Desarrollo de sistemas mucopenetrantes de administración oral como estrategia para aumentar la biodisponibilidad del flavonoide rutina en un extracto de cálices de Physalis peruviana

dc.contributor.advisorAragón Novoa, Diana Marcela
dc.contributor.advisorBernkop-Schnürch, Andreas
dc.contributor.authorCardona Paredes, María Isabel
dc.contributor.researchgroupTecnología de productos naturalesspa
dc.date.accessioned2022-09-01T14:09:37Z
dc.date.available2022-09-01T14:09:37Z
dc.date.issued2022
dc.descriptionilustraciones, gráficas, tablasspa
dc.description.abstractPhysalis peruviana L., es una planta ampliamente cultivada en los Andes sudamericanos con propiedades medicinales. Sus cálices son utilizados en la medicina tradicional por sus propiedades como anticancerígeno, antimicrobiano, antipirético, diurético y antiinflamatorio. Rutina, el flavonoide mayoritario del extracto etanólico de cálices de P. peruviana se ha utilizado en el tratamiento de diversas enfermedades. Sin embargo, la mayor limitación asociada a rutina es su baja biodisponibilidad oral, causada principalmente por su inestabilidad, baja solubilidad acuosa y limitada mucopenetración. El objetivo de esta investigación fue desarrollar dos sistemas mucopenetrantes (sistema autoemulsificable y micropartículas poliméricas) con el fin de incrementar la biodisponibilidad oral de la rutina presente en un extracto de cálices de P. peruviana. Inicialmente y como parte de la pre-formulación de los sistemas, se llevó a cabo la caracterización del extracto de cálices de P. peruviana y el estudio de estabilidad bajo condiciones de estrés y almacenamiento. Posteriormente, se desarrolló un sistema autoemulsificable cargado con el éster láurico de rutina aplicando una estrategia novedosa para incrementar la mucopenetración del mismo. Con dicha información como punto de partida, se desarrollaron y optimizaron dos sistemas mucopenetrantes (sistema autoemulsificable y micropartículas poliméricas) cargados con el extracto de cálices de P. peruviana a los cuáles se les evaluó la mucopenetración utilizando el método Transwell y su efecto sobre las propiedades reológicas del mucus intestinal porcino con el fin de entender los factores involucrados en la mucopenetración. Posteriormente, se determinó la farmacocinética y biodisponibilidad oral de rutina tras la administración del sistema autoemulsificable desarrollado y se comparó con el extracto no formulado. Finalmente, se evaluó la actividad hipoglicemiante del extracto no formulado y del sistema autoemulsificable por medio de un modelo in vivo de tolerancia a la glucosa en ratones. De acuerdo con los resultados obtenidos, se logró incorporar el extracto de cálices de P. peruviana en dos sistemas mucopenetrantes (sistema autoemulsificable y micropartículas poliméricas). La estrategia para incrementar la mucopenetración de las micropartículas se realizó utilizando Pluronic F127 mientras que para el sistema autoemulsificable fue la incorporación del copolímero PDMSHEPMS en la formulación. Se observó que el sistema autoemulsificable es más promisorio para el extracto de cálices de P. peruviana ya que permitió obtener una mayor mucopenetración, además su preparación es más simple y rentable con respecto a las micropartículas. La incorporación de PDMSHEPMS en el sistema autoemulsificable incrementó la mucopenetración de rutina 1,9 veces, siendo una estrategia novedosa y sencilla para favorecer la mucopenetración de este tipo de sistemas. En cuanto al estudio de biodisponibilidad, se observó un aumento de 5,81 veces en la biodisponibilidad oral de quercetina (principal metabolito de rutina en plasma), así como un aumento en la velocidad de absorción tras la administración oral del sistema autoemulsificable desarrollado con respecto al extracto no formulado. Adicionalmente, la reducción de los niveles de glucosa en sangre de los animales tratados con el sistema autoemulsificable fue similar a la producida por el fármaco glibenclamida lo cual es muy prometedor para un sistema de administración cargado con un extracto vegetal completo. (Texto tomado de la fuente)spa
dc.description.abstractPhysalis peruviana L. is a plant widely cultivated in the South American Andes with medicinal properties. The calyces of P. peruviana are used in folk medicine for their properties as anticancer, antimicrobial, antipyretic, diuretic, and anti¬inflammatory. Rutin is the major flavonoid in P. peruviana calyces extract, this flavonoid has been used in the treatment of different diseases. However, the major limitation associated with rutin is its poor bioavailability, mainly caused by its poor stability, low aqueous solubility, and limited mucopenetration. The aim of this research was to develop two mucus-penetrating systems (self-emulsifying drug delivery system and polymeric microparticles) to increase the oral bioavailability of rutin of an extract of calyces from P. peruviana. Initially and as part of the pre-formulation, the characterization of the extract and the stability study under stress and storage conditions were carried out. Subsequently, a rutin ester-loaded self-emulsifying drug delivery system was developed using a novel strategy to enhance its mucus permeation. With this information, two mucus-penetrating systems loaded with the extract of calyces from P. peruviana were developed and optimized (self-emulsifying drug delivery system and polymeric microparticles). The mucopenetration of the systems was evaluated using the Transwell method and its effect on the rheology properties of porcine intestinal mucus was also evaluated in order to understand the factors associated with mucopenetration. Subsequently, pharmacokinetics and oral bioavailability of rutin were evaluated after the administration of the developed self-emulsifying drug delivery system and it was compared with the unformulated extract. Finally, the hypoglycemic activity of the unformulated extract and of the self-emulsifying drug delivery system was evaluated with the in vivo model of glucose tolerance in mice. According to the results, it was possible to incorporate the extract of calyces from P. peruviana in two mucus-penetrating systems (self-emulsifying drug delivery system and polymeric microparticles). The strategy used to increase the mucus penetration of the microparticles was carried out using Pluronic F127 while for the self-emulsifying drug delivery system was the incorporation of the copolymer PDMSHEPMS in the formulation. According to the results obtained, the self-emulsifying drug delivery system is the most promising system for the extract of calyces from P. peruviana because exhibited higher mucus permeating properties compared to microparticles. In addition, the preparation of a self-emulsifying drug delivery system is simpler and more cost-efficient. The incorporation of PDMSHEPMS in the self-emulsifying drug delivery system increased the mucus permeation of rutin 1,9-fold, being a novel and simple strategy to enhance the mucus permeation of this type of system. Regarding the bioavailability study, the extract-loaded self-emulsifying drug delivery system showed a 5,81-fold increase in the oral bioavailability of quercetin, the main metabolite of rutin in plasma, as compared to the unformulated extract. Additionally, the reduction of blood glucose levels in animals treated with the optimized self-emulsifying drug delivery system was similar to those produced by glibenclamide, which is very promising for a drug delivery system loaded with a whole vegetal extract.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias Farmacéuticasspa
dc.description.researchareaTecnología farmacéuticaspa
dc.format.extentxxv, 230 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82232
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Farmaciaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias Farmacéuticasspa
dc.relation.referencesAbdalla, A., Klein, S., & Mäder, K. (2008). A new self-emulsifying drug delivery system (SEDDS) for poorly soluble drugs: Characterization, dissolution, in vitro digestion and incorporation into solid pellets. European Journal of Pharmaceutical Sciences, 35(5), 457–464.spa
dc.relation.referencesAbdulkarim, M., Kumar, P., & Gumbleton, M. (2019). Self-emulsifying drug delivery system: Mucus permeation and innovative quantification technologies. Advanced Drug Delivery Reviews,142, 62–74.spa
dc.relation.referencesAboulFotouh, K., Allam, A. A., El-Badry, M., & El-Sayed, A. M. (2018). Role of self-emulsifying drug delivery systems in optimizing the oral delivery of hydrophilic macromolecules and reducing interindividual variability. Colloids and Surfaces B: Biointerfaces, 167, 82–92.spa
dc.relation.referencesAgencia Nacional de vigilancia sanitaria. (2010). Farmacopea Brasilera (5th ed.). Brasilia, Brasil: ANVISA.spa
dc.relation.referencesAlam, M. S., Garg, A., Pottoo, F. H., Saifullah, M. K., Tareq, A. I., Manzoor, O., ... & Javed, M. N. (2017). Gum ghatti mediated, one pot green synthesis of optimized gold nanoparticles: Investigation of process-variables impact using Box-Behnken based statistical design. International journal of biological macromolecules, 104, 758-767.spa
dc.relation.referencesAlexander, A., Ajazuddin, Patel, R. J., Saraf, S., & Saraf, S. (2016). Recent expansion of pharmaceutical nanotechnologies and targeting strategies in the field of phytopharmaceuticals for the delivery of herbal extracts and bioactives. Journal of Controlled Release, 241, 110–124.spa
dc.relation.referencesAli, A., Chong, C. H., Mah, S. H., Abdullah, L. C., Choong, T. S. Y., & Chua, B. L. (2018). Impact of storage conditions on the stability of predominant phenolic constituents and antioxidant activity of dried piper betle extracts. Molecules, 23(2), 484.spa
dc.relation.referencesAlmeida, K. B., Ramos, A. S., Nunes, J. B. B., Silva, B. O., Ferraz, E. R. A., Fernandes, A. S., …& Falcão, D. Q. (2019). PLGA nanoparticles optimized by Box-Behnken for efficient encapsulation of therapeutic Cymbopogon citratus essential oil. Colloids and Surfaces B: Biointerfaces, 181, 935–942.spa
dc.relation.referencesAmariles Muñoz, P. (2002). El medicamento compendio básico para su utilización correcta. Impresos Ltda. Medellín, Colombia, p 119-123-133.spa
dc.relation.referencesAragón, D. M., Rosas, J. E., & Martínez, F. (2013). Relationship between the solution thermodynamic properties of naproxen in organic solvents and its release profiles from PLGA microspheres. Journal of microencapsulation, 30(3), 218-224.spa
dc.relation.referencesAraújo, F., Lopes, C., & Loureiro, A. (2019). Multicomponent self nano emulsifying delivery systems of resveratrol with enhanced pharmacokinetics profile. European Journal of Pharmaceutical Sciences, 137, 105011.spa
dc.relation.referencesAraújo, F., Martins, C., Azevedo, C., & Sarmento, B. (2018). Chemical modification of drug molecules as strategy to reduce interactions with mucus. Advanced Drug Delivery Reviews, 124, 98–106.spa
dc.relation.referencesAzuma, K., Ippoushi, K., Ito, H., Horie, H., & Terao, J. (2003). Enhancing effect of lipids and emulsifiers on the accumulation of quercetin metabolites in blood plasma after the short-term ingestion of onion by rats. Bioscience, Biotechnology and Biochemistry, 67(12), 2548–2555.spa
dc.relation.referencesBabu, N. J., & Nangia, A. (2011). Solubility advantage of amorphous drugs and pharmaceutical cocrystals. Crystal Growth and Design, 11(7), 2662–2679.spa
dc.relation.referencesBaena-Aristizábal, C. M., & Mora-Huertas, C. E. (2013). Micro, nano and molecular novel delivery systems as carriers for herbal materials. Journal of Colloid Science and Biotechnology, 2(4), 263-297.spa
dc.relation.referencesBala, I., Bhardwaj, V., Hariharan, S., Kharade, S. V., Roy, N., & Kumar, M. N. V. R. (2006). Sustained release nanoparticulate formulation containing antioxidant-ellagic acid as potential prophylaxis system for oral administration. Journal of Drug Targeting, 14(1), 27–34.spa
dc.relation.referencesBandi, S. P., Bhatnagar, S., & Venuganti, V. V. K. (2020a). Advanced materials for drug delivery across mucosal barriers. Acta Biomaterialia, 119, 13–29.spa
dc.relation.referencesBandi, S. P., Kumbhar, Y. S., & Venuganti, V. V. K. (2020b). Effect of particle size and surface charge of nanoparticles in penetration through intestinal mucus barrier. Journal of Nanoparticle Research, 22(3), 1-11.spa
dc.relation.referencesBansil, R., Celli, J., Hardcastle, J., & Turner, B. (2013). The influence of mucus microstructure and rheology in Helicobacter pylori infection. Frontiers in immunology, 4, 310.spa
dc.relation.referencesBansil, R., & Turner, B. S. (2017). The biology of mucus: Composition, synthesis and organization. Advanced Drug Delivery Reviews, 124, 3–15.spa
dc.relation.referencesBasey, K., & Mcgaw, B. A. (1992). Phygrine, an alkaloid from physalys species. Phytochemistry, 31(12), 4173-4176.spa
dc.relation.referencesBatrakova, E. V., & Kabanov, A. V. (2008). Pluronic block copolymers: Evolution of drug delivery concept from inert nanocarriers to biological response modifiers. Journal of Controlled Release, 130(2), 98–106.spa
dc.relation.referencesBazana, M. T., da Silva, S. S., Codevilla, C. F., de Deus, C., Lucas, B. N., Ugalde, G. A., … & de Menezes, C. R. (2019). Development of nanoemulsions containing Physalis peruviana calyx extract: A study on stability and antioxidant capacity. Food Research International,125, 108645.spa
dc.relation.referencesBenet, L. Z., & Zia-Amirhosseini, P. (1995). Basic principles of pharmacokinetics. Toxicologic Pathology, 23(2), 115–123.spa
dc.relation.referencesBernal, C. A., Bassani, V. L., Castellanos, L., Ramos, F. A., & Baena, Y. (2019). Development of an oral control release system from Physalis peruviana L. fruits extract based on the co-spray-drying method. Powder Technology, 354, 676–688.spa
dc.relation.referencesBernkop-Schnürch, A., & Jalil, A. (2018). Do drug release studies from SEDDS make any sense? Journal of Controlled Release, 271, 55–59.spa
dc.relation.referencesBetageri, G. V. (2019). Self-emulsifying drug delivery systems and their marketed products: A review. Asian Journal of Pharmaceutics (AJP): Free full text articles from Asian J Pharm, 13(02).spa
dc.relation.referencesBoegh Marie, & Nielsen, H. M. (2015). Mucus as a barrier to drug delivery - Understanding and mimicking the barrier properties. Basic and Clinical Pharmacology and Toxicology, 116(3), 179–186.spa
dc.relation.referencesBöhm, P. (2012). Functional silicones and silicone-containing block copolymers (Tesis de doctorado, Universidad Johannes Gutenberg de Mainz).spa
dc.relation.referencesBolli, A., Marino, M., Rimbach, G., Fanali, G., Fasano, M., & Ascenzi, P. (2010). Flavonoid binding to human serum albumin. Biochemical and Biophysical Research Communications, 398(3), 444–449.spa
dc.relation.referencesBourganis, V., Karamanidou, T., Samaridou, E., Karidi, K., Kammona, O., & Kiparissides, C. (2015). On the synthesis of mucus permeating nanocarriers. European Journal of Pharmaceutics and Biopharmaceutics, 97, 239–249.spa
dc.relation.referencesBuggins, T. R., Dickinson, P. A., & Taylor, G. (2007). The effects of pharmaceutical excipients on drug disposition. Advanced Drug Delivery Reviews, 59(15), 1482–1503.spa
dc.relation.referencesBuya, A. B., Beloqui, A., Memvanga, P. B., & Préat, V. (2020). Self-nano-emulsifying drug-delivery systems: From the development to the current applications and challenges in oral drug delivery. Pharmaceutics, 12(12), 1–52.spa
dc.relation.referencesCaddeo, C., Nácher, A., Díez-Sales, O., Merino-Sanjuán, M., Fadda, A. M., & Manconi, M. (2014). Chitosan-xanthan gum microparticle-based oral tablet for colon-targeted and sustained delivery of quercetin. Journal of Microencapsulation, 31(7), 694–699.spa
dc.relation.referencesCañigueral, S. (2009). Bases para el desarrollo racional de la Fitoterapia. Revista de Fitoterapia, 9, 17–20.spa
dc.relation.referencesCañigueral, S. (2013). Medicamentos a base de plantas: el reto de la calidad y la Farmacopea como herramienta para alcanzarla. Rev. fitoter, 101-122.spa
dc.relation.referencesCañigueral, S., Tschopp, R., Ambrosetti, L., Vignutelli, A., Scaglione, F., & Petrini, O. (2008). The development of herbal medicinal products: Quality, safety and efficacy as key factors. Pharmaceutical Medicine, 22(2), 107–118.spa
dc.relation.referencesCárdenas, P. A. (2015). Estudio de la correlación in vitro/ in vivo de la liberación de 6 -metilcumarina a partir de un sistema micropartículado (Tesis de doctorado, Universidad Nacional de Colombia). Recuperado de http://bdigital.unal.edu.co/56673/cardenascuadrospaolaandrea.2015.spa
dc.relation.referencesCárdenas, P. A., Jiménez–Kairuz, Á., de Araujo, B. V., & Aragón, D. M. (2019). Development of a dissolution method based on lipase for preclinical level A IVIVC of oral poly (ε-caprolactone) microspheres. Journal of Drug Delivery Science and Technology, 52, 632-641.spa
dc.relation.referencesCardona, M. I. (2014). Aporte a la estandarización de un extracto de cálices de Physalis peruviana (Tesis de maestría, Universidad Nacional de Colombia). Recuperado de http://bdigital.unal.edu.co/45900/1/mariaisabelcardonaparedes.2014.spa
dc.relation.referencesCardona, M. I., Nguyen Le, N. M., Zaichik, S., Aragón, D. M., & Bernkop-Schnürch, A. (2019). Development and in vitro characterization of an oral self-emulsifying delivery system (SEDDS) for rutin fatty ester with high mucus permeating properties. International Journal of Pharmaceutics, 562, 180–186.spa
dc.relation.referencesCardona, M. I., Toro, R. M., Costa, G. M., Ospina, L. F., Castellanos, L., Ramos, F. A., & Aragón, D. M. (2017). Influence of extraction process on antioxidant activity and rutin content in Physalis peruviana calyces extract. J Appl Pharm Sci, 7(06), 164–168.spa
dc.relation.referencesCarmona R. (2011). “Uchuva Physalis peruviana”. Ed. Bayer CropScience. p 9.spa
dc.relation.referencesCensi, R., & Di Martino, P. (2015). Polymorph impact on the bioavailability and stability of poorly soluble drugs. Molecules, 20(10), 18759–18776.spa
dc.relation.referencesChang, C. W. T., Takemoto, J. Y., & Zhan, J. (2019). Natural Bioactive Compounds. Israel Journal of Chemistry, 59, 325-326.spa
dc.relation.referencesChatterjee, B., Hamed Almurisi, S., Ahmed Mahdi Dukhan, A., Mandal, U. K., & Sengupta, P. (2016). Controversies with self-emulsifying drug delivery system from pharmacokinetic point of view. Drug Delivery, 23(9), 3639–3652.spa
dc.relation.referencesChow, S. C. (2014). Bioavailability and bioequivalence in drug development. Wiley Interdisciplinary Reviews: Computational Statistics, 6(4), 304–312.spa
dc.relation.referencesColas, A., & Aguadisch, L. (1997). Silicones in pharmaceutical applications. Chim. Nouv, 15(58), 1779.spa
dc.relation.referencesColas, A., & Rafidison, P. (2005). Silicones in new pharmaceutical developments from formulations to manufacturing processes. Pharma Chem, 46–49.spa
dc.relation.referencesCorrigan, O. I., & Li, X. (2009). Quantifying drug release from PLGA nanoparticulates. European Journal of Pharmaceutical Sciences, 37(3–4), 477–485.spa
dc.relation.referencesCortés-Rojas, D. F., Souza, C. R. F., & Oliveira, W. P. (2016). Assessment of stability of a spray dried extract from the medicinal plant Bidens pilosa L. Journal of King Saud University - Engineering Sciences, 28(2), 141–146.spa
dc.relation.referencesCosco, D., Failla, P., Costa, N., Pullano, S., Fiorillo, A., Mollace, V., … & Paolino, D. (2016). Rutin-loaded Chitosan Microspheres: Characterization and Evaluation of the Anti-Inflammatory Activity. Carbohydrate Polymers, 152, 583–591.spa
dc.relation.referencesCourt, R. W., Rix, C. S., Sims, M. R., Cullen, D. C., & Sephton, M. A. (2012). Extraction of polar and nonpolar biomarkers from the martian soil using aqueous surfactant solutions. Planetary and Space Science, 67(1), 109-118.spa
dc.relation.referencesCourt, R. W., Sims, M. R., Cullen, D. C., & Sephton, M. A. (2014). Searching for life on Mars: degradation of surfactant solutions used in organic extraction experiments. Astrobiology, 14(9), 733-752.spa
dc.relation.referencesCragg, G. M., & Newman, D. J. (2013). Natural products: A continuing source of novel drug leads. Biochimica et Biophysica Acta - General Subjects, 1830(6), 3670–3695.spa
dc.relation.referencesCrozier, A., Jaganath, I. B., & Clifford, M. N. (2009). Dietary phenolics: Chemistry, bioavailability and effects on health. Natural Product Reports, 26(8), 1001–1043.spa
dc.relation.referencesCui, J., Yu, B., Zhao, Y., Zhu, W., Li, H., Lou, H., & Zhai, G. (2009). Enhancement of oral absorption of curcumin by self-microemulsifying drug delivery systems. International journal of pharmaceutics, 371(1-2), 148-155.spa
dc.relation.referencesDa Silva, E. L., Piskula, M. K., Yamamoto, N., Moon, J. H., & Terao, J. (1998). Quercetin metabolites inhibit copper ion-induced lipid peroxidation in rat plasma. FEBS Letters, 430(3), 405–408.spa
dc.relation.referencesDanhier, F., Ansorena, E., Silva, J. M., Coco, R., Le Breton, A., & Préat, V. (2012). PLGA-based nanoparticles: An overview of biomedical applications. Journal of Controlled Release, 161(2), 505–522.spa
dc.relation.referencesDechene, E. B. (1951). The relative stability of rutin and quercetin in alkaline solution. Journal of the American Pharmaceutical Association (Scientific ed.), 40(10), 495-497.spa
dc.relation.referencesDekker, J., Rossen, J. W. A., Büller, H. A., & Einerhand, A. W. C. (2002). The MUC family: An obituary. Trends in Biochemical Sciences, 27(3), 126–131.spa
dc.relation.referencesDel-Toro-Sánchez, C. L., Gutiérrez-Lomelí, M., Lugo-Cervantes, E., Zurita, F., Robles-García, M. A., Ruiz-Cruz, S., … & Guerrero-Medina, P. J. (2015). Storage effect on phenols and on the antioxidant activity of extracts from Anemopsis Californica and inhibition of elastase enzyme. Journal of Chemistry, 2015.spa
dc.relation.referencesDomínguez, G. P., Feltrin, C., Brambila, P. F., Cardona, M. I., Echeverry, S. M., Simões, C. M. O., & Aragón, D. M. (2020). Matrix effects of the hydroethanolic extract and the butanol fraction of calyces from Physalis peruviana L. on the biopharmaceutics classification of rutin. Journal of Pharmacy and Pharmacology, 72(5), 738-747.spa
dc.relation.referencesDomínguez, G. P., Cardona, M. I., Sepúlveda, P. M., Echeverry, S. M., Oliveira Simões, C. M., & Aragón, D. M. (2021). Matrix Effects of the Hydroethanolic Extract of Calyces of Physalis peruviana L. on rutin Pharmacokinetics in Wistar Rats Using Population Modeling. Pharmaceutics, 13(4), 535.spa
dc.relation.referencesEcheverry, S. M., Valderrama, I. H., Costa, G. M., Ospina-Giraldo, L. F., & Aragón, D. M. (2018). Development and optimization of microparticles containing a hypoglycemic fraction of calyces from Physalis peruviana. Journal of Applied Pharmaceutical Science, 8(5), 10–18.spa
dc.relation.referencesEfiana, N. A., Phan, T. N. Q., Wicaksono, A. J., & Bernkop-Schnürch, A. (2018). Mucus permeating self-emulsifying drug delivery systems (SEDDS): About the impact of mucolytic enzymes. Colloids and Surfaces B: Biointerfaces, 161, 228–235.spa
dc.relation.referencesElkordy, A. A., Haj-Ahmad, R. R., Awaad, A. S., & Zaki, R. M. (2021). An overview on natural product drug formulations from conventional medicines to nanomedicines: Past, present and future. Journal of Drug Delivery Science and Technology, 102459.spa
dc.relation.referencesEnsign, L. M., Cone, R., & Hanes, J. (2012). Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Advanced drug delivery reviews, 64(6), 557-570.spa
dc.relation.referencesErlund, I., Kosonen, T., Alfthan, G., Mäenpää, J., Perttunen, K., Kenraali, J., … & Aro, A. (2000). Pharmacokinetics of quercetin from quercetin aglycone and rutin in healthy volunteers. European Journal of Clinical Pharmacology, 56(8), 545–553.spa
dc.relation.referencesEscobar M., L., Rivera, A., & Aristizábal G., F. A. (2010). Estudio comparativo de los métodos de resazurina y MTT en estudios de citotoxicidad en líneas celulares tumorales humanas. Vitae, 17(1), 67–74.spa
dc.relation.referencesFang, S. T., Liu, J. K., & Li, B. (2012). Ten new withanolides from Physalis peruviana. Steroids, 77(1–2), 36–44.spa
dc.relation.referencesFang, Z., & Bhandari, B. (2010). Encapsulation of polyphenols - A review. Trends in Food Science and Technology, 21(10), 510–523.spa
dc.relation.referencesFlórez V., Fischer G., & Sora A. (2000). “Producción, poscocecha y exportación de la uchuva”. Ed. Ministerio de Agricultura y Desarrollo Rural, Universidad Nacional de Colombia. p 9,11,19,22, 23.spa
dc.relation.referencesFischer, Gerhard, Almanza-Merchán, P. J., & Miranda, D. (2014). Importancia y cultivo de la uchuva (Physalis peruviana L.). Revista Brasileira de Fruticultura, 36(1), 40.spa
dc.relation.referencesFolcarà, S. C. (2013). Medicamentos a base de plantas: El reto de la calidad y la Farmacopea como herramienta para alcanzarla. Revista de Fitoterapia, 13(2), 101–122.spa
dc.relation.referencesFranco, L. A., Matiz, G. E., Calle, J., Pinzón, R., & Ospina, L. F. (2007). Actividad antinflamatoria de extractos y fracciones obtenidas de cálices de Physalis peruviana L . Journal of Ethnopharmacology, 27, 110–115.spa
dc.relation.referencesFriedl, H., Dünnhaupt, S., Hintzen, F., Waldner, C., Parikh, S., Pearson, J. P., … & Bernkop-Schnürch, A. (2013). Development and evaluation of a novel mucus diffusion test system approved by self-nanoemulsifying drug delivery Systems. Journal of Pharmaceutical Sciences, 102(12), 4406–4413.spa
dc.relation.referencesGabor, F. (1999). Ketoprofen-poly (D, L-lactic-co-glycolic acid) microspheres: influence of manufacturing parameters and type of polymer on the release characteristics. Journal of microencapsulation, 16(1), 1-12.spa
dc.relation.referencesGabrielsson, J., & Weiner, D. (2012). Non-compartmental analysis. In Computational toxicology (pp. 377-389). Humana Press, Totowa, NJ.spa
dc.relation.referencesGagliardi, A., Paolino, D., Costa, N., Fresta, M., & Cosco, D. (2021). Zein- vs PLGA-based nanoparticles containing rutin: A comparative investigation. Materials Science and Engineering: C, 118, 111538.spa
dc.relation.referencesGallagher, K. M., & Corrigan, O. I. (2000). Mechanistic aspects of the release of levamisole hydrochloride from biodegradable polymers. Journal of controlled release, 69(2), 261-272.spa
dc.relation.referencesGamazo, C., Martín-Arbella, N., Brotons, A., Camacho, A. I., & Irache, J. M. (2015). Mimicking microbial strategies for the design of mucus-permeating nanoparticles for oral immunization. European Journal of Pharmaceutics and Biopharmaceutics, 96, 454–463.spa
dc.relation.referencesGan, L., Zhang, C., Wu, F., Li, H., Zhang, W., & Zhang, Q. (2018). Microencapsulated nanostructured lipid carriers as delivery system for rutin. Materials Technology, 7857, 1–7.spa
dc.relation.referencesGao, S., & Hu, M. (2010). Bioavailability Challenges Associated with Development of Anti-Cancer Phenolics. Mini-Reviews in Medicinal Chemistry, 10(6), 550–567.spa
dc.relation.referencesGarcía-Díaz, M., Birch, D., Wan, F., & Nielsen, H. M. (2017). The role of mucus as an invisible cloak to transepithelial drug delivery by nanoparticles. Advanced Drug Delivery Reviews. 124, 107-124.spa
dc.relation.referencesGarg, R., & Gupta, G. D. (2010). Gastroretentive floating microspheres of silymarin: Preparation and in vitro evaluation. Tropical Journal of Pharmaceutical Research, 9(1), 59–66.spa
dc.relation.referencesGarg, V., Kaur, P., Singh, S. K., Kumar, B., Bawa, P., Gulati, M., & Yadav, A. K. (2017). Solid self-nanoemulsifying drug delivery systems for oral delivery of polypeptide-k: Formulation, optimization, in-vitro and in-vivo antidiabetic evaluation. European Journal of Pharmaceutical Sciences, 109, 297–315.spa
dc.relation.referencesGeorgiades, P., Pudney, P. D. A., Rogers, S., Thornton, D. J., & Waigh, T. A. (2014). Tea derived galloylated polyphenols cross-link purified gastrointestinal mucins. PloS one, 9(8), e105302.spa
dc.relation.referencesGershanik, T., Haltner, E., Lehr, C. M., & Benita, S. (2000). Charge-dependent interaction of self-emulsifying oil formulations with Caco-2 cells monolayers: Binding, effects on barrier function and cytotoxicity. International Journal of Pharmaceutics, 211(1–2), 29–36.spa
dc.relation.referencesGironés-Vilaplana, A., Baenas, N., Villaño, D., Speisky, H., García-Viguera, C., & Moreno, D. A. (2014). Evaluation of Latin-American fruits rich in phytochemicals with biological effects. Journal of Functional Foods, 7(1), 599–608.spa
dc.relation.referencesGonzales, G. B., Smagghe, G., Grootaert, C., Zotti, M., Raes, K., & Camp, J. Van. (2015). Flavonoid interactions during digestion, absorption, distribution and metabolism: A sequential structure-activity/property relationship-based approach in the study of bioavailability and bioactivity. Drug Metabolism Reviews, 47(2), 175–190.spa
dc.relation.referencesGonzales, G. B., Van Camp, J., Smagghe, G., Raes, K., & Mackie, A. (2015). Flavonoid-gastrointestinal mucus interaction and its potential role in regulating flavonoid bioavailability and mucosal biophysical properties. Food Research International. 88, 342-347.spa
dc.relation.referencesGraefe, E. U., Wittig, J., Mueller, S., Riethling, A. K., Uehleke, B., Drewelow, B., … & Veit, M. (2001). Pharmacokinetics and bioavailability of quercetin glycosides in humans. Journal of Clinical Pharmacology, 41(5), 492–499.spa
dc.relation.referencesGriesser, J., Hetényi, G., Kadas, H., Demarne, F., Jannin, V., & Bernkop-Schnürch, A. (2018). Self-emulsifying peptide drug delivery systems: How to make them highly mucus permeating. International Journal of Pharmaceutics, 538(1–2), 159–166.spa
dc.relation.referencesGrießinger, J., Dünnhaupt, S., Cattoz, B., Griffiths, P., Oh, S., Gómez, S. B. I., … & Bernkop-Schnürch, A. (2015). Methods to determine the interactions of micro- and nanoparticles with mucus. European Journal of Pharmaceutics and Biopharmaceutics, 96, 464–476.spa
dc.relation.referencesGullón, B., Lú-Chau, T. A., Moreira, M. T., Lema, J. M., & Eibes, G. (2017). Rutin: A review on extraction, identification and purification methods, biological activities and approaches to enhance its bioavailability. Trends in Food Science & Technology. 67, 220-235.spa
dc.relation.referencesGursoy, R. N., & Benita, S. (2004). Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs. Biomedicine and Pharmacotherapy, 58(3), 173–182.spa
dc.relation.referencesHarwansh, R. K., Deshmukh, R., & Rahman, M. A. (2019). Nanoemulsion: Promising nanocarrier system for delivery of herbal bioactives. Journal of Drug Delivery Science and Technology, 51, 224–233.spa
dc.relation.referencesHetényi, G., Griesser, J., Moser, M., Demarne, F., Jannin, V., & Bernkop-Schnürch, A. (2017). Comparison of the protective effect of self-emulsifying peptide drug delivery systems towards intestinal proteases and glutathione. International Journal of Pharmaceutics, 523(1), 357–365.spa
dc.relation.referencesHu, J., Wu, Z., Yan, J., Pang, W., Liang, D., & Xu, X. (2009). A promising approach for understanding the mechanism of Traditional Chinese Medicine by the aggregation morphology. Journal of Ethnopharmacology, 123(2), 267–274.spa
dc.relation.referencesHuang, S. M., Lertora, J. J., Markey, S. P., & Atkinson Jr, A. J. (Eds.). (2012). Principles of clinical pharmacology. Academic Press. p 2-3.spa
dc.relation.referencesICH. Stability Testing of new Drug Substances and Products: Text and methodology - Q1 A(R2). London; 2003.spa
dc.relation.referencesInchaurraga, L., Martín-Arbella, N., Zabaleta, V., Quincoces, G., Peñuelas, I., & Irache, J. M. (2015). In vivo study of the mucus-permeating properties of PEG-coated nanoparticles following oral administration. European Journal of Pharmaceutics and Biopharmaceutics, 97, 280–289.spa
dc.relation.referencesIsaak, C. K., Petkau, J. C., Karmin, O., Ominski, K., Rodriguez-Lecompte, J. C., & Siow, Y. L. (2013). Seasonal variations in phenolic compounds and antioxidant capacity of Cornus stolonifera plant material: Applications in agriculture. Canadian Journal of Plant Science, 93(4), 725-734.spa
dc.relation.referencesItalia, J. L., Datta, P., Ankola, D. D., & Kumar, M. N. V. R. (2008). Nanoparticles enhance per oral bioavailability of poorly available molecules: Epigallocatechin gallate nanoparticles ameliorates cyclosporine induced nephrotoxicity in rats at three times lower dose than oral solution. Journal of Biomedical Nanotechnology, 4(3), 304–312.spa
dc.relation.referencesJain, S., Jain, A. K., Pohekar, M., & Thanki, K. (2013). Novel self-emulsifying formulation of quercetin for improved in vivo antioxidant potential: Implications for drug-induced cardiotoxicity and nephrotoxicity. Free Radical Biology and Medicine, 65, 117–130.spa
dc.relation.referencesJaisamut, P., Wanna, S., Limsuwan, S., Chusri, S., Wiwattanawongsa, K., & Wiwattanapatapee, R. (2021). Enhanced Oral Bioavailability and Improved Biological Activities of a Quercetin/Resveratrol Combination Using a Liquid Self-Microemulsifying Drug Delivery System. Planta Medica, 87(4), 336–346.spa
dc.relation.referencesJahromi, L. P., Ghazali, M., Ashrafi, H., & Azadi, A. (2020). A comparison of models for the analysis of the kinetics of drug release from PLGA-based nanoparticles. Heliyon, 6(2), e03451.spa
dc.relation.referencesJaradat, N. A., Ayesh, O. I., & Anderson, C. (2016). Ethnopharmacological survey about medicinal plants utilized by herbalists and traditional practitioner healers for treatments of diarrhea in the West Bank/Palestine. Journal of Ethnopharmacology, 182, 57–66.spa
dc.relation.referencesJörgensen, A. M., Friedl, J. D., Wibel, R., Chamieh, J., Cottet, H., & Bernkop-Schnürch, A. (2020). Co-solvents in self-emulsifying drug delivery systems (SEDDS) – do they really solve our solubility problems?. Molecular Pharmaceutics. 17(9), 3236-3245.spa
dc.relation.referencesJürgenliemk, G., & Nahrstedt, A. (2003). Dissolution, solubility and cooperativity of phenolic compounds from Hypericum perforatum L. in aqueous systems. Pharmazie, 58(3), 200–203.spa
dc.relation.referencesJustino, G. C., Santos, M. R., Canário, S., Borges, C., Florêncio, M. H., & Mira, L. (2004). Plasma quercetin metabolites: Structure-antioxidant activity relationships. Archives of Biochemistry and Biophysics, 432(1), 109–121.spa
dc.relation.referencesKamel, R., & Basha, M. (2014). Preparation and in vitro evaluation of rutin nanostructured liquisolid delivery system. Bulletin of Faculty of Pharmacy, Cairo University, 51(2), 261-272.spa
dc.relation.referencesKappel, V. D., Frederico, M. J. S., Postal, B. G., Mendes, C. P., Cazarolli, L. H., & Silva, F. R. M. B. (2013a). The role of calcium in intracellular pathways of rutin in rat pancreatic islets: Potential insulin secretagogue effect. European Journal of Pharmacology, 702(1–3), 264–268.spa
dc.relation.referencesKappel, V. D., Cazarolli, L. H., Pereira, D. F., Postal, B. G., Zamoner, A., Reginatto, F. H., & Silva, F. R. M. B. (2013b). Involvement of GLUT-4 in the stimulatory effect of rutin on glucose uptake in rat soleus muscle. Journal of Pharmacy and Pharmacology, 65(8), 1179–1186.spa
dc.relation.referencesKhan, A. W., Kotta, S., Ansari, S. H., Sharma, R. K., & Ali, J. (2012). Potentials and challenges in self-nanoemulsifying drug delivery systems. Expert Opinion on Drug Delivery, 9(10), 1305–1317.spa
dc.relation.referencesKizilbey, K. (2019). Optimization of Rutin-Loaded PLGA Nanoparticles Synthesized by Single-Emulsion Solvent Evaporation Method. ACS Omega, 4(1), 555–562.spa
dc.relation.referencesKodelia, G., Athanasiou, K., & Kolisis, F. N. (1994). Enzymatic Synthesis of Butyryl-Rutin Ester in Organic Solvents and Its Cytogenetic Effects in Mammalian Cells in Culture. Applied.Biochemistry and.Biotechnology, 44(3), 205–212.spa
dc.relation.referencesKohli, K., Chopra, S., Dhar, D., Arora, S., & Khar, R. K. (2010). Self-emulsifying drug delivery systems : an approach to enhance oral bioavailability. Drug Discovery Today, 15(21–22), 958–965.spa
dc.relation.referencesKöllner, S., Dünnhaupt, S., Waldner, C., Hauptstein, S., Pereira De Sousa, I., & Bernkop-Schnürch, A. (2015). Mucus permeating thiomer nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 97, 265–272.spa
dc.relation.referencesKöllner, S., Nardin, I., Markt, R., Griesser, J., Prüfert, F., & Bernkop-Schnürch, A. (2017). Self-emulsifying drug delivery systems: Design of a novel vaginal delivery system for curcumin. European Journal of Pharmaceutics and Biopharmaceutics, 115, 268–275.spa
dc.relation.referencesKosaraju, S. L., D'ath, L., & Lawrence, A. (2006). Preparation and characterisation of chitosan microspheres for antioxidant delivery. Carbohydrate polymers, 64(2), 163-167.spa
dc.relation.referencesKunle. (2012). Standardization of herbal medicines - A review. International Journal of Biodiversity and Conservation, 4(3),101-112.spa
dc.relation.referencesLafitte, G. (2008). Structure of the gastrointestinal mucus layer and implications for controlled release and delivery of functional food ingredients. Delivery and Controlled Release of Bioactives in Foods and Nutraceuticals, 26–52.spa
dc.relation.referencesLai, S. K., Wang, Y. Y., Cone, R., Wirtz, D., & Hanes, J. (2009a). Altering mucus rheology to “solidify” human mucus at the nanoscale. PloS one, 4(1), e4294.spa
dc.relation.referencesLai, S. K., Wang, Y. Y., Wirtz, D., & Hanes, J. (2009b). Micro- and macrorheology of mucus. Advanced Drug Delivery Reviews, 61(2), 86–100.spa
dc.relation.referencesLarhed, A. W., Artursson, P., & Björk, E. (1998). The influence of intestinal mucus components on the diffusion of drugs. Pharmaceutical Research, 15(1), 66-71.spa
dc.relation.referencesLarhed, A. W., Artursson, P., Gråsjö, J., & Björk, E. (1997). Diffusion of drugs in native and purified gastrointestinal mucus. Journal of Pharmaceutical Sciences, 86(6), 660–665.spa
dc.relation.referencesLeal, J., Smyth, H. D. C., & Ghosh, D. (2017). Physicochemical properties of mucus and their impact on transmucosal drug delivery. International Journal of Pharmaceutics, 532(1), 555–572.spa
dc.relation.referencesLeichner, C., Menzel, C., Laffleur, F., & Bernkop-Schnürch, A. (2017). Development and in vitro characterization of a papain loaded mucolytic self-emulsifying drug delivery system (SEDDS). International Journal of Pharmaceutics, 530(1–2), 346–353.spa
dc.relation.referencesLeonaviciute, G., Zupančič, O., Prüfert, F., Rohrer, J., & Bernkop-Schnürch, A. (2016). Impact of lipases on the protective effect of SEDDS for incorporated peptide drugs towards intestinal peptidases. International Journal of Pharmaceutics, 508(1–2), 102–108.spa
dc.relation.referencesLi, M., Rouaud, O., & Poncelet, D. (2008). Microencapsulation by solvent evaporation: State of the art for process engineering approaches. International Journal of Pharmaceutics, 363(1–2), 26–39.spa
dc.relation.referencesLi, W., Yi, S., Wang, Z., Chen, S., Xin, S., Xie, J., & Zhao, C. (2011). Self-nanoemulsifying drug delivery system of Persimmon leaf vailability studies extract : Optimization and bioa. International Journal of Pharmaceutics, 420(1), 161–171.spa
dc.relation.referencesLi, Z., Jiang, H., Xu, C., & Gu, L. (2015). A review: Using nanoparticles to enhance absorption and bioavailability of phenolic phytochemicals. Food Hydrocolloids, 43, 153–164.spa
dc.relation.referencesLicodiedidoff, S., Koslowski, L. A. D., & Ribani, R. H. (2013). Flavonóis e atividade antioxidante do fruto Physalis peruviana L. em dois estádios de maturação. Acta Scientiarum - Technology, 35(2), 393–399.spa
dc.relation.referencesLieleg, O., Vladescu, I., & Ribbeck, K. (2010). Characterization of particle translocation through mucin hydrogels. Biophysical Journal, 98(9), 1782–1789.spa
dc.relation.referencesLin, C. F., Leu, Y. L., Al-Suwayeh, S. A., Ku, M. C., Hwang, T. L., & Fang, J. Y. (2012). Anti-inflammatory activity and percutaneous absorption of quercetin and its polymethoxylated compound and glycosides: The relationships to chemical structures. European Journal of Pharmaceutical Sciences, 47(5), 857–864.spa
dc.relation.referencesLiu, M., Zhang, J., Shan, W., & Huang, Y. (2014). Developments of mucus penetrating nanoparticles. Asian Journal of Pharmaceutical Sciences, 10(4), 275–282.spa
dc.relation.referencesLue, B.-M., Guo, Z., Glasius, M., & Xu, X. (2010a). Scalable Preparation of High Purity Rutin Fatty Acid Esters. Journal of the American Oil Chemists’ Society, 87(1), 55–61.spa
dc.relation.referencesLue, B. M., Nielsen, N. S., Jacobsen, C., Hellgren, L., Guo, Z., & Xu, X. (2010b). Antioxidant properties of modified rutin esters by DPPH, reducing power, iron chelation and human low density lipoprotein assays. Food Chemistry, 123(2), 221–230.spa
dc.relation.referencesMa, B. L., Yin, C., Zhang, B. K., Dai, Y., Jia, Y. Q., Yang, Y., … & Ma, Y. M. (2016). Naturally occurring proteinaceous nanoparticles in Coptidis Rhizoma extract act as concentration-dependent carriers that facilitate berberine absorption. Scientific Reports, 6(1), 1-11.spa
dc.relation.referencesMahmood, A., & Bernkop-Schnürch, A. (2018). SEDDS: A game changing approach for the oral administration of hydrophilic macromolecular drugs. Advanced Drug Delivery Reviews, 142, 91-101.spa
dc.relation.referencesMahmood, A., Laffleur, F., Leonaviciute, G., & Bernkop-Schnürch, A. (2017). Protease-functionalized mucus penetrating microparticles: In-vivo evidence for their potential. International Journal of Pharmaceutics, 532(1), 177–184.spa
dc.relation.referencesMaisel, K., Reddy, M., Xu, Q., Chattopadhyay, S., Cone, R., Ensign, L. M., & Hanes, J. (2016). Nanoparticles coated with high molecular weight PEG penetrate mucus and provide uniform vaginal and colorectal distribution in vivo. Nanomedicine, 11(11), 1337-1343.spa
dc.relation.referencesManach, C. (2004). Polyphenols : food sources and bioavailability. American Journal of Clinical Nutrition, 79, 727–747.spa
dc.relation.referencesMarinova, K. G., Alargova, R. G., Denkov, N. D., Velev, O. D., Petsev, D. N., Ivanov, I. B., & Borwankar, R. P. (1996). Charging of oil-water interfaces due to spontaneous adsorption of hydroxyl ions. Langmuir, 12(8), 2045–2051.spa
dc.relation.referencesMayorga, H., Knapp, H., Winterhalter, P., & Duque, C. (2001). Glycosidically bound flavor compounds of cape gooseberry (Physalis peruviana L.). Journal of Agricultural and Food Chemistry, 49(4), 1904–1908.spa
dc.relation.referencesMedina, S., Collado-González, J., Ferreres, F., Londoño-Londoño, J., Jiménez-Cartagena, C., Guy, A., … & Gil-Izquierdo, Á. (2019). Potential of Physalis peruviana calyces as a low-cost valuable resource of phytoprostanes and phenolic compounds. Journal of the Science of Food and Agriculture, 99(5), 2194–2204.spa
dc.relation.referencesMehta, S. C., & Somasundaran, P. (2008). Mechanism of stabilization of silicone oil-water emulsions using hybrid siloxane polymers. Langmuir, 24(9), 4558–4563.spa
dc.relation.referencesMinisterio de protección social. Resolución 2514 de 1995. “por el cual se reglamenta la guía para el desarrollo y presentación de los estudios de estabilidad”. República de Colombia. 2006. Disponible en: http://www.minsalud.gov.co.spa
dc.relation.referencesMinisterio de protección social. Circular externa DG-100-007-07. “por la cual se especifican las condiciones de temperatura y humedad para estudios de estabilidad a largo plazo”. República de Colombia. 2007. Disponible en: http://www.minsalud.gov.co.spa
dc.relation.referencesMoraga, G., Igual, M., García-Martínez, E., Mosquera, L. H., & Martínez-Navarrete, N. (2012). Effect of relative humidity and storage time on the bioactive compounds and functional properties of grapefruit powder. Journal of Food Engineering, 112(3), 191–199.spa
dc.relation.referencesMorand, C., Crespy, V., Manach, C., Besson, C., Demigné, C., & Rémésy, C. (1998). Plasma metabolites of quercetin and their antioxidant properties. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 275(1), 212–219.spa
dc.relation.referencesMorshed, K. M., Desjeux, J. F., Nagpaul, J. P., Majumdar, S., & Amma, M. K. P. (1991). The effect of propane-diols on the intestinal uptake of nutrients and brush border membrane enzymes in the rat. Biochemical Medicine and Metabolic Biology, 45(2), 161–170.spa
dc.relation.referencesMukherjee, P. K., Harwansh, R. K., & Bhattacharyya, S. (2015). Bioavailability of Herbal Products: Approach Toward Improved Pharmacokinetics: Approach Toward Improved Pharmacokinetics. In Evidence-Based Validation of Herbal Medicine, (pp. 217-245). Elsevier.spa
dc.relation.referencesMurota, K., & Terao, J. (2005). Quercetin appears in the lymph of unanesthetized rats as its phase II metabolites after administered into the stomach. FEBS Letters, 579(24), 5343–5346.spa
dc.relation.referencesMakadia, H. K., & Siegel, S. J. (2011). Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers, 3(3), 1377-1397.spa
dc.relation.referencesNakamura, T., Kinjo, C., Nakamura, Y., Kato, Y., Nishikawa, M., Hamada, M., … & Murota, K. (2018). Lymphatic metabolites of quercetin after intestinal administration of quercetin-3-glucoside and its aglycone in rats. Archives of Biochemistry and Biophysics, 645, 126–136.spa
dc.relation.referencesNardin, I., & Köllner, S. (2019). Successful development of oral SEDDS: screening of excipients from the industrial point of view. Advanced Drug Delivery Reviews, 142, 128–140.spa
dc.relation.referencesNguyen, T. A., Liu, B., Zhao, J., Thomas, D. S., & Hook, J. M. (2013). An investigation into the supramolecular structure, solubility, stability and antioxidant activity of rutin/cyclodextrin inclusion complex. Food Chemistry, 136(1), 186–192.spa
dc.relation.referencesNielsen, F. S., Petersen, K. B., & Müllertz, A. (2008). Bioavailability of probucol from lipid and surfactant based formulations in minipigs: Influence of droplet size and dietary state. European Journal of Pharmaceutics and Biopharmaceutics, 69(2), 553–562.spa
dc.relation.referencesNocetti, D., Núñez, H., Puente, L., Espinosa, A., & Romero, F. (2020). Composition and biological effects of goldenberry byproducts: an overview. Journal of the Science of Food and Agriculture, 100(12), 4335-4346.spa
dc.relation.referencesNorris, D. A., Puri, N., & Sinko, P. J. (1998). The effect of physical barriers and properties on the oral absorption of particulates. Advanced Drug Delivery Reviews, 34(2–3), 135–154.spa
dc.relation.referencesNorris, D. A., & Sinko, P. J. (1997). Effect of size, surface charge, and hydrophobicity on the translocation of polystyrene microspheres through gastrointestinal mucin. Journal of Applied Polymer Science, 63(11), 1481–1492.spa
dc.relation.referencesO’Lenick, A. J. (2000). Silicone emulsions and surfactants. Journal of Surfactants and Detergents, 3(3), 387–393.spa
dc.relation.referencesOlivares-Tenorio, M., Dekker, M., & Verkerk, R. (2016). Trends in Food Science & Technology Health-promoting compounds in cape gooseberry (Physalis peruviana L .): Review from a supply chain perspective. Trends in Food Science & Technology, 57, 83–92.spa
dc.relation.referencesOu-Yang, Z., Cao, X., Wei, Y., Zhang, W. W. Q., Zhao, M., & Duan, J. A. (2013). Pharmacokinetic study of rutin and quercetin in rats after oral administration of total flavones of mulberry leaf extract. Brazilian Journal of Pharmacognosy, 23(5), 776–782.spa
dc.relation.referencesPage, S. W., & Maddison, J. E. (2008). Principles of clinical pharmacology. Small animal clinical pharmacology, 2, 1-26.spa
dc.relation.referencesPangua, C., Reboredo, C., Campión, R., Gracia, J. M., Martínez-lópez, A. L., & Irache, J. M. (2021). Mucus-penetrating nanocarriers. Theory and Applications of Nonparenteral Nanomedicines, 137–152.spa
dc.relation.referencesPardo, J. M., Fontanilla, M. R., Ospina, L. F., & Espinosa, Lady. (2008). Determining the pharmacological activity of Physalis peruviana fruit juice on rabbit eyes and fibroblast primary cultures. Investigative Ophthalmology and Visual Science, 49(7), 3074–3079.spa
dc.relation.referencesPaswan, S. K., & Saini, T. R. (2017). Purification of Drug Loaded PLGA Nanoparticles Prepared by Emulsification Solvent Evaporation Using Stirred Cell Ultrafiltration Technique. Pharmaceutical Research, 34(12), 2779–2786.spa
dc.relation.referencesPinar, P. T., Yardim, Y., & Şentürk, Z. (2013). Voltammetric behavior of rutin at a boron-doped diamond electrode. Its electroanalytical determination in a pharmaceutical formulation. Central European Journal of Chemistry, 11(10), 1674–1681.spa
dc.relation.referencesPiskula, M. K., & Terao, J. (1998). Quercetin’s Solubility Affects Its Accumulation in Rat Plasma after Oral Administration. Journal of Agricultural and Food Chemistry, 46(10), 4313–4317.spa
dc.relation.referencesPlaza-Oliver, M., Santander-Ortega, M. J., & Lozano, M. V. (2021). Current approaches in lipid-based nanocarriers for oral drug delivery. Drug Delivery and Translational Research, 471–497.spa
dc.relation.referencesPouget, E., Tonnar, J., Lucas, P., Lacroix-Desmazes, P., Ganachaud, F., & Boutevin, B. (2010). Well-architectured poly (dimethylsiloxane)-containing copolymers obtained by radical chemistry. Chemical reviews, 110(3), 1233-1277.spa
dc.relation.referencesPuente, L. A., Pinto-Muñoz, C. A., Castro, E. S., & Cortés, M. (2011). Physalis peruviana Linnaeus, the multiple properties of a highly functional fruit: A review. Food Research International, 44(7), 1733–1740.spa
dc.relation.referencesRamadan, M. F. (2011). Bioactive phytochemicals, nutritional value, and functional properties of cape gooseberry (Physalis peruviana): An overview. Food Research International, 44(7), 1830–1836.spa
dc.relation.referencesRao, Q., Qiu, Z., Huang, D., Lu, T., Zhang, Z. J., Luo, D., … & Li, Q. (2019). Enhancement of the apparent solubility and bioavailability of Tadalafil nanoparticles via antisolvent precipitation. European Journal of Pharmaceutical Sciences, 128, 222–231.spa
dc.relation.referencesRazak, N. N. A., & Annuar, M. S. M. (2015). Enzymatic Synthesis of Flavonoid Ester: Elucidation of Its Kinetic Mechanism and Equilibrium Thermodynamic Behavior. Industrial & Engineering Chemistry Research, 54(21), 5604–5612.spa
dc.relation.referencesRehman, F. U., Shah, K. U., Shah, S. U., Khan, I. U., Khan, G. M., & Khan, A. (2017). From nanoemulsions to self-nanoemulsions, with recent advances in self-nanoemulsifying drug delivery systems (SNEDDS). Expert Opinion on Drug Delivery, 14(11), 1325–1340.spa
dc.relation.referencesRey, D. P., Ospina, L. F., & Aragón, D. M. (2015). Evaluación in vitro del efecto de un extracto de frutos de Physalis peruviana sobre algunas carbohidrasas intestinales. Revista Colombiana de Ciencias Químico-Farmacéuticas, 44(1), 72-89.spa
dc.relation.referencesRibeiro, A.M., Estevinho, B. N., & Rocha, F. (2020). Microencapsulation of polyphenols - The specific case of the microencapsulation of Sambucus Nigra L. extracts - A review. Trends in Food Science and Technology, 105, 454–467.spa
dc.relation.referencesRohrer, J., Partenhauser, A., Hauptstein, S., Gallati, C. M., Matuszczak, B., Abdulkarim, M., … & Bernkop-Schnürch, A. (2016). Mucus permeating thiolated self-emulsifying drug delivery systems. European Journal of Pharmaceutics and Biopharmaceutics, 98, 90–97.spa
dc.relation.referencesRohrer, J., Zupančič, O., Hetényi, G., Kurpiers, M., & Bernkop-Schnürch, A. (2018). Design and evaluation of SEDDS exhibiting high emulsifying properties. Journal of Drug Delivery Science and Technology, 44, 366–372.spa
dc.relation.referencesRothwell, J. A., Day, A. J., & Morgan, M. R. A. (2005). Experimental determination of octanol-water partition coefficients of quercetin and related flavonoids. Journal of Agricultural and Food Chemistry, 53(11), 4355–4360.spa
dc.relation.referencesRuiz-Pulido, G., & Medina, D. I. (2020). An overview of gastrointestinal mucus rheology under different pH conditions and introduction to pH-dependent rheological interactions with PLGA and chitosan nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 159,123-136.spa
dc.relation.referencesSaghir, S. A., & Ansari, R.A. (2018). Pharmacokinetics. Module in Biomedical Sciences, 1, 9.spa
dc.relation.referencesSaraf, S. (2010). Applications of novel drug delivery system for herbal formulations. Fitoterapia, 81(7), 680-689spa
dc.relation.referencesSayed, N., Khurana, A., & Godugu, C. (2019). Pharmaceutical perspective on the translational hurdles of phytoconstituents and strategies to overcome. Journal of Drug Delivery Science and Technology, 53, 101201.spa
dc.relation.referencesSha, X., Yan, G., Wu, Y., Li, J., & Fang, X. (2005). Effect of self-microemulsifying drug delivery systems containing Labrasol on tight junctions in Caco-2 cells. European Journal of Pharmaceutical Sciences, 24(5), 477–486.spa
dc.relation.referencesShahzadi, I., Dizdarević, A., Efiana, N. A., Matuszczak, B., & Bernkop-Schnürch, A. (2018). Trypsin decorated self-emulsifying drug delivery systems (SEDDS): Key to enhanced mucus permeation. Journal of Colloid and Interface Science, 531, 253–260.spa
dc.relation.referencesShaikh, M. V., Kala, M., & Nivsarkar, M. (2017). Formulation and optimization of doxorubicin loaded polymeric nanoparticles using Box-Behnken design: ex-vivo stability and in-vitro activity. European Journal of Pharmaceutical Sciences, 100, 262–272.spa
dc.relation.referencesShakeel, F., Haq, N., Alanazi, F. K., & Alsarra, I. A. (2014). Effect of oils and surfactants on physicochemical characterization and in vitro dissolution of glibenclamide from self-emulsifying formulations. Journal of Drug Delivery Science and Technology, 24(1), 78–85.spa
dc.relation.referencesShao, B., Tang, J., Ji, H., Liu, H., Liu, Y., Zhu, D., & Wu, L. (2010). Enhanced oral bioavailability of Wurenchun (Fructus Schisandrae Chinensis Extracts) by self-emulsifying drug delivery systems. Drug Development and Industrial Pharmacy, 36(11), 1356–1363.spa
dc.relation.referencesSharma, S., Ali, A., Ali, J., Sahni, J. K., & Baboota, S. (2013). Rutin: therapeutic potential and recent advances in drug delivery. Expert opinion on investigational drugs, 22(8), 1063-1079.spa
dc.relation.referencesSharma, S., Narang, J. K., Ali, J., & Baboota, S. (2016). Synergistic antioxidant action of vitamin E and rutin SNEDDS in ameliorating oxidative stress in a Parkinson ’ s disease model. Nanotechnology, 27(37), 1–20.spa
dc.relation.referencesSharma, S., Rabbani, S. A., Narang, J. K., Hyder Pottoo, F., Ali, J., Kumar, S., & Baboota, S. (2020). Role of Rutin Nanoemulsion in Ameliorating Oxidative Stress: Pharmacokinetic and Pharmacodynamics Studies. Chemistry and Physics of Lipids, 228, 104890.spa
dc.relation.referencesShen, H., & Zhong, M. (2006). Preparation and evaluation of self-microemulsifying drug delivery systems (SMEDDS) containing atorvastatin. Journal of Pharmacy and Pharmacology, 58(9),1183-1191.spa
dc.relation.referencesShimoi, K., Yoshizumi, K., Kido, T., Usui, Y., & Yumoto, T. (2003). Absorption and urinary excretion of quercetin, rutin, and αG-rutin, a water soluble flavonoid, in rats. Journal of Agricultural and Food Chemistry, 51(9), 2785–2789.spa
dc.relation.referencesSigurdsson, H. H., Kirch, J., & Lehr, C. M. (2013). Mucus as a barrier to lipophilic drugs. International Journal of Pharmaceutics, 453(1), 56–64.spa
dc.relation.referencesSingh, B., Bandopadhyay, S., Kapil, R., Singh, R., & Katare, O. P. (2009). Self-emulsifying drug delivery systems (SEDDS): Formulation development, characterization, and applications. Critical Reviews in Therapeutic Drug Carrier Systems, 26(5), 427–521.spa
dc.relation.referencesSingh, B., Beg, S., Khurana, R. K., Sandhu, P. S., Kaur, R., & Katare, O. P. (2014). Recent advances in self-emulsifying drug delivery systems (SEDDS). Critical Reviews™ in Therapeutic Drug Carrier Systems, 31(2).spa
dc.relation.referencesSingh, S., & Bakshi, M. (2000). Stress test to determine inherent stability of drugs. Pharmaceutical Technology, 4, 1–14.spa
dc.relation.referencesSo, H., Fawcett, A. S., Sheardown, H., & Brook, M. A. (2013). Surface-active copolymer formation stabilizes PEG droplets and bubbles in silicone foams. Journal of colloid and interface science, 390(1), 121-128.spa
dc.relation.referencesTaherali, F., Varum, F., & Basit, A. W. (2017). A slippery slope: On the origin, role and physiology of mucus. Advanced Drug Delivery Reviews, 124, 16–33.spa
dc.relation.referencesTang, J., Sun, J., Cui, F., Zhang, T., Liu, X., & He, Z. (2008). Self-emulsifying drug delivery systems for improving oral absorption of Ginkgo biloba extracts. Drug Delivery, 15(8), 477–484.spa
dc.relation.referencesTerao, J., Murota, K., & Kawai, Y. (2011). Conjugated quercetin glucuronides as bioactive metabolites and precursors of aglycone in vivo. Food and Function, 2(1), 11–17.spa
dc.relation.referencesToro Arango, R. M. (2014). Propuesta de un marcador analítico como herramienta en la microencapsulación de un extracto con actividad antioxidante de cálices de Physalis peruviana (Tesis de maestría, Universidad Nacional de Colombia). Recuperado de http://www.bdigital.unal.edu.co/45955/1/reinamarcelatoroarango.2014.spa
dc.relation.referencesToro, R. M., Aragón, D. M., Ospina, L. F., Ramos, F. A., & Castellanos, L. (2014). Phytochemical analysis, antioxidant and anti-inflammatory activity of calyces from Physalis peruviana. Natural Product Communications, 9(11), 1573–1575.spa
dc.relation.referencesTran, T. H., Guo, Y. I., Song, D., Bruno, R. S., & Lu, X. (2014). Quercetin-Containing Self-Nanoemulsifying Drug Delivery System for Improving Oral Bioavailability. Journal of Pharmaceutical Sciences, 103(3), 840–852.spa
dc.relation.referencesTsai, Y. M., Jan, W. C., Chien, C. F., Lee, W. C., Lin, L. C., & Tsai, T. H. (2011). Optimised nano-formulation on the bioavailability of hydrophobic polyphenol, curcumin, in freely-moving rats. Food Chemistry, 127(3), 918–925.spa
dc.relation.referencesUlusoy, H. G., & Sanlier, N. (2020). A minireview of quercetin: from its metabolism to possible mechanisms of its biological activities. Critical Reviews in Food Science and Nutrition, 60(19), 3290–3303.spa
dc.relation.referencesVaisali, C., Belur, P. D., & Regupathi, I. (2017). Lipase mediated synthesis of rutin fatty ester: Study of its process parameters and solvent polarity. Food Chemistry, 232, 278–285.spa
dc.relation.referencesVillacrés, E., Brito, B., Espín, S., & Vaillant, F. (2014). Physalis peruviana L. : fruta Andina para el mundo. Ed El mundo. p 116.spa
dc.relation.referencesViskupicova, J. – Maliar, T. (2017). Rutin fatty acid esters: from synthesis to biological health effects and application. Journal of Food and Nutrition Research, 56(3), 232–243.spa
dc.relation.referencesWagner, H., & Ulrich-Merzenich, G. (2009). Synergy research: Approaching a new generation of phytopharmaceuticals. Phytomedicine, 16(2–3), 97–110.spa
dc.relation.referencesWagner, H. (2006). Futuro en la investigación en Fitoterapia: tendencias y retos. Rev. Fitoter, 6(2), 101–117.spa
dc.relation.referencesWang, J., Zhao, L. L., Sun, G. X., Liang, Y., Wu, F. A., Chen, Z. li, & Cui, S. M. (2011). A comparison of acidic and enzymatic hydrolysis of rutin. African Journal of Biotechnology, 10(8), 1460–1466.spa
dc.relation.referencesWang, L., Sun, R., Zhang, Q., Luo, Q., Zeng, S., Li, X., … & Liu, Z. (2019). An update on polyphenol disposition via coupled metabolic pathways. Expert Opinion on Drug Metabolism and Toxicology, 15(2), 151–165.spa
dc.relation.referencesWiczkowski, W., Szawara-Nowak, D., Topolska, J., Olejarz, K., Zieliński, H., & Piskuła, M. K. (2014). Metabolites of dietary quercetin: Profile, isolation, identification, and antioxidant capacity. Journal of Functional Foods, 11, 121–129.spa
dc.relation.referencesWitten, J., Samad, T., & Ribbeck, K. (2018). Selective permeability of mucus barriers. Current opinion in biotechnology, 52, 124-133.spa
dc.relation.referencesWorld Health Organization. (2011). Quality control methods for herbal materials. World Health Organization. Geneva, Switzerland.spa
dc.relation.referencesWorld Health Organization. (1998). Quality control methods for medicinal plant materials. WorldHealth Organization. Geneva, Switzerland.spa
dc.relation.referencesWoo, J., Kim, T., Park, J., & Chi, S. (2007). Formulation and biopharmaceutical evaluation of silymarin using SMEDDS. Archives of Pharmacal Research, 30(1), 82–89.spa
dc.relation.referencesWu, S. J., Tsai, J. Y., Chang, S. P., Lin, D. L., Wang, S. S., Huang, S. N., & Ng, L. T. (2006). Supercritical carbon dioxide extract exhibits enhanced antioxidant and anti-inflammatory activities of Physalis peruviana. Journal of Ethnopharmacology, 108(3), 407–413.spa
dc.relation.referencesXiao, B., Zhang, M., Viennois, E., Zhang, Y., Wei, N., Baker, M. T., ... & Merlin, D. (2015). Inhibition of MDR1 gene expression and enhancing cellular uptake for effective colon cancer treatment using dual-surface-functionalized nanoparticles. Biomaterials, 48, 147-160.spa
dc.relation.referencesYalkowsky, S. H. (1999). Solubility and solubilization in aqueous media. American Chemical Society.spa
dc.relation.referencesYang, C. Y., Hsiu, S. L., Wen, K. C., Lin, S. P., Tsai, S. Y., Hou, Y. C., & Chao, P. D. L. (2005). Bioavailability and metabolic pharmacokinetics of rutin and quercetin in rats. Journal of Food and Drug Analysis, 13(3), 244–250.spa
dc.relation.referencesYang, Jing, Qian, D., Jiang, S., Shang, E. X., Guo, J., & Duan, J. A. (2012). Identification of rutin deglycosylated metabolites produced by human intestinal bacteria using UPLC-Q-TOF/MS. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 898, 95–100.spa
dc.relation.referencesYang, Jinwoo, Lee, H., Sung, J., Kim, Y., Jeong, H. S., & Lee, J. (2019). Conversion of rutin to quercetin by acid treatment in relation to biological activities. Preventive Nutrition and Food Science, 24(3), 313–320.spa
dc.relation.referencesYang, M., Lai, S. K., Wang, Y. Y., Zhong, W., Happe, C., Zhang, M., … & Hanes, J. (2011). Biodegradable nanoparticles composed entirely of safe materials that rapidly penetrate human mucus. Angewandte Chemie - International Edition, 50(11), 2597–2600.spa
dc.relation.referencesYeo, Y., & Park, K. (2004). Control of encapsulation efficiency and initial burst in polymeric microparticle systems. Archives of Pharmacal Research, 27(1), 1–12.spa
dc.relation.referencesZaichik, S., Steinbring, C., Menzel, C., Knabl, L., Orth-Höller, D., Ellemunter, H., … & Bernkop-Schnürch, A. (2018). Development of self-emulsifying drug delivery systems (SEDDS) for ciprofloxacin with improved mucus permeating properties. International Journal of Pharmaceutics, 547(1–2), 282–290.spa
dc.relation.referencesZavala, D., Quispe, A., Posso, M., Rojas, J., & Vaisberg, A. (2013). Efecto citotóxico de Physalis peruviana (capulí) en cáncer de colon y leucemia mieloide crónica. Anales de La Facultad de Medicina, 67(4), 283.spa
dc.relation.referencesZhang, Li, Zuo, Z., & Lin, G. (2007). Intestinal and hepatic glucuronidation of flavonoids. Molecular Pharmaceutics, 4(6), 833–845.spa
dc.relation.referencesZhang, L., Zhang, L., Zhang, M., Pang, Y., Li, Z., Zhao, A., & Feng, J. (2015). Self-emulsifying drug delivery system and the applications in herbal drugs. Drug delivery, 22(4), 475-486.spa
dc.relation.referencesZhang, X., Song, J., Shi, X., Miao, S., Li, Y., & Wen, A. (2013). Absorption and metabolism characteristics of rutin in Caco-2 cells. The Scientific World Journal, 2013.spa
dc.relation.referencesZhang, Xin, Dong, W., Cheng, H., Zhang, M., Kou, Y., Guan, J., … & Mao, S. (2019). Modulating intestinal mucus barrier for nanoparticles penetration by surfactants. Asian Journal of Pharmaceutical Sciences, 14(5), 543–551.spa
dc.relation.referencesZhao, G., Zou, L., Wang, Z., Hu, H., Hu, Y., & Peng, L. (2011). Pharmacokinetic profile of total quercetin after single oral dose of tartary buckwheat extracts in rats. Journal of Agricultural and Food Chemistry, 59(9), 4435–4441.spa
dc.relation.referencesZhao, J., Yang, J., & Xie, Y. (2019). Improvement strategies for the oral bioavailability of poorly water-soluble flavonoids: An overview. International journal of pharmaceutics, 570, 118642.spa
dc.relation.referencesZhao, Q., Luan, X., Zheng, M., Tian, X. H., Zhao, J., Zhang, W. D., & Ma, B. L. (2020). Synergistic mechanisms of constituents in herbal extracts during intestinal absorption: Focus on natural occurring nanoparticles. Pharmaceutics, 12(2).spa
dc.relation.referencesZhao, Y., Wang, C., Chow, A. H. L., Ren, K., Gong, T., Zhang, Z., & Zheng, Y. (2010). Self-nanoemulsifying drug delivery system (SNEDDS) for oral delivery of Zedoary essential oil: Formulation and bioavailability studies. International Journal of Pharmaceutics, 383(1–2), 170–177.spa
dc.relation.referencesZhou, X., Liu, Y., Huang, Y., Ma, Y., Lv, J., & Xiao, B. (2019). Mucus-penetrating polymeric nanoparticles for oral delivery of curcumin to inflamed colon tissue. Journal of Drug Delivery Science and Technology, 52, 157-164.spa
dc.relation.referencesZhuang, Y., Yan, J., Zhu, W., Chen, L., Liang, D., & Xu, X. (2008). Can the aggregation be a new approach for understanding the mechanism of Traditional Chinese Medicine? Journal of Ethnopharmacology, 117(2), 378–384.spa
dc.relation.referencesZupančič, O., Partenhauser, A., Lam, H. T., Rohrer, J., & Bernkop-Schnürch, A. (2016a). Development and in vitro characterisation of an oral self-emulsifying delivery system for daptomycin. European Journal of Pharmaceutical Sciences, 81, 129-136.spa
dc.relation.referencesZupančič, O., Grieβinger, J. A., Rohrer, J., Pereira de Sousa, I., Danninger, L., Partenhauser, A., … & Bernkop-Schnürch, A. (2016b). Development, in vitro and in vivo evaluation of a self-emulsifying drug delivery system (SEDDS) for oral enoxaparin administration. European Journal of Pharmaceutics and Biopharmaceutics, 109, 113–121.spa
dc.relation.referencesZupančič, O., Leonaviciute, G., Lam, H. T., Partenhauser, A., Podričnik, S., & Bernkop-Schnürch, A. (2016c). Development and in vitro evaluation of an oral SEDDS for desmopressin. Drug delivery, 23(6), 2074-2083.spa
dc.relation.referencesZupančič, O., Rohrer, J., Thanh Lam, H., Grießinger, J. A., & Bernkop-Schnürch, A. (2017). Development and in vitro characterization of self-emulsifying drug delivery system (SEDDS) for oral opioid peptide delivery. Drug Development and Industrial Pharmacy, 43(10), 1694–1702.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc610 - Medicina y salud::615 - Farmacología y terapéuticaspa
dc.subject.ddc540 - Química y ciencias afines::547 - Química orgánicaspa
dc.subject.ddc540 - Química y ciencias afinesspa
dc.subject.lembPlantas medicinalesspa
dc.subject.lembMedicinal planteng
dc.subject.lembPlantas útilesspa
dc.subject.lembPlants, usefuleng
dc.subject.proposalPhysalis peruvianaspa
dc.subject.proposalRutinaspa
dc.subject.proposalExtracto vegetalspa
dc.subject.proposalSistema autoemulsificablespa
dc.subject.proposalMicropartículasspa
dc.subject.proposalMucopenetraciónspa
dc.subject.proposalBiodisponibilidadspa
dc.subject.proposalPhysalis peruvianaeng
dc.subject.proposalRutineng
dc.subject.proposalHerbal extracteng
dc.subject.proposalSelf-emulsifying drug delivery systems,eng
dc.subject.proposalMicroparticleseng
dc.subject.proposalMucopenetrationeng
dc.subject.proposalBioavailabilityeng
dc.titleDesarrollo de sistemas mucopenetrantes de administración oral como estrategia para aumentar la biodisponibilidad del flavonoide rutina en un extracto de cálices de Physalis peruviana
dc.title.translatedDevelopment of muco-penetrating systems for oral administration as a strategy to increase the bioavailability of the flavonoid rutin of an extract of calyces from Physalis peruvianaeng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1017126699. 2022.pdf
Tamaño:
4.03 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias Farmacéuticas

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
4.57 KB
Formato:
Item-specific license agreed upon to submission
Descripción: