Efecto de la inclusión de extractos oleosos de polen apícola en la dieta de gallinas ponedoras sobre el aporte de carotenoides, estabilidad y factores de calidad del huevo

dc.contributor.advisorSuárez Mahecha, Héctorspa
dc.contributor.authorViloria Pérez, Nataliaspa
dc.contributor.orcid000000021731575Xspa
dc.contributor.researchgroupBioconservación de alimentosspa
dc.date.accessioned2024-01-22T19:38:16Z
dc.date.available2024-01-22T19:38:16Z
dc.date.issued2023-11
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstractLa aplicación de aditivos procedentes de fuentes de origen natural ha generado un amplio desarrollo tecnológico en las diferentes industrias, especialmente en la alimentaria debido a la tendencia del consumidor por elegir productos naturales y/o libres de agentes químicos enriquecidos con diversos compuestos que pueden beneficiar la salud; razón que ha llevado a la búsqueda de nuevas fuentes vegetales y diferentes metodologías de extracción de dichos componentes. Con base en este contexto, el presente estudio analiza el potencial de extractos oleosos de polen apícola; como matriz natural, para ser utilizado por la industria avícola como insumo en la dieta de gallinas ponedoras, para lo cual se analizaron diferentes variables nutricionales y fisicoquímicas de los huevos obtenidos, a partir de la alimentación con diferentes fuentes y niveles de inclusión de carotenoides. Como fase inicial del presente estudio se realizó la selección de gránulos amarillo/naranja de diferentes muestras de polen apícola procedentes de siete municipios de la región Cundi-Boyacense de Colombia, para luego ser sometidos a proceso de extracción mediante la técnica de fluidos supercríticos (SFE), en la cual se utilizó CO2 como solvente, con la finalidad de obtener un extracto oleoso rico en carotenoides. Para el proceso de selección se sometieron las muestras de polen a tamizaje, y se identificaron porcentajes de rendimiento de polen amarillo/naranja entre 82 – 90%. Durante la extracción se mantuvieron condiciones controladas de presión (28 MPa), temperatura (60 °C), flujo de gas (5 L/min) y tiempo (6h). Con estas condiciones se logró un porcentaje de rendimiento en masa del extracto obtenido de entre 3 – 5%. Con respecto al Contenido de Carotenoides Totales (CCT);principal parámetro analizado para caracterizar las muestras de polen entero y extracto oleoso, se obtuvieron contenidos para el extracto de 385 a 6942 µg β-caroteno/g de extracto, lo que representa un aumento de concentración de carotenoides mayor al 100% en la mayoría de las muestras, comparado con el CCT inicial de las muestras de polen que presentaron valores de entre 119 a 2140 µg β- caroteno/g de polen. Las muestras con los mejores resultados fueron las recolectadas en los municipios de Guatavita, Tenjo y Facatativá. Para la segunda fase del proyecto que consistió en la elaboración de diferentes dietas experimentales para las gallinas ponedoras con diferentes fuentes y niveles de inclusión de carotenoides, se utilizaron 40 gallinas de postura de la estirpe Hi-Lyne Brown, de 52 semanas de edad, seleccionadas aleatoriamente de un galpon de 1100 gallinas, divididas en 5 tratamientos con 2 replicas cada uno, cada replica de 4 aves. La duración del experimento fué de 8 semanas (previo periodo de acostumbramiento). El extracto de polen apícola para esta fase se extrajo utilizando equipo escala industrial Modelo LHO-220-50-19 con sistema de recirculación de CO2, el polen utilizado en esta fase correspondió al procedente del municipio de Guatavita (se escogió esta matriz con base en la caracterización de CCT analizada en la fase inicial de la investigación). El rendimiento obtenido para el contenido de extracto concentrado en carotenoides fue de 3%, para un total de 1307g de extracto de polen apícola. Para la alimentación de las gallinas se elaboraron cinco dietas experimentas donde se varió la fuente y el nivel de inclusión de carotenoides; TT1: Control negativo (C-), TT2: Control positivo – colorante comercial (40mg/kg de alimento) (C+), TT3: 25g/kg de alimento de extracto oleoso de polen apícola, obtenido por fluidos supercríticos (EO) TT4: Inclusión de polen apícola entero seleccionando gránulos de color naranja-amarillo (210g/kg de alimento) (PE), TT5: Colorante natural a partir de flor de Tagetes (200mg/kg de alimento) (TT). En el análisis de las diferentes variables para los huevos obtenidos en los tratamientos se obtuvo que los parámetros nutricionales (Contenido de carotenoides totales y contenido de ácidos grasos) y los relacionados con el color en yema, los tratamientos TT3 (EO) y TT4 (PE) presentaron valores significativamente mayores que el resto de los tratamientos (p≤0,05), con CCT entre 13.42 – 20.85 µg β-caroteno/g en la yema y contenido de ácidos grasos omega-3 entre 1.8 – 3.67. Para el caso de la estabilidad oxidativa, los huevos obtenidos en los tratamientos TT3, TT4 y TT5, presentaron valores significativamente menores que al resto, con rangos entre 3.7 – 2.6 mg/g de yema. Finalmente, en el análisis de correlación y regresión elaborado para los parámetros de contenido de carotenoides totales (CCT), color de la yema, contenido de ácidos grasos y estabilidad oxidativa se obtuvieron valores estadísticos que permiten evidenciar la relación entre estas variables. (Texto tomado de la fuente).spa
dc.description.abstractThe application of additives from sources of natural origin has generated extensive technological development in different industries, especially in the food industry due to the consumer tendency to choose natural products and/or free of chemical agents enriched with various compounds that can benefit the health; reason that has led to the search for new plant sources and different extraction methodologies for these components. Based on this context, the present study analyzes the potential of oil extracts of bee pollen; as a natural matrix, to be used by the poultry industry as an input in the diet of laying hens, for which different nutritional and physicochemical variables of the eggs obtained were analyzed, from feeding with different sources and levels of inclusion of carotenoids. As an initial phase of this study, the selection of yellow/orange granules from different bee pollen samples from seven municipalities in the Cundi-Boyacense region of Colombia was carried out, to then be subjected to the extraction process using the supercritical fluid technique (SFE). ), in which CO2 was used as a solvent, in order to obtain an oil extract rich in carotenoids. For the selection process, the pollen samples were subjected to screening, and yellow/orange pollen yield percentages between 82 – 90% were identified. During the extraction, controlled conditions of pressure (28 MPa), temperature (60 °C), gas flow (5 L/min) and time (6 h) were maintained. With these conditions, a mass yield percentage of the obtained extract of between 3 – 5% was achieved. With respect to the Total Carotenoid Content (TCC), the main parameter analyzed to characterize the whole pollen and oil extract samples, contents for the extract were obtained from 385 to 6942 µg β-carotene/g of extract, which represents an increase of carotenoid concentration greater than 100% in most samples, compared to the initial CCT of the pollen samples that presented values between 119 to 2140 µg β-carotene/g of pollen. The samples with the best results were those collected in the municipalities of Guatavita, Tenjo and Facatativá. For the second phase of the project, which consisted of the preparation of different experimental diets for laying hens with different sources and inclusion levels of carotenoids, 40 laying hens of the Hi-Lyne Brown strain, 52 weeks old, selected randomly from a shed of 1100 hens, divided into 5 treatments with 2 replicates each, each replicate of 4 birds. The duration of the experiment was 8 weeks (after acclimation period). The bee pollen extract for this phase was extracted using industrial scale equipment Model LHO-220-50-19 with a CO2 recirculation system. The pollen used in this phase corresponded to that from the municipality of Guatavita (this matrix was chosen based on the characterization of CCT analyzed in the initial phase of the research). The yield obtained for the concentrated extract content in carotenoids was 3%, for a total of 1307g of bee pollen extract. To feed the hens, five experimental diets were prepared where the source and level of inclusion of carotenoids were varied; TT1: Negative control (C-), TT2: Positive control – commercial dye (40mg/kg of food) (C+), TT3: 25g/kg of food of oily extract of bee pollen, obtained by supercritical fluids (EO) TT4: Inclusion of whole bee pollen selecting orange-yellow granules (210g/kg of food) (PE), TT5: Natural dye from Tagetes flower (200mg/kg of food) (TT). In the analysis of the different variables for the eggs obtained in the treatments, it was found that the nutritional parameters (total carotenoid content and fatty acid content) and those related to yolk color, treatments TT3 (EO) and TT4 (PE ) presented significantly higher values than the rest of the treatments (p≤0.05), with CCT between 13.42 - 20.85 µg β-carotene/g in the yolk and omega-3 fatty acid content between 1.8 - 3.67. In the case of oxidative stability, the eggs obtained in treatments TT3, TT4 and TT5, presented significantly lower values than the rest, with ranges between 3.7 – 2.6 mg/g of yolk. Finally, in the correlation and regression analysis carried out for the parameters of total carotenoid content (TCC), yolk color, fatty acid content and oxidative stability, statistical values were obtained that show the relationship between these variables.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencia y Tecnología de Alimentosspa
dc.description.researchareaCalidad de alimentosspa
dc.description.sponsorshipFondo Francisco José de Caldas (FFJC)spa
dc.format.extent178 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85400
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Ciencia y Tecnología de Alimentosspa
dc.relation.indexedAgrosaviaspa
dc.relation.indexedAgrovocspa
dc.relation.referencesAbdel-Aal, E. S. M., Akhtar, H., Zaheer, K., & Ali, R. (2013). Dietary sources of lutein and zeaxanthin carotenoids and their role in eye health. Nutrients, 5(4), 1169–1185. https://doi.org/10.3390/nu5041169spa
dc.relation.referencesAgricultura, Organización de las Naciones Unidas para la alimentación y la agricultura, F. (2015). El Huevo En Cifras. Organización de Las Naciones Unidas Para La Alimentación y La Agriculturaspa
dc.relation.referencesAhmadi, F., & Rahimi, F. (2011). Factors Affecting Quality and Quantity of Egg Production in Laying Hens: A Review. World Applied Sciences Journal, 12(3), 372–384.spa
dc.relation.referencesAleksovski, S.A., Sovová, H. (2011). Supercritical extraction of Salvia officinalis L. Journal of Applied Sciences, 11(21), 3630–3634. https://doi.org/10.3923/jas.2011.3630.3634spa
dc.relation.referencesAnton, M., Nau, F., & Nys, Y. (2006). Bioactive egg components and their potential uses. World’s Poultry Science Journal, 62(3), 23–26. https://doi.org/10.1079/WPS2005105spa
dc.relation.referencesAriana, M., Samie, A., Edriss, M. A., & Jahanian, R. (2011). Effects of powder and extract form of green tea and marigold , and α -tocopheryl acetate on performance , egg quality and egg yolk cholesterol levels of laying hens in late phase of production. 5(13), 2710–2716.spa
dc.relation.referencesArpášová, H., Ka, M., & Gálik, B. (2013). The Effect of Oregano Essential Oil and Pollen on Egg Production and Egg Yolk Qualitative Parameters. Scientific Papers: Animal Science and Biotechnologies, 46(1), 12–16.spa
dc.relation.referencesAymond, W. M., & Elswyk, M. E. V. A. N. (1995). Yolk Thiobarbituric Acid Reactive Substances and n-3 Fatty Acids in Response to Whole and Ground Flaxseed Department of Poultry Science , Texas Agricultural Experiment Station , Texas A & M University , College Station , Texas 77843-2472 ABSTRACT n-3 fatt. 1388–1394.spa
dc.relation.referencesAzmir, J., Zaidul, I. S. M., Rahman, M. M., Sharif, K. M., Mohamed, A., Sahena, F., Jahurul, M. H. A., Ghafoor, K., Norulaini, N. A. N., & Omar, A. K. M. (2013). Techniques for extraction of bioactive compounds from plant materials: A review. Journal of Food Engineering, 117(4), 426–436. https://doi.org/10.1016/j.jfoodeng.2013.01.014spa
dc.relation.referencesBadui, S. D. (1990). Química de los Alimentos (2nd ed., Issue 2). Editorial Alhambra Mexicana S.A de C.V.spa
dc.relation.referencesBampidis, V., Azimonti, G., Bastos, M. de L., Christensen, H., Dusemund, B., Kos Durjava, M., López-Alonso, M., López Puente, S., Marcon, F., Mayo, B., Pechová, A., Petkova, M., Ramos, F., Sanz, Y., Villa, R. E., Woutersen, R., Aquilina, G., Bories, G., Gropp, J., … Kouba, M. (2020). Safety and efficacy of saponified paprika extract, containing capsanthin as main carotenoid source, for poultry for fattening and laying (except turkeys). EFSA Journal, 18(2). https://doi.org/10.2903/j.efsa.2020.6023spa
dc.relation.referencesBampidis, V., Azimonti, G., de Lourdes Bastos, M., Christensen, H., Dusemund, B., Kouba, M., Kos Durjava, M., López-Alonso, M., López Puente, S., Marcon, F., Mayo, B., Pechová, A., Petkova, M., Ramos, F., Sanz, Y., Villa, R. E., Woutersen, R., Bories, G., Costa, L. G., … Aquilina, G. (2019). Safety and efficacy of lutein and lutein/zeaxanthin extracts from Tagetes erecta for poultry for fattening and laying (except turkeys). EFSA Journal, 17(5). https://doi.org/10.2903/j.efsa.2019.5698spa
dc.relation.referencesBarbosa, V. C., Gaspar, A., Calixto, L. F. L., & Agostinho, T. S. P. (2011). Stability of the pigmentation of egg yolks enriched with omega-3 and carophyll stored at room temperature and under refrigeration. Revista Brasileira de Zootecnia, 40(7), 1540–1544. https://doi.org/10.1590/S1516-35982011000700020spa
dc.relation.referencesBarreiro, C., & Barredo, J. L. (2018). Carotenoids production: A healthy and profitable industry. Methods in Molecular Biology, 1852, 45–55. https://doi.org/10.1007/978-1-4939-8742-9_2spa
dc.relation.referencesBatkowska, J., Drabik, K., Brodacki, A., Czech, A., & Adamczuk, A. (2021). Fatty acids profile , cholesterol level and quality of table eggs from hens fed with the addition of linseed and soybean oil. Food Chemistry, 334(July 2020), 127612. https://doi.org/10.1016/j.foodchem.2020.127612spa
dc.relation.referencesBeltrán-de-miguel, B., Estévez-santiago, R., Olmedilla-, B., & Beltra, B. (2015). Assessment of dietary vitamin A intake ( retinol , α -carotene , β -carotene , β -cryptoxanthin ) and its sources in the National Survey of Dietary Intake in Spain ( 2009 – 2010 ) Assessment of dietary vitamin A intake ( retinol , a -carotene , b -caroten. International Journal of Food Sciences and Nutrition ISSN:, 7486(October). https://doi.org/10.3109/09637486.2015.1077787spa
dc.relation.referencesBorel, P., Grolier, P., Armand, M., Partier, A., Lafont, H., Lairon, D., & Azais-Braesco, V. (1996). Carotenoids in biological emulsions: Solubility, surface-to-core distribution, and release from lipid droplets. Journal of Lipid Research, 37(2), 250–261. https://doi.org/10.1016/s0022-2275(20)37613-6spa
dc.relation.referencesBritton, G., Liaaen - Jensen, A., & Pfander, H. (1995). Carotenoids: Isolation and Analysis (G. Britton, A. Liaaen - Jensen, & H. Pfander (eds.); Vol. 1A, Issue 5).spa
dc.relation.referencesCachaldora, P., García-Rebollar, P., Alvarez, C., De Blas, J. ., & Méndez, J. (2008). Effect of type and level of basal fat and level of fish oil supplementation on yolk fat composition and n-3 fatty acids deposition efficiency in laying hens. 141, 104–114. https://doi.org/10.1016/j.anifeedsci.2007.05.024spa
dc.relation.referencesCalvo, M. M., Dado, D., & Santa-María, G. (2007). Influence of extraction with ethanol or ethyl acetate on the yield of lycopene, β-carotene, phytoene and phytofluene from tomato peel powder. European Food Research and Technology, 224(5), 567–571. https://doi.org/10.1007/s00217-006-0335-8spa
dc.relation.referencesCanene-Adams, K., & Erdman, J. W. (2009). Carotenoids: Nutrition and HealthAbsorption, Transport, Distribution in Tissues and Bioavailability. In Carotenoids (Vol. 5). https://doi.org/10.1007/978-3-7643-7501-0_7spa
dc.relation.referencesCarlos Fuenmayor, B., Carlos Zuluaga, D., Consuelo Díaz, M., de Marta Quicazán, C., Cosio, M., & Mannino, S. (2014). Evaluation of the physicochemical and functional properties of Colombian bee pollen,Evaluación de las propiedades fisicoquímicas y funcionales del polen apícola colombiano. Revista MVZ Cordoba, 19(1), 4003–4014. http://www.scopus.com/inward/record.url?eid=2-s2.0-84896457065&partnerID=MN8TOARSspa
dc.relation.referencesCastenmiller, J. J. M. (2000). Spinach as a source of carotenoids, folate and antioxidant activity. BiBUOTHEEK LANDBOUWUNIVERSITETT WAGENINGEN.spa
dc.relation.referencesCena, H., & Calder, P. (2020). Defining a Healthy Diet : Evidence for the Role of Contemporary Dietary Patterns in Health and Disease. Multidisciplinary Digital Publishing Institute, 1–15.spa
dc.relation.referencesChambers, J. R., Zaheer, K., Akhtar, H., & Abdel-Aal, E. S. M. (2017). Chicken Eggs. In Egg Innovations and Strategies for Improvements. Elsevier Inc. https://doi.org/10.1016/B978-0-12-800879-9.00001-9spa
dc.relation.referencesCocero, M. J., Alonso, E., Torío, R., Vallelado, D., & Fdz-Polanco, F. (2000). Supercritical water oxidation in a pilot plant of nitrogenous compounds: 2-Propanol mixtures in the temperature range 500-750 °C. Industrial and Engineering Chemistry Research, 39(10), 3707–3716. https://doi.org/10.1021/ie990852bspa
dc.relation.referencesCoronel, B., & Pereira, C. (2004). Caracterización bromatológica apícola argentino * del.spa
dc.relation.referencesCosta, M. C. A., Morgano, M. A., Ferreira, M. M. C., & Milani, R. F. (2017). Analysis of bee pollen constituents from different Brazilian regions: Quantification by NIR spectroscopy and PLS regression. LWT - Food Science and Technology, 80, 76–83. https://doi.org/10.1016/j.lwt.2017.02.003spa
dc.relation.referencesDansou, M., Zhang, H., Yu, Y., Wang, H., Tang, C., Zhao, Q., Qin, Y., & Zhang, J. (2023). Carotenoid enrichment in eggs: From biochemistry perspective. 14. https://doi.org/10.1016/j.aninu.2023.05.012spa
dc.relation.referencesDelgado-Vargas, F., Jiménez, A. R., Paredes-López, O., & Francis, F. J. (2000). Natural pigments: Carotenoids, anthocyanins, and betalains - Characteristics, biosynthesis, processing, and stability. In Critical Reviews in Food Science and Nutrition (Vol. 40, Issue 3). https://doi.org/10.1080/10408690091189257spa
dc.relation.referencesDemir, Z., & Kaya, H. (2020). Effect of bee pollen supplemented diet on performance, egg quality traits and some serum parameters of laying hens. Pakistan Journal of Zoology, 52(2), 549–555. https://doi.org/10.17582/journal.pjz/20181119101139spa
dc.relation.referencesDi Mascio, P., Kaiser, S., & Sies, H. (1989). Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Archives of Biochemistry and Biophysics, 274(2), 532–538. https://doi.org/10.1016/0003-9861(89)90467-0spa
dc.relation.referencesDima, C., Assadpour, E., Dima, S., & Jafari, S. M. (2020). Nutraceutical nanodelivery ; an insight into the bioaccessibility / bioavailability of different bioactive compounds loaded within nanocarriers. Critical Reviews in Food Science and Nutrition, 0(0), 1–35. https://doi.org/10.1080/10408398.2020.1792409spa
dc.relation.referencesDrouin-Chartier, J. P., Chen, S., Li, Y., Schwab, A. L., Stampfer, M. J., Sacks, F. M., Rosner, B., Willett, W. C., Hu, F. B., & Bhupathiraju, S. N. (2020). Egg consumption and risk of cardiovascular disease: Three large prospective US cohort studies, systematic review, and updated meta-analysis. The BMJ, 368. https://doi.org/10.1136/bmj.m513spa
dc.relation.referencesCode of Federal Regulations, Code of Federal Regulations 1 (2023). https://doi.org/10.2307/j.ctv2nv8mw6.3spa
dc.relation.referencesEdem, D. . (2009). Vitamin A: A Review. Asian Journal of Clinical Nutrition, 1, 65–82. https://doi.org/10.3923/ajcn.2009.65.82spa
dc.relation.referencesEFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP); (2009). Safety of use of colouring agents in animal nutrition 1 Part III : β -apo-8 ’ -carotenal , ethyl ester of β -apo-8 ’ -carotenoic acid , lutein , zeaxanthin and concluding remarks Scientific Opinion of the Panel on Additives and Products or Substances used. EFSA Journal, 1098(May), 1–48.spa
dc.relation.referencesElvira-Torales, L. I., García-Alonso, J., & Periago-Castón, M. J. (2019). Nutritional importance of carotenoids and their effect on liver health: A review. Antioxidants, 8(7). https://doi.org/10.3390/antiox8070229spa
dc.relation.referencesEnglmaierová, M., Skřivan, M., & Bubancová, I. (2013). A comparison of lutein, spray-dried Chlorella, and synthetic carotenoids effects on yolk colour, oxidative stability, and reproductive performance of laying hens. Czech Journal of Animal Science, 58(9), 412–419. https://doi.org/10.17221/6941-cjasspa
dc.relation.referencesFawaz, M., Sudekum, K.-H., Hassan, H., & Abdel-Wareth, A. (2022). Productive, physiological and nutritional responses of laying hens fed different dietary levels of turmeric powder. https://doi.org/10.1111/jpn.13686spa
dc.relation.referencesFernández, M., & Lobato, A. (2009). El libro del huevo. In Editorial Everest S.A (Vol. 1). http://institutohuevo.com/wp-content/uploads/2017/07/EL-GRAN-LIBRO-DEL-HUEVO.pdfspa
dc.relation.referencesFraeye, I., Bruneel, C., Lemahieu, C., Buyse, J., Muylaert, K., & Foubert, I. (2012). Dietary enrichment of eggs with omega-3 fatty acids: A review. Food Research International, 48(2), 961–969. https://doi.org/10.1016/j.foodres.2012.03.014spa
dc.relation.referencesGao, S., Qin, T., Liu, Z., Caceres, M. A., Ronchi, C. F., Chen, C. O., Yeum, K., Taylor, A., Blumberg, J. B., Liu, Y., & Shang, F. (2011). Lutein and zeaxanthin supplementation reduces H O -induced oxidative damage in human lens epithelial cells. December, 3180–3190.spa
dc.relation.referencesGardana, C., Del Bo, C., Quicazán, M. C., Corrrea, A. R., & Simonetti, P. (2018). Nutrients, phytochemicals and botanical origin of commercial bee pollen from different geographical areas. Journal of Food Composition and Analysis, 73(July), 29–38. https://doi.org/10.1016/j.jfca.2018.07.009spa
dc.relation.referencesGrashorn, M. (2016). Feed Additives for Influencing Chicken Meat and Egg Yolk Color. In Handbook on Natural Pigments in Food and Beverages: Industrial Applications for Improving Food Color. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-100371-8.00014-2spa
dc.relation.referencesGrashorn, M. A., & Steinberg, W. (2002). Deposition rates of canthaxanthin in egg yolks. 66(6), 258–262.spa
dc.relation.referencesGrčević, M., Kralik, Z., Kralik, G., & Galović, O. (2019). Effects of dietary marigold extract on lutein content, yolk color and fatty acid profile of omega-3 eggs. Journal of the Science of Food and Agriculture, 99(5), 2292–2299. https://doi.org/10.1002/jsfa.9425spa
dc.relation.referencesHammond, B. R., Edwards, R. B., Johnson, E. J., Russell, R. M., Krinsky, N. I., Yeum, K. J., & Snodderly, D. M. (1997). Dietary modification of macular pigment density. Investigative Ophthalmology and Visual Science, 38(3), 1795–1801.spa
dc.relation.referencesHandelman, G. J., Nightingale, Z. D., Lichtenstein, A. H., Schaefer, E. J., & Blumberg, J. B. (1999). Lutein and zeaxanthin concentrations in plasma after dietary supplementation with egg yolk. American Journal of Clinical Nutrition, 70(2), 247–251. https://doi.org/10.1093/ajcn.70.2.247spa
dc.relation.referencesHayat, Z., Cherian, G., Pasha, T. N., Khattak, F. M., & Jabbar, M. A. (2009). Effect of feeding flax and two types of antioxidants on egg production , egg quality , and lipid composition of eggs. Journal of Applied Poultry Research, 18(3), 541–551. https://doi.org/10.3382/japr.2009-00008spa
dc.relation.referencesHerrera, J., Salda, B., Guzm, P., & Mateos, G. G. (2007). Influence of particle size of the main cereal of the diet on egg production , gastrointestinal tract traits , and body measurements of brown laying hens 1. 440–448. https://doi.org/10.3382/ps/pew256spa
dc.relation.referencesHerrero, M., Cifuentes, A., & Ibañez, E. (2012). Extraction Techniques for the Determination of Carotenoids and Vitamins in Food (Vol. 4). https://doi.org/10.1016/B978-0-12-381373-2.10133-4spa
dc.relation.referencesHerron, K. L., & Fernandez, M. L. (2004). Are the Current Dietary Guidelines Regarding Egg Consumption Appropriate ? American Society for Nutritional Sciences, September 2003, 187–190.spa
dc.relation.referencesHester, P. Y. (2017). Improving Egg Production and Hen Health with Calcium. In Egg Innovations and Strategies for Improvements. Elsevier Inc. https://doi.org/10.1016/B978-0-12-800879-9.00030-5spa
dc.relation.referencesHuang, X., & Ahn, D. U. (2019). How Can the Value and Use of Egg Yolk Be Increased? Journal of Food Science, 84(2), 205–212. https://doi.org/10.1111/1750-3841.14430spa
dc.relation.referencesHuang, Z., Ma, Q., Liu, S. F., & Guo, G. M. (2020). Benign recovery of carotenoids from Physalis alkekengi L.var. francheti through supercritical CO2 extraction: Yield, antioxidant activity and economic evaluation. Journal of CO2 Utilization, 36(August 2019), 9–17. https://doi.org/10.1016/j.jcou.2019.10.015spa
dc.relation.referencesIbrahim, W., Chwen, T., Akit, H., Nayan, N., Md, A., & Ling, H. (2022). Influence of Dietary Palm Oils, Palm Kernel Oil and Soybean Oil in Laying Hens on Production Performance, Egg Quality, Serum Biochemicals and Hepatic Expression of Beta-Carotene, Retinol and Alpha-Tocopherol Genes.spa
dc.relation.referencesJomova, K., & Valko, M. (2013). Health protective effects of carotenoids and their interactions with other biological antioxidants. European Journal of Medicinal Chemistry, 70(November 2017), 102–110. https://doi.org/10.1016/j.ejmech.2013.09.054spa
dc.relation.referencesJournal, T. E. (2004). Opinion of the Scientific Panel on additives and products or substances used in animal feed (FEEDAP) on micro-organism product “BioPlus 2B”, authorised as feed additive in accordance with Council Directive 70/524/EEC. EFSA Journal, 2(3), 1–19. https://doi.org/10.2903/j.efsa.2004.6spa
dc.relation.referencesJung, S., Kim, D. H., Son, J. H., Nam, K., Ahn, D. U., & Jo, C. (2012). The functional property of egg yolk phosvitin as a melanogenesis inhibitor. Food Chemistry, 135(3), 993–998. https://doi.org/10.1016/j.foodchem.2012.05.113spa
dc.relation.referencesKaradas, F., Grammenidis, E., Surai, P. F., Acamovic, T., & Sparks, N. H. C. (2006). Effects of carotenoids from lucerne, marigold and tomato on egg yolk pigmentation and carotenoid composition. British Poultry Science, 47(5), 561–566. https://doi.org/10.1080/00071660600962976spa
dc.relation.referencesKiarie, E. G., & Mills, A. (2019). Role of Feed Processing on Gut Health and Function in Pigs and Poultry : Conundrum of Optimal Particle Size and Hydrothermal Regimens. 6(February), 1–13. https://doi.org/10.3389/fvets.2019.00019spa
dc.relation.referencesKishimoto, Y., Taguchi, C., Saita, E., Suzuki-sugihara, N., Nishiyama, H., Wang, W., Masuda, Y., & Kondo, K. (2017). Additional consumption of one egg per day increases serum lutein plus zeaxanthin concentration and lowers oxidized low-density lipoprotein in moderately hypercholesterolemic males. 99, 944–949.spa
dc.relation.referencesLaaroussi, H., Ferreira-Santos, P., Genisheva, Z., Bakour, M., Ousaaid, D., Asmae, E. G., Teixeira, J. A., & Lyoussi, B. (2022). Unveiling the Techno-Functional and Bioactive Properties of Bee Pollen as an Added-Value Food Ingredient. Food Chemistry, 405(November 2022), 134958. https://doi.org/10.1016/j.foodchem.2022.134958spa
dc.relation.referencesLaca, A., Sáenz, M. C., Paredes, B., & Díaz, M. (2010). Rheological properties, stability and sensory evaluation of low-cholesterol mayonnaises prepared using egg yolk granules as emulsifying agent. Journal of Food Engineering, 97(2), 243–252. https://doi.org/10.1016/j.jfoodeng.2009.10.017spa
dc.relation.referencesLai, S., Gray, J. I., & Flegap, C. J. (1996). Deposition of Carotenoids inEggs from Hens Fed Diets Containing Saponified and Unsaponified Oleoresin Paprika. 1(1988), 166–170.spa
dc.relation.referencesLang, Q., & Wai, C. M. (2001). Supercritical fluid extraction in herbal and natural product studies — a practical review. 53, 771–782.spa
dc.relation.referencesLeeson, S., & Caston, L. (2004). Enrichment of eggs with lutein. Poultry Science, 83(10), 1709–1712. https://doi.org/10.1093/ps/83.10.1709spa
dc.relation.referencesLesnierowski, G., & Stangierski, J. (2018). What’s new in chicken egg research and technology for human health promotion? - A review. Trends in Food Science and Technology, 71(June 2016), 46–51. https://doi.org/10.1016/j.tifs.2017.10.022spa
dc.relation.referencesLiu, B., Zhou, Q., Zhu, J., Lin, G., Yu, D., & Ao, T. (2020). Time course of nutritional and functional property changes in egg yolk from laying hens fed docosahexaenoic acid-rich microalgae. Poultry Science, 99(9), 4616–4625. https://doi.org/10.1016/j.psj.2020.06.007spa
dc.relation.referencesLiu, X., Liu, J., Bi, J., Cao, F., Ding, Y., & Peng, J. (2019). Effects of high pressure homogenization on physical stability and carotenoid degradation kinetics of carrot beverage during storage. Journal of Food Engineering, 263(October 2018), 63–69. https://doi.org/10.1016/j.jfoodeng.2019.05.034spa
dc.relation.referencesLomax, B. H., Fraser, W. T., Harrington, G., Blackmore, S., Sephton, M. A., & Harris, N. B. W. (2012). A novel palaeoaltimetry proxy based on spore and pollen wall chemistry. Earth and Planetary Science Letters, 353–354, 22–28. https://doi.org/10.1016/j.epsl.2012.07.039spa
dc.relation.referencesMa, L., Liu, R., Du, J. H., Liu, T., Wu, S. S., & Liu, X. H. (2016). Lutein, zeaxanthin and meso-zeaxanthin supplementation associated with macular pigment optical density. Nutrients, 8(7). https://doi.org/10.3390/nu8070426spa
dc.relation.referencesMacías-sánchez, M. D., Mantell, C., Rodríguez, M., De, E. M., Lubián, L. M., & Montero, O. (2009). Comparison of supercritical fluid and ultrasound-assisted extraction of carotenoids and chlorophyll a from Dunaliella salina. 77, 948–952. https://doi.org/10.1016/j.talanta.2008.07.032spa
dc.relation.referencesMaki, K. C., Van Elswyk, M. E., McCarthy, D., Seeley, M. A., Veith, P. E., Hess, S. P., Ingram, K. A., Halvorson, J. J., Calaguas, E. M., & Davidson, M. H. (2003). Lipid Responses in Mildly Hypertriglyceridemic Men and Women to Consumption of Docosahexaenoic Acid-Enriched Eggs. International Journal for Vitamin and Nutrition Research, 73(5), 357–368. https://doi.org/10.1024/0300-9831.73.5.357spa
dc.relation.referencesMamidipally, P. K., & Liu, S. X. (2004). First approach on rice bran oil extraction using limonene. European Journal of Lipid Science and Technology, 106(2), 122–125. https://doi.org/10.1002/ejlt.200300891spa
dc.relation.referencesMarchini, L. C., Dos Reis, V. D. A., & Carmello Moreti, A. C. D. C. (2006). Composicao Physico-chemical composition of pollen samples collected by Africanized Apis mellifera (Hymenoptera:Apidae) in Piracicaba, State of São Paulo, Brazil. Ciência Rural, 36(3), 949–953. https://doi.org/10.1590/S0103-84782006000300034spa
dc.relation.referencesMarounek, M., & Pebriansyah, A. (2018). Use of carotenoids in feed mixtures for poultry: a review. Agricultura Tropica et Subtropica, 51(3), 107–111. https://doi.org/10.1515/ats-2018-0011spa
dc.relation.referencesMartínez-Ávila, M., Rodríguez-Rodríguez, J., Gutiérrez Uribe, J. A., & Guajardo-Flores, D. (2022). Selective supercritical fluid extraction of non-polar phytochemicals from black beans (Phaseolus vulgaris L.) by-products. Journal of Supercritical Fluids, 189(December 2021). https://doi.org/10.1016/j.supflu.2022.105730spa
dc.relation.referencesMartins, M. C. T., Morgano, M. A., Vicente, E., Baggio, S. R., & Rodriguez-Amaya, D. B. (2011). Physicochemical composition of bee pollen from eleven Brazilian states. Journal of Apicultural Science, 55(2), 107–116.spa
dc.relation.referencesMartins, P., Melo, M. M. R. De, Sarmento, P., & Silva, C. M. (2016). Supercritical fluid extraction of sterols from Eichhornia crassipes biomass using pure and modified carbon dioxide . Enhancement of stigmasterol yield and extract concentration. The Journal of Supercritical Fluids, 107, 441–449. https://doi.org/10.1016/j.supflu.2015.09.027spa
dc.relation.referencesMattea, F., Martín, Á., & Cocero, M. J. (2009). Carotenoid processing with supercritical fluids. Journal of Food Engineering, 93(3), 255–265. https://doi.org/10.1016/j.jfoodeng.2009.01.030spa
dc.relation.referencesMeléndez-Martínez, A. J. (2017). Carotenoides en agroalimentación y salud. https://doi.org/10.1074/jbc.M111.291336spa
dc.relation.referencesMendoza Rodríguez, Y. Y., Brambila Paz, J. de J., Arana Coronado, J. J., Sangerman- Jarquín, D. M., & Molina Gómez, J. N. (2017). El mercado de huevo en México: tendencia hacia la diferenciación en su consumo. Revista Mexicana de Ciencias Agrícolas, 7(6), 1455–1466. https://doi.org/10.29312/remexca.v7i6.206spa
dc.relation.referencesMestre Prates, J. A., Gonçalves Quaresma, M. A., Branquinho Bessa, R. J., Andrade Fontes, C. M. G., & Mateus Alfaia, C. M. P. (2006). Simultaneous HPLC quantification of total cholesterol, tocopherols and β-carotene in Barrosã-PDO veal. Food Chemistry, 94(3), 469–477. https://doi.org/10.1016/j.foodchem.2005.01.021spa
dc.relation.referencesMínguez-Mosquera, M. I., & Hornero-Méndez, D. (1993). Separation and Quantification of the Carotenoid Pigments in Red Peppers (Capsicum annuum L.), Paprika, and Oleoresin by Reversed-Phase HPLC. Journal of Agricultural and Food Chemistry, 41(10), 1616–1620. https://doi.org/10.1021/jf00034a018spa
dc.relation.referencesMínguez Mosquera, M. I., Pérez Gálvez, A., & Hornero-Méndez, D. (2005). Pigmentos carotenoides en frutas y vegetales: mucho más que simples “colorantes” naturales. Agrocsic, 2–7. http://digital.csic.es/handle/10261/5754spa
dc.relation.referencesMiranda, J. M., Anton, X., Redondo-valbuena, C., Roca-saavedra, P., Rodriguez, J. A., Lamas, A., Franco, C. M., & Cepeda, A. (2015). Egg and Egg-Derived Foods: Effects on Human Health and Use as Functional Foods. 706–729. https://doi.org/10.3390/nu7010706spa
dc.relation.referencesMohn, E. S., Erdman, J. W., Kuchan, M. J., Neuringer, M., & Johnson, E. J. (2017). Lutein accumulates in subcellular membranes of brain regions in adult rhesus macaques: Relationship to DHA oxidation products. PLoS ONE, 12(10), 1–18. https://doi.org/10.1371/journal.pone.0186767spa
dc.relation.referencesMoreno, J. A., Díaz-Gómez, J., Nogareda, C., Angulo, E., Sandmann, G., Portero-Otin, M., Serrano, J. C. E., Twyman, R. M., Capell, T., Zhu, C., & Christou, P. (2016). The distribution of carotenoids in hens fed on biofortified maize is influenced by feed composition, absorption, resource allocation and storage. Scientific Reports, 6(July), 1–11. https://doi.org/10.1038/srep35346spa
dc.relation.referencesNeira, M. C., Jimenez, F., & Ponce de León, L. (2000). Influencia de la constante dieléctrica en la solubilización del DIAZEPAM. Revista Colombiana de Ciencias Quimico - Farmaceuticas, 1, 37–61.spa
dc.relation.referencesNimalaratne, C., Savard, P., Gauthier, S. F., Schieber, A., & Wu, J. (2015). Bioaccessibility and Digestive Stability of Carotenoids in Cooked Eggs Studied Using a Dynamic in Vitro Gastrointestinal Model. Journal of Agricultural and Food Chemistry, 63(11), 2956–2962. https://doi.org/10.1021/jf505615wspa
dc.relation.referencesNimalaratne, C., & Wu, J. (2015a). Hen Egg as an Antioxidant Food Commodity : A Review. September, 8274–8293. https://doi.org/10.3390/nu7105394spa
dc.relation.referencesNimalaratne, C., & Wu, J. (2015b). Hen egg as an antioxidant food commodity: A review. Nutrients, 7(10), 8274–8293. https://doi.org/10.3390/nu7105394spa
dc.relation.referencesNobakht, A., & Safamehr, A. . (2007). The effects of inclusion different levels of dried tomato pomace in laying hens diets on performance and plasma and eff yolk cholesterol contents (pp. 1101–1106). Journal of Animal and Veterinary Advances.spa
dc.relation.referencesNys, Y. (2018). Dietary carotenoids and egg yolk coloration - A Review. March 2000.spa
dc.relation.referencesNys, Y., & Guyot, N. (2011). Egg formation and chemistry. In Improving the Safety and Quality of Eggs and Egg Products: Egg Chemistry, Production and Consumption. Woodhead Publishing Limited. https://doi.org/10.1533/9780857093912.2.83spa
dc.relation.referencesOrganización de las Naciones Unidas para la Agricultura y la Alimentación (FAO). (2018). Huevos: aprovechar su potencial para luchar contra el hambre y la malnutrición. www.fao.org/fsnforum/es/activities/discussions/eggs-nutritionspa
dc.relation.referencesÖzkal, S.G; Yener, M.E; Mehmetoglu, U. (2005). P. F. Martins et al., 2016. 74–78. https://doi.org/10.1007/s00217-004-1013-3spa
dc.relation.referencesPanaite, T. D., Nour, V., Vlaicu, P. A., Ropota, M., Corbu, A. R., & Saracila, M. (2019). Flaxseed and dried tomato waste used together in laying hens diet. Archives of Animal Nutrition, 73(3), 222–238. https://doi.org/10.1080/1745039X.2019.1586500spa
dc.relation.referencesPapanikolaou, Y., & Fulgoni, V. L. (2019). Egg consumption in U.S. children is associated with greater daily nutrient intakes, including protein, lutein + zeaxanthin, choline, α-linolenic acid, and docosahexanoic acid. Nutrients, 11(5). https://doi.org/10.3390/nu11051137spa
dc.relation.referencesPapapostolou, H., Kachrimanidou, V., Alexandri, M., Plessas, S., Papadaki, A., & Kopsahelis, N. (2023). Natural Carotenoids: Recent Advances on Separation from Microbial Biomass and Methods of Analysis. Antioxidants, 12(5). https://doi.org/10.3390/antiox12051030spa
dc.relation.referencesPavlić, B., Bera, O., Teslić, N., Vidović, S., Parpinello, G., & Zeković, Z. (2018). Chemical profile and antioxidant activity of sage herbal dust extracts obtained by supercritical fluid extraction. Industrial Crops and Products, 120(May), 305–312. https://doi.org/10.1016/j.indcrop.2018.04.044spa
dc.relation.referencesPourmortazavi, S. M., & Hajimirsadeghi, S. S. (2007). Supercritical fluid extraction in plant essential and volatile oil analysis. Journal of Chromatography A, 1163(1–2), 2–24. https://doi.org/10.1016/J.CHROMA.2007.06.021spa
dc.relation.referencesPrado, J., Veggi, P., & Meireles, M. (2013). Extraction Methods for Obtaining Carotenoids from Vegetables - Review. Current Analytical Chemistry, 10(1), 29–66. https://doi.org/10.2174/1573411011410010005spa
dc.relation.referencesReboul, E., & Borel, P. (2011). Proteins involved in uptake, intracellular transport and basolateral secretion of fat-soluble vitamins and carotenoids by mammalian enterocytes. Progress in Lipid Research, 50(4), 388–402. https://doi.org/10.1016/j.plipres.2011.07.001spa
dc.relation.referencesRich, G. T., Faulks, R. M., Wickham, M. S. J., & Fillery-Travis, A. (2003). Solubilization of carotenoids from carrot juice and spinach in lipid phases: II. Modeling the duodenal environment. Lipids, 38(9), 947–956. https://doi.org/10.1007/s11745-003-1148-zspa
dc.relation.referencesRuth, S. Van, Alewijn, M., Rogers, K., Newton-smith, E., Tena, N., Bollen, M., & Koot, A. (2011). Authentication of organic and conventional eggs by carotenoid profiling. Food Chemistry, 126(3), 1299–1305. https://doi.org/10.1016/j.foodchem.2010.11.081spa
dc.relation.referencesSahena, F., Zaidul, I. S. M., Jinap, S., Karim, A. A., Abbas, K. A., Norulaini, N. A. N., & Omar, A. K. M. (2009). Application of supercritical CO2 in lipid extraction - A review. Journal of Food Engineering, 95(2), 240–253. https://doi.org/10.1016/j.jfoodeng.2009.06.026spa
dc.relation.referencesSalazar-gonz, C. Y., Stinco, C. M., Rodríguez-pulido, F. J., Díaz-moreno, C., Fuenmayor, C., & Heredia, F. J. (2022). Characterization of carotenoid profile and α -tocopherol content in Andean bee pollen influenced by harvest time and particle size. 170(July). https://doi.org/10.1016/j.lwt.2022.114065spa
dc.relation.referencesSalazar-González, C. (2018). Analysis of Multifloral Bee Pollen Pellets by Advanced Digital Imaging Applied to Functional Food Ingredients. Plant Foods for Human Nutrition, 73(4), 328–335. https://doi.org/10.1007/s11130-018-0695-9spa
dc.relation.referencesSalazar-González, C., Céspedes, C., & Díaz-Moreno, C. (2013). Propiedades bioactivas y antioxidantes de polen apícola proveniente del bosque alto-andino. Encuentro Nacional de Investigación y Desarrollo - ENID, 1–3spa
dc.relation.referencesSalazar-gonzález, C., Rodríguez-pulido, F. J., Stinco, C. M., Terrab, A., Díaz-moreno, C., Fuenmayor, C., & Heredia, F. J. (2020). Carotenoid profile determination of bee pollen by advanced digital image analysis. Computers and Electronics in Agriculture, 175(May), 105601. https://doi.org/10.1016/j.compag.2020.105601spa
dc.relation.referencesSaleh, A. A., Gawish, E., Mahmoud, S. F., Amber, K., Awad, W., Alzawqari, M. H., Shukry, M., & Abdel-Moneim, A. M. E. (2021). Effect of natural and chemical colorant supplementation on performance, egg-quality characteristics, yolk fatty-acid profile, and blood constituents in laying hens. Sustainability (Switzerland), 13(8). https://doi.org/10.3390/su13084503spa
dc.relation.referencesSattler, J. A. G., de Melo, I. L. P., Granato, D., Araújo, E., da Silva de Freitas, A., Barth, O. M., Sattler, A., & de Almeida-Muradian, L. B. (2015a). Impact of origin on bioactive compounds and nutritional composition of bee pollen from southern Brazil: A screening study. Food Research International, 77, 82–91. https://doi.org/10.1016/j.foodres.2015.09.013spa
dc.relation.referencesSattler, J. A. G., de Melo, I. L. P., Granato, D., Araújo, E., da Silva de Freitas, A., Barth, O. M., Sattler, A., & de Almeida-Muradian, L. B. (2015b). Impact of origin on bioactive compounds and nutritional composition of bee pollen from southern Brazil: A screening study. Food Research International. https://doi.org/10.1016/j.foodres.2015.09.013spa
dc.relation.referencesSchweiggert, R. M., & Carle, R. (2017). Carotenoid deposition in plant and animal foods and its impact on bioavailability. Critical Reviews in Food Science and Nutrition, 57(9), 1807–1830. https://doi.org/10.1080/10408398.2015.1012756spa
dc.relation.referencesSihvonen, M., Järvenpää, E., Hietaniemi, V., & Huopalahti, R. (1999). Advances in supercritical carbon dioxide technologies. Trends in Food Science & Technology, 10(6–7), 217–222. https://doi.org/10.1016/S0924-2244(99)00049-7spa
dc.relation.referencesSingh, V., Pathak, V., & Akhilesh, V. (2012). Modified or Enriched Eggs: A smart aproach in egg industry (p. 13).spa
dc.relation.referencesSirri, F., Iaffaldano, N., Minelli, G., Meluzzi, A., Rosato, M. P., & Franchini, A. (2007). Comparative pigmentation efficiency of high dietary levels of apo-ester and marigold extract on quality traits of whole liquid egg of two strains of laying hens. Journal of Applied Poultry Research, 16(3), 429–437. https://doi.org/10.1093/japr/16.3.429spa
dc.relation.referencesSkřivan, M., Englmaierová, M., Skřivanová, E., & Bubancová, I. (2015). Increase in lutein and zeaxanthin content in the eggs of hens fed marigold flower extract. Czech Journal of Animal Science, 60(3), 89–96. https://doi.org/10.17221/8073-CJASspa
dc.relation.referencesSkřivan, M., Marounek, M., Englmaierová, M., & Skřivanová, E. (2016). Effect of increasing doses of marigold (Tagetes erecta) flower extract on eggs carotenoids content, colour and oxidative stability. Journal of Animal and Feed Sciences, 25(1), 58–64. https://doi.org/10.22358/jafs/65588/2016spa
dc.relation.referencesSmith, R. M., & Hawthorne, S. B. (1997). Supercritical fluids in chromatography and extraction. Journal of Chromatography A, 785(1–2), 1–2. https://doi.org/10.1016/S0021-9673(97)00850-9spa
dc.relation.referencesSnodderly, D. M., Brown, P. K., Delori, F. C., & Auran, J. D. (1983). The Macular Pigment . I . Absorbance Spectra , Localization , and Discrimination from Other Yellow Pigments in Primate Retinas.spa
dc.relation.referencesSünder, A., Wilkens, M., Böhm, V., & Liebert, F. (2022). Egg yolk colour in organic production as affected by feeding – Consequences for farmers and consumers. 382(December 2021). https://doi.org/10.1016/j.foodchem.2021.131854spa
dc.relation.referencesSurai, P. F., MacPherson, A., Speake, B. K., & Sparks, N. H. C. (2000). Designer egg evaluation in a controlled trial. European Journal of Clinical Nutrition, 54(4), 298–305. https://doi.org/10.1038/sj.ejcn.1600939spa
dc.relation.referencesSurai, P. F., Speake, B. K., & Sparks, N. H. C. (2001). Carotenoids in Avian Nutrition and Embryonic Development. 2. Antioxidant Properties and Discrimination in Embryonic Tissues. Journal of Poultry Science, 38(2), 117–145. https://doi.org/10.2141/jpsa.38.117spa
dc.relation.referencesSurai, P., Simons, P. C. ., Dvorka, J. ., Aradas, F., & Sparks, N. H. . (2015). The Amazing Egg Nature´s Perfect Functional Food for Health Promotion (S. Jeon & H. Sunwo (eds.); Issue October). Department of agricultural, Food and Nutritional Science. University of Alberta.spa
dc.relation.referencesTyczkowski, J. K., & Hamilton, P. B. (1986). Absorption, transport, and deposition in chickens of lutein diester, a carotenoid extracted from marigold (Tagetes erecta) petals. Poultry Science, 65(8), 1526–1531. https://doi.org/10.3382/ps.0651526spa
dc.relation.referencesRegister of Feed Additives, (2003). https://doi.org/10.2875/110483spa
dc.relation.referencesUțoiu, E., Matei, F., Toma, A., Diguță, C. F., Ștefan, L. M., Mănoiu, S., Vrăjmașu, V. V., Moraru, I., Oancea, A., Israel-Roming, F., Cornea, C. P., Constantinescu-Aruxandei, D., Moraru, A., & Oancea, F. (2018). Bee collected pollen with enhanced health benefits, produced by fermentation with a Kombucha Consortium. Nutrients, 10(10), 1–24. https://doi.org/10.3390/nu10101365spa
dc.relation.referencesVan Bennekum, A., Werder, M., Thuahnai, S. T., Han, C. H., Duong, P., Williams, D. L., Wettstein, P., Schulthess, G., Phillips, M. C., & Hauser, H. (2005). Class B scavenger receptor-mediated intestinal absorption of dietary β-carotene and cholesterol. Biochemistry, 44(11), 4517–4525. https://doi.org/10.1021/bi0484320spa
dc.relation.referencesVan Het, K., West, C. E., Weststrate, J. A., & Hautvast, J. G. A. J. (2000). Dietary Factors That Affect the Bioavailability of Carotenoids 1. 14, 503–506.spa
dc.relation.referencesWang, X., Wang, H., Liu, Y., You, J., & Suo, Y. (2009). Extraction of pollen lipids by SFE-CO2 and determination of free fatty acids by HPLC. European Journal of Lipid Science and Technology, 111(2), 155–163. https://doi.org/10.1002/ejlt.200800054spa
dc.relation.referencesWilliams, K. C. (1992). Some factors affecting albumen quality with particular reference to Haugh unit score. 48(March).spa
dc.relation.referencesXu, X., Dong, J., Mu, X., & Sun, L. (2011). Supercritical CO2 extraction of oil, carotenoids, squalene and sterols from lotus (Nelumbo nucifera Gaertn) bee pollen. Food and Bioproducts Processing, 89(1), 47–52. https://doi.org/10.1016/j.fbp.2010.03.003spa
dc.relation.referencesXu, X., Gao, Y., Liu, G., Wang, Q., & Zhao, J. (2008). Optimization of supercritical carbon dioxide extraction of sea buckthorn ( Hippophae ¨ thamnoides L .) oil using response surface methodology. 41, 1223–1231. https://doi.org/10.1016/j.lwt.2007.08.002spa
dc.relation.referencesXu, X., Sun, L., Dong, J., & Zhang, H. (2009). Breaking the cells of rape bee pollen and consecutive extraction of functional oil with supercritical carbon dioxide. Innovative Food Science and Emerging Technologies, 10(1), 42–46. https://doi.org/10.1016/j.ifset.2008.08.004spa
dc.relation.referencesYamini, Y., Khajeh, M., Ghasemi, E., Mirza, M., & Javidnia, K. (2008). Comparison of essential oil compositions of Salvia mirzayanii obtained by supercritical carbon dioxide extraction and hydrodistillation methods. Food Chemistry, 108(1), 341–346. https://doi.org/10.1016/j.foodchem.2007.10.036spa
dc.relation.referencesYin, J., Wang, A., Wei, W., Liu, Y., & Shi, W. (2005). Analysis of the operation conditions for supercritical fluid extraction of seed oil. 43, 163–167. https://doi.org/10.1016/j.seppur.2004.10.016spa
dc.relation.referencesYoung, A. J., & Lowe, G. M. (2001). Antioxidant and prooxidant properties of carotenoids. Archives of Biochemistry and Biophysics, 385(1), 20–27. https://doi.org/10.1006/abbi.2000.2149spa
dc.relation.referencesYousefi, M., Rahimi-Nasrabadi, M., Pourmortazavi, S. M., Wysokowski, M., Jesionowski, T., Ehrlich, H., & Mirsadeghi, S. (2019). Supercritical fluid extraction of essential oils. TrAC - Trends in Analytical Chemistry, 118, 182–193. https://doi.org/10.1016/j.trac.2019.05.038spa
dc.relation.referencesZaheer, K. (2017). Hen egg carotenoids (lutein and zeaxanthin) and nutritional impacts on human health: a review. CyTA - Journal of Food, 15(3), 474–487. https://doi.org/10.1080/19476337.2016.1266033spa
dc.relation.referencesZuluaga, C., Martínez, A., Fernández, J., López-Baldó, J., Quiles, A., & Rodrigo, D. (2016). Effect of high pressure processing on carotenoid and phenolic compounds, antioxidant capacity, and microbial counts of bee-pollen paste and bee-pollen-based beverage. Innovative Food Science and Emerging Technologies. https://doi.org/10.1016/j.ifset.2016.07.023spa
dc.relation.referencesZuluaga D., C. M., Serrato B., J. C., & Quicazán de C., M. C. (2014). Valorization alternatives of colombian bee-pollen for its use as food resource- A structured review. Vitae, 21(3), 237–247. http://www.scopus.com/inward/record.url?eid=2-s2.0-84923001049&partnerID=40&md5=152d88cdc861c7c2148ea9bd23b84978spa
dc.relation.referencesZurak, D., Slovenec, P., Janječić, Z., Bedeković, D., Pintar, J., & Kljak, K. (2022). Overview on recent findings of nutritional and non-nutritional factors affecting egg yolk pigmentation. World’s Poultry Science Journal, 78(2), 531–560. https://doi.org/10.1080/00439339.2022.2046447spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.agrovocCría de aves de corralspa
dc.subject.agrovocpoultry farmingeng
dc.subject.agrovocAlimentación avícolaspa
dc.subject.agrovocpoultry feedingeng
dc.subject.agrovocPolenspa
dc.subject.agrovocpolleneng
dc.subject.ddc640 - Gestión del hogar y vida familiar::641 - Alimentos y bebidasspa
dc.subject.ddc660 - Ingeniería química::664 - Tecnología de alimentosspa
dc.subject.proposalExtracto oleosospa
dc.subject.proposalSupercritical Fluidseng
dc.subject.proposalExtractioneng
dc.subject.proposalOil extracteng
dc.subject.proposalYema de huevospa
dc.subject.proposalCarotenoidesspa
dc.subject.proposalPólen de abejasspa
dc.subject.proposalFluídos supercríticosspa
dc.subject.proposalExtracciónspa
dc.subject.proposalEgg yolkeng
dc.subject.proposalCarotenoidseng
dc.subject.proposalBee polleneng
dc.titleEfecto de la inclusión de extractos oleosos de polen apícola en la dieta de gallinas ponedoras sobre el aporte de carotenoides, estabilidad y factores de calidad del huevospa
dc.title.translatedEffect of the inclusion of oil extracts of beekeeping pollen in the diet of laying hens on the contribution of carotenoids, stability and quality factors of the eggeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameMinisterio de Ciencia, Tecnología e Innovaciónspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1140847681.2023.pdf
Tamaño:
4.25 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría Ciencia y Tecnología de Alimentos

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: