biolre/Ioae037. Erratum in: Biol Reprod. 2024 Sep 14;111(3):740. Doi: 10.1093/Biolre/Ioae091. PMID: 38084072 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-CompartirIgual 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-sa/4.0/ | spa |
dc.subject.ddc | 610 - Medicina y salud::612 - Fisiología humana | spa |
dc.subject.ddc | 610 - Medicina y salud::616 - Enfermedades | spa |
dc.subject.decs | Morfogénesis | spa |
dc.subject.decs | Morphogenesis | eng |
dc.subject.decs | Fenómenos Fisiológicos | spa |
dc.subject.decs | Physiological Phenomena | eng |
dc.subject.decs | Homeostasis | spa |
dc.subject.decs | Homeostasis | eng |
dc.subject.decs | Anomalías Congénitas | spa |
dc.subject.decs | Congenital Abnormalities | eng |
dc.subject.decs | Insuficiencia Renal Crónica | spa |
dc.subject.decs | Renal Insufficiency, Chronic | eng |
dc.subject.decs | Glomerulonefritis Membranoproliferativa | spa |
dc.subject.decs | Glomerulonephritis, Membranoproliferative | eng |
dc.subject.decs | Desarrollo Embrionario | spa |
dc.subject.decs | Embryonic Development | eng |
dc.subject.proposal | Morfogénesis renal | spa |
dc.subject.proposal | Patrón de expresión | spa |
dc.subject.proposal | Podocitos | spa |
dc.subject.proposal | Nphs2 | spa |
dc.subject.proposal | Hand2 | spa |
dc.subject.proposal | Renal morphogenesis | eng |
dc.subject.proposal | Expression pattern | eng |
dc.subject.proposal | Podocytes | eng |
dc.title | Expresión de Hand2 y Nphs2 en la morfogénesis renal del embrión de pollo | spa |
dc.title.translated | Expression of Hand2 and Nphs2 in Renal Morphogenesis of the Chicken Embryo | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Expresión de Hand2 y Nphs2 en la morfogénesis renal del embrión de pollo. Ana Isabel Téllez, 2025.pdf
- Tamaño:
- 1.07 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Fisiología
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: